HomeMy WebLinkAboutReports - Drainage - 07/17/2024■
�' � ,�
� i�
� ��
�M
�' �� �
� �'
�
. ,�
��= ��
,.
. . �:
o�..� �`� �
. ,��
�Y
`
� �
Montava Subdivision Phase D
Project Development Plan (PDP)
Final Drainage Report
For
- . . � N G . '.. �, � � .
. ���,r���l��' � ��
l
_ �,�,gi��,���'�'�� ,
_ {_� '�;r N
��-�NGINCERS
�
r, ,- �,.-r.
�- , ,� ��
1 s F.,
��'� .. 11 11A'!� )J ��y.,
' [�4 � ?�li.r dt 3 —
Mr. Wes Lamarque
City of Fort Collins
Development Review Engineer
700 Wood Street
Fort Collins, CO 80521
Re: Montava Subdivision Phase D
Final Design Drainage Report
Project No. 1230.0005.00
July 17, 2024
748 Whalers Way
suite 200
Fort Collins, CO 80525
970.226.0557 main
970.226.0204 fax
ideas@tstinc.com
www.tstinc.com
Dear Mr. Lamarque:
TST, Inc. Consulting Engineers (TST) is pleased to submit this Final Design
Drainage Report for the Montava Subdivision Phase D project to the City of Fort
Collins (City) for review and approval.
The purpose of this drainage report is to evaluate the drainage conditions of the
above-referenced proposed Montava Subdivision Phase D project site. The Fort
Collins Stormwater Criteria Manual (referred to as FCSCM).
Please review the attached report and provide any questions or comments at your
earliest convenience. We appreciate the opportunity to be of continued service to
the city and look forward to receiving your comments and moving forward on this
important project.
Sincerely,
TST, INC. CONSULTING ENGINEERS
Bryston Anthony M. Gartner, E.I.
:�T!'
TST, INC. CONSULTING ENGINEERS
Derek A. Patterson, P.E.
�..
I hereby attest that this report for the preliminary drainage design for the Montava
Subdivision Phase D was prepared by me or under my direct supervision, in
accordance with the provisions of the Fort Collins Stormwater Criteria Manual. I
understand that the City of Fort Collins does not and will not assume liability for
drainage facilities designed by others.
Derek A. Patterson
Registered Professional Engineer
State of Colorado No. 48898
■
Table of Contents
Final Drainage Report
Montava Subdivision Phase D
1.0 - GENERAL LOCATION AND DESCRIPTION .........................................................1
1.1 Project Location and Description ................................................................... 1
1.2 Description of Property ................................................................................... 2
2.0 - DRAINAGE BASINS AND SUB-BASINS ..............................................................4
2.1 Major Basin Description .................................................................................. 4
2.2 Existing Conditions ......................................................................................... 4
2.3 Proposed Conditions ...................................................................................... 4
3.0 - DRAINAGE DESIGN CRITERIA ............................................................................ 9
3.1 Hydrological and Hydraulic Criteria ............................................................... 9
4.0 - CONCLUSIONS ....................................................................................................11
5.0 - REFERENCES ......................................................................................................13
6.0 - APPENDICES .......................................................................................................14
List of Figures
1.1 Vicinity Map .....................................................................................................................2
Page i
T'7T. INC. CONSULTING ENGINEERS
Montava Subdivision Phase D Final Drainage Report
1.0 - General Location and Description
The purpose of this Final Drainage Report is to present the drainage design for the Montava
Subdivision Phase D(Hereinafter referred to as the "Phase D") project site to the City of Fort
Collins (hereinafter referred to as the "City") for review and approval.
The design objectives for this drainage report are to present:
❖ Hydrologic analysis of the proposed improvements and surrounding off-site areas to
determine the location and magnitude of the site's storm runoff.
❖ Hydrologic data used to design storm runoff collection and conveyance facilities.
':' Hydraulic analysis of proposed on-site and existing downstream storm infrastructure to
ensure sufficient conveyance of stormwater runoff to the proposed detention areas.
':' Detention analysis and design of the proposed stormwater detention areas.
':' Best Management Practices (BMPs) are used to prevent erosion and sedimentation
before, during, and after construction of the stormwater infrastructure.
':' Overall storm drainage plan that meets previously approved drainage plans and the
FCSCM.
The drainage system was designed using the Fort Collins Stormwater Criteria Manual
(collectively referred to as FCSCM).
1.1 Project Location and Description
The Phase D project site is located in Section 32, Township 8 North, Range 68 West of the 6tn
Principal Meridian, within the City of Fort Collins, Larimer County, Colorado. The proposed site
is bounded on the north by farmland, future Montava Subdivision phases, and Richards Lake
Road. On the east by farmland, N. Giddings Road, and future Montava Subdivision phases. On
the south by farmland, future Montava Subdivision phases, and Mountain Vista Drive. On the
west by farmland, the Number 8 Outlet Ditch, Future Montava Subdivision phases, Maple Hill
subdivision, and Storybook Subdivision. A vicinity map illustrating the project location is
provided in Figure 1.1.
Page 1
T'7T. INC. CONSULTING ENGINEERS
Montava Subdivision Phase D
1.2 Description of Property
Final Drainage Report
The Phase D project site contains approximately 58 acres and consists of Single-Family
development and Open Space. Phase D is currently zoned as Mixed Density Neighborhood.
According to Flood Insurance Rate Map (FIRM) #08069C0982F eff. 12/19/2006 prepared by the
Federal Emergency Management Agency (FEMA), Phase D is located in unshaded Zone X.
Zone X indicates areas determined to be outside of 500-year or 0.2% annual chance floodplain,
meaning it is not designated as a special flood hazard zone. Copies of the FEMA maps that
apply to Phase D are included in Appendix C.
The types of soils found on the Montava Subdivision Phase D site consist of:
':• Aquepts, loamy (5).
':' Caruso clay loam (22) — 0 to 1 percent slopes.
':• Fort Collins loam (35) — 0 to 3 percent slopes.
':' Fort Collins loam (36) — 3 to 5 percent slopes.
':• Satanta loam (95) — 1 to 3 percent slopes.
':' Satanta Variant clay loam (98) — 0 to 3 percent slopes.
':' Stoneham loam (101) — 1 to 3 percent slopes.
Page 2
TST, INC. CONSULTING ENGINEERS
Figure 1.1: �cinityMap
Montava Subdivision Phase D
The characteristics of the soil found on the project site include:
':' Slow to very slow infiltration rate when thoroughly wet.
':' Slow to very slow rate of water transmission.
Final Drainage Report
❖ Majority of the site has a wind erodibility rating of 5 and 6(8 being the least susceptible)
These soils consist of the following hydrologic soil groups as defined in the United States
Department of Agriculture (USDA), Web Soil Survey:
':' Group B — 1.00%
•:' Group C — 37.00%.
':' Group D — 62.00%.
The USDA web soil survey report is included in Appendix D.
The following reports were utilized in the drainage analysis and design of Phase D.
':• Montava Master Drainage Study Fort Collins, Colorado, prepared by Martin/Martin, Inc.,
dated January 23, 2019.
Hydrologic and hydraulic information was referenced from this report to analyze off-site
areas and conveyance links downstream from Phase D and site. Refer to Appendix J for
referenced / applicable documentation from this report.
Page 3
TST, INC. CONSULTING ENGINEERS
Montava Subdivision Phase D
Final Drainage Report
2.0 - Drainage Basins and Sub-Basins
2.1 Major Basin Description
According to the FCSCM, Phase D is located within the Upper Cooper Slough Basin. The Upper
Cooper Slough Basin stormwater generally flows from north to south which is ultimately being
captured by the Larimer and Weld Canal. According to the Montava Master Drainage Study,
Phase D is primarily located in Basin C2, Basin D, Basin F, and Basin G1, which drain from the
northwest to the southeast and eventually end up in the Larimer and Weld Canal.
2.2 Existing Conditions
The Phase D site is located in an undeveloped plot of land west of the Anheuser Busch
property. The current land is undeveloped and used for agricultural purposes. The land currently
consists of native grasses, bare ground, and crops. Phase D sheet flows southeast into an
inadvertent detention area which overtops Mountain Vista Drive and eventually into the Larimer
and Weld Canal through various existing drainage infrastructure. The existing site does not
have any existing ponds or drainage facilities. The site has an inadvertent detention area near
Giddings Road and Mountain Vista Drive. The receiving historical major drainage way for Phase
D is the Larimer and Weld Canal.
2.3 Proposed Conditions
The proposed Phase D development has been designed to maintain historic drainage patterns
and reduce the runoff rate down to the 2-year historic. In addition, this site has been designed to
mee the intent of the 1986 AB Agreement.
Phase D is located in four basins, outlined in the Montava Master Drainage Plan, see Appendix
J for master drainage map. Phase D is located in Basin C2, Basin D, Basin F, and Basin G1.
The portion of Phase D located in Basin C2 will flow south into an Interim Swale Pond. The
portion of Phase D located in Basin D will flow west into Pond D. The portion of Phase D located
in Basin F will flow south into Interim Pond 427. The portion of Phase D located in Basin G1 will
flow south into Interim Pond 427. Interim Swale Pond and Interim Pond 427 are being
constructed to help phase Montava drainage and will be removed with later phases. When both
ponds are removed the portion of Phase D in Basin F will be detained in Pond F, constructed
with Phase E. The remaining flows that were captured by Interim Swale Pond and Interim Pond
427 will be routed east along Mountain Vista Drive and south into Pond 426 and Pond 425
which ultimately outfall into the L&W Canal.
The following basins were delineated for the Montava Subdivision Phase D site plan, using the
Montava Master Drainage Basins (MP):
MP Basin C2 is made up of a street that connects the site to N. Giddings Road, which is
Page 4
T'7T. INC. CONSULTING ENGINEERS
Montava Subdivision Phase D Final Drainage Report
approximately 1.15 acres with a composite imperviousness of approximately 81.25%. MP Basin
C2 was subdivided into 2 subbasins, C2-1 — C2-2, that have their own drainage patterns. The
subbasins sheet flow into curb and gutter and discharges directly into the Interim Swale Pond.
Neither of the basins are being treated in an LID but are accounted for in the LID calculations.
MP Basin D is made up of mixed density single family lots, streets, and open space, which is
approximately 12.80 acres with a composite imperviousness of approximately 77.01%. MP
Basin D was subdivided into 18 subbasins, D-1 — D-18, that have their own drainage patterns.
The subbasins runoff starts from the single-family development and drains into street or alleys
and into storm lines via curb inlets or area inlets and into Pond D. Water quality will be treated in
LID #1(full infiltration underground infiltration) located in the west portion of site and LID#2 (full
infiltration underground infiltration) in the center of the basin. The water quality that is treated in
LID#1 and LID#2 fully infiltrate and does not end up in Pond D. Every storm greater than the
minor event will bypass both LIDs and go directly into the Pond D.
MP Basin F is made of mixed density single family lots, streets, future apartments, and open
space, which is approximately 24.86 acres with a composite imperviousness of approximately
78.98%. MP Basin F was subdivided into 33 subbasins, F-1 — F-33, that have their own
drainage patterns. The subbasins runoff starts in the single-family lots and sheet flows into the
street or alleys and into proposed storm lines via curb inlets or area inlets that discharge into the
interim swale that borders the southwest portion of the site. The subbasins drains into Interim
Pond 427, in the master drainage plan this portion of Phase D will be detained in Pond F. In the
future Pond F will be constructed with Phase E and these subbasins will be directed into Pond
F. Basin F will be treated in one rain garden and three underground infiltration chambers. LID#3
(rain garden) is located in the northwest portion of the site, LID#4 (underground infiltration)
located in the center portion of the site, and LID#5 (underground infiltration) located in the
center portion of the site. LID#6 (underground infiltration) is located in the southern portion of
the site. The water quality that is treated in LID#3, LID#4, LID#5, and LID#6 drains to Interim
Pond 427 but will end up in Pond F, when constructed. Every storm greater than the minor
event will bypass all the LIDs and go directly into the Interim Pond 427 and in the future will
drain into Pond F, when constructed.
MP Basin G is made of mixed density single family lots, streets, future apartments, and open
spaces, which is approximately 13.45 acres with a composite imperviousness of approximately
80.58%. MP Basin G was subdivided into 18 subbasins, G1-1 — G1-18, that have their own
drainage patterns. The subdivision runoff starts in the single-family lots and sheet flows into the
streets or alleys and into proposed storm line via curb inlet or area inlets that discharges into the
interim swale that borders the southwest portion of the site and into Interim Pond 427. In the
Master Drainage Plan, Interim Pond 427 will be turned into a conveyance channel to Pond 426.
None of the basins are being treated in an LID but are accounted for in the LID calculations.
Future Basin are approximately 24.73 acres with a composite imperviousness of approximately
68.40%. Future Basins were subdivided into 5 subbasins, Future-1 — Future-5, that have their
Page 5
TST, INC. CONSULTING ENGINEERS
Montava Subdivision Phase D Final Drainage Report
own drainage patterns. Basin Future-1 and Future-3 will have future street, proposed single-
family lots, and a proposed drainage channel. Basin Future-2, Future-4, and Future-5 will have
future streets, future single-family lots. All Future basins will have to have their own LID
treatment and was not included with the LID calculations. In the interim conditions Future-1 —
Future-3 will be detained and in the Interim Swale Pond. Future-4 and Future-5 drain into the
Interim Pond 427.
Basin School is approximately 18.26 acres with a composite imperviousness is approximately
55.72%. Basin School is for the future school site and future amenities. Basin School drains
from the northwest of the basin to the southeast portion of the site where it is collected by a
proposed storm sewer of Phase D and routed to Pond D. Basin School will have to provide their
own LID treatment and was not included with the LID calculations.
Pond D Basin is approximately 7.49 acres with a composite imperviousness of 8.54%. Pond D
Basin consists of proposed amenities and the entirety of Pond D. All runoff generated within
Pond D Basin will sheet flow into the Pond. Pond D Basin is not treated by a LID but is
accounted for in the LID calculations.
Pond 427 Basin is approximately 10.23 acres with a composite imperviousness of 3.05%. Pond
427 Basin consists of an interim drainage channel and an interim Pond. All runoff in this basin
will sheet flow directly into the drainage channel or the pond. Interim Pond 427 Basin is not
treated by a LID but is accounted for in the LID calculations.
Off-Site Basins
Offsite 1- Offsite 1 Basin is approximately 103.58 acres and will not have any improvements
within it. Offsite 1 contains all the undeveloped land that is north of Phase D between Giddings
Road, The Number 8 Ditch, and Richards Lake Road. All calculations that involve Offsite 1 will
be done with the interim undeveloped condition. In the future when this basin is developed each
separate phase will have a drainage report and ponds that will more closely match the master
drainage plan. The proposed condition will capture all the runoff from the north into the Interim
Swale Pond and Interim Pond 427. Runoff from this basin will be captured and detained in the
interim swale pond, where it will be released into a swale running along the west side of
Giddings' Road and ultimately into Pond 427.
Offsite 2- Offsite 2 Basin is approximately 75.61 acres and will not have any improvements
within it. Offsite 2 contains all the undeveloped land that is south of Phase D between Interim
Pond 427, Number 8 Ditch and Mountain Vista Drive. No calculations were made using runoff
from Offsite 2. Offsite 2 follows existing drainage patterns where runoff from the basin sheet
flows south into a spot near Mountain Vista Drive (inadvertent detention) and overtops the road
in large storm events. In the future when this basin is developed each phase will have a
drainage report and ponds that will attenuate the runoff as described in the master drainage
report.
Page 6
TST, INC. CONSULTING ENGINEERS
Montava Subdivision Phase D Final Drainage Report
In the future Phase D will only be receiving runoff from the school site. All other basins will be
following the master drainage plan and will have their own drainage reports that shows
conformance with the master drainage plan.
2.4 Low Impact Development (LID)
Per City of Fort Collins criteria, Low Impact Development (LID) features are proposed to treat
50% of the newly developed Single-Family, and 75% of the newly developed Multi-family within
Phase D. The remaining water quality will be treated utilizing traditional methods (i.e. EDB).
Five LID systems are being proposed for Phase D, Rain Garden and Underground detention.
Four LIDs are proposed to be Underground detention and one LID proposed to be rain garden.
The percentage of newly developed areas treated by these systems is included in Appendix B.
To achieve the 50°/o treatment for the entire site the LID that we designed are treating 100% of
the area that is draining to them. The five LIDs proposed within the site are treating 0.89 acres
extra of newly impervious added and will be banked for future phases. The LIDs proposed also
includes the future apartment sites, using 75% of the newly added imperviousness. See
Appendix B for the LID exhibit showing the areas that are draining to the LID, remainder of site
that is accounted for within the LID calculations, and future filings that will have to provided LID
when developed.
The proposed LID systems, water quality, and detention facilities will be located in tracts owned
and maintained by the Montava Metropolitan District.
2.5 MDCIA "Four Step Process"
Step 1— Employ Runoff Reduction Practices
Montava Phase D provides LID treatment for 50% of the single-family development and 75% of
the multifamily development, through various systems (Raingardens, Wet Ponds, and future
Underground detention chambers). The LID systems have been placed throughout the site to
minimize directly connected impervious areas.
Step 2— Implement BMPs That Provide a WQCV with Slow Release
The remaining Single-Family and Multi-family development throughout the site not being treated
by the LID described is being treated through traditional water quality control volume extended
drainage basins designed to release the water quality event within a minimum of 40 hours.
Step 3 — Stabilize Streams
Portions of Phase D will be spilling into a temporary swale that will connect Pond D with Interim
Pond 427. Phase D will be spilling into a couple of ponds that will reduce the sediment load to
the downstream open irrigation channel.
Page 7
TST, INC. CONSULTING ENGINEERS
Montava Subdivision Phase D
Step 4— Implement Site Specific and Other Source Control BMPs
Final Drainage Report
1. The following practices suggested by City of Fort Collins Criteria will be implemented
throughout the design and construction process:
2. Being a single-family development, trash receptacles will be dispersed throughout the
neighborhood and likely be enclosed containers that minimize concentrated and polluted
runoff from entering the storm sewer system or receiving drainageways prior to being
treated.
3. Phase D of Montava Subdivision does not include a dog park, but any future dog parks
shall be located in areas away from detention basins and educational opportunities to
reinforce pick-up practices for dog owners shall be employed.
4. Phase D of Montava Subdivision does include any community gardens. Community
gardens shall be located in areas that are outside of the detention basins to prevent
chemical and sediment loading.
5. Construction Best Management Practices (BMPs) will be employed to located material
storage away from drainage facilities.
2.6 Variance Requests
No drainage variances are being requested at this time.
Page 8
TST, INC. CONSULTING ENGINEERS
Montava Subdivision Phase D Final Drainage Report
3.0 - Drainage Design Criteria
The drainage design presented in this report has been developed in accordance with the
guidelines established by the FCSCM dated December 2018. A SWMM Model was utilized for
detention sizing and basic storm water routing, while the Rational Method was utilized for sizing
streets, swales, inlets, storm sewer, and other storm infrastructure.
Storm system infrastructure including pipes, culverts, inlets, and drainage swales will be sized to
convey at a minimum the 2-year storm event. In areas of concern, storm system infrastructure
will sized to handle the 100-year and any additional bypass flow from upstream infrastructure.
3.1 Hydrological and Hydraulic Criteria
Design Rainfall & Runoff Calculation Method
The hydrology of the project site for developed conditions will be evaluated based on the 2-, 10-
and 100-year storm frequencies as dictated within the FCSCM manual. The Rational Method
was used to determine peak runoff rates for each developed basin. Peak storm runoff values
will be used to size on-site drainage facilities including storm culverts, sewers, inlets and
channels for the initial and major design storms as specified in the FCSCM criteria and
standards. Within the criteria and standards, the initial design storm was established as the 2-
year minor storm event and the 100-year storm as the major event.
Inlet Design
All inlets within the project area will be designed to collect and convey the 2-year developed
runoff. In areas where flooding is a concern, inlets were upsized to convey as much of the 100-
year developed runoff as possible. As stated in FCSCM, Inlet Functions, Types and Appropriate
Applications, the standard inlets for use on City of Loveland streets are:
Refer to Appendix F for all inlets calculations.
Storm Sewer and Culvert Design
As stated in the FCSCM, the Manning's roughness coefficient (n) for all storm sewer pipe
capacity calculations shall be 0.013 regardless of pipe material.
The storm sewers and culverts in the project area will be designed in accordance with the
Page 9
TST, INC. CONSULTING ENGINEERS
Montava Subdivision Phase D Final Drainage Report
criteria and standards of the FCSCM using a minimum pipe diameter of 15 inches. Where
applicable, storm sewers will be sized to convey the 100-year developed runoff to the existing
detention ponds. Peak runoff for storm sewer design was calculated using the Rational Method
per the FCSCM. All storm sewers will be sized using the Urban Drainage program, UD-Sewer
2009 Version 1.4.0. All culverts will be sized using the Federal Highway Administration (FHA)
Program, HY-8 Version 7.30. For storm and culvert capacity calculations refer to Appendix G.
Street Capacity
The criteria and standards set forth in the FCSCM will be used to check street capacity for both
the minor (2-year) and major (100-year) storm events. The FCSCM requires that stormwater
overtopping curbs should not occur during the minor storms and the flow spread must meet the
following guidelines for each street designation:
':' Local, Alley — flow may spread to crown of road.
':• Collector (without median) - flow spread must leave a minimum of 6 feet (6') wide
clear travel lane on each side of the centerline.
❖ Arterial (with median) — flow spread must leave a minimum of 12 feet (12') wide travel
lane in both directions of travel.
Additionally, the following allowable street flow depths were used for the drainage design:
':' Local, Alley — Minor Storm 0.50-ft depth at gutter, Major Storm 0.50-ft depth at crown
and 1.0-ft at gutter (most restrictive will apply)
':' Collector - Minor Storm 0.50-ft depth at gutter, Major Storm 0.50-ft depth at crown and
1.0-ft at gutter (most restrictive will apply)
':• Arterial (without median) - Minor Storm 0.50-ft depth at gutter, Major Storm 0.50-ft
depth at crown and 1.0-ft at gutter (most restrictive will apply)
•:' Arterial (with median) - Minor Storm 0.50-ft depth at gutter, Major Storm not to exceed
bottom of gutter at median and 1.0-ft at gutter (most restrictive will apply)
Refer to Appendix F for street capacity calculations.
Swale Design
As defined in Chapter 9 of the Fort Collins Stormwater Criteria Manual, open channels are
utilized to preserve, enhance, and restore stream corridors, used in the design of constructed
channels and swales by use of natural concepts.
Per the FCSCM criteria and standards, all open channels must be designed to carry the major
(100-year) storm runoff. For swales with greater than 100 cfs, one-foot of freeboard will be
provided. For swales with less than or equal to 100 cfs, the depth of the channel must be able to
Page 10
TST, INC. CONSULTING ENGINEERS
Montava Subdivision Phase D
convey an additional 33% of the 100-year storm flow.
Final Drainage Report
Drainage swales were designed to be grass-lined, triangular channels with 4:1 side-slopes.
Erosion potential in the swales will be analyzed to determine if additional protective measures
are needed within the project area based on Froude number calculations. Refer to Appendix H
for swale calculations.
Detention Discharge and Storage Calculation
Montava Phase D drains to three separate Detention / Water Quality ponds. Pond D, Interim
Swale Pond, and Interim Pond 427. All ponds were designed by a SWMM model that is being
submitted with this report. Interim Swale Pond and Interim Pond 427 are at least two feet higher
than groundwater and Pond D is lower than groundwater with a clay barrier, see "Subsurface
Exploration Report Montava Development — Tract E— Detention Pond Evaluation of
Groundwater and Subsurface Conditions," submitted concurrently with this report.
Pond D is located in Pond D Basin and captures the runoff from Basin D, School Basin, and
Pond D Basin. This pond discharges into a swale that runs on the southwest border of the and
into Interim Pond 427. An emergency spillway will be designed with this pond to spill south
down the embankment over Timberline Road and into a proposed interim channel/ future storm
line. An Interim Swale Pond is being proposed in the large swale that is north of the site. This
pond was designed to handle future basins and offsite basins and will help with reducing offsite
flows coming through Phase D. This interim pond will discharge south into a proposed swale
that flows to Interim Pond 427. An emergency spillway will be designed with this pond to spill
south into a swale that outfalls into Interim Pond 427. An emergency spillway will be designed
with this pond to spill south down the embankment overtopping Mountain Vista Drive and follow
existing drainage patterns. Interim Pond 427 will outfall to the east of Giddings Road and then
south under Mountain Vista Drive into an agricultural field and eventually into the L&W Canal.
See map provided in Appendix E for runoff flow path.
Erosion and Sediment Control
Montava Phase D has been designed to be in compliance with the City of Fort Collins Erosion
Control Criteria and all Erosion Control Materials will be provided with the Final Drainage
Report. Erosion and sedimentation occurring on-site during construction will be controlled by the
use of temporary Best Management Practices (BMPs — i.e., silt fence, gravel inlet filters, vehicle
tracking control pads, and straw wattle barriers). A separate Stormwater Management Plan has
been provided with the PDR Submittal.
Page 11
TST, INC. CONSULTING ENGINEERS
Montava Subdivision Phase D Final Drainage Report
4.0 - Conclusions
This Final Drainage Report has been prepared in accordance with the City of Fort Collins
Stormwater Criteria Manual for a Project Development Plan (PDP) submittal. The PDP plans
have also been prepared to be in compliance with the city's current drainage criteria.
Phase D has been designed to safely and effectively capture, convey, and attenuate stormwater
runoff in accordance with the Fort Collins Stormwater Criteria Manual (FCSCM) and Montava
Master Drainage Study. The project will treat 50% of newly imperviousness single-family
development and 75% of newly imperviousness multi-family development to a LID system. The
remaining imperviousness area will be treated by the traditional water quality and detention
ponds. The proposed drainage infrastructure will attenuate the flow prior to entering the
downstream properties/ infrastructure.
All stormwater from Phase D will be discharged to the southeast corner of the Mountain Vista
Drive and Giddings Road. This plan respects historic drainage patterns while significantly
reducing runoff rates from the 100-year developed to the 2-year historic rate. This substantial
reduction will ensure there are no adverse impacts on the downstream infrastructure and will
help alleviate and reduce the current impacts on existing systems, particularly those under the
BNSF railway and the culvert that drains into the Larimer & Weld Canal. Therefore, all
downstream infrastructure will function as it has historically and no analysis is required.
Additionally, areas of future development adjacent to the project area will have to been analyzed
to ensure that adequate facilities will accommodate future development.
Page 12
TST, INC. CONSULTING ENGINEERS
Montava Subdivision Phase D Final Drainage Report
5.0 - References
1. Fort Collins Stormwater Criteria Manual, as adopted by the city of Fort Collins, as
referenced in Section 26-500 of the Code of the City of Fort Collins, December 2018.
2. City of Fort Collins Cooper Slough Alfernatives Analysis Update, prepared by Fort
Collins Department of Utilities, prepared by ICON Engineering Inc., October 2017
3. Montava Planned Unit Development Master Drainage Study, by Martin/Martin Inc., dated
January 23, 2019
Page 13
TST, INC. CONSULTING ENGINEERS
Montava Subdivision Phase D
Final Drainage Report
6.0 - Appendices
The following appendices are attached to and made part of this final drainage design report:
APPENDIX A HYDROLOGIC ANALYSIS
APPENDIX B LOW IMPACT DEVELOPMENT (LID) CALCULATIONS
APPENDIX C FEMA FLOOD INSURANCE RATE MAP
APPENDIX D
APPENDIX E
APPENDIX F
APPENDIX G
APPENDIX H
APPENDIX I
APPENDIX J
USDA HYDROLOGIC SOIL GROUP MAP
DRAINAGE PLANS
STREET CAPACITY & STORM INLET ANALYSIS
STORM SEWER & CULVERT DESIGN
DRAINAGE SWALE DESIGN
DETENTION & ROUTING ANALYSIS
EXCERPTS FROM PREVIOUS DRAIANGE REPORTS
Page 14
TST, INC. CONSULTING ENGINEERS
APPENDIX A
HYDOLOGIC ANALYSIS
MONTAVA SUBDIVISION PHASE D Final Drainage Report
City of Fort Collins
IDF Curves
Duration 2-yr 10-yr 100-yr
5 2.85 4.87 9.95
6 2.67 4.56 9.31
7 2.52 4.31 8.80
8 2.40 4.10 8.38
9 2.30 3.93 8.03
10 221 3.78 7.72
11 2.13 3.63 7.42
12 2.05 3.50 7.16
13 1.98 3.39 6.92
14 1.92 3.29 6.71
15 1.87 3.19 6.52
16 1.81 3.08 6.30
17 1.75 2.99 6.10
18 1.70 2.90 5.92
19 1.65 2.82 5.75
20 1.61 2.74 5.60
21 1.56 2.67 5.46
22 1.53 2.61 5.32
23 1.49 2.55 5.20
24 1.46 2.49 5.09
25 1.43 2.44 4.98
26 1.40 2.39 4.87
27 1.37 2.34 4.78
28 1.34 2.29 4.69
29 1.32 225 4.60
30 1.30 2.21 4.52
31 1.27 2.16 4.42
32 1.24 2.12 4.33
33 1.22 2.08 4.24
34 1.19 2.04 4.16
35 1.17 2.00 4.08
36 1.15 1.96 4.01
37 1.16 1.93 3.93
38 1.11 1.89 3.87
39 1.09 1.86 3.80
40 1.07 1.83 3.74
41 1.05 1.80 3.68
42 1.04 1.77 3.62
43 1.02 1.74 3.56
44 1.01 1.72 3.51
45 0.99 1.69 3.46
46 0.98 1.67 3.41
47 0.96 1.64 3.36
48 0.95 1.62 3.31
49 0.94 1.60 3.27
50 0.92 1.58 323
51 0.91 1.56 3.18
52 0.90 1.54 3.14
53 0.89 1.52 3.10
54 0.88 1.50 3.07
55 0.87 1.48 3.03
56 0.86 1.47 2.99
57 0.85 1.45 2.96
58 0.84 1.43 2.92
59 0.83 1.42 2.89
60 0.82 1.40 2.86
65 0.78 1.32 2.71
70 0.73 1.25 2.59
75 0.70 1.19 2.48
80 0.66 1.14 2.38
85 0.64 1.09 2.29
90 0.61 1.05 221
95 0.58 1.01 2.13
100 0.56 0.97 2.06
105 0.54 0.94 2.00
110 0.52 0.91 1.94
115 0.51 0.88 1.88
120 0.49 0.86 1.84
From the City of Fort Collins Storm Drainage Design Criteria and Construction Standards
ST
=•.}:p«�.. ..
MONTAVA SUBDIVISION PHASE D Final Drainage Report
City of Fort Collins IDF Curves
12.00
10.00
� 8.00
r
c
�
'H 6.00
c
d
c
m
c 4.00
.�
�
2.00
0.00
Storm Duration (min)
ST
=•.}:p«�.. ..
0 10 20 30 40 50 60 70
MONTAVA SUBDIVISON PHASE D
City of Fort Collins
Rational Method Runoff Coefficients
Runoff
Coefficient Im ervious %
High Density 0.85 90
Lawn, Clayey, <2% Slope 0.20 2
Lawn, Clayey, >7% Slope 0.35 2
Lawn, Clayey, 2-7°/o Slope 0.25 2
Lawn, Sandy, <2% Slope 0.10 2
Lawn, Sandy, >7% Slope 0.20 2
Lawn, Sandy, 2-7% Slope 0.15 2
Low Denisty 0.55 50
Medium Density 0.65 70
Open Lands, Transition 0.20 20
Roofs 0.95 90
Streets: Gravel 0.50 40
Streets: Paved 0.95 100
Streets: Permeable Pavers 0.50 40
Urban Estate 0.30 30
From Table 3-3 of the City of Fort Collins, Stormwater Criteria Manual
Final Drainage Report
TST
;; �': � ',
MONTAVA SUBDIVISION PHASE D
Final Drainage Report
�
.. . .. . .
�������� . .. .. , ,. .
"��' � �� �0
����� �� ���� ��
���0
��� � •' �������
� � � �� ��. � � �
����
�� "�'" ��0�����
�'� ��� �� � � � •
�� � �� �0
� � �� �0
� ��� �� �: �: ��
�� � � � � 0
� � �� �0
� �: ��� �� �: �: �: ��
� �� �0
�����0�����
�. � � ��• �� � � � �•
� �� � � 0
�����0�����
����
�� �� �0
���0
��� �� �.� .� �.�
����0
�����0�����
�' �' ��� �� ��. � � �•
� � �� �0
�����0�����
� � ���� �:� �:� �:� �
� �� �0
� � �� �0
� � : ��� �� ��
�� �� �0
�����0�����
�: ��� �� �• � �
�� �� �0
�����0�����
� � ��� �� ��. �: �: ��
� �� �0
�����0�����
� � � ���� �:: �•. �:: �
� � �� �0
�����0�����
� � � ��• � �� �• � � � �•
�� � �� �0
� � �� �0
� � � ��� � �� :� �. �: �: ��
�� �� �0
�����0�����
� � � � � � �� � � �•
� �� �0
��� � � �������
� � ���� � � � � •
� �� �0
� • � � �����
� � �� �0
� ��� �� � �� � • • � • ��
�� � �� �0
� � �� �0
� " ��� �� �� ���. � • � • � • ��
� � �� �0
��� � � �������
�� � ��. �� ��. �: �: �: �
� �� �0
��� � � �������
� � ��. � �� � � �•
�� � �� �0
�����0�����
� ., ��� �� � � � � •
�� � �� �0
�����0�����
� ��� �� � � � •
���0
�����0�����
����
���0
ST
MONTAVA SUBDIVISION PHASE D
Final Drainage Report
�����0�����
�����0�����
�: � � � � �� � �•
����0
�����0�����
� � � � � �. � �� ��•. � � � � •
�� � �� �0
�����������
� ���� �: �: �:. �
�� � �' �0
�����������
� � �• �� � � � �•
�� � �' �0
�����������
� � �• �� � �: �: �: ��
��� � � �0
�� "'�•� '' ��������
� �• �� � � �•
�� � �� �0
�����������
�- � � � � � �•
�� � �� �0
�����������
� � � �• �� �: �: �: ��
�� � �. �0
�����������
� � �• �� �.�. �:- �: �:- ��
��� � � �0
�� ''���������
��� �• �� � �: �: ��
�� � �� �0
�����������
� �- � � � � � �•
��� � �' �0
�����������
� � � �� � � � �•
� � �� �0
�����0�����
� � �• �� �. �. �. �
�����������
� �• �� � � �•
�� � �� �0
�����������
� ��� �� � •� � •� � •� ��
�� �� �0
� � �� ��
� � � � �� �: �: �: ��
� �� �0
� � �� ��
� : ���� :.���. �:. �:. �:. ��
� � �' �0
� � �� ��
� � ���� �: �: �: ��
� � �' �0
�����������
� ���� � � � � •
� � �� �0
�����������
� � ��� �� ��. � �� � �.
���0
� "� ��
� � ���� � � � � •.
� � �' �0
�����������
� �: ���� �: �: �: �
� � �. �0
��� � � �������
� � � �� � � � �•
���0
� � �� ��
��. � �� �� �: �• �: ��
� �� �0
��� � � �������
� � ��. �� � � � �::
� �� �0
�� �����
ST
MONTAVA SUBDIVISION PHASE D
Final Drainage Report
�����������
���� �� � � � �•�
���0
����
���� � � � � � � � ::
� � � �0
� � �� ��
� ' ���� �:. �:. �:. ��
� �� �0
� � �� ��
� ���� �: �:• �:• ��
� �� �0
'����
� ��� �� ����. �: �• �: ��
� � �� �0
����
�.• � � � �� : ��. �. � �. �•
� � �� �0
����
���� � � � � •
• ���0
� � �� ��
: � �• � � �� �� �� ��� � • � • � • ��
� � �� �0
� � �� ��
� �� ���� � :: � •: � :: ��
���0
� � �� ��
� � ���� :���. �:: �•: �:: ��
� � �. �0
��� � � �������
� � � � �� � � � �•�
���0
� � �� ��
� � � � �� � ' � � ' � �
���0
� � �� ��
� ���� �: �: �: ��
� �� �0
� � �� ��
� ���� � :• � •• � :• ��
� �� �0
��� � � �������
� � ��: �� �: �: �: �
� �� �0
��� � � �������
� � ��• �� �: �: �: �
� �� �0
� � �� ��
�� � �� �� ����� �• �• �• ��
� � �� �0
� � �� ��
: ��. � ��' �� ����� �• �• �• ��
� � �� �0
�� �� � . � . � .
ST
MONTAVA SUBDIVISION PHASE D
Final Drainage Report
� � �� ��
� : ���� � : � • � : ��
���0
� � �� ��
� ���� �: �: �:
���0
�� ���� ��
� � �„ �� �. �. �.
�' ����
���0
� � �,� �� �. �. �. �
� ����
���0
�� • � � �����
�����������
����
���0
�����������
���� � � � � •
� � �� �0
�����������
���� �.� �.� �.� �
���0
�����0�����
�����������
���� � � � � •
� � �� �0
�� � � � � � � � �
ST
MONTAVA SUBDIVISION PHASED
Pinal Drainage Report
Basin Time of Concentration
Frequency Adj. Overland Flow Average Overlantl Trevel Time Channelized Channel Channel Channelized Time Time of Concentration
Basin Runoff Coefficents Length, D Overland Slope 7ov Flow Length Slope Velocity Tt Tc = Tov +Tt (min)
Cs (ft) (%) (min) (ft) (%) (Pos) (min)
D-1 0.81 25 2 2 879 0.5 1.4 10 12
D-2 0.74 48 2 4 870 0.5 1.4 10 14
D3 0.76 68 2 4 130 0.5 1.4 2 6
D-4 0.85 20 2 2 180 0.5 1.4 2 5
D-5 0.82 20 2 2 176 0.5 1.4 2 5
D-6 0.73 71 2 5 341 0.5 1.4 4 9
D-7 0.73 60 2 4 783 0-5 14 9 13
D-8 0.60 60 2 6 356 0.5 1.4 4 10
D-9 073 61 2 4 178 0-5 1.4 2 6
D-10 0.80 59 2 3 566 0.5 1.4 7 10
D-11 0.87 20 2 2 375 0.5 1.4 4 6
D-12 0.78 68 2 4 458 0.5 1.4 5 9
D-13 0.81 54 2 3 433 0.5 1.4 5 8
D-14 0.88 60 2 3 75 0.5 1.4 1 5
D-15 0.76 64 2 4 94 0.5 1.4 1 5
D-i6 0.83 14 2 1 150 0.5 1.4 2 5
D-17 0.73 65 2 4 150 0.5 1.4 2 6
D-18 0.75 65 2 4 120 0.5 1.4 1 5
F-1 0.95 30 2 1 360 0.5 1.4 4 5
F-2 0.95 30 2 1 360 0.5 1.4 4 5
F3 0.83 18 2 2 67 0.5 1.4 1 5
F4 0.78 65 2 4 62 0-5 14 1 5
F-5 0.75 70 2 4 300 0.5 1.4 4 8
F6 0.76 60 2 4 620 0.5 14 7 11
F-7 0.73 90 2 5 650 0.5 1.4 8 13
P-8 078 32 2 3 650 0.5 1.4 8 11
F-9 0.72 60 2 4 300 0.5 1.4 4 8
F-10 0.74 60 2 4 82 0.5 1.4 1 5
Ftt 0.84 15 2 1 315 0.5 1.4 4 5
F-12 0.78 87 2 4 t95 0.5 1.4 2 6
F13 0.81 25 2 2 375 0.5 1.4 4 6
F-14 0.74 50 2 4 450 0.5 1.4 5 9
F-15 0.74 65 2 4 550 0.5 1.4 7 11
F-16 0.61 15 2 2 305 0.5 1.4 4 6
F-17 0.84 20 2 2 305 0.5 1.4 4 6
F-18 0.85 200 2 5 177 Q5 1.4 2 7
F19 0.79 95 2 4 182 0.5 1.4 2 6
F-20 0.74 65 2 4 215 0-5 14 3 7
F21 0.62 65 2 6 405 0.5 1A 5 11
F-22 0.74 65 2 4 590 OS 1.4 7 11
ST .>LL:
MONTAVA SUBDIVISION PHASED
Pinal Drainage Report
F-23 0.90 15 2 1 �31 0.5 1.4 2 5
F24 0.85 20 2 2 95 0.5 1.4 1 5
F-25 0.86 15 2 1 120 0.5 1.4 1 5
F-26 0.87 25 2 2 236 0.5 1.4 3 5
F-27 0.74 65 2 4 290 0.5 1.4 3 7
F-28 0.50 60 2 7 200 0.5 1.4 2 9
F-29 0.77 35 2 3 556 0.5 1.4 7 10
F30 0.81 68 2 4 182 0.5 1.4 2 6
F31 0.74 70 2 5 300 0-5 14 4 9
F32 0.85 12 2 1 260 0.5 1.4 3 5
F-33 0.71 90 2 6 80 OS 1.4 1 7
G1-1 0.72 65 2 5 605 0.5 1.4 7 12
G1-2 0.70 65 2 5 605 0.5 1.4 7 12
G13 0.86 15 2 1 320 0.5 1.4 4 5
GL4 0.89 20 2 1 306 0.5 1.4 4 5
Gi-5 0.85 280 2 6 0 0.5 1.4 0 6
Gi-6 0.74 106 2 6 219 0.5 1.4 3 9
G1-7 0.73 51 2 4 540 0.5 1.4 6 10
Gi-8 0.95 20 2 1 30 0.5 1.4 0 5
G1-9 0.88 15 2 1 500 0.5 1.4 6 7
Gt-10 0.88 30 2 2 335 0.5 1.4 4 6
G1-11 0.72 70 2 5 130 0.5 1.4 2 7
G1-12 0.74 15 2 2 155 0-5 14 2 5
G1-13 0.81 32 2 2 180 0.5 1.4 2 5
G1-14 0.89 23 2 1 175 OS 1.4 2 5
G1-15 0.84 25 2 2 130 0.5 1A 2 5
G1-16 0.85 25 2 2 130 0.5 1.4 2 5
G1-17 0.95 15 2 1 45 0.5 1.4 1 5
G1-18 0.95 20 2 1 45 0.5 1.4 1 5
���� ����
���� ����
GIDDINGS-1 0.84 20 2 2 1675 0.5 1A 20 22
GIDDINGS-2 0.61 20 2 3 1150 0.5 1.4 14 17
FUTURE-1 0.67 155 2 8 765 Q5 1.4 9 17
FUTURE2 0.73 145 2 7 200 0.5 1.4 2 9
FUTURE3 0.60 400 2 15 1395 0-5 14 17 32
FUTURE-4 0.74 400 2 11 300 0.5 1.4 4 15
FUTURE-5 072 400 2 11 300 OS 1.4 4 15
SCHOOL 0.68 400 2 12 600 0.5 1.4 7 19
POND D 0.39 150 2 13 150 0.5 1.4 2 15
POND 427 0.36 50 2 8 2750 0.5 1.4 33 41
ST -
MONTAVA SUBDIVISION PHASE D Final Drainage Report
Basin Peak Discharge
Time of
Basin Basin Area Frequency Adj. Runoff Coefficients Concentration Rainfall Intensity (inlhr) Peak Discharge (cfs)
(ac)
2-year 10-year 100-year Tc�min) 2-Year 10-Vear 100-Year 2-Year 10-Year 100-Year
0-1 0.79 0.81 0.81 1.00 12 2.05 3.50 7.16 1.31 224 5.66
D-2 1.63 0.74 0.74 0.93 14 1.92 3.29 6.71 2.33 3.98 10.16
D-3 0.40 0.76 0.76 0.95 6 2.67 4.56 9.31 0.81 1.39 3.55
D-4 0.22 0.85 0.85 1.00 5 2.85 4.87 9.95 0.53 0.91 2.19
�-5 0.18 0.82 0.82 1.00 5 2.85 4.87 9.95 0.42 072 179
D-6 0.24 0.73 0.73 0.91 9 2.30 3.93 8.03 0.40 0.68 7.75
D-7 2.14 0.73 0.73 0.91 13 1.98 3.39 6.92 3.08 527 73.46
D-8 1.72 0.60 0.60 0.75 10 221 3.78 7.72 228 3.90 9.95
D-9 0.47 0.73 0.73 0.92 6 2.67 4.56 9.31 0.92 1.57 4.01
D-10 1.37 0.80 0.80 1.00 10 221 3.78 7.72 2.41 4.13 10.53
D-17 0.38 0.87 0.87 1.00 6 2.67 4.56 9.31 0.88 1.51 3.54
D-12 0.82 0.78 0.78 0.98 9 2.30 3.93 8.03 1.47 2.52 6.43
D-13 0.77 0.81 0.81 1-00 8 2.40 4.10 8.38 L50 2.57 6A5
D-14 0.70 0.88 0.88 1.00 5 2.85 4.87 9.95 1.75 2.99 6.97
D-15 0.22 0.�6 0.76 0.95 5 2.85 4.87 9.95 0.48 0.81 2.08
D-16 0.10 0.83 0.83 1.00 5 2.85 4.87 9.95 0.24 0.40 1.00
D-17 029 073 0.73 0.92 6 2.67 4.56 9.31 0.57 0.97 2.47
D-18 0.36 0.75 0.75 0.94 5 2.85 4.87 9.95 0.77 1.31 3.36
F-7 0.51 0.95 0.95 1.00 5 2.85 4.87 9.95 1.38 2.36 5.07
F-2 0.49 0.95 0.95 1.00 5 2.85 4.87 9.95 1.33 227 4.88
F-3 0.05 0.83 0.83 1.00 5 2.85 4.87 9.95 0.12 020 0.50
F-4 0.14 0.78 0.78 0.97 5 2.85 4.87 9.95 0.37 0.53 1.36
F-5 0.64 0.75 0.75 0.94 S 2.40 4.10 8.38 1.16 1.98 5.05
F-6 2.07 0.76 0.76 0.95 13 1.98 3.39 6.92 3.11 5.32 13.58
F-7 2.00 0.73 0.73 0.92 13 1.98 3.39 6.92 2.91 4.98 12.70
F-8 2.65 0.78 0.78 0.98 11 2.13 3.63 7.42 4.42 7.53 79.23
F-9 0.81 0.72 0.72 0.91 8 2.40 4.10 8.38 1.47 2.40 6.14
F-10 020 074 0.74 0-93 5 2.85 4.87 9.95 OA2 072 1.84
F-11 0.22 0.84 0.84 1.00 5 2.85 4.87 9.95 0.53 0.90 2.19
F-12 0.54 0.�8 076 0.97 6 2.67 4.56 9.31 1.12 1.92 4.89
F-13 0.36 0.81 0.81 1.00 6 2.67 4.56 9.31 0.78 1.33 3.35
F-14 0.94 0.74 0.74 0.92 9 2.30 3.93 8.03 1.60 2.73 6.98
F-15 1.43 0.74 0.74 0.92 11 2.13 3.63 7.42 2.24 3.82 9.76
F-16 0.26 0.81 0.81 1.00 6 2.67 4.56 9.31 0.56 0.96 2.42
F-17 0.34 0.84 0.84 1.00 6 2.67 4.56 9.31 0.77 1.31 3.17
F-18 1.45 0.85 0.85 1.00 7 2.52 4.31 8.80 3.17 5.31 72.76
�7 '�
MONTAVA SUBDIVISION PHASE D Final Drainage Report
F-19 0.79 0.79 0.79 0.99 6 2.67 4.56 9.31 1.67 2.86 7.30
F-20 0.58 0.74 074 0.92 7 252 4.31 8.80 1.08 1.84 471
F-21 1.30 0.62 0.62 0.78 17 2.13 3.63 7.42 1.72 2.94 7.50
F-22 1.61 074 0.74 0.92 11 2.13 3.63 7A2 254 4.32 71.04
F-23 0.23 0.90 0.90 1.00 5 2.85 4.87 9.95 0.59 1.01 2.29
F-24 0.12 0.85 0.85 1.00 5 2.85 4.87 9.95 0.29 0.50 1.19
F-25 0.28 0.86 0.86 1.00 5 2.85 4.87 9.95 0.69 1.18 2.79
F-26 0.29 0.87 0.87 1.00 5 2.85 4.87 9.95 0.72 122 2.89
F-27 0.74 0.74 0.74 0.92 7 2.52 4.31 8.80 1.38 2.36 6.02
F-28 0.52 0.50 0.50 0.63 9 2.30 3.93 8.03 0.60 1.02 2.61
F-29 0.79 0.77 0.77 0.96 10 221 3.78 7.72 1.34 229 5.85
F30 0.86 0.81 0.81 1-00 6 2.67 4.56 9.31 185 3.16 8.01
F31 1.32 0.74 0.74 0.92 9 2.30 3.93 8.03 2.24 3.82 9.76
F32 0.06 0.85 0.85 1.00 5 2.85 4.87 9.95 0.15 0.25 0.60
F33 0.27 0.71 0.71 0.88 7 2.52 4.31 8.80 0.48 0.82 2.10
G1-1 1.67 0.72 0.72 0.90 12 2.05 3.50 7.16 2.45 4.19 10.71
G1-2 1.57 0.70 070 0.88 12 2.05 3.50 7.16 226 3.87 9.89
G1-3 0.34 0.86 0.86 1.00 5 2.85 4.87 9.95 0.84 1.43 3.38
G1-4 0.31 0.89 0.89 1.00 5 2.85 4.87 9.95 079 1.35 3.08
G1-5 4.08 0.85 0.85 1.00 6 2.67 4.56 9.31 926 15.81 37.98
G1-6 0.69 0.74 0.74 0.92 9 2.30 3.93 8.03 1.17 2.00 5.10
G1-7 1.82 073 0.73 0.92 10 221 378 7]2 2.95 5.04 12.86
G1-S 0.09 0,95 0.95 1.00 5 2.85 4.87 9.95 0.24 0.42 0.90
G1-9 0.99 0.88 0.88 1.00 7 2.52 4.31 8.80 2.20 3.77 8.71
G1-10 0.49 0.88 0.88 1.00 6 2.67 4.56 9.31 1.15 1.96 4.56
G1-11 0.34 0.72 0.72 0.90 7 2.52 4.31 S.BO 0.62 1.06 2.70
G1-12 0.31 074 0.74 0-92 5 2.85 4.87 9.95 0.65 1_11 2.84
G1-13 0.22 0.81 0.81 1.00 5 2.85 4.87 9.95 0.51 0.87 2.19
G1-14 0.21 0.89 0.89 1.00 5 2.85 4.87 9.95 0.53 0.91 2.09
G1-15 0.11 0.84 0.84 1.00 5 2.85 4.87 9.95 0.26 0.45 1.09
G1-16 0.12 0.85 0.85 1.00 5 2.85 4.87 9.95 0.29 0.50 1.19
G1-17 0.05 0.95 0.95 1.00 5 2.85 4.87 9.95 0.14 023 0.50
G1-18 0.04 0.95 0.95 1.00 5 2.85 4.87 9.95 0.11 0.19 0.40
�7�
MONTAVA SUBDIVISION PHASE D Final Drainage Report
C2-1 0.58 0.84 0.84 1.00 9 2.30 3.93 8.03 1.12 1.91 4.66
C&2 0.57 0.83 0.83 1.00 9 2.30 3.93 8.03 1.09 1.87 4.58
GIDDINGS-1 7.98 0.61 0.61 0.77 22 1.53 2.61 5.32 1.86 3.17 8.07
GID�INGS-2 1.39 0.61 0.61 0.76 17 175 2.99 6.10 1.48 253 6.46
FUTURE-1 6.37 0.67 0.67 0.84 17 1.75 2.99 6.10 7.46 12.74 32.49
FUTURE-2 3.31 0.73 0.73 0.91 9 2.30 3.93 8.03 5.52 9.43 24.10
FUTURE-3 2.96 0.60 0.60 0.75 32 1.24 2.12 4.33 2.20 3.77 9.62
FUTURE-4 4.52 0.74 0.74 0.93 15 1.87 3.19 6.52 6.27 10.69 27.32
FUTURE-5 Z57 072 0.72 0-91 15 1.87 3.19 6.52 1026 1Z51 4472
SCHOOI 1826 0.68 0.68 0.85 19 1.65 2.82 5.75 20.46 34.96 89.10
POND D 7.49 0.39 0.39 0.49 15 1.87 3.19 6.52 5.46 9.32 23.81
POND 427 1023 0.36 0.36 0,45 41 1.05 1.80 3.68 3.83 6.56 16J7
OFFSITE 1 103.58 020 0.20 025 59 0.83 1.42 2.89 17.19 29.42 74.84
OFFSITE 2 75.61 020 0.20 025 77 0.82 1.40 2.86 12.40 21.17 54.06
�7�
MONTAVA SUBDIVISION PHASE D
Attenuation of Peak Discharge
Time of Concentration Weighted Runoff Coe�cient
n Poi�t Contributin Basins & Desi n Points Area acres Tc (min) 2- year 10 - year 100 - ye
1 SCHOOL, D-1, D-2 20.68 19.00 0.69 0.69 0.86
2 DP-1, D-18 21.04 19.00 0.69 0.69 0.86
3 DP-2, D-4 21.26 19.00 0.69 0.69 0.86
Final Drainage Report
Rainfall Intensity (inlhr) Peak Discharge (cfs)
2- year � 10 - year � 100 - year 2- year � 10 - year � 100 -
1.65 � 2.82 � 5.75 � 24.26 � 41.47 � 105.56
4 D-3, D-9 0.87 6.00 0.75 0.75 0.93 2.67 4.56 9.31 1.73 2.96 7.56
5 DP-4, D-14 1.57 6.00 0.80 0.80 0.96 2.67 4.56 9.31 3.37 5.76 14.08
6 DP-5, D-10, D-13 3.71 10.00 0.80 0.80 0.98 2.21 3.78 7.72 6.59 11.27 28.15
7 DP-6, D-8 5.43 10.00 0.74 0.74 0.91 2.21 3.78 7.72 8.87 15.17 38.10
8 DP-7, D-7, D-15 7.79 13.00 0.74 0.74 0.91 1.98 3.39 6.92 11.36 19.44 49.05
9 DP-8, D-11, D-12 8.99 13.00 0.75 0.75 0.92 1.98 3.39 6.92 13.28 22.74 57.23
10 D-16, D-17 0.39 6.00 0.76 0.76 0.94 2.67 4.56 9.31 0.79 1.35 3.40
11 DP-9, DP-10 9.38 13.00 0.75 0.75 0.92 1.98 3.39 6.92 13.87 23.74 59.76
12 DP-11, D-6 9.62 13.00 0.75 0.75 0.92 1.98 3.39 6.92 14.21 24.33 61.26
13 DP-12, D-5 9.80 13.00 0.75 0.75 0.92 1.98 3.39 6.92 14.50 24.83 62.51
14 F-3, F-4, F-33 1.51 9.00 0.74 0.74 0.93 2.30 3.93 8.03 2.58 4.41 11.25
15 DP-14, F-11, F-12 2.27 9.00 0.76 0.76 0.95 2.30 3.93 8.03 3.97 6.79 17.23
16 DP-15, F-5 2.91 9.00 0.76 0.76 0.94 2.30 3.93 8.03 5.08 8.68 22.07
17 F-9, F-10 1.01 8.00 0.73 0.73 0.91 2.40 4.10 8.38 1.76 3.01 7.69
18 DP-17, F-27 1.75 8.00 0.73 0.73 0.92 2.40 4.10 8.38 3.08 5.25 13.42
19 DP-18, F-8, F-29, F-30 6.05 11.00 0.77 0.77 0.95 2.13 3.63 7.42 9.92 16.90 42.57
20 DP-19, F-7 8.05 13.00 0.76 0.76 0.94 1.98 3.39 6.92 12.13 20.76 52.41
21 DP-20, F-6, F-13, F-28 11.00 13.00 0.75 0.75 0.93 1.98 3.39 6.92 16.33 27.95 70.73
22 DP-16, DP-21 13.91 13.00 0.75 0.75 0.93 1.98 3.39 6.92 20.70 35.44 89.75
23 DP-22, F-32, F-33 1424 13.00 0.75 0.75 0.93 1.98 3.39 6.92 21.18 36.26 91.82
24 F-14, F-15 2.37 11.00 0.74 0.74 0.92 2.13 3.63 7.42 3.72 6.34 16.21
25 F-20, F-22 2.19 11.00 0.74 0.74 0.92 2.13 3.63 7.42 3.45 5.88 15.01
26 F-21, F-26 1.59 11.00 0.67 0.67 0.82 2.13 3.63 7.42 2.26 3.85 9.66
27 DP-24, DP-25, DP-26 6.15 11.00 0.72 0.72 0.90 2.13 3.63 7.42 9.43 16.07 40.87
28 DP-27, F-25, F-19 7.22 11.00 0.73 0.73 0.91 2.13 3.63 7.42 11.28 19.22 48.77
29 DP-23, DP-28 21.46 13.00 0.75 0.75 0.92 1.98 3.39 6.92 31.66 54.21 137.30
30 DP-32, F-16, F-17, F-18 23.51 13.00 0.75 0.75 0.93 1.98 3.39 6.92 35.09 60.08 151.48
�T �'�_.�� �. c -.
APPENDIX B
LOW IMPACT DEVELOPMENT
(LID) CALCULATIONS
. ��
. . . � i
��
. ��
��
��
i
�
�
�
�
�
�
���
��
��
. ��
�
��� �
�� �
�
5.43
LJD 2 AREA
LID 2
(UNDERGROUND
INFILTRATION)
�
4REA
LID 3
(RAINGARDEN)
� Y�}�}\�� ;>.
� � /\.
��
LID 4
(UNDERGROUND
INFILTRATION)
�
� LID 5
- (UNDERGROUND
INFILTRATION)
Low Im act Develo ment LID
Basin/ Sub-Basin Total Area (acres) TO BE LID TREATED AREA TO BE
TREATED
D-1 0. 79 YE S 0. 79
D-2 1. 63 Y E S 1. 63
D-3 0.40 YES 0.4d
D-4 0.22 YES 0.22
D-5 0.18 NO 0.00
D-6 Q. 24 N O 0. 00
D-7 2.14 N O 0. 00
D-8 1. 72 Y E S 1. 72
D-9 Q.47 YE S 0.47
D-1 Q 1.37 YES 1.37
D-11 0.38 NO 0.00
D-12 0.82 NO 0.00
D-13 d.77 YES 0.77
D-14 d.70 YES 0.70
D-15 0.22 NO 0.00
D-16 0.10 NO 0.00
D-17 0.29 NO 0.00
D-18 0. 36 Y E S 0. 36
F-1 0.51 NO 0.00
F-2 0.49 NO 0.00
F-3 0.05 NO 0.00
F-4 0.14 NO 0. 00
F-5 0.64 NO 0. 00
F-� 2.07 No a.aa
F-7 2.00 NO 0.00
F-8 2. 65 Y E S 2. 65
F-9 0.81 YES 0.81
F-10 0.20 YES 0.20
F-11 0.22 NO 0.00
F-12 0.54 NO 0.00
F-13 0.36 NO 0.00
F-14 0. 94 Y E S 0. 94
F-15 1.43 YES 1.43
F-16 0.26 NO 0.00
F-17 0. 34 N O 0. 00
F-18 1.45 NO 0.00
F-19 0.79 YES 0.79
F-20 Q.58 YES 0.58
F-21 1.30 YES 1.30
F-22 1. 61 Y E S 1. 61
F-23 0.23 NO 0.00
F-24 0.12 N O 0. 00
F-25 0.28 YES 0.28
F-26 0. 29 Y E S 0. 29
F-27 0. 74 Y E S 0. 74
F-28 0. 52 Y E S 0. 52
F-29 0.79 YES 0.79
F-30 0. 86 Y E S 0. 86
F-31 1. 32 Y E S 0. 89
F-32 0. 06 N O 0. 00
F-33 0.27 NO 0.00
G1-1 1.67 NO 0.00
G1-2 1.57 NO 0.00
G1-3 0.34 NO 0.00
G1-4 0.31 NO 0.00
G1-5 4.08 NO 0.00
G1-6 0.69 NO 0.00
G1-7 1.82 NO 0.00
G1-8 0.09 NO 0.00
G1-9 0.99 NO O.OQ
G1-10 0.49 NO 0.00
G1-11 0.34 NO 0.00
G1-12 0.31 NO 0.0�
G1-13 0.22 NO 0.00
G1-14 0.21 NO 0.00
G1-15 0.11 NO 0.00
G1-16 0.12 NO 0.00
G1-17 0.05 NO 0.00
G1-18 0.04 NO 0.00
C2-1 0.58 NO 0.00
C2-2 0.57 NO 0.00
POND D 7.49 NO 0.00
POND 427 10.23 NO 0.00
LID 1
LID 2
LID 3
LID 4
LID 5
LEC�END
X X= TOTAL AREA DRAINING TO LID (ACRES)
u� X LID X= LID NAME
(AREAS TO BE OVER TREATED TO ACCOUNT FOR 50% NEWLY
ADDED IMPERVIOUSNESS FOR TOTAL SITE AREA)
REMAINDER OF SITE THAT IS TAKEN CARE OF BY THE AREAS THAT
ARE BEING OVER TREATED
���� FUTURE FILINGS (WHEN DEVELOPED WILL HAVE TO PROVIDE LID)
LID FOOTPRINT
150 0 150 300
scale 1 "=150' feet
z
0
�
N a
Z U
O
N w
> �
w
�
�
Q
0
>-
m
DRAWN
BAMG
CHECKED
DAP
DESIGNED
BAMG
FILENAME
LID AREAS
Z
�
�
�
�
�
�
�
�
a
�
Q
�
Z
O
�
�❑
W
�
Q
�
�
�
��I
�
1
�
�
�
CONSULTING ENGINEERS
748 Whalers Way
Suite 200 Fort Collins
Colorado 80525
Phone: 970.226.0557
J08 N0.
1230.0009.00
SCALE
1 " = 150'
DATE
MAY 2024
SHEET
1of1
. LID 1
., ,.,..�..,....,.., ,....
MONTAVA $UB�IVISION PHASE �
PONDD �.49 0.00 0.00 749 0.64 854% NO 10.70% 0.00
PON0421 10.23 0.00 0.�0 1023 0.31 3.05% NO 14.62% 0.00
Total= i7.'/2 0.00 0.00 1].l2 0.95 53]% 25.32°0 0.00
BASINPERCENTTREATMENTREQUIRED 50.00% IMPEftVI0U5AREAREpUIREDTOBETREATED 0.48
Total Impervious Area Required to be Treated Using Z2 ZZ
lID Techniques (acres) _
LID 1
LID 2
LIO 3
LID 4
LID 5
Total Impervious Area to be Treated Using LI� z3 ��
Techniques(acres)=
Final �rainage Report
C2-1 0.58 0.00 0.00 0.58 �.4� 81.41% NO 0.83% 0.00
C2-2 �.SI 0.00 0.00 0.5] 0.46 81.09% NO 0.81% 0.00
To�al= 7.15 0.00 0.00 7.15 0.93 81.25% 7.64% 0.00
BASIN PE2CENT TREATMENT REQUIRED 50.00 % IMPEftVI0U5 AREA REpl11RE0 TO BE TREATED 0.47
PROJECT INFORMATION
ENGINEERED PRODUCT
MANAGER
ADS SALES REP
PROJECT NO.
�
Advanced Drainage Systems, Inc.
MONTAVA PHASE D LID 1
FORT COLLINS, CO, USA
MC-3500 STORMTECH CHAMBER SPECIFICATIONS
1. CHAMBERS SHALL BE STORMTECH MC-3500.
2. CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE
COPOLYMERS.
3. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED
WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS.
4. CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD
IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
5. THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE
THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1)
LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE AASHTO DESIGN TRUCK WITH CONSIDERATION
FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
6. CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787,
"STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2)
MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.
7. REQUIREMENTS FOR HANDLING AND INSTALLATION:
• TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING
STACKING LUGS.
• TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS
THAN 3".
• TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE
GREATER THAN OR EQUAL TO 450 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER
DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F/ 23° C), CHAMBERS SHALL BE PRODUCED
FROM REFLECTIVE GOLD OR YELLOW COLORS.
8. ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN
ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE
DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
• THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
• THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR
DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO
LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
• THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN
EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
9. CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY.
//�D6� �, o
.
SiteAssist �,
FOR STORMTECH �■'
INSTALLATION INSTRUCTIONS �
VISIT OUR APP � 1 .�'
IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-3500 CHAMBER SYSTEM
1. STORMTECH MC-3500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A
PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
2. STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
3. CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS.
STORMTECH RECOMMENDS 3 BACKFILL METHODS:
• STONESHOOTER LOCATED OFF THE CHAMBER BED.
• BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
• BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
4. THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS.
5. JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE.
6. MAINTAIN MINIMUM - 6" (150 mm) SPACING BETWEEN THE CHAMBER ROWS.
7. INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 12" (300 mm) INTO CHAMBER END CAPS.
8. EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE MEETING THE AASHTO M43 DESIGNATION OF #3
OR #4.
9. STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING.
10. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN
ENGINEER.
11. ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE
STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.
NOTES FOR CONSTRUCTION EQUIPMENT
STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
THE USE OF EQUIPMENT OVER MC-3500 CHAMBERS IS LIMITED:
• NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
• NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE
WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
• WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
FULL 36" (900 mm) OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.
USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE
BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD
WARRANTY.
CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.
002024 ADS, INC.
PROPOSEDLAYOUT
6
12
3820
149.9
RMTECH MC-3500 END CAPS
�METER STONE INCLUDED)
'ER STONE INCLUDED)
E STONE INCLUDED)
CONCEPTUAL ELEVATIONS:
P OF MC-3500 CHAMBER:
OF MC-3500 CHAMBER:
OF STONE:
0.
PART TYPE
ABRICATED END CAP
ABRICATED END CAP
(OU DESCRIPTION
A 24" BOTTOM CORED END CAP, PART#: MC35001EPP246C / TYP OF ALL 24" BOTTOM
CONNECTIONS AND ISOLATOR PLUS ROWS
B 12" TOP CORED END CAP, PART#: MC35001EPP12T / TYP OF ALL 12" TOP CONNECT
'INVERT ABOVE BASE OF CHAMBER
NVERT MAX FLOW
2.06"
26.36"
REFABRICATED END CAP C 12" BOTTOM CORED END CAP, PART#: MC35001EPP12B / TYP OF ALL 12" BOTTOM CONNECTIONS 1.35"
_AMP D INSTALL FLAMP ON 24" ACCESS PIPE / PART#: MCFLAMP
ANIFOLD E 12" x 12" TOP MANIFOLD, ADS N-12 26.36"
IPE CONNECTION F 12" BOTTOM CONNECTION 1.35"
YLOPLAST (INLET W/ ISO
,,,� r,,,,,,,� G 30" DIAMETER (24.00" SUMP MIN) 5.0 CFS IN
52.68'
:. x� � � ,� x�� �n � :�� �n �x �x� ;: �:_��
�
�
J ¢
z
0 � m o
z w
W o � �
(� � ¢� _
Q Z o c�
2^
L.L J
; O
Q �
� O
� �
� .. w
F O
¢ �
o n.
Y
2
U
�
�
�
W
F
Q
�
H
C
F
� — — — — —
��� � ISOLATOR ROW PLUS
(SEE DETAIL)
�Xu�k� k PLACE MINIMUM 17.50' OF ADSPLUS125 WOVEN GEOTEXTILE OVER BEDDING
;"'I STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL
� >. ' CHAMBER WLET ROWS
BED LIMITS
I�r�z��nn��
� in if�
N N
� E o c�i
B N N
�D
�A
G
�
I
NOTES
• NIANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE.
DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COUPLE ADDITIONAL PIPE TO STANDARD MANIFOLD
COMPONENTS IN THE FIELD.
• THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUIREMENTS ARE MET.
THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR
DETERMINING
THE SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED OR DECREASED ONCE THIS INFORMATION IS
PROVIDED.
• NOT FOR CONSTRUCTION: THIS LAYOUT �S FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORAGE VOLUME CAN BE ACHIEVED ON SITE.
�
d �
F�
�
��
L �
� �
�i+ �
V� U
o�
� N
J �
m M
Z �
� = v
W � �
�pc+�
� � r
� J O
� J �
�
V 2 �
` o
z
O
�
a
�
U
�
W
�
�
0
U
x
U
w
H
�
�
�
�
�
�
�
N
�
�
�
SHEET
20F6
ACCEPTABLE FILL MATERIALS: STORMTECH MC-3500 CHAMBER SYSTEMS
MATERIAL LOCATION DESCRIPTION AASHTO MATERIAL COMPACTION / DENSITY REQUIREMENT
CLASSIFICATIONS
FINAL FILL: FILL MATERIAL FOR LAYER'D' STARTS FROM THE TOP OF THE'C' PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED
p LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. N/A INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND
GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE'D' CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS. PREPARATION REQUIREMENTS.
LAYER
AASHTO M145'
INITIAL FILL: FILL MATERIAL FOR LAYER'C' STARTS FROM THE TOP OF THE GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR A-1, A-2-4, A-3 BEGIN COMPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER
EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE PROCESSED AGGREGATE. THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN
� CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' OR 12" (300 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR
LAYER.
MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR
LAYER. AASHTO M43' PROCESSED AGGREGATE MATERIALS.
3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10
B EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE CLEAN, CRUSHED, ANGULAR S SONE AASHTO M43' NO COMPACTION REQUIRED.
FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE. OR RECYCLED CONCRETE 3, 357, 4, 467, 5, 56, 57
FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO CLEAN, CRUSHED, ANGULAR STONE AASHTO M43'
A THE FOOT (BOTTOM) OF THE CHAMBER. OR RECYCLED CONCRETES 3, 357, 4, 467, 5, 56, 57 PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE.z•3
PLEASE NOTE:
1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4(AASHTO M43) STONE".
2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.
3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR
COMPACTION REQUIREMENTS.
4. ONCE LAYER'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER'C' OR'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.
5. WHERE RECYCLED CONCRETE AGGREGATE IS USED IN LAYERS'A' OR'B' THE MATERIAL SHOULD ALSO MEET THE ACCEPTABILITY CRITERIA OUTLINED IN TECHNICAL NOTE 6.20 "RECYCLED CONCRETE STRUCTURAL BACKFILL".
ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE ALL PAVEMENT LAYER (DESIGNED
AROUND CLEAN, CRUSHED, ANGULAR STONE IN A& B LAYERS �, � BY SITE DESIGN ENGINEER)
PERIMETER STONE
(SEE NOTE 4)
EXCAVATION WALL
(CAN BE SLOPED OR VERTICAL)
6" (150 mm) MIN - I � i
NOTES:
_ Il I
/ I
�.�
O
`TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED
INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR,
WCREASE COVER TO 24" (600 mm),
�!� �
�I�I���"Q�'�� �_' -_ � � I��I ' I \
6II _I
i �q
_ I' - II II � ' -I - I- - I - I - I - '�i. .� - I - I - I -;� I- .-� - I -� -I
I - I I . �- ii - I - I - - I - - I � I . I . - - I - il I I I - - I - I - .. I_
, �/
MC-3500 - - - 6 -
END CAP SUBGRADE SOILS (150 mm) MIN
(SEE NOTE 3)
• $i
18" (2.4 m)
� (450 mm) MIN' MAX
12" (300 mm) MIN l
45" "`THIS CROSS SECTION DETAIL REPRESENTS
(1140 mm) MINIMUM REQUIREMENTS FOR INSTALLATION.
PLEASE SEE THE LAYOUT SHEET(S) FOR
� PROJECT SPECIFIC REQUIREMENTS.
- - I - i - -I - ,- - - � DEPTH OF STONE TO BE DETERMINED
I I i i BY SITE DESIGN ENGINEER 9" (230 mm) MIN
77" (19501mm)I 12" (300 mm) MIN
1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76
DESIGNATION SS.
2. MC-3500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION
FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
• TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
• TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3".
• TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 450 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF
ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F/ 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW
COLORS.
�
0
J
0
W
�
2
�
Q
i
Q
H
Z
�
Q
Q � z
� m o
� w
o Z
Y
U Q w
� � x
Z � U
J
O
U
�
�
O
�
�
�
.. w
F O
¢ �
o n.
�
W �
H�
�
�
� �
O �
�
V� U
o�
� N
J �
m M
Z �
� = v
W��-
�o�
���
� J O
� J �
V 2 �
�
z
O
�
a
�
U
�
w
0
Y
x
U
�
�
�
W
F
¢
0
�
O
U
x
U
W
�
�
�
O
�
�
�
rn
�
N
N
�
�
�
SHEET
30F6
COVER PIPE CONNECTION TO END
CAP WITH ADS GEOSYNTHETICS 601T
NON-WOVEN GEOTEXTILE
INSTALL FLAMP ON 24" (600 mm) ACCESS PIPE
PART #: MCFLAMP
MC-3500 CHAMBER
STORMTECH HIGHLY RECOMMENDS
FLEXSTORM INSERTS IN ANY UPSTREAM
STRUCTURES WITH OPEN GRATES
ELEVATED BYPASS MANIFOLD
L -----I
7 -
- i u rn u n`
�>�
u,�� u �n ,�a�;, �li
�- �,� �
i
�
�.r �r
i i I i u i u-
i �i � i�
,�. ,��; � �� u��,��.'_
�,
_ �� � �
�����
SUMP DEPTH TBD BY
SITE DESIGN ENGINEER
(24" [600 mm] MIN RECOMMENDED)
NYLOPLAST
24" (600 mm) HDPE ACCESS PIPE REQUIRED
USE FACTORY PARTIAL CUT END CAP PART #:
MC35001EPP246C OR MC35001EPP246W
� � � /// �
:
ili li��/il u
- � � �\
_� �,,� �
;�i il �� � �
MC-3500 ISOLATOR ROW PLUS DETAIL
NTS
INSPECTION & MAINTENANCE
STEP 1) INSPECT ISOLATOR ROW PLUS FOR SEDIMENT
A. INSPECTION PORTS (IF PRESENT)
A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
A.2. REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED
A.3. USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG
A.4. LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL)
A.5. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
B. ALL ISOLATOR PLUS ROWS
B.1. REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS
6.2. USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE
i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY
ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE
B.3. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
STEP 2) CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS
A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
B. APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN
C. VACUUM STRUCTURE SUMP AS REQUIRED
STEP 3) REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS.
STEP 4) INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM.
NOTES
1. INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS
OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.
� OPTIONAL INSPECTION PORT
� I I"� ! -= _
MC-3500 END CAP
ONE LAYER OF ADSPLUS125 WOVEN GEOTEXTILE BETWEEN
FOUNDATION STONE AND CHAMBERS
8.25' (2.51 m) MIN WIDE CONTINUOUS FABRIC WITHOUT SEAMS
�
�
J
0
W
�
_
�
i
H
Z
�
¢
Q � z
� m p
� W
� Z Y
U Q w
Uj 2 2
Z � U
J
O
U
�
O
�
�
�
.. w
F O
o n�.
�
s
v �
d �
F�
�
� �
L �
� �
� �
V� U
o�
� N
J �
m M
z�
�=v
W��
�pc+�
� � r
� J O
� J �
V 2 �
�
Z
O
H
a
�
U
�
w
0
Y
2
U
�
�
0
w
�
¢
0
�
0
U
_
U
w
�
�
�
O
H
�
�
�
�
�
�
N
rn
�
�
SHEET
40F6
MC-SERIES END CAP INSERTION DETAIL
NTS
12" (300 mm) MIN INSERTION
MANIFOLD STUB
MANIFOLD HEADER �/i
,� ,
�;
�! /a '
�,I ��
�;� 1
;��i ��!���;,�
j �'1i=
I I I �I- II I i
12" (300 mm)
MIN SEPARATION
(" � ,
�; �� ;
12" (300 mm)
MIN INSERTION
STORMTECH END CAP
��1
1'�' �''I
i
iI
` .
,`1
I I
NOTE: MANIFOLD STUB MUST BE LAID HORIZONTAL
FOR A PROPER FIT IN END CAP OPENING.
12" (300 mm)
MIN SEPARATION
/ \
I� �
MANIFOLD HEADER
MANIFOLD STUB
MC-3500 TECHNICAL SPECIFICATION
NTS
L
(11�
CREST
WEB
LOWER JOINT
CORRUGATION
FOOT
45.0"
(1143 mm)
I 77.0" I
f'-' (1956 mm) —�1 75.0"
(1905 mm)
NOMINAL CHAMBER SPECIFICATIONS
SIZE (W X H X INSTALLED LENGTH) 77.0" X 45.0" X 86.0" (1956 mm X 1143 mm X 2184 mm)
CHAMBER STORAGE 109.9 CUBIC FEET (3.11 m3)
MINIMUM INSTALLED STORAGE" 175.0 CUBIC FEET (4.96 m3)
WEIGHT 134 Ibs. (60.8 kg)
NOMINAL END CAP SPECIFICATIONS
SIZE (W X H X INSTALLED LENGTH) 75.0" X 45.0" X 22.2" (1905 mm X 1143 mm X 564 mm)
END CAP STORAGE 14.9 CUBIC FEET (0.42 m3)
MINIMUM INSTALLED STORAGE* 45.1 CUBIC FEET (1.28 m3)
WEIGHT 49 Ibs. (22.2 kg)
"ASSUMES 12" (305 mm) STONE ABOVE, 9" (229 mm) STONE FOUNDATION, 6" SPACING BETWEEN
CHAMBERS, 6" (152 mm) STONE PERIMETER IN FRONT OF END CAPS AND 40% STONE POROSITY
STUBS AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH "B"
STUBS AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T"
END CAPS WITH A WELDED CROWN PLATE END WITH "C"
END CAPS WITH A PREFABRICATED WELDED STUB END WITH "W"
PART # STUB B C
MC35001EPP06T 33.21" (844 mm) ---
MC35001EPP06B 6" (150 mm) ___ 0.66" (17 mm)
MC35001EPP08T 31.16" (791 mm) ---
8" (200 mm) ___ 0.81" (21 mm)
MC35001EPP08B
MC35001EPP10T 29.04" (738 mm) ---
10" (250 mm)
MC35001EPP10B --- 0.93" (24 mm)
MC35001EPP12T 26.36" (670 mm) ---
12" (300 mm)
MC35001EPP12B --- 1.35" (34 mm)
MC35001EPP15T 23.39" (594 mm) ---
MC35001EPP15B 15" (375 mm) ___ 1.50" (38 mm)
MC35001EPP18TC 20.03" (509 mm) ---
MC35001EPP18TW 18" (450 mm)
MC35001EPP18BC
MC35001EPP18BW --- 177" (45 mm)
MC35001EPP24TC 14.48" (368 mm) ---
MC35001EPP24TW 24" (600 mm)
MC35001EPP246C
MC35001EPP24BW --- 2.06" (52 mm)
MC35001EPP30BC 30" (750 mm) --- 2.75" (70 mm)
NOTE: ALL DIMENSIONS ARE NOMINAL
22.2��
(564 mm)
INSTALLED
25.7„
(653 mm) �
% ii
Ili�' ,:
I I I I .
I,
: �j�j
II . � .
�
�
CUSTOM PRECORED INVERTS ARE
AVAILABLE UPON REQUEST.
INVENTORIED MANIFOLDS INCLUDE
12-24" (300-600 mm) SIZE ON SIZE
AND 15-48" (375-1200 mm)
ECCENTRIC MANIFOLDS. CUSTOM
INVERT LOCATIONS ON THE MC-3500
END CAP CUT IN THE FIELD ARE NOT
RECOMMENDED FOR PIPE SIZES
GREATER THAN 10" (250 mm). THE
INVERT LOCATION IN COLUMN'B'
ARE THE HIGHEST POSSIBLE FOR
THE PIPE SIZE.
�
�
J ¢
z
0 � m p
z w
W o � �
(� � ¢� _
Q Z o c�
^ J
L.L J
/ O
Q �
� O
O �
� .. w
F O
¢ �
o n.
0
d �
F�
�
� �
L �
� �
*+ �a
V� U
o�
� N
J �
m M
z�
�=v
W��
�pc+�
� � r
� J O
� J �
v=�
�
z
O
�
a
�
U
�
w
0
Y
x
U
�
�
0
w
�
¢
0
�
0
U
_
U
W
�
�
�
0
�
�
�
�
�
N
�
�
�
SHEET
50F6
90.0" (2256 mm)
ACTUALLENGTH
�— UPPER JOINT CORRUGATION
BUILD ROW IN THIS DIRECTION �
INTEGRATED DUCTILE IRON
FRAME & GRATE/SOLID TO
MATCH BASIN O.D.
NYLOPLAST DRAIN BASIN
NTS
12" (610 mm) MIN
(FOR AASHTO H-20)
INVERT ACCORDING TO
PLANS/TAKE OFF
VARIOUS TYPES OF INLET AND
OUTLET ADAPTERS AVAILABLE:
4-30" (100-750 mm) FOR
CORRUGATED HDPE
WATERTIGHT JOINT
(CORRUGATED HDPE SHOWN)
, -,
� �
I
a-o-o-o- ,_�.ar��-=
' /
' �.
18" (457 mm)
MIN WIDTH
AASHTO H-20 CONCRETE SLAB
8" (203 mm) MIN THICKNESS
TRAFFIC LOADS: CONCRETE DIMENSIONS
ARE FOR GUIDELINE PUPOSES ONLY.
ACTUAL CONCRETE SLAB MUST BE
DESIGNED GIVING CONSIDERATION FOR
LOCAL SOIL CONDITIONS, TRAFFIC LOADING
& OTHER APPLICABLE DESIGN FACTORS
ADAPTER ANGLES VARIABLE 0°- 360°
ACCORDING TO PLANS
VARIABLE SUMP DEPTH
ACCORDING TO PLANS
[6" (152 mm) MIN ON 8-24" (200-600 mm),
10" (254 mm) MIN ON 30" (750 mm)]
4" (102 mm) MIN ON 8-24" (200-600 mm)
6" (152 mm) MIN ON 30" (750 mm)
- BACKFILL MATERIAL BELOW AND TO SIDES
A OF STRUCTURE SHALL BE ASTM D2321
CLASS I OR II CRUSHED STONE OR GRAVEL
AND BE PLACED UNIFORMLY IN 12" (305 mm)
LIFTS AND COMPACTED TO MIN OF 90%
NOTES
1. 8-30" (200-750 mm) GRATES/SOLID COVERS SHALL BE DUCTILE IRON PER ASTM A536
GRADE 70-50-05
2. 12-30" (300-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05
3. DRAIN BASIN TO BE CUSTOM MANUFACTURED ACCORDING TO PLAN DETAILS
4. DRAINAGE CONNECTION STUB JOINT TIGHTNESS SHALL CONFORM TO ASTM D3212
FOR CORRUGATED HDPE (ADS & HANCOR DUAL WALL) & SDR 35 PVC
5. FOR COMPLETE DESIGN AND PRODUCT INFORMATION: WWW.NYLOPLAST-US.COM
6. TO ORDER CALL: 800-821-6710
A PART # GRATE/SOLID COVER OPTIONS
$ 2808AG PEDESTRIAN LIGHT STANDARD LIGHT SOLID LIGHT DUTY
(200 mm) DUTY DUTY
10" 2g10AG PEDESTRIAN LIGHT STANDARD LIGHT SOLID LIGHT DUTY
(250 mm) DUTY DUTY
12 2812AG PEDESTRIAN STANDARD AASHTO SOLID
(300 mm) AASHTO H-10 H-20 AASHTO H-20
15" 2g15AG PEDESTRIAN STANDARD AASHTO SOLID
(375 mm) AASHTO H-10 H-20 AASHTO H-20
�$ 2818AG PEDESTRIAN STANDARD AASHTO SOLID
(450 mm) AASHTO H-10 H-20 AASHTO H-20
24 2824AG PEDESTRIAN STANDARD AASHTO SOLID
(600 mm) AASHTO H-10 H-20 AASHTO H-20
30" 2g30AG PEDESTRIAN STANDARD AASHTO SOLID
(750 mm) AASHTO H-20 H-20 AASHTO H-20
�
0
J
0
W
�
Q
2
�
Q
i
Q
�
Z
O
�
Q
Q � z
� m p
� W
O Z
Y
U Q w
Uj 2 2
Z � U
J
J
�
U
�
�
O
�
�
�
v
. w
F O
o n�.
z
O
H
a
�
U
�
W
�
Y
2
U
�
�
0
w
�
¢
0
�
�
�
0
�
Z
o�
� N
J �
m M
z�
�=v
W��
�pc+�
� � r
� J O
� J �
V 2 �
�
SHEET
60F6
��
�
%
��
/
I
PROJECT INFORMATION
ENGINEERED PRODUCT
MANAGER
ADS SALES REP
PROJECT NO.
�
Advanced Drainage Systems, Inc.
MONTAVA PHASE D LID 2
FORT COLLINS, CO, USA
MC-3500 STORMTECH CHAMBER SPECIFICATIONS
1. CHAMBERS SHALL BE STORMTECH MC-3500.
2. CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE
COPOLYMERS.
3. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED
WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS.
4. CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD
IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
5. THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE
THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1)
LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE AASHTO DESIGN TRUCK WITH CONSIDERATION
FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
6. CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787,
"STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2)
MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.
7. REQUIREMENTS FOR HANDLING AND INSTALLATION:
• TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING
STACKING LUGS.
• TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS
THAN 3".
• TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE
GREATER THAN OR EQUAL TO 450 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER
DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F/ 23° C), CHAMBERS SHALL BE PRODUCED
FROM REFLECTIVE GOLD OR YELLOW COLORS.
8. ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN
ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE
DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
• THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
• THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR
DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO
LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
• THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN
EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
9. CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY.
//�D6� �, o
.
SiteAssist �,
FOR STORMTECH �■'
INSTALLATION INSTRUCTIONS �
VISIT OUR APP � 1 .�'
IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-3500 CHAMBER SYSTEM
1. STORMTECH MC-3500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A
PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
2. STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
3. CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS.
STORMTECH RECOMMENDS 3 BACKFILL METHODS:
• STONESHOOTER LOCATED OFF THE CHAMBER BED.
• BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
• BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
4. THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS.
5. JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE.
6. MAINTAIN MINIMUM - 6" (150 mm) SPACING BETWEEN THE CHAMBER ROWS.
7. INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 12" (300 mm) INTO CHAMBER END CAPS.
8. EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE MEETING THE AASHTO M43 DESIGNATION OF #3
OR #4.
9. STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING.
10. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN
ENGINEER.
11. ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE
STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.
NOTES FOR CONSTRUCTION EQUIPMENT
STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
THE USE OF EQUIPMENT OVER MC-3500 CHAMBERS IS LIMITED:
• NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
• NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE
WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
• WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
FULL 36" (900 mm) OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.
USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE
BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD
WARRANTY.
CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.
002024 ADS, INC.
PROPOSEDLAYOUT
6
12
6241
222.6
RMTECH MC-3500 END CAPS
�METER STONE INCLUDED)
'ER STONE INCLUDED)
E STONE INCLUDED)
OF MC-3500 CHAMBER:
OF STONE:
1
i
��,��g��: �
� ^�'I I in in
I N N
I � �- E o c�i
� �, N N
�>'� � B
���:> D
�n A
� G
� � /.
- �'��-� -
2.50 PART TYPE
6.50
6.00 PREFABRICATED END CAP
6.00 PREFABRICATED END CAP
6.00
5.50 pREFABRICATED END CAP
4.50
1.96 FLAMP
0.92 MANIFOLD
0.90 PIPE CONNECTION
0.75 CONCRETE STRUCTURE
�
�
0
�
G
DESCRIPTION
" BOTTOM CORED END CAP, PART#: MC35001EPP246C / TYP OF ALL 24" BOTTOM
�NNECTIONS AND ISOLATOR PLUS ROWS
18" BOTTOM CORED END CAP, PART#: MC35001EPP18BC / TYP OF ALL 18" BOTTOM
CONNECTIONS
INSTALL FLAMP ON 24" ACCESS PIPE / PART#: MCFLAMP
24" x 24" TOP MANIFOLD, ADS N-12
18" BOTTOM CONNECTION
z
O
�
a
�
U
�
W
�
89.07'
82.58'
�.�.����x�..,s�r.x��.� -�
� �
CONCEPTUAL ELEVATIONS:
P OF MC-3500 CHAMBER:
H
C
F
I � I � � � I I � I�
�,�a
j 'j / !/ / / ✓ / I� ,��—
/
� ��/ /, � � � � i �
�� / ,
, ,
. „ , ,
.
,
� !, — ,=�%, = —,—'% �—/— —/ / /— / — —/ — — —
��� � ISOLATOR ROW PLUS
(SEE DETAIL)
�Xu�k� k PLACE MINIMUM 17.50' OF ADSPLUS125 WOVEN GEOTEXTILE OVER BEDDING
;"'I STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL
� >. ' CHAMBER WLET ROWS
BED LIMITS
'INVERT ABOVE BASE OF CHAMBER
NVERT` MAX FLOW
N
2.06" � Q
NS 14.48" Q ? m o
1.77" Z w
� � Y
14.48" = Z � U
1.77" a, �
17.0 CFS IN Q O
4.0 CFS OUT � F
Q �
� O
Z ;*
O �
� .. w
� o
a �
o n.
NOTES
• NIANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE.
DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COUPLE ADDITIONAL PIPE TO STANDARD MANIFOLD
COMPONENTS IN THE FIELD.
• THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUIREMENTS ARE MET.
THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR
DETERMINING
THE SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED OR DECREASED ONCE THIS INFORMATION IS
PROVIDED.
• NOT FOR CONSTRUCTION: THIS LAYOUT �S FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORAGE VOLUME CAN BE ACHIEVED ON SITE.
O
d �
H�
�
�
��
O �
� �
V� U
o�
� N
J �
m M
Z �
� = v
W � �
�pc+�
� � r
o Q o
V J � �
�
� 2 �
` o
Y
2
U
�
�
�
W
Q
�
�
O
U
_
U
w
�
�
�
0
�
�
�
�
�
N
�
W
�
SHEET
20F6
ACCEPTABLE FILL MATERIALS: STORMTECH MC-3500 CHAMBER SYSTEMS
MATERIAL LOCATION DESCRIPTION AASHTO MATERIAL COMPACTION / DENSITY REQUIREMENT
CLASSIFICATIONS
FINAL FILL: FILL MATERIAL FOR LAYER'D' STARTS FROM THE TOP OF THE'C' PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED
p LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. N/A INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND
GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE'D' CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS. PREPARATION REQUIREMENTS.
LAYER
AASHTO M145'
INITIAL FILL: FILL MATERIAL FOR LAYER'C' STARTS FROM THE TOP OF THE GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR A-1, A-2-4, A-3 BEGIN COMPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER
EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE PROCESSED AGGREGATE. THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN
� CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' OR 12" (300 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR
MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR
LAYER.
LAYER. AASHTO M43' PROCESSED AGGREGATE MATERIALS.
3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10
B EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE CLEAN, CRUSHED, ANGULAR S SONE AASHTO M43' NO COMPACTION REQUIRED.
FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE. OR RECYCLED CONCRETE 3, 357, 4, 467, 5, 56, 57
FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO CLEAN, CRUSHED, ANGULAR STONE AASHTO M43'
A THE FOOT (BOTTOM) OF THE CHAMBER. OR RECYCLED CONCRETES 3, 357, 4, 467, 5, 56, 57 PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE.z•3
PLEASE NOTE:
1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4(AASHTO M43) STONE".
2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.
3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR
COMPACTION REQUIREMENTS.
4. ONCE LAYER'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER'C' OR'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.
5. WHERE RECYCLED CONCRETE AGGREGATE IS USED IN LAYERS'A' OR'B' THE MATERIAL SHOULD ALSO MEET THE ACCEPTABILITY CRITERIA OUTLINED IN TECHNICAL NOTE 6.20 "RECYCLED CONCRETE STRUCTURAL BACKFILL".
ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE ALL PAVEMENT LAYER (DESIGNED
AROUND CLEAN, CRUSHED, ANGULAR STONE IN A& B LAYERS �, � BY SITE DESIGN ENGINEER)
PERIMETER STONE
(SEE NOTE 4)
EXCAVATION WALL
(CAN BE SLOPED OR VERTICAL)
6" (150 mm) MIN - I � i
NOTES:
_ Il I
/ I
�.�
O
`TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED
INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR,
WCREASE COVER TO 24" (600 mm),
�!� �
�I�I���"Q�'�� �_' -_ � � I��I ' I \
6II _I
i �q
_ I' - II II � ' -I - I- - I - I - I - '�i. .� - I - I - I -;� I- .-� - I -� -I
I - I I . �- ii - I - I - - I - - I � I . I . - - I - il I I I - - I - I - .. I_
, �/
MC-3500 - - - 6 -
END CAP SUBGRADE SOILS (150 mm) MIN
(SEE NOTE 3)
• $i
18" (2.4 m)
� (450 mm) MIN' MAX
12" (300 mm) MIN l
45" "`THIS CROSS SECTION DETAIL REPRESENTS
(1140 mm) MINIMUM REQUIREMENTS FOR INSTALLATION.
PLEASE SEE THE LAYOUT SHEET(S) FOR
� PROJECT SPECIFIC REQUIREMENTS.
- - I - i - -I - ,- - - � DEPTH OF STONE TO BE DETERMINED
I I i i BY SITE DESIGN ENGINEER 9" (230 mm) MIN
77" (19501mm)I 12" (300 mm) MIN
1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76
DESIGNATION SS.
2. MC-3500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION
FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
• TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
• TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3".
• TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 450 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF
ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F/ 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW
COLORS.
N
�
J
0
w
�
2
�..
Q
i
Q
H
Z
�
�
Q
Q � Z
� m o
� w
o Z
Y
U Q w
� � x
Z � U
J
O
U
�
�
O
�
xt
�
v
w
F O
¢ �
o n.
�
W �
H�
�
�
� �
O �
�
V� U
o�
� N
J �
m M
Z �
� = v
W��-
�o�
���
� J O
� J �
V 2 �
�
z
O
�
a
�
U
�
w
0
Y
x
U
�
�
�
W
F
¢
0
�
O
U
x
U
W
�
�
�
O
�
�
�
rn
�
N
N
�
�
�
SHEET
30F6
INSTALL FLAMP ON 24" (600 mm) ACCESS PIPE
PART #: MCFLAMP
COVER PIPE CONNECTION TO END CAP WITH ADS
GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE
STORMTECH HIGHLY RECOMMENDS _�
FLEXSTORM INSERTS IN ANY UPSTREAM j�� � k�r :,
STRUCTURES WITH OPEN GRATES '�� � \
��_ �;
�
�z,�
�����"
\
O
p
i�,���< ,.
,� �,i ,
. ��^� I �b i: . . _
� - I
MG3500 CHAMBER
i i
i i
o u II
�
'. n� pn li i � .
��II�
SUMP DEPTH TBD BY
SITE DESIGN ENGINEER
(24" [600 mm] MIN RECOMMENDED)
24" (600 mm) HDPE ACCESS PIPE REQUIRED USE
FACTORY PRE-CORED END CAP
PART #: MC35001EPP24BC OR MC35001EPP24BW
MC-3500 ISOLATOR ROW PLUS DETAIL
NTS
INSPECTION & MAINTENANCE
STEP 1) INSPECT ISOLATOR ROW PLUS FOR SEDIMENT
A. INSPECTION PORTS (IF PRESENT)
A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
A.2. REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED
A.3. USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG
A.4. LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL)
A.5. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
B. ALL ISOLATOR PLUS ROWS
B.1. REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS
6.2. USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE
i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY
ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE
B.3. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
STEP 2) CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS
A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
B. APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN
C. VACUUM STRUCTURE SUMP AS REQUIRED
STEP 3) REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS.
STEP 4) INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM.
NOTES
1. INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS
OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.
MC-3500 END CAP
..,.� ".,"..., ,.....,, �.,.,,�., ....VEN GEOTEXTILE BETWEEN
FOUNDATION STONE AND CHAMBERS
8.25' (2.51 m) MIN WIDE CONTINUOUS FABRIC WITHOUT SEAMS
N
�
J
�
w
�
2
�
/
�
Z
�
¢
Q � Z
� m p
� W
O Z
Y
U Q w
� � x
Z � U
J
�
U
�
O
�
�
�
v
w
¢ �
o �.
�
s
v �
d �
F�
�
� �
L �
� �
� �
V� U
o�
� N
J �
m M
z�
�=v
W��
�pc+�
� � r
� J O
� J �
V 2 �
�
z
0
�
a
�
U
�
w
0
Y
x
U
�
�
0
w
�
¢
0
�
0
U
_
U
w
�
�
�
O
H
�
�
�
�
�
�
N
rn
�
�
SHEET
40F6
� OPTIONAL INSPECTION PORT
MC-SERIES END CAP INSERTION DETAIL
NTS
12" (300 mm) MIN INSERTION
MANIFOLD STUB
MANIFOLD HEADER �/i
,� ,
�;
�! /a '
�,I ��
�;� 1
;��i ��!���;,�
j �'1i=
I I I �I- II I i
12" (300 mm)
MIN SEPARATION
(" � ,
�; �� ;
12" (300 mm)
MIN INSERTION
STORMTECH END CAP
��1
1'�' �''I
i
iI
` .
,`1
I I
NOTE: MANIFOLD STUB MUST BE LAID HORIZONTAL
FOR A PROPER FIT IN END CAP OPENING.
12" (300 mm)
MIN SEPARATION
/ \
I� �
MANIFOLD HEADER
MANIFOLD STUB
MC-3500 TECHNICAL SPECIFICATION
NTS
L
(11�
CREST
WEB
LOWER JOINT
CORRUGATION
FOOT
45.0"
(1143 mm)
I 77.0" I
f'-' (1956 mm) —�1 75.0"
(1905 mm)
NOMINAL CHAMBER SPECIFICATIONS
SIZE (W X H X INSTALLED LENGTH) 77.0" X 45.0" X 86.0" (1956 mm X 1143 mm X 2184 mm)
CHAMBER STORAGE 109.9 CUBIC FEET (3.11 m3)
MINIMUM INSTALLED STORAGE" 175.0 CUBIC FEET (4.96 m3)
WEIGHT 134 Ibs. (60.8 kg)
NOMINAL END CAP SPECIFICATIONS
SIZE (W X H X INSTALLED LENGTH) 75.0" X 45.0" X 22.2" (1905 mm X 1143 mm X 564 mm)
END CAP STORAGE 14.9 CUBIC FEET (0.42 m3)
MINIMUM INSTALLED STORAGE* 45.1 CUBIC FEET (1.28 m3)
WEIGHT 49 Ibs. (22.2 kg)
"ASSUMES 12" (305 mm) STONE ABOVE, 9" (229 mm) STONE FOUNDATION, 6" SPACING BETWEEN
CHAMBERS, 6" (152 mm) STONE PERIMETER IN FRONT OF END CAPS AND 40% STONE POROSITY
STUBS AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH "B"
STUBS AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T"
END CAPS WITH A WELDED CROWN PLATE END WITH "C"
END CAPS WITH A PREFABRICATED WELDED STUB END WITH "W"
PART # STUB B C
MC35001EPP06T 33.21" (844 mm) ---
MC35001EPP06B 6" (150 mm) ___ 0.66" (17 mm)
MC35001EPP08T 31.16" (791 mm) ---
8" (200 mm) ___ 0.81" (21 mm)
MC35001EPP08B
MC35001EPP10T 29.04" (738 mm) ---
10" (250 mm)
MC35001EPP10B --- 0.93" (24 mm)
MC35001EPP12T 26.36" (670 mm) ---
12" (300 mm)
MC35001EPP12B --- 1.35" (34 mm)
MC35001EPP15T 23.39" (594 mm) ---
MC35001EPP15B 15" (375 mm) ___ 1.50" (38 mm)
MC35001EPP18TC 20.03" (509 mm) ---
MC35001EPP18TW 18" (450 mm)
MC35001EPP18BC
MC35001EPP18BW --- 177" (45 mm)
MC35001EPP24TC 14.48" (368 mm) ---
MC35001EPP24TW 24" (600 mm)
MC35001EPP246C
MC35001EPP24BW --- 2.06" (52 mm)
MC35001EPP30BC 30" (750 mm) --- 2.75" (70 mm)
NOTE: ALL DIMENSIONS ARE NOMINAL
22.2��
(564 mm)
INSTALLED
25.7„
(653 mm) �
% ii
Ili�' ,:
I I I I .
I,
: �j�j
II . � .
�
�
CUSTOM PRECORED INVERTS ARE
AVAILABLE UPON REQUEST.
INVENTORIED MANIFOLDS INCLUDE
12-24" (300-600 mm) SIZE ON SIZE
AND 15-48" (375-1200 mm)
ECCENTRIC MANIFOLDS. CUSTOM
INVERT LOCATIONS ON THE MC-3500
END CAP CUT IN THE FIELD ARE NOT
RECOMMENDED FOR PIPE SIZES
GREATER THAN 10" (250 mm). THE
INVERT LOCATION IN COLUMN'B'
ARE THE HIGHEST POSSIBLE FOR
THE PIPE SIZE.
N
� Q
J Q � Z
p cn m o
� w
W Z
Y
� O
Q vi � x
= Z o c�
� J
J
�
Q �
� �
Z ;*
� �
� .. w
F O
¢ �
o n.
0
d �
F�
�
� �
L �
� �
*+ �a
V� U
o�
� N
J �
m M
z�
�=v
W��
�pc+�
� � r
� J O
� J �
v=�
�
z
O
�
a
�
U
�
w
0
Y
x
U
�
�
0
w
�
¢
0
�
0
U
_
U
W
�
�
�
0
�
�
�
�
�
N
�
�
�
SHEET
50F6
90.0" (2256 mm)
ACTUALLENGTH
�— UPPER JOINT CORRUGATION
BUILD ROW IN THIS DIRECTION �
INTEGRATED DUCTILE IRON
FRAME & GRATE/SOLID TO
MATCH BASIN O.D.
NYLOPLAST DRAIN BASIN
NTS
12" (610 mm) MIN
(FOR AASHTO H-20)
INVERT ACCORDING TO
PLANS/TAKE OFF
VARIOUS TYPES OF INLET AND
OUTLET ADAPTERS AVAILABLE:
4-30" (100-750 mm) FOR
CORRUGATED HDPE
WATERTIGHT JOINT
(CORRUGATED HDPE SHOWN)
, -,
� �
I
a-o-o-o- ,_�.ar��-=
' /
' �.
18" (457 mm)
MIN WIDTH
AASHTO H-20 CONCRETE SLAB
8" (203 mm) MIN THICKNESS
TRAFFIC LOADS: CONCRETE DIMENSIONS
ARE FOR GUIDELINE PUPOSES ONLY.
ACTUAL CONCRETE SLAB MUST BE
DESIGNED GIVING CONSIDERATION FOR
LOCAL SOIL CONDITIONS, TRAFFIC LOADING
& OTHER APPLICABLE DESIGN FACTORS
ADAPTER ANGLES VARIABLE 0°- 360°
ACCORDING TO PLANS
VARIABLE SUMP DEPTH
ACCORDING TO PLANS
[6" (152 mm) MIN ON 8-24" (200-600 mm),
10" (254 mm) MIN ON 30" (750 mm)]
4" (102 mm) MIN ON 8-24" (200-600 mm)
6" (152 mm) MIN ON 30" (750 mm)
- BACKFILL MATERIAL BELOW AND TO SIDES
A OF STRUCTURE SHALL BE ASTM D2321
CLASS I OR II CRUSHED STONE OR GRAVEL
AND BE PLACED UNIFORMLY IN 12" (305 mm)
LIFTS AND COMPACTED TO MIN OF 90%
NOTES
1. 8-30" (200-750 mm) GRATES/SOLID COVERS SHALL BE DUCTILE IRON PER ASTM A536
GRADE 70-50-05
2. 12-30" (300-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05
3. DRAIN BASIN TO BE CUSTOM MANUFACTURED ACCORDING TO PLAN DETAILS
4. DRAINAGE CONNECTION STUB JOINT TIGHTNESS SHALL CONFORM TO ASTM D3212
FOR CORRUGATED HDPE (ADS & HANCOR DUAL WALL) & SDR 35 PVC
5. FOR COMPLETE DESIGN AND PRODUCT INFORMATION: WWW.NYLOPLAST-US.COM
6. TO ORDER CALL: 800-821-6710
A PART # GRATE/SOLID COVER OPTIONS
$ 2808AG PEDESTRIAN LIGHT STANDARD LIGHT SOLID LIGHT DUTY
(200 mm) DUTY DUTY
10" 2g10AG PEDESTRIAN LIGHT STANDARD LIGHT SOLID LIGHT DUTY
(250 mm) DUTY DUTY
12 2812AG PEDESTRIAN STANDARD AASHTO SOLID
(300 mm) AASHTO H-10 H-20 AASHTO H-20
15" 2g15AG PEDESTRIAN STANDARD AASHTO SOLID
(375 mm) AASHTO H-10 H-20 AASHTO H-20
�$ 2818AG PEDESTRIAN STANDARD AASHTO SOLID
(450 mm) AASHTO H-10 H-20 AASHTO H-20
24 2824AG PEDESTRIAN STANDARD AASHTO SOLID
(600 mm) AASHTO H-10 H-20 AASHTO H-20
30" 2g30AG PEDESTRIAN STANDARD AASHTO SOLID
(750 mm) AASHTO H-20 H-20 AASHTO H-20
N
�
J
�
w
�
Q
2
�
Q
i
Q
�
Z
O
�
Q
Q � Z
� m p
� W
O Z
Y
U Q w
Uj 2 2
Z � U
J
J
�
U
�
�
O
�
�
�
v
. w
F O
o n�.
z
O
H
a
�
U
�
W
�
Y
2
U
�
�
0
w
�
¢
0
�
�
�
0
�
Z
o�
� N
J �
m M
z�
�=v
W��
�pc+�
� � r
� J O
� J �
V 2 �
�
SHEET
60F6
�
- - - - �- �-,�-..,-�r-�� �
I �
� il � � I
- I I�,�,�.,��
� �����
/ � � �� ' �� � ;� � , ,
, � �
� /: i/ / / � / �' ,/,�
��/�� , / /,%� � , i �%� //�%� �� �/' .
�� - - - - - - - - - - - - - - - - - - - - - -
Design Procedure Form: Rain Garden (RG)
UD-BMP (Version 3.07, March 2018) Sheet 1 of 2
Designer: BAMG
Company: TST INC. CONSULTING ENGINEERS
Date: July 15, 2024
Project: MONTAVA SUBDIVISION
Location: RAINGARDEN - LID 3
1. Basin Storage Volume
A) Effective Imperviousness of Tributary Area, la la = 75.2 %
(100 % if all paved and roofed areas upstream of rain garden)
B) Tributary Area's Imperviousness Ratio (i = la/100) i= 0.752
C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time WQCV = 0.24 watershed inches
(WQCV=0.8`(0.91*i3-1.19*i2+0.78*i)
D) Contributing Watershed Area (including rain garden area) Area = 38,975 sq ft
E) Water Quality Capture Volume (WQCV) Design Volume VWo�� =�cu ft
Vol = (WQCV / 12)' Area
F) For Watersheds Outside of the Denver Region, Depth of ds = 0.60 in
Average Runoff Producing Storm
G) For Watersheds Outside of the Denver Region, VWQcvorneR = 1,089 cu ft
Water Quality Capture Volume (WQCV) Design Volume
H) User Input of Water Quality Capture Volume (WQCV) Design Volume VwQcvuseR =�cu ft
(Only if a different WQCV Design Volume is desired)
2. Basin Geometry
A) WQCV Depth (12-inch maximum) DWo�� = 12 in
B) Rain Garden Side Slopes (Z = 4 min., horiz. dist per unit vertical) Z= 4.00 ft/ ft
(Use "0" if rain garden has vertical walls)
C) Mimimum Flat Surface Area AM;,, = 586 sq ft
D) Actual Flat Surface Area AA�t„ai = 740 sq ft
E) Area at Design Depth (Top Surface Area) ATOP = 1440 sq ft
F) Rain Garden Total Volume VT= 1,090 cu ft
(Vr= ��%�rov + Aa�mai) / 2) ` Depth)
Choose One
3. Growing Media Q 18" Rain Garden Growing Media
Q Other (Explain):
4. Underdrain System
Choose One
QQ YES
A) Are underdrains provided?
Q NO
B) Underdrain system orifice diameter for 12 hour drain time
i) Distance From Lowest Elevation of the Storage y= 1.5 ft
Valume to the Center of the Orifice
ii) Volume to Drain in 12 Hours Vo1�2= 1,089 cu ft
iii) Orifice Diameter, 3/8" Minimum Do = 13/16 in
UD-BMP 3.xlsm, RG 7/15/2024, 2:59 PM
PROJECT INFORMATION
ENGINEERED PRODUCT
MANAGER
ADS SALES REP
PROJECT NO.
�
Advanced Drainage Systems, Inc.
MONTAVA PHASE D LID 4
FORT COLLINS, CO, USA
MC-3500 STORMTECH CHAMBER SPECIFICATIONS
1. CHAMBERS SHALL BE STORMTECH MC-3500.
2. CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE
COPOLYMERS.
3. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED
WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS.
4. CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD
IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
5. THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE
THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1)
LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE AASHTO DESIGN TRUCK WITH CONSIDERATION
FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
6. CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787,
"STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2)
MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.
7. REQUIREMENTS FOR HANDLING AND INSTALLATION:
• TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING
STACKING LUGS.
• TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS
THAN 3".
• TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE
GREATER THAN OR EQUAL TO 450 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER
DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F/ 23° C), CHAMBERS SHALL BE PRODUCED
FROM REFLECTIVE GOLD OR YELLOW COLORS.
8. ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN
ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE
DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
• THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
• THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR
DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO
LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
• THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN
EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
9. CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY.
//�D6� �, o
.
SiteAssist �,
FOR STORMTECH �■'
INSTALLATION INSTRUCTIONS �
VISIT OUR APP � 1 .�'
IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-3500 CHAMBER SYSTEM
1. STORMTECH MC-3500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A
PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
2. STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
3. CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS.
STORMTECH RECOMMENDS 3 BACKFILL METHODS:
• STONESHOOTER LOCATED OFF THE CHAMBER BED.
• BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
• BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
4. THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS.
5. JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE.
6. MAINTAIN MINIMUM - 6" (150 mm) SPACING BETWEEN THE CHAMBER ROWS.
7. INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 12" (300 mm) INTO CHAMBER END CAPS.
8. EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE MEETING THE AASHTO M43 DESIGNATION OF #3
OR #4.
9. STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING.
10. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN
ENGINEER.
11. ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE
STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.
NOTES FOR CONSTRUCTION EQUIPMENT
STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
THE USE OF EQUIPMENT OVER MC-3500 CHAMBERS IS LIMITED:
• NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
• NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE
WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
• WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
FULL 36" (900 mm) OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.
USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE
BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD
WARRANTY.
CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.
002024 ADS, INC.
PROPOSEDLAYOUT
4
12
7471
323.6
RMTECH MC-3500 END CAPS
�METER STONE INCLUDED)
'ER STONE INCLUDED)
E STONE INCLUDED)
CONCEPTUAL ELEVATIONS:
P OF MC-3500 CHAMBER:
2.50 PART TYPE
6.50
6.00 PREFABRICATED END CAP
6.00 PREFABRICATED END CAP
6.00
5.50 pREFABRICATED END CAP
4.50
2 g5 FLAMP
0.92 MANIFOLD
0.90 PIPE CONNECTION
0.75 NYLOPLAST (INLET W/ ISO
OF MC-3500 CHAMBER:
I I
� E M ih
M d?
B � tC7
�D I
— A i
�
�
0
�
�
DESCRIPTION
" BOTTOM CORED END CAP, PART#: MC35001EPP246C / TYP OF ALL 24" BOTTOM
�NNECTIONS AND ISOLATOR PLUS ROWS
18" BOTTOM CORED END CAP, PART#: MC35001EPP18BC / TYP OF ALL 18" BOTTOM
CONNECTIONS
INSTALL FLAMP ON 24" ACCESS PIPE / PART#: MCFLAMP
12" x 12" TOP MANIFOLD, ADS N-12
18" BOTTOM CONNECTION
30" DIAMETER (24.00" SUMP MIN)
z
O
�
a
�
U
�
W
�
145.85'
139.92'
H—
C — — — — — — —
— — —
-- � — —
F_ � �T, _�x�a. �� 7�-,_.
' � !� � l�l_-1 I I I_ � ���.�
/ �� �j,'';�� ��/�%/� %� ���� ;��/� ;// ����
�,/,,,
. .� /,/ „/ / r � � , .. .//:.
��� � ISOLATOR ROW PLUS
(SEE DETAIL)
�Xu�k� k PLACE MINIMUM 17.50' OF ADSPLUS125 WOVEN GEOTEXTILE OVER BEDDING
;"'I STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL
� >. ' CHAMBER WLET ROWS
BED LIMITS
'INVERT ABOVE BASE OF CHAMBER
NVERT` MAX FLOW
'�t
2.06" 0 Q
S 26.36" Q ? m o
1.77" Z w
� � Y
26.36" = Z � U
1.77" � �
2.5 CFS IN Q �U
4.0 CFS OUT Q �
Z "
O �
� .. w
� o
a �
o n.
NOTES
• NIANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE.
DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COUPLE ADDITIONAL PIPE TO STANDARD MANIFOLD
COMPONENTS IN THE FIELD.
• THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUIREMENTS ARE MET.
THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR
DETERMINING
THE SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED OR DECREASED ONCE THIS INFORMATION IS
PROVIDED.
• NOT FOR CONSTRUCTION: THIS LAYOUT �S FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORAGE VOLUME CAN BE ACHIEVED ON SITE.
0
W �
F�
�
��
L �
� �
�i+ �
V� U
o�
� N
J �
m M
Z �
� = v
W � �
�pc+�
� � r
o Q o
V J � �
�
� 2 �
` o
Y
2
U
�
�
0
w
�
¢
0
�
0
U
_
U
w
H
�
�
O
�
�
�
�
N
�
�
�
SHEET
20F6
ACCEPTABLE FILL MATERIALS: STORMTECH MC-3500 CHAMBER SYSTEMS
MATERIAL LOCATION DESCRIPTION AASHTO MATERIAL COMPACTION / DENSITY REQUIREMENT
CLASSIFICATIONS
FINAL FILL: FILL MATERIAL FOR LAYER'D' STARTS FROM THE TOP OF THE'C' PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED
p LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. N/A INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND
GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE'D' CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS. PREPARATION REQUIREMENTS.
LAYER
AASHTO M145'
INITIAL FILL: FILL MATERIAL FOR LAYER'C' STARTS FROM THE TOP OF THE GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR A-1, A-2-4, A-3 BEGIN COMPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER
EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE PROCESSED AGGREGATE. THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN
� CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' OR 12" (300 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR
MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR
LAYER.
LAYER. AASHTO M43' PROCESSED AGGREGATE MATERIALS.
3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10
B EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE CLEAN, CRUSHED, ANGULAR S SONE AASHTO M43' NO COMPACTION REQUIRED.
FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE. OR RECYCLED CONCRETE 3, 357, 4, 467, 5, 56, 57
FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO CLEAN, CRUSHED, ANGULAR STONE AASHTO M43'
A THE FOOT (BOTTOM) OF THE CHAMBER. OR RECYCLED CONCRETES 3, 357, 4, 467, 5, 56, 57 PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE.z•3
PLEASE NOTE:
1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4(AASHTO M43) STONE".
2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.
3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR
COMPACTION REQUIREMENTS.
4. ONCE LAYER'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER'C' OR'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.
5. WHERE RECYCLED CONCRETE AGGREGATE IS USED IN LAYERS'A' OR'B' THE MATERIAL SHOULD ALSO MEET THE ACCEPTABILITY CRITERIA OUTLINED IN TECHNICAL NOTE 6.20 "RECYCLED CONCRETE STRUCTURAL BACKFILL".
ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE ALL PAVEMENT LAYER (DESIGNED
AROUND CLEAN, CRUSHED, ANGULAR STONE IN A& B LAYERS �, � BY SITE DESIGN ENGINEER)
PERIMETER STONE
(SEE NOTE 4)
EXCAVATION WALL
(CAN BE SLOPED OR VERTICAL)
6" (150 mm) MIN - I � i
NOTES:
_ Il I
/ I
�.�
O
`TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED
INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR,
WCREASE COVER TO 24" (600 mm),
�!� �
�I�I���"Q�'�� �_' -_ � � I��I ' I \
6II _I
i �q
_ I' - II II � ' -I - I- - I - I - I - '�i. .� - I - I - I -;� I- .-� - I -� -I
I - I I . �- ii - I - I - - I - - I � I . I . - - I - il I I I - - I - I - .. I_
, �/
MC-3500 - - - 6 -
END CAP SUBGRADE SOILS (150 mm) MIN
(SEE NOTE 3)
• $i
18" (2.4 m)
� (450 mm) MIN' MAX
12" (300 mm) MIN l
45" "`THIS CROSS SECTION DETAIL REPRESENTS
(1140 mm) MINIMUM REQUIREMENTS FOR INSTALLATION.
PLEASE SEE THE LAYOUT SHEET(S) FOR
� PROJECT SPECIFIC REQUIREMENTS.
- - I - i - -I - ,- - - � DEPTH OF STONE TO BE DETERMINED
I I i i BY SITE DESIGN ENGINEER 9" (230 mm) MIN
77" (19501mm)I 12" (300 mm) MIN
1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76
DESIGNATION SS.
2. MC-3500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION
FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
• TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
• TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3".
• TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 450 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF
ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F/ 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW
COLORS.
�
0
J
0
w
�
2
�
Q
i
Q
�-
Z
0
�
Q
Q � Z
� m o
� w
o Z
Y
U Q w
� � x
Z � U
J
O
U
�
�
O
�
xt
�
v
w
F O
¢ �
o n.
�
W �
H�
�
�
� �
O �
�
V� U
o�
� N
J �
m M
Z �
� = v
W��-
�o�
���
� J O
� J �
V 2 �
�
z
O
�
a
�
U
�
w
0
Y
x
U
�
�
�
W
F
¢
0
�
O
U
x
U
W
�
�
�
O
�
�
�
rn
�
N
N
�
�
�
SHEET
30F6
COVER PIPE CONNECTION TO END
CAP WITH ADS GEOSYNTHETICS 601T
NON-WOVEN GEOTEXTILE
INSTALL FLAMP ON 24" (600 mm) ACCESS PIPE
PART #: MCFLAMP
MC-3500 CHAMBER
STORMTECH HIGHLY RECOMMENDS
FLEXSTORM INSERTS IN ANY UPSTREAM
STRUCTURES WITH OPEN GRATES
ELEVATED BYPASS MANIFOLD
L -----I
7 -
- i u rn u n`
�,i
u,�� u �n ,�a�;, �li; .
�- �,� �
i
�
�.r �r
i/ I i u i u-
i �i � i�
,�. ,��; � �� u��,��.'_
�,
� � �
�����
SUMP DEPTH TBD BY
SITE DESIGN ENGINEER
(24" [600 mm] MIN RECOMMENDED)
NYLOPLAST
24" (600 mm) HDPE ACCESS PIPE REQUIRED
USE FACTORY PARTIAL CUT END CAP PART #:
MC35001EPP246C OR MC35001EPP246W
� � � /// �
:
ili li��/il u
- � � �\
_� �,,� �
;�i il �� � �
MC-3500 ISOLATOR ROW PLUS DETAIL
NTS
INSPECTION & MAINTENANCE
STEP 1) INSPECT ISOLATOR ROW PLUS FOR SEDIMENT
A. INSPECTION PORTS (IF PRESENT)
A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
A.2. REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED
A.3. USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG
A.4. LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL)
A.5. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
B. ALL ISOLATOR PLUS ROWS
B.1. REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS
6.2. USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE
i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY
ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE
B.3. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
STEP 2) CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS
A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
B. APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN
C. VACUUM STRUCTURE SUMP AS REQUIRED
STEP 3) REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS.
STEP 4) INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM.
NOTES
1. INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS
OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.
� OPTIONAL INSPECTION PORT
� I I"� ! -= _
MC-3500 END CAP
ONE LAYER OF ADSPLUS125 WOVEN GEOTEXTILE BETWEEN
FOUNDATION STONE AND CHAMBERS
8.25' (2.51 m) MIN WIDE CONTINUOUS FABRIC WITHOUT SEAMS
'�t
0
J
0
w
�
_
�
i
Q
�--
Z
0
�
¢
Q � Z
� m p
� W
� Z Y
U Q w
Uj 2 2
Z � U
J
O
U
�
O
�
xt
�
U
. w
F O
o n�.
�
s
v �
d �
F�
�
� �
L �
� �
� �
V� U
o�
� N
J �
m M
z�
�=v
W��
�pc+�
� � r
� J O
� J �
V 2 �
�
Z
O
H
a
�
U
�
w
0
Y
2
U
�
�
0
w
�
¢
0
�
0
U
_
U
w
�
�
�
O
H
�
�
�
�
�
�
N
rn
�
�
SHEET
40F6
UNDERDRAIN DETAIL
NTS
STORMTECH
STORMTECH
CHAMBER
�UTLET MANIFOLD � - � � ' � -
����� � i
�� ��� � , ,.
� ��< .�i- <
� M� I 71' ,� 1 �
i
FOUNDATION STONE
BENEATH CHAMBERS
�
/ /
ADS GEOSYNTHETICS 601T
NON-WOVEN GEOTEXTILE
STORMTECH
END CAP
FOUNDATION STONE
BENEATH CHAMBERS
�
ADS GEOSYNTHETICS 601T
NON-WOVEN GEOTEXTILE
� . � � . � , � DESIGN ENGINEER
4" (100 mm) TYP FOR SC'310 & SC-160LP SYSTEMS
6" (150 mm) TYP FOR SC-740, SC-800, DC-780, MC-3500, MC-4500 & MC-7200 SYSTEMS
MC-SERIES END CAP INSERTION DETAIL
NTS
STORMTECH END CAP
SECTION A-A DUAL WALL
PERFORATED
HDPE
, �; � , , UNDERDRAIN
�_
i , ��. � �i
����c
;
i:
�� I
SECTION B-B
12" (300 mm)
MIN SEPARATION
12" (300 mm) MIN INSERTION
MANIFOLD STUB
MANIFOLD HEADER �/i
,� ,
�;
�! /a '
�,I ��
�;� 1
;��i ��!���;,�
j �'1i=
I I I �I- II I i
12" (300 mm)
MIN SEPARATION
(" � ,
�; �� ;
12" (300 mm)
MIN INSERTION
��1
1'�' �''I
i
iI
` .
,`1
I I
NOTE: MANIFOLD STUB MUST BE LAID HORIZONTAL
FOR A PROPER FIT IN END CAP OPENING.
/ \
I� �
MANIFOLD HEADER
MANIFOLD STUB
MC-3500 TECHNICAL SPECIFICATION
NTS
(11c
CREST
WEB
LOWER JOINT
CORRUGATION
FOOT
45.0"
(1143 mm)
I 77.0" I
f'-' (1956 mm) —�1 75.0"
(1905 mm)
NOMINAL CHAMBER SPECIFICATIONS
SIZE (W X H X INSTALLED LENGTH) 77.0" X 45.0" X 86.0" (1956 mm X 1143 mm X 2184 mm)
CHAMBER STORAGE 109.9 CUBIC FEET (3.11 m3)
MINIMUM INSTALLED STORAGE" 175.0 CUBIC FEET (4.96 m3)
WEIGHT 134 Ibs. (60.8 kg)
NOMINAL END CAP SPECIFICATIONS
SIZE (W X H X INSTALLED LENGTH) 75.0" X 45.0" X 22.2" (1905 mm X 1143 mm X 564 mm)
END CAP STORAGE 14.9 CUBIC FEET (0.42 m3)
MINIMUM INSTALLED STORAGE* 45.1 CUBIC FEET (1.28 m3)
WEIGHT 49 Ibs. (22.2 kg)
"ASSUMES 12" (305 mm) STONE ABOVE, 9" (229 mm) STONE FOUNDATION, 6" SPACING BETWEEN
CHAMBERS, 6" (152 mm) STONE PERIMETER IN FRONT OF END CAPS AND 40% STONE POROSITY
STUBS AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH "B"
STUBS AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T"
END CAPS WITH A WELDED CROWN PLATE END WITH "C"
END CAPS WITH A PREFABRICATED WELDED STUB END WITH "W"
PART # STUB B C
MC35001EPP06T 33.21" (844 mm) ---
MC35001EPP06B 6" (150 mm) ___ 0.66" (17 mm)
MC35001EPP08T 31.16" (791 mm) ---
8" (200 mm) ___ 0.81" (21 mm)
MC35001EPP08B
MC35001EPP10T 29.04" (738 mm) ---
10" (250 mm)
MC35001EPP10B --- 0.93" (24 mm)
MC35001EPP12T 26.36" (670 mm) ---
12" (300 mm)
MC35001EPP12B --- 1.35" (34 mm)
MC35001EPP15T 23.39" (594 mm) ---
MC35001EPP15B 15" (375 mm) ___ 1.50" (38 mm)
MC35001EPP18TC 20.03" (509 mm) ---
MC35001EPP18TW 18" (450 mm)
MC35001EPP18BC
MC35001EPP18BW --- 177" (45 mm)
MC35001EPP24TC 14.48" (368 mm) ---
MC35001EPP24TW 24" (600 mm)
MC35001EPP246C
MC35001EPP24BW --- 2.06" (52 mm)
MC35001EPP30BC 30" (750 mm) --- 2.75" (70 mm)
NOTE: ALL DIMENSIONS ARE NOMINAL
22.2"
(564 mm)
INSTALLED
25.7„
(653 mm) �
% ii
Ili�' ,:
I I I I .
I,
: �j�j
II . � .
�
�
CUSTOM PRECORED INVERTS ARE
AVAILABLE UPON REQUEST.
INVENTORIED MANIFOLDS INCLUDE
12-24" (300-600 mm) SIZE ON SIZE
AND 15-48" (375-1200 mm)
ECCENTRIC MANIFOLDS. CUSTOM
INVERT LOCATIONS ON THE MC-3500
END CAP CUT IN THE FIELD ARE NOT
RECOMMENDED FOR PIPE SIZES
GREATER THAN 10" (250 mm). THE
INVERT LOCATION IN COLUMN'B'
ARE THE HIGHEST POSSIBLE FOR
THE PIPE SIZE.
�
0 Q
J Q � Z
p cn m o
� w
W Z
Y
� O
Q vi � x
= Z o c�
� J
�
Q �
Z �
O �
� .. w
F O
¢ �
o n.
0
d �
F�
�
� �
L �
� �
*+ �a
V� U
o�
� N
J �
m M
z�
�=v
W��
�pc+�
� � r
� J O
� J �
v=�
�
z
O
�
a
�
U
�
w
0
Y
x
U
�
�
0
w
�
¢
0
�
0
U
_
U
W
�
�
�
0
�
�
�
�
�
N
�
�
�
SHEET
50F6
90.0" (2256 mm)
ACTUALLENGTH
�— UPPER JOINT CORRUGATION
BUILD ROW IN THIS DIRECTION �
INTEGRATED DUCTILE IRON
FRAME & GRATE/SOLID TO
MATCH BASIN O.D.
NYLOPLAST DRAIN BASIN
NTS
12" (610 mm) MIN
(FOR AASHTO H-20)
INVERT ACCORDING TO
PLANS/TAKE OFF
VARIOUS TYPES OF INLET AND
OUTLET ADAPTERS AVAILABLE:
4-30" (100-750 mm) FOR
CORRUGATED HDPE
WATERTIGHT JOINT
(CORRUGATED HDPE SHOWN)
, -,
� �
I
a-o-o-o- ,_�.ar��-=
' /
' �.
18" (457 mm)
MIN WIDTH
AASHTO H-20 CONCRETE SLAB
8" (203 mm) MIN THICKNESS
TRAFFIC LOADS: CONCRETE DIMENSIONS
ARE FOR GUIDELINE PUPOSES ONLY.
ACTUAL CONCRETE SLAB MUST BE
DESIGNED GIVING CONSIDERATION FOR
LOCAL SOIL CONDITIONS, TRAFFIC LOADING
& OTHER APPLICABLE DESIGN FACTORS
ADAPTER ANGLES VARIABLE 0°- 360°
ACCORDING TO PLANS
VARIABLE SUMP DEPTH
ACCORDING TO PLANS
[6" (152 mm) MIN ON 8-24" (200-600 mm),
10" (254 mm) MIN ON 30" (750 mm)]
4" (102 mm) MIN ON 8-24" (200-600 mm)
6" (152 mm) MIN ON 30" (750 mm)
- BACKFILL MATERIAL BELOW AND TO SIDES
A OF STRUCTURE SHALL BE ASTM D2321
CLASS I OR II CRUSHED STONE OR GRAVEL
AND BE PLACED UNIFORMLY IN 12" (305 mm)
LIFTS AND COMPACTED TO MIN OF 90%
NOTES
1. 8-30" (200-750 mm) GRATES/SOLID COVERS SHALL BE DUCTILE IRON PER ASTM A536
GRADE 70-50-05
2. 12-30" (300-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05
3. DRAIN BASIN TO BE CUSTOM MANUFACTURED ACCORDING TO PLAN DETAILS
4. DRAINAGE CONNECTION STUB JOINT TIGHTNESS SHALL CONFORM TO ASTM D3212
FOR CORRUGATED HDPE (ADS & HANCOR DUAL WALL) & SDR 35 PVC
5. FOR COMPLETE DESIGN AND PRODUCT INFORMATION: WWW.NYLOPLAST-US.COM
6. TO ORDER CALL: 800-821-6710
A PART # GRATE/SOLID COVER OPTIONS
$ 2808AG PEDESTRIAN LIGHT STANDARD LIGHT SOLID LIGHT DUTY
(200 mm) DUTY DUTY
10" 2g10AG PEDESTRIAN LIGHT STANDARD LIGHT SOLID LIGHT DUTY
(250 mm) DUTY DUTY
12 2812AG PEDESTRIAN STANDARD AASHTO SOLID
(300 mm) AASHTO H-10 H-20 AASHTO H-20
15" 2g15AG PEDESTRIAN STANDARD AASHTO SOLID
(375 mm) AASHTO H-10 H-20 AASHTO H-20
�$ 2818AG PEDESTRIAN STANDARD AASHTO SOLID
(450 mm) AASHTO H-10 H-20 AASHTO H-20
24 2824AG PEDESTRIAN STANDARD AASHTO SOLID
(600 mm) AASHTO H-10 H-20 AASHTO H-20
30" 2g30AG PEDESTRIAN STANDARD AASHTO SOLID
(750 mm) AASHTO H-20 H-20 AASHTO H-20
�
0
J
0
w
�
Q
_
�
Q
i
Q
�--
Z
0
�
Q
Q � Z
� m p
� W
O Z
Y
U Q w
Uj 2 2
Z � U
J
J
�
U
�
�
O
�
xt
�
v
. w
F O
o n�.
z
O
H
a
�
U
�
W
�
Y
2
U
�
�
0
w
�
¢
0
�
�
�
0
�
Z
o�
� N
J �
m M
z�
�=v
W��
�pc+�
� � r
� J O
� J �
V 2 �
�
SHEET
60F6
� - - - - - - - - - - - - - - - - -
��� V I I I � I I I I
� � !������� ����! '/ �/� .%' ' %,/ � -� �'���/'% j� �
; .� ��/� ��, ;///� ���,%%� � ;�,,%�
��: / , � / /, / � �
T ,- .�. �,� ���
;`%/�/�i%; '
�= - ;:
PROJECT INFORMATION
ENGINEERED PRODUCT
MANAGER
ADS SALES REP
PROJECT NO.
�
Advanced Drainage Systems, Inc.
MONTAVA PHASE D LID 5
FORT COLLINS, CO, USA
MC-3500 STORMTECH CHAMBER SPECIFICATIONS
1. CHAMBERS SHALL BE STORMTECH MC-3500.
2. CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE
COPOLYMERS.
3. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED
WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS.
4. CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD
IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
5. THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE
THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1)
LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE AASHTO DESIGN TRUCK WITH CONSIDERATION
FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
6. CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787,
"STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2)
MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.
7. REQUIREMENTS FOR HANDLING AND INSTALLATION:
• TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING
STACKING LUGS.
• TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS
THAN 3".
• TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE
GREATER THAN OR EQUAL TO 450 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER
DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F/ 23° C), CHAMBERS SHALL BE PRODUCED
FROM REFLECTIVE GOLD OR YELLOW COLORS.
8. ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN
ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE
DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
• THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
• THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR
DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO
LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
• THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN
EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
9. CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY.
//�D6� �, o
.
SiteAssist �,
FOR STORMTECH �■'
INSTALLATION INSTRUCTIONS �
VISIT OUR APP � 1 .�'
IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-3500 CHAMBER SYSTEM
1. STORMTECH MC-3500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A
PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
2. STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
3. CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS.
STORMTECH RECOMMENDS 3 BACKFILL METHODS:
• STONESHOOTER LOCATED OFF THE CHAMBER BED.
• BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
• BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
4. THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS.
5. JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE.
6. MAINTAIN MINIMUM - 6" (150 mm) SPACING BETWEEN THE CHAMBER ROWS.
7. INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 12" (300 mm) INTO CHAMBER END CAPS.
8. EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE MEETING THE AASHTO M43 DESIGNATION OF #3
OR #4.
9. STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING.
10. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN
ENGINEER.
11. ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE
STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.
NOTES FOR CONSTRUCTION EQUIPMENT
STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
THE USE OF EQUIPMENT OVER MC-3500 CHAMBERS IS LIMITED:
• NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
• NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE
WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
• WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
FULL 36" (900 mm) OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.
USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE
BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD
WARRANTY.
CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.
002024 ADS, INC.
PROPOSEDLAYOUT
6
12
8181
266.1
RMTECH MC-3500 END CAPS
�METER STONE INCLUDED)
'ER STONE INCLUDED)
E STONE INCLUDED)
CONCEPTUAL ELEVATIONS:
P OF MC-3500 CHAMBER:
OF MC-3500 CHAMBER:
0.
PART TYPE LAYC
ABRICATED END CAP A
ABRICATED END CAP
ANIFOLD
IPE CONNECTION
ONCRETESTRUCTURE
ONCRETESTRUCTURE
�/WEIR
NDERDRAIN
�
0
�
�
DESCRIPTION
24" BOTTOM CORED END CAP, PART#: MC35001EPP246C / TYP OF ALL 24" BOTTOM
CONNECTIONS AND ISOLATOR PLUS ROWS
18" BOTTOM CORED END CAP. PART#: MC35001EPP18BC / TYP OF ALL 18" BOTTOM
INSTALL FLAMP ON 24" ACCESS PIPE / PART#: MCFLAMP
18" x 18" BOTTOM MANIFOLD, ADS N-12
18" BOTTOM CONNECTION
OCS (DESIGN BY ENGINEER / PROVIDED BY OTHERS)
(DESIGN BY ENGINEER / PROVIDED BY OTHERS)
6" ADS N-12 DUAL WALL PERFORATED HDPE UNDERDRAIN
z
O
�
a
�
U
�
W
�
F
E
H
�
� - - - -
��� � ISOLATOR ROW PLUS
(SEE DETAIL)
�Xu�k� k PLACE MINIMUM 17.50' OF ADSPLUS125 WOVEN GEOTEXTILE OVER BEDDING
;"'I STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL
� >. ' CHAMBER WLET ROWS
BED LIMITS
I_ ._ .....
'INVERT ABOVE BASE OF CHAMBER
NVERT` MAX FLOW
�
2.06" 0 Q
J Q � Z
1.77" Q � m o
W Z
Y
1.77„ � o
� _
1.77" = Z o U
4.0 CFS OUT � �
11.0 CFS IN Q �U
Q �
Z �
O �
� .. w
� o
a �
o n.
�
in �
�
I D a �i
N
NOTES
• NIANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE.
DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COUPLE ADDITIONAL PIPE TO STANDARD MANIFOLD
COMPONENTS IN THE FIELD.
• THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUIREMENTS ARE MET.
THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR
DETERMINING
THE SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED OR DECREASED ONCE THIS INFORMATION IS
PROVIDED.
• NOT FOR CONSTRUCTION: THIS LAYOUT �S FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORAGE VOLUME CAN BE ACHIEVED ON SITE.
�
s
��
d�
H�
�
��
L �
� �
�i+ �
V� U
o�
� N
J �
m M
Z �
� = v
W � �
�pc+�
� � r
o Q o
V J � �
�
� 2 �
` o
Y
2
U
�
�
�
W
Q
�
�
O
U
_
U
W
�
�
�
�
H
�
�
�
�
�
N
�
�
�
SHEET
20F5
ACCEPTABLE FILL MATERIALS: STORMTECH MC-3500 CHAMBER SYSTEMS
MATERIAL LOCATION DESCRIPTION AASHTO MATERIAL COMPACTION / DENSITY REQUIREMENT
CLASSIFICATIONS
FINAL FILL: FILL MATERIAL FOR LAYER'D' STARTS FROM THE TOP OF THE'C' PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED
p LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. N/A INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND
GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE'D' CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS. PREPARATION REQUIREMENTS.
LAYER
AASHTO M145'
INITIAL FILL: FILL MATERIAL FOR LAYER'C' STARTS FROM THE TOP OF THE GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR A-1, A-2-4, A-3 BEGIN COMPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER
EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE PROCESSED AGGREGATE. THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN
� CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' OR 12" (300 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR
MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR
LAYER.
LAYER. AASHTO M43' PROCESSED AGGREGATE MATERIALS.
3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10
B EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE CLEAN, CRUSHED, ANGULAR S SONE AASHTO M43' NO COMPACTION REQUIRED.
FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE. OR RECYCLED CONCRETE 3, 357, 4, 467, 5, 56, 57
FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO CLEAN, CRUSHED, ANGULAR STONE AASHTO M43'
A THE FOOT (BOTTOM) OF THE CHAMBER. OR RECYCLED CONCRETES 3, 357, 4, 467, 5, 56, 57 PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE.z•3
PLEASE NOTE:
1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4(AASHTO M43) STONE".
2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.
3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR
COMPACTION REQUIREMENTS.
4. ONCE LAYER'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER'C' OR'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.
5. WHERE RECYCLED CONCRETE AGGREGATE IS USED IN LAYERS'A' OR'B' THE MATERIAL SHOULD ALSO MEET THE ACCEPTABILITY CRITERIA OUTLINED IN TECHNICAL NOTE 6.20 "RECYCLED CONCRETE STRUCTURAL BACKFILL".
ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE ALL PAVEMENT LAYER (DESIGNED
AROUND CLEAN, CRUSHED, ANGULAR STONE IN A& B LAYERS �, � BY SITE DESIGN ENGINEER)
PERIMETER STONE
(SEE NOTE 4)
EXCAVATION WALL
(CAN BE SLOPED OR VERTICAL)
6" (150 mm) MIN - I � i
NOTES:
_ Il I
/ I
�.�
O
`TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED
INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR,
WCREASE COVER TO 24" (600 mm),
�!� �
�I�I���"Q�'�� �_' -_ � � I��I ' I \
6II _I
i �q
_ I' - II II � ' -I - I- - I - I - I - '�i. .� - I - I - I -;� I- .-� - I -� -I
I - I I . �- ii - I - I - - I - - I � I . I . - - I - il I I I - - I - I - .. I_
, �/
MC-3500 - - - 6 -
END CAP SUBGRADE SOILS (150 mm) MIN
(SEE NOTE 3)
• $i
18" (2.4 m)
� (450 mm) MIN' MAX
12" (300 mm) MIN l
45" "`THIS CROSS SECTION DETAIL REPRESENTS
(1140 mm) MINIMUM REQUIREMENTS FOR INSTALLATION.
PLEASE SEE THE LAYOUT SHEET(S) FOR
� PROJECT SPECIFIC REQUIREMENTS.
- - I - i - -I - ,- - - � DEPTH OF STONE TO BE DETERMINED
I I i i BY SITE DESIGN ENGINEER 9" (230 mm) MIN
77" (19501mm)I 12" (300 mm) MIN
1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76
DESIGNATION SS.
2. MC-3500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION
FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
• TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
• TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3".
• TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 450 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF
ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F/ 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW
COLORS.
�
0
J
0
w
�
2
�
Q
i
Q
�-
Z
0
�
Q
Q � Z
� m o
� w
o Z
Y
U Q w
� � x
Z � U
J
O
U
�
�
O
�
xt
�
v
w
F O
¢ �
o n.
�
W �
H�
�
�
� �
O �
�
V� U
o�
� N
J �
m M
Z �
� = v
W��-
�o�
���
� J O
� J �
V 2 �
�
z
O
�
a
�
U
�
w
0
Y
x
U
�
�
�
W
F
¢
0
�
O
U
x
U
W
�
�
�
O
�
�
�
rn
�
N
N
�
�
�
SHEET
30F5
INSTALL FLAMP ON 24" (600 mm) ACCESS PIPE
PART #: MCFLAMP
COVER PIPE CONNECTION TO END CAP WITH ADS
GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE
STORMTECH HIGHLY RECOMMENDS _�
FLEXSTORM INSERTS IN ANY UPSTREAM j�� � k�r :,
STRUCTURES WITH OPEN GRATES '�� � \
��_ �;
�
�z,�
�����"
�
O
p
i�,���< ,.
,� �,i ,
. ��^� I �b i: . . _
� - I
MG3500 CHAMBER
i i
i i
o u II
�
'. n� pn li i � .
��II�
SUMP DEPTH TBD BY
SITE DESIGN ENGINEER
(24" [600 mm] MIN RECOMMENDED)
24" (600 mm) HDPE ACCESS PIPE REQUIRED USE
FACTORY PRE-CORED END CAP
PART #: MC35001EPP24BC OR MC35001EPP24BW
MC-3500 ISOLATOR ROW PLUS DETAIL
NTS
INSPECTION & MAINTENANCE
STEP 1) INSPECT ISOLATOR ROW PLUS FOR SEDIMENT
A. INSPECTION PORTS (IF PRESENT)
A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
A.2. REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED
A.3. USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG
A.4. LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL)
A.5. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
B. ALL ISOLATOR PLUS ROWS
B.1. REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS
6.2. USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE
i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY
ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE
B.3. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
STEP 2) CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS
A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
B. APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN
C. VACUUM STRUCTURE SUMP AS REQUIRED
STEP 3) REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS.
STEP 4) INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM.
NOTES
1. INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS
OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.
MC-3500 END CAP
..,.� ".,"..., ,.....,, �.,.,,�., ....VEN GEOTEXTILE BETWEEN
FOUNDATION STONE AND CHAMBERS
8.25' (2.51 m) MIN WIDE CONTINUOUS FABRIC WITHOUT SEAMS
�
0
J
0
w
�
2
�
Q
�--
Z
�
¢
Q � Z
� m p
� W
O Z
Y
U Q w
� � x
Z � U
J
�
U
�
O
�
xt
�
U
w
¢ �
o �.
�
s
v �
d �
F�
�
� �
L �
� �
� �
V� U
o�
� N
J �
m M
z�
�=v
W��
�pc+�
� � r
� J O
� J �
V 2 �
�
z
0
�
a
�
U
�
w
0
Y
x
U
�
�
0
w
�
¢
0
�
0
U
_
U
w
�
�
�
O
H
�
�
�
�
�
�
N
rn
�
�
SHEET
40F5
� OPTIONAL INSPECTION PORT
UNDERDRAIN DETAIL
NTS
STORMTECH
STORMTECH
CHAMBER
�UTLET MANIFOLD � - � � ' � -
����� � i
�� ��� � , ,.
� ��< .�i- <
� M� I 71' ,� 1 �
i
FOUNDATION STONE
BENEATH CHAMBERS
�
/ /
ADS GEOSYNTHETICS 601T
NON-WOVEN GEOTEXTILE
STORMTECH
END CAP
FOUNDATION STONE
BENEATH CHAMBERS
�
ADS GEOSYNTHETICS 601T
NON-WOVEN GEOTEXTILE
� . � � . � , � DESIGN ENGINEER
4" (100 mm) TYP FOR SC'310 & SC-160LP SYSTEMS
6" (150 mm) TYP FOR SC-740, SC-800, DC-780, MC-3500, MC-4500 & MC-7200 SYSTEMS
MC-SERIES END CAP INSERTION DETAIL
NTS
STORMTECH END CAP
SECTION A-A DUAL WALL
PERFORATED
HDPE
, �; � , , UNDERDRAIN
�_
i , ��. � �i
����c
;
i:
�� I
SECTION B-B
12" (300 mm)
MIN SEPARATION
12" (300 mm) MIN INSERTION
MANIFOLD STUB
MANIFOLD HEADER �/i
,� ,
�;
�! /a '
�,I ��
�;� 1
;��i ��!���;,�
j �'1i=
I I I �I- II I i
12" (300 mm)
MIN SEPARATION
(" � ,
�; �� ;
12" (300 mm)
MIN INSERTION
��1
1'�' �''I
i
iI
` .
,`1
I I
NOTE: MANIFOLD STUB MUST BE LAID HORIZONTAL
FOR A PROPER FIT IN END CAP OPENING.
/ \
I� �
MANIFOLD HEADER
MANIFOLD STUB
MC-3500 TECHNICAL SPECIFICATION
NTS
(11c
CREST
WEB
LOWER JOINT
CORRUGATION
FOOT
45.0"
(1143 mm)
I 77.0" I
f'-' (1956 mm) —�1 75.0"
(1905 mm)
NOMINAL CHAMBER SPECIFICATIONS
SIZE (W X H X INSTALLED LENGTH) 77.0" X 45.0" X 86.0" (1956 mm X 1143 mm X 2184 mm)
CHAMBER STORAGE 109.9 CUBIC FEET (3.11 m3)
MINIMUM INSTALLED STORAGE" 175.0 CUBIC FEET (4.96 m3)
WEIGHT 134 Ibs. (60.8 kg)
NOMINAL END CAP SPECIFICATIONS
SIZE (W X H X INSTALLED LENGTH) 75.0" X 45.0" X 22.2" (1905 mm X 1143 mm X 564 mm)
END CAP STORAGE 14.9 CUBIC FEET (0.42 m3)
MINIMUM INSTALLED STORAGE* 45.1 CUBIC FEET (1.28 m3)
WEIGHT 49 Ibs. (22.2 kg)
"ASSUMES 12" (305 mm) STONE ABOVE, 9" (229 mm) STONE FOUNDATION, 6" SPACING BETWEEN
CHAMBERS, 6" (152 mm) STONE PERIMETER IN FRONT OF END CAPS AND 40% STONE POROSITY
STUBS AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH "B"
STUBS AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T"
END CAPS WITH A WELDED CROWN PLATE END WITH "C"
END CAPS WITH A PREFABRICATED WELDED STUB END WITH "W"
PART # STUB B C
MC35001EPP06T 33.21" (844 mm) ---
MC35001EPP06B 6" (150 mm) ___ 0.66" (17 mm)
MC35001EPP08T 31.16" (791 mm) ---
8" (200 mm) ___ 0.81" (21 mm)
MC35001EPP08B
MC35001EPP10T 29.04" (738 mm) ---
10" (250 mm)
MC35001EPP10B --- 0.93" (24 mm)
MC35001EPP12T 26.36" (670 mm) ---
12" (300 mm)
MC35001EPP12B --- 1.35" (34 mm)
MC35001EPP15T 23.39" (594 mm) ---
MC35001EPP15B 15" (375 mm) ___ 1.50" (38 mm)
MC35001EPP18TC 20.03" (509 mm) ---
MC35001EPP18TW 18" (450 mm)
MC35001EPP18BC
MC35001EPP18BW --- 177" (45 mm)
MC35001EPP24TC 14.48" (368 mm) ---
MC35001EPP24TW 24" (600 mm)
MC35001EPP246C
MC35001EPP24BW --- 2.06" (52 mm)
MC35001EPP30BC 30" (750 mm) --- 2.75" (70 mm)
NOTE: ALL DIMENSIONS ARE NOMINAL
22.2"
(564 mm)
INSTALLED
25.7„
(653 mm) �
% ii
Ili�' ,:
I I I I .
I,
: �j�j
II . � .
�
�
CUSTOM PRECORED INVERTS ARE
AVAILABLE UPON REQUEST.
INVENTORIED MANIFOLDS INCLUDE
12-24" (300-600 mm) SIZE ON SIZE
AND 15-48" (375-1200 mm)
ECCENTRIC MANIFOLDS. CUSTOM
INVERT LOCATIONS ON THE MC-3500
END CAP CUT IN THE FIELD ARE NOT
RECOMMENDED FOR PIPE SIZES
GREATER THAN 10" (250 mm). THE
INVERT LOCATION IN COLUMN'B'
ARE THE HIGHEST POSSIBLE FOR
THE PIPE SIZE.
�
0 Q
J Q � Z
p cn m o
� w
W Z
Y
� O
Q vi � x
= Z o c�
� J
�
Q �
Z �
O �
� .. w
F O
¢ �
o n.
0
d �
F�
�
� �
L �
� �
*+ �a
V� U
o�
� N
J �
m M
z�
�=v
W��
�pc+�
� � r
� J O
� J �
v=�
�
z
O
�
a
�
U
�
w
0
Y
x
U
�
�
0
w
�
¢
0
�
0
U
_
U
W
�
�
�
0
�
�
�
�
�
N
�
�
�
SHEET
50F5
90.0" (2256 mm)
ACTUALLENGTH
�— UPPER JOINT CORRUGATION
BUILD ROW IN THIS DIRECTION �
�
I
� �
I
-___ .��_� ��n �
� .,. i
�� / � - � — -
� ���' �, ��� ' � i � / / �� , � �� `''
, i , �, �
� � , ;,�,,;: � ; ,; �,,;;� /�
,,
..
.
�-=�==--' =--'='======--�-=-=-=---�
DIVERSION ST�' '�T' ��r w
(STMH-1 A) P
48"X76" HERCP OUTLET
Qioo= 105.56 CFS
Q2 = 19.83 CFS
DIVERSION �'To"�T"o� �
(STMH-2F)
30" RCP OUTLET
Q�oo= 38.10 CFS
DIVERSION S�
(STMH-3BD)
48" RCP OUTLET
Q1oo= 45.54 CFS
DIVERSION STRUCTURE 4
(STMH-3AB)
54" RCP OUTLET
Qioo= 48.77 CFS
18" RCP OUTLET
Q2=4.43 CFS
L�_.'
18" RCP OUTLET
Q2=8.87 CFS
�
�
18" RCP OUTLET
Q2= 10.47 CFS
18" RCP OUTLET
Q2=11.28 CFS
�
�
�
48"X76" HERCP INLET
Qioo=105.56 CFS
Q2= 24.26 CFS
/
30" RCP INLET
Qioo=38.10 CFS
Q2= 8.87 CFS
36" RCP INLET
Q�oo= 45.54 CFS
Q2= 10.47 CFS
I
48" RCP INLET
Qioo= 48.77 CFS
Q2= 11.28 CFS
I
� 48"X76" HERCP INLET
INV. OUT=4995.11
-------------------------
RIM ELEV= 5003.05
100-YR WSE = 5001.12
2-YR WSE = 4999.50
48"X76" HERCP INLET �
INV. IN=4995.11
----------------------------
18" RCP
INV. OUT=4995.11
SECTI ON A- A
DIVERSION STRUCTURE 1
RIM ELEV= 5005.43
100-YR WSE = 5002.58
2-YR WSE = 5000.83
18" RCP
INV. OUT=4999.391
SECTI ON A- A
DIVERSION STRUCTURE 2
RIM ELEV= 5002.69
�� 36" RCP INLET
INV. IN=4995.27
18" RCP
INV. OUT=4995.27
- 100-YR WSE = 5000.25
- 2-YR WSE = 4996.57
48" RCP INLET
INV. OUT=4995.27 �
SECTI ON A- A
DIVERSION STRUCTURE 3
RIM ELEV= 5003.05
54" RCP INLET
INV. OUT=4994.32
- 100-YR WSE = 5000.64
� 2-YR WSE = 4996.63
» �48 RCP INLET
INV. IN=4994.34 �
18" RCP
INV. OUT=4994.34
SECTI ON A- A
DIVERSION STRUCTURE 4
RIM ELEV= 5003.05
TOP OF WEIR WALL = 4999.50
-------------- i _-� �
� ��/ \�� 18" RCP INLET
48"X76" HERCP INLET �� 1� INV. IN=4995.11
� INV. OUT=4995.11 � � / � ----------�
��� �� � �
-------------- � � -----------
48"X76" RCP
INV. OUT=4995.11
SECTION B-B
DIVERSION STRUCTURE 1
RIM ELEV= 5005.43
J � 30" RCP INLET
INV. OUT=4999.39
\ /
TOP OF WEIR WALL = 5000.82
18" RCP INLET
INV_ IN=4999.39 _ _ _
�
30" RCP
INV. OUT=4999.39
SECTION B-B
DIVERSION STRUCTURE 2
RIM ELEV= 5002.69
TOP OF WEIR WALL = 4996.57
18" RCP INLET
INV. IN=4995.27
--------
�
�
48" RCP INLET �
INV. OUT=4995.27 �
36" RCP
INV. OUT=4995.27
SECTION B-B
DIVERSION STRUCTURE 3
RIM ELEV= 5003.05
� ----' -----
54 HERCP INLET
� INV. OUT=4994.34 \� �/
- - - - - - - - - - - \ /
TOP OF WEIR WALL = 4996.63
18" RCP INLET
INV. IN_4994.34_ _ _
- �
48" RCP
INV. OUT=4994.34
SECTION B-B
DIVERSION STRUCTURE 4
5
�
scale
0 5
1 "=5'
10
�
feet
z
0
�
� �
Z �
O �
�
N w
> �
w
�
�
Q
0
�-
m
DRAWN
BRB
CHECKED
DAP
DESIGNED
BRB
FILENAME
0009_Details
o�PpO L/�
,.....
vo; ��PN �pJP��p�
.
QQ �G
����G G��S�� � �v
Q � .
.
F . �
�0� •....••'' �
G
S��NA� E�
Z
�
�
-
�
-
� 0
m W
� �
� �
a=
� �
Q
�
Z
�
�
C/)
J
a
�
w
�
Z
O
�
�
�
�
�
�
�
Z
0
V
TST, INC.
CONSULTING ENGINEERS
748 Whalers Way
Suite 200 Fort Collins
Colorado 80525
Phone: 970.226.0557
J08 N0.
1230.0009.00
SCALE 1" = 5�
DATE
JULY 17, 2024
SHEET
200 of 206
APPENDIX C
FEMA FLOOD INSURANCE
RATE MAP
National Flood Hazard Layer FIRMette
105°1'44"W 40°37'12"N
�
" 4
� �
�� �
'• � �+ a=
I
.
^ . ' � a V
� , ��� L
�� �
��7 � �.
�
�. ' 1
-'. F�68LV S33
r
t �
l
f�::. 1 •..
Feet 1 :6,000 105�1����W 4��36�45��N
0 250 500 1,000 1,500 2,000
Basemap Imagery Source: USGS National Map 2023
��
���
-�
�
■ .� �
�+ � + -1 �
:�:� FEMA
� '"� _ s �,.,� *
�• #tiM1-� � � �', �
_ f' �
�
�� � T �
�fzE i1(�)f,�Ml��f.LOU( � I U��'i\f�f �
� � � `-�-
7�1 • �"
� �
— � -
Legend
SEE FIS REPORT FOR DEfAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT
Without Base Flood Elevation (BFE)
Zone A. V. A99
SPECIAL FLOOD With BFE or Depth zone 4E. n0. nH, vE. nR
HAZARD AREAS Regulatory Floodway
0.2% Annual Chance Flood Hazard, Areas
of 1% annual chance flood with average
depth less than one foot or with drainage
areas of less than one square mile zo+,� x
- � Future Conditions 1% Annual
�_- Chance Flood Hazard zone x
Area with Reduced Flood Risk due to
OTHER AREAS OF Levee. See Notes. zo�,� x
FLOOD HAZARD Area with Flood Risk due to Leveezo�,e o
NO SCREEN Area of Minimal Flood Hazard zonc x
0 Effective LOMRs
OTHER AREAS Area of Undetermined Flood Hazard zone o
GENERAL ---- Channel, Culvert, or Storm Sewer
STRUCTURES i i i i i i i Levee, Dike, or Floodwall
� Cross Sections with 1%Annual Chance
��•5 Water Surface Elevation
e - - - Coastal Transect
�s��� Base Flood Elevation Line (BFE)
Limit of Study
Jurisdiction Boundary
-- --- Coastal Transect Baseline
OTHER _ — profile Baseline
FEATURES Hydrographic Feature
Digital Data Available N
No Digital Data Available
MAP PANELS Unmapped
OThe pin displayed on the map is an approximate
point selected by the user and does not represent
an authoritative property location.
This map complies with FEMA's standards for the use of
digital flood maps if it is not void as described below.
The basemap shown complies with FEMA's basemap
accuracy standards
The flood hazard information is derived directly from the
authoritative NFHL web services provided by FEMA. This map
was exported on 7/15/2024 at 5:13 PM and does not
reflect changes or amendments subsequent to this date and
time. The NFHL and effective information may change or
become superseded by new data over time.
This map image is void if the one or more of the following map
elements do not appear: basemap imagery, flood zone labels,
legend, scale bar, map creation date, community identifiers,
FIRM panel number, and FIRM effective date. Map images for
unmapped and unmodernized areas cannot be used for
regulatory purposes.
._ � �; . �w1� t
P " ��
� � �� .
. �'����
� ., � �
- ti �F.
ti�. �� ' .
APPENDIX D
USDA HYDROLOGIC SOIL
GROUP MAP
USDA United States
= Department of
Agriculture
�I RCS
Natural
Resources
Conservation
Service
A product of the National
Cooperative Soil Survey,
a joint effort of the United
States Department of
Agriculture and other
Federal agencies, State
agencies including the
Agricultural Experiment
Stations, and local
participants
i• ��• �
� -
� .;�
.� .
a��.� �.� �.���
: � ��� '��
� � ': �. ,
. 1 { i � �
�r
"' '� 'R .! r1'l �'Jr `�':.7 i�
r � R � • �� �-v �i �:'� ni �: ,, ; �
� � � '����i .
i
�
I
r- �
/
�
..
_ � "
— _
■�■■■�■■■■ 1 ;_'''�-' ft r'.
�
-+ y
���r�,.
�_
��
�
Custom Soil Resource
Report for
Larimer County
Area, Colorado
�
►
r.'
�.
-�-�� � ,�-;
,, -�
,.
�.
- �,, � ��
��. � . �`� `y
, -,���
_�
� �. �''�.,` ,
� • 1
i
.�
\ .
�
I
. �� . _
.
-'� - J
�s .F �
r�
1
�1�.. ,��
�
••�11�r11
x� - - �
L�C . � �J.
ti
-�
July 9, 2024
Preface
Soil surveys contain information that affects land use planning in survey areas.
They highlight soil limitations that affect various land uses and provide information
about the properties of the soils in the survey areas. Soil surveys are designed for
many different users, including farmers, ranchers, foresters, agronomists, urban
planners, community officials, engineers, developers, builders, and home buyers.
Also, conservationists, teachers, students, and specialists in recreation, waste
disposal, and pollution control can use the surveys to help them understand,
protect, or enhance the environment.
Various land use regulations of Federal, State, and local governments may impose
special restrictions on land use or land treatment. Soil surveys identify soil
properties that are used in making various land use or land treatment decisions.
The information is intended to help the land users identify and reduce the effects of
soil limitations on various land uses. The landowner or user is responsible for
identifying and complying with existing laws and regulations.
Although soil survey information can be used for general farm, local, and wider area
planning, onsite investigation is needed to supplement this information in some
cases. Examples include soil quality assessments (http://www.nres.usda.gov/wps/
portal/nres/main/soils/health/) and certain conservation and engineering
applications. For more detailed information, contact your local USDA Service Center
(https://offices.sc.egov.usda.gov/locator/app?agency=nres) or your NRCS State Soil
Scientist (http://www.nres.usda.gov/wps/portal/nres/detail/soils/contactus/?
cid=nres142p2_053951).
Great differences in soil properties can occur within short distances. Some soils are
seasonally wet or subject to flooding. Some are too unstable to be used as a
foundation for buildings or roads. Clayey or wet soils are poorly suited to use as
septic tank absorption fields. A high water table makes a soil poorly suited to
basements or underground installations.
The National Cooperative Soil Survey is a joint effort of the United States
Department of Agriculture and other Federal agencies, State agencies including the
Agricultural Experiment Stations, and local agencies. The Natural Resources
Conservation Service (NRCS) has leadership for the Federal part of the National
Cooperative Soil Survey.
Information about soils is updated periodically. Updated information is available
through the NRCS Web Soil Survey, the site for official soil survey information.
The U.S. Department of Agriculture (USDA) prohibits discrimination in all its
programs and activities on the basis of race, color, national origin, age, disability,
and where applicable, sex, marital status, familial status, parental status, religion,
sexual orientation, genetic information, political beliefs, reprisal, or because all or a
part of an individual's income is derived from any public assistance program. (Not
all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print,
audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice
and TDD). To file a complaint of discrimination, write to USDA, Director, Office of
Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or
call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity
provider and employer.
3
Contents
Preface.................................................................................................................... 2
How Soil Surveys Are Made ..................................................................................5
SoilMap .................................................................................................................. 8
SoilMap ................................................................................................................9
Legend................................................................................................................10
MapUnit Legend ................................................................................................ 11
MapUnit Descriptions .........................................................................................11
Larimer County Area, Colorado ...................................................................... 13
5—Aquepts, loamy ......................................................................................13
22—Caruso clay loam, 0 to 1 percent slope ............................................... 14
35—Fort Collins loam, 0 to 3 percent slopes .............................................. 15
36—Fort Collins loam, 3 to 5 percent slopes .............................................. 16
95—Satanta loam, 1 to 3 percent slopes .................................................... 18
98—Satanta Variant clay loam, 0 to 3 percent slopes .................................19
101—Stoneham loam, 1 to 3 percent slopes .............................................. 20
Soil Information for All Uses ...............................................................................23
Soil Properties and Qualities .............................................................................. 23
Soil Qualities and Features .............................................................................23
HydrologicSoil Group ................................................................................. 23
References............................................................................................................ 28
:�
How Soil Surveys Are Made
Soil surveys are made to provide information about the soils and miscellaneous
areas in a specific area. They include a description of the soils and miscellaneous
areas and their location on the landscape and tables that show soil properties and
limitations affecting various uses. Soil scientists observed the steepness, length,
and shape of the slopes; the general pattern of drainage; the kinds of crops and
native plants; and the kinds of bedrock. They observed and described many soil
profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The
profile extends from the surFace down into the unconsolidated material in which the
soil formed or from the surface down to bedrock. The unconsolidated material is
devoid of roots and other living organisms and has not been changed by other
biological activity.
Currently, soils are mapped according to the boundaries of major land resource
areas (MLRAs). MLRAs are geographically associated land resource units that
share common characteristics related to physiography, geology, climate, water
resources, soils, biological resources, and land uses (USDA, 2006). Soil survey
areas typically consist of parts of one or more MLRA.
The soils and miscellaneous areas in a survey area occur in an orderly pattern that
is related to the geology, landforms, relief, climate, and natural vegetation of the
area. Each kind of soil and miscellaneous area is associated with a particular kind
of landform or with a segment of the landform. By observing the soils and
miscellaneous areas in the survey area and relating their position to specific
segments of the landform, a soil scientist develops a concept, or model, of how they
were formed. Thus, during mapping, this model enables the soil scientist to predict
with a considerable degree of accuracy the kind of soil or miscellaneous area at a
specific location on the landscape.
Commonly, individual soils on the landscape merge into one another as their
characteristics gradually change. To construct an accurate soil map, however, soil
scientists must determine the boundaries between the soils. They can observe only
a limited number of soil profiles. Nevertheless, these observations, supplemented
by an understanding of the soil-vegetation-landscape relationship, are sufficient to
verify predictions of the kinds of soil in an area and to determine the boundaries.
Soil scientists recorded the characteristics of the soil profiles that they studied. They
noted soil color, texture, size and shape of soil aggregates, kind and amount of rock
fragments, distribution of plant roots, reaction, and other features that enable them
to identify soils. After describing the soils in the survey area and determining their
properties, the soil scientists assigned the soils to taxonomic classes (units).
Taxonomic classes are concepts. Each taxonomic class has a set of soil
characteristics with precisely defined limits. The classes are used as a basis for
comparison to classify soils systematically. Soil taxonomy, the system of taxonomic
classification used in the United States, is based mainly on the kind and character
of soil properties and the arrangement of horizons within the profile. After the soil
5
Custom Soil Resource Report
scientists classified and named the soils in the survey area, they compared the
individual soils with similar soils in the same taxonomic class in other areas so that
they could confirm data and assemble additional data based on experience and
research.
The objective of soil mapping is not to delineate pure map unit components; the
objective is to separate the landscape into landforms or landform segments that
have similar use and management requirements. Each map unit is defined by a
unique combination of soil components and/or miscellaneous areas in predictable
proportions. Some components may be highly contrasting to the other components
of the map unit. The presence of minor components in a map unit in no way
diminishes the usefulness or accuracy of the data. The delineation of such
landforms and landform segments on the map provides sufficient information for the
development of resource plans. If intensive use of small areas is planned, onsite
investigation is needed to define and locate the soils and miscellaneous areas.
Soil scientists make many field observations in the process of producing a soil map.
The frequency of observation is dependent upon several factors, including scale of
mapping, intensity of mapping, design of map units, complexity of the landscape,
and experience of the soil scientist. Observations are made to test and refine the
soil-landscape model and predictions and to verify the classification of the soils at
specific locations. Once the soil-landscape model is refined, a significantly smaller
number of ineasurements of individual soil properties are made and recorded.
These measurements may include field measurements, such as those for color,
depth to bedrock, and texture, and laboratory measurements, such as those for
content of sand, silt, clay, salt, and other components. Properties of each soil
typically vary from one point to another across the landscape.
Observations for map unit components are aggregated to develop ranges of
characteristics for the components. The aggregated values are presented. Direct
measurements do not exist for every property presented for every map unit
component. Values for some properties are estimated from combinations of other
properties.
While a soil survey is in progress, samples of some of the soils in the area generally
are collected for laboratory analyses and for engineering tests. Soil scientists
interpret the data from these analyses and tests as well as the field-observed
characteristics and the soil properties to determine the expected behavior of the
soils under different uses. Interpretations for all of the soils are field tested through
observation of the soils in different uses and under different levels of management.
Some interpretations are modified to fit local conditions, and some new
interpretations are developed to meet local needs. Data are assembled from other
sources, such as research information, production records, and field experience of
specialists. For example, data on crop yields under defined levels of management
are assembled from farm records and from field or plot experiments on the same
kinds of soil.
Predictions about soil behavior are based not only on soil properties but also on
such variables as climate and biological activity. Soil conditions are predictable over
long periods of time, but they are not predictable from year to year. For example,
soil scientists can predict with a fairly high degree of accuracy that a given soil will
have a high water table within certain depths in most years, but they cannot predict
that a high water table will always be at a specific level in the soil on a specific date.
After soil scientists located and identified the significant natural bodies of soil in the
survey area, they drew the boundaries of these bodies on aerial photographs and
C�
Custom Soil Resource Report
identified each as a specific map unit. Aerial photographs show trees, buildings,
fields, roads, and rivers, all of which help in locating boundaries accurately.
7
Soil Map
The soil map section includes the soil map for the defined area of interest, a list of
soil map units on the map and extent of each map unit, and cartographic symbols
displayed on the map. Also presented are various metadata about data used to
produce the map, and a description of each soil map unit.
E:3
Custom Soil Resource Report
� Soil Map
0
497500 497600 497700 497800 497900 498000 494100 498200 493.900
40° 3T15"N � �... ,�,. . �. �. .. .�._ . �„ .� �. �
I�� .�� M . .. � � . . .
n4� � - � 7�Z . I
H� � . -. ' . . .
�'!.} ' � : i .
� ~ . � , .. _ . i� . �� . .
��N: -.� - �� y' �` .
.Y �, , v.'. 4!L ���
.� ' I -,'� ` • "-,a, � �"T'
� j� a `�� � � r
� �, .:;
��) � I � s ��
�� - � �4: +i�
� . . '�.�A. � 4fJ 7 Y� � I
N �. . . � . , 1 ' i . .� j',1
N
" � �, . �� t, �
��� �' -_ �
� r ��.
� i I. .'• j ' �
���� y �• a}• �'' _ r
� .,�, I, . .
�, — _� � �fi'�=1��!`-_,..i. � �
g � - _ z , . ; ���* �
•a
� �-r— �-�5,� ��, _�-� a
'1� - ' . a�.Y
9041 ` � 4�� ' .� �
�— �` � I � � � � ' �l . . . I _�i+: <
Y � � � 1 .� T � - V . �.,.� I
g '�� �-_ — y� . ��� I
� . � � _ —. . — . _.. �� r �k�� �'� �� r.r.�y . � .»� �
_ IC
` tir!- _ ,. — - _ 'a .r � .�,F.., � �:;w �� �.
l
. _ ���1 ""�� id I� f�f14 � � v- � I
.. _ . . .n +� _ i �fylf I
� � , _ �r" �. '" a�-'�'y��` - . t.
1 � I
�
�
� '11,
� �.� �
Ik
ri�ik:;_ . i � t ��,� .. .._�� �
' ~ � ����� . . " � �i
��� � , � i,
-�_ � �� � �
��. r: . � ; .
� � -�� , �+ a �- ,�.
� � � '` N
e I '�� i� ��� I� 1�
4 i.�� . ������.i
i .�l :... 'r1tr . �� S' �
. . . . �.�.. � . tir. . . i, i T I
�
�
� _ ' a �
�
Soil'M��p m�y iiot be valid at this scale.
40° 36' 33" N� I I I I I I I
as�soo as�soo asnoo as�eao as�soo aseaoo ase�oo
ao
3
� Map Scale: 1:6,260 if printed on A porhait (8.5" x 11") sheet.
° N Meters
� 0 50 100 200 300
� Feet
0 300 600 1200 1800
Map projectlon: Web Mercator Comer coordinates: WGS84 Edge dcs: UTM Zone 13N WGS84
9
�
�
asszoo
I�
�
d
a
�c
�
0
4.984W
40° 3i 15" N
�
�
�
�
�
8
�
�
�
�
�
�
— �
�
_�
� , , -- -
� I
�
I� � 40° 36' 33" N
498.'300 498400
3
0
Custom Soil Resource Report
MAPLEGEND
Area of Interest (AOI)
Area of Interest (AOI)
Soils
Soil Map Unit Polygons
s:,� Soil Map Unit Lines
� Soil Map Unit Points
Special Point Features
U Blowout
Borrow Pit
p� Clay Spot
Closed Depression
Gravel Pit
Gravelly Spot
Landfill
Lava Flow
_ Marsh or swamp
Mine or Quarry
Miscellaneous Water
Perennial Water
Rock Outcrop
Saline Spot
Sandy Spot
= Severely Eroded Spot
Sinkhole
Slide or Slip
oa Sodic Spot
Spoil Area
Stony Spot
Very Stony Spot
Wet Spot
Other
. Special Line Features
Water Features
Streams and Canals
Transportation
�..�. Rails
ti Interstate Highways
US Routes
Major Roads
Local Roads
Background
� Aerial Photography
MAP INFORMATION
The soil surveys that comprise your AOI were mapped at
1:24,000.
Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause
misunderstanding of the detail of mapping and accuracy of soil
line placement. The maps do not show the small areas of
contrasting soils that could have been shown at a more detailed
scale.
Please rely on the bar scale on each map sheet for map
measurements.
Source of Map: Natural Resources Conservation Service
Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator
projection, which preserves direction and shape but distorts
distance and area. A projection that preserves area, such as the
Albers equal-area conic projection, should be used if more
accurate calculations of distance or area are required.
This product is generated from the USDA-NRCS certified data as
of the version date(s) Iisted below.
Soil Survey Area: Larimer County Area, Colorado
Survey Area Data: Version 18, Aug 24, 2023
Soil map units are labeled (as space allows) for map scales
1:50,000 or larger.
Date(s) aerial images were photographed: Jul 2, 2021—Aug 25,
2021
The orthophoto or other base map on which the soil lines were
compiled and digitized probably differs from the background
imagery displayed on these maps. As a result, some minor
shifting of map unit boundaries may be evident.
10
Custom Soil Resource Report
Map Unit Legend
Map Unit Symbol Map Unit Name Acres in AOI Percent of AOI
22
35
36
95
98
101
Totals for Area of Interest
Aquepts, loamy
Caruso clay loam, 0 to 1
percent slope
Fort Collins loam, 0 to 3 percent
slopes
Fort Collins loam, 3 to 5 percent
slopes
Satanta loam, 1 to 3 percent
slopes
Satanta Variant clay loam, 0 to
3 percent slopes
Stoneham loam, 1 to 3 percent
slopes
0.4
0.1
34.3
4.4
2.1
67.7
1.1
110.1
0.4%
0.1 %
31.2%
4.0%
1.9%
61.5%
1.0%
100.0%
Map Unit Descriptions
The map units delineated on the detailed soil maps in a soil survey represent the
soils or miscellaneous areas in the survey area. The map unit descriptions, along
with the maps, can be used to determine the composition and properties of a unit.
A map unit delineation on a soil map represents an area dominated by one or more
major kinds of soil or miscellaneous areas. A map unit is identified and named
according to the taxonomic classification of the dominant soils. Within a taxonomic
class there are precisely defined limits for the properties of the soils. On the
landscape, however, the soils are natural phenomena, and they have the
characteristic variability of all natural phenomena. Thus, the range of some
observed properties may extend beyond the limits defined for a taxonomic class.
Areas of soils of a single taxonomic class rarely, if ever, can be mapped without
including areas of other taxonomic classes. Consequently, every map unit is made
up of the soils or miscellaneous areas for which it is named and some minor
components that belong to taxonomic classes other than those of the major soils.
Most minor soils have properties similar to those of the dominant soil or soils in the
map unit, and thus they do not affect use and management. These are called
noncontrasting, or similar, components. They may or may not be mentioned in a
particular map unit description. Other minor components, however, have properties
and behavioral characteristics divergent enough to affect use or to require different
management. These are called contrasting, or dissimilar, components. They
generally are in small areas and could not be mapped separately because of the
scale used. Some small areas of strongly contrasting soils or miscellaneous areas
are identified by a special symbol on the maps. If included in the database for a
given area, the contrasting minor components are identified in the map unit
descriptions along with some characteristics of each. A few areas of minor
11
Custom Soil Resource Report
components may not have been observed, and consequently they are not
mentioned in the descriptions, especially where the pattern was so complex that it
was impractical to make enough observations to identify all the soils and
miscellaneous areas on the landscape.
The presence of minor components in a map unit in no way diminishes the
usefulness or accuracy of the data. The objective of mapping is not to delineate
pure taxonomic classes but rather to separate the landscape into landforms or
landform segments that have similar use and management requirements. The
delineation of such segments on the map provides sufficient information for the
development of resource plans. If intensive use of small areas is planned, however,
onsite investigation is needed to define and locate the soils and miscellaneous
areas.
An identifying symbol precedes the map unit name in the map unit descriptions.
Each description includes general facts about the unit and gives important soil
properties and qualities.
Soils that have profiles that are almost alike make up a soil series. Except for
differences in texture of the surface layer, all the soils of a series have major
horizons that are similar in composition, thickness, and arrangement.
Soils of one series can differ in texture of the surface layer, slope, stoniness,
salinity, degree of erosion, and other characteristics that affect their use. On the
basis of such differences, a soil series is divided into soil phases. Most of the areas
shown on the detailed soil maps are phases of soil series. The name of a soil phase
commonly indicates a feature that affects use or management. For example, Alpha
silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.
Some map units are made up of two or more major soils or miscellaneous areas.
These map units are complexes, associations, or undifferentiated groups.
A complex consists of two or more soils or miscellaneous areas in such an intricate
pattern or in such small areas that they cannot be shown separately on the maps.
The pattern and proportion of the soils or miscellaneous areas are somewhat similar
in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.
An association is made up of two or more geographically associated soils or
miscellaneous areas that are shown as one unit on the maps. Because of present
or anticipated uses of the map units in the survey area, it was not considered
practical or necessary to map the soils or miscellaneous areas separately. The
pattern and relative proportion of the soils or miscellaneous areas are somewhat
similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.
An undifferentiated group is made up of two or more soils or miscellaneous areas
that could be mapped individually but are mapped as one unit because similar
interpretations can be made for use and management. The pattern and proportion
of the soils or miscellaneous areas in a mapped area are not uniform. An area can
be made up of only one of the major soils or miscellaneous areas, or it can be made
up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.
Some surveys include miscellaneous areas. Such areas have little or no soil
material and support little or no vegetation. Rock outcrop is an example.
12
Custom Soil Resource Report
Larimer County Area, Colorado
5—Aquepts, loamy
Map Unit Setting
National map unit symbol: jpws
Elevation: 4,500 to 6,700 feet
Mean annual precipitation: 12 to 18 inches
Mean annual air temperature: 39 to 50 degrees F
Frost-free period: 80 to 140 days
Farmland classification: Not prime farmland
Map Unit Composition
Aquepts and similar soi/s: 80 percent
Minor components: 20 percent
Estimates are based on observations, descriptions, and transects of the mapunit.
Description of Aquepts
Setting
Landform: Depressions, draws, stream terraces
Landform position (three-dimensional): Base slope, tread, dip
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Loamy alluvium
Typical profile
H1 - 0 to 60 inches: variable
Properties and qualities
Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very
high (0.60 to 99.90 in/hr)
Depth to water table: About 6 to 18 inches
Frequency of flooding: Rare
Frequency of ponding: None
Interpretive groups
Land capability classification (irrigated): 5w
Land capability classification (nonirrigated): 3w
Hydrologic Soil Group: A/D
Ecological site: R067BY038C0 - Wet Meadow
Hydric soil rating: Yes
Minor Components
Nunn
Percent of map unit.• 5 percent
Ecological site: R067BY002C0 - Loamy Plains
Hydric soil rating: No
Kim
Percent of map unit.• 5 percent
13
Custom Soil Resource Report
Ecological site: R067BY002C0 - Loamy Plains
Hydric soil rating: No
Stoneham
Percent of map unit.• 5 percent
Ecological site: R067BY002C0 - Loamy Plains
Hydric soil rating: No
Fort collins
Percent of map unit.• 5 percent
Ecological site: R067BY002C0 - Loamy Plains
Hydric soil rating: No
22—Caruso clay loam, 0 to 1 percent slope
Map Unit Setting
National map unit symbol: jpvt
Elevation: 4,800 to 5,500 feet
Mean annual precipitation: 13 to 15 inches
Mean annual air temperature: 48 to 50 degrees F
Frost-free period: 135 to 150 days
Farmland classification: Prime farmland if irrigated
Map Unit Composition
Caruso and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.
Description of Caruso
Setting
Landform: Flood-plain steps, stream terraces
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Mixed alluvium
Typical profile
H1 - 0 to 35 inches: clay loam
H2 - 35 to 44 inches: fine sandy loam
H3 - 44 to 60 inches: gravelly sand
Properties and qualities
Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage c/ass: Somewhat poorly drained
Runoff c/ass: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to
moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 24 to 48 inches
Frequency of flooding: Occasional
14
Custom Soil Resource Report
Frequency of ponding: None
Calcium carbonate, maximum content.• 5 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Moderate (about 8.4 inches)
Interpretive groups
Land capability classification (irrigated): 3w
Land capability classification (nonirrigated): 5w
Hydrologic Soil Group: D
Ecological site: R067BY036C0 - Overflow
Hydric soil rating: No
Minor Components
Loveland
Percent of map unit.• 9 percent
Landform: Terraces
Ecological site: R067BY036C0 - Overflow
Hydric soil rating: Yes
Fluvaquents
Percent of map unit.• 6 percent
Landform: Terraces
Hydric soil rating: Yes
35—Fort Collins loam, 0 to 3 percent slopes
Map Unit Setting
National map unit symbol: 2tlnc
Elevation: 4,020 to 6,730 feet
Mean annual precipitation: 14 to 16 inches
Mean annual air temperature: 46 to 48 degrees F
Frost-free period: 135 to 160 days
Farmland classification: Prime farmland if irrigated
Map Unit Composition
Fort collins and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.
Description of Fort Collins
Setting
Landform: Interfluves, stream terraces
Landform position (three-dimensional): Interfluve, tread
Down-slope shape: Linear
Across-s/ope shape: Linear
Parent material: Pleistocene or older alluvium and/or eolian deposits
Typical profile
Ap - 0 to 4 inches: loam
15
Custom Soil Resource Report
Bt1 - 4 to 9 inches: clay loam
Bt2 - 9 to 16 inches: clay loam
Bk1 - 16 to 29 inches: loam
Bk2 - 29 to 80 inches: loam
Properties and qualities
Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high
(0.20 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content.• 12 percent
Maximum salinity: Nonsaline to very slightly saline (0.1 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: High (about 9.1 inches)
Interpretive groups
Land capability classification (irrigated): 3e
Land capability classification (nonirrigated): 3e
Hydrologic Soil Group: C
Ecological site: R067BY002C0 - Loamy Plains
Hydric soil rating: No
Minor Components
Nunn
Percent of map unit.• 10 percent
Landform: Stream terraces
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: R067BY002C0 - Loamy Plains
Hydric soil rating: No
Vona
Percent of map unit.• 5 percent
Landform: I nterfl uves
Landform position (three-dimensional): Interfluve, side slope
Down-slope shape: Linear
Across-s/ope shape: Linear
Ecological site: R067BY024C0 - Sandy Plains
Hydric soil rating: No
36—Fort Collins loam, 3 to 5 percent slopes
Map Unit Setting
National map unit symbol: 2yqpg
Elevation: 4,800 to 5,900 feet
i[^.'
Custom Soil Resource Report
Mean annual precipitation: 13 to 15 inches
Mean annual air temperature: 48 to 50 degrees F
Frost-free period: 135 to 150 days
Farmland classification: Prime farmland if irrigated
Map Unit Composition
Fort collins and similar soils: 80 percent
Minor components: 20 percent
Estimates are based on observations, descriptions, and transects of the mapunit.
Description of Fort Collins
Setting
Landform: Alluvial fans, terraces
Landform position (three-dimensional): Tread
Down-slope shape: Linear, convex
Across-slope shape: Linear
Parent material: Pleistocene or older alluvium and/or eolian deposits
Typical profile
Ap - 0 to 5 inches: loam
Bt1 - 5 to 8 inches: clay loam
Bt2 - 8 to 18 inches: clay loam
Bk1 - 18 to 24 inches: loam
Bk2 - 24 to 80 inches: loam
Properties and qualities
Slope: 3 to 5 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff c/ass: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high
(0.20 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content.• 12 percent
Maximum salinity: Nonsaline to very slightly saline (0.1 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: High (about 9.1 inches)
Interpretive groups
Land capability classification (irrigated): 4e
Land capability classification (nonirrigated): 4e
Hydrologic Soil Group: C
Ecological site: R067BY002C0 - Loamy Plains
Hydric soil rating: No
Minor Components
Table mountain
Percent of map unit.• 15 percent
Landform: Alluvial fans, stream terraces
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: R067BY036C0 - Overflow
Hydric soil rating: No
17
Custom Soil Resource Report
Larim
Percent of map unit.• 5 percent
Landform: Alluvial fans
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: R067BY063C0 - Gravel Breaks
Hydric soil rating: No
95—Satanta loam, 1 to 3 percent slopes
Map Unit Setting
National map unit symbol: 2w5f3
Elevation: 3,650 to 5,350 feet
Mean annual precipitation: 12 to 18 inches
Mean annual air temperature: 46 to 54 degrees F
Frost-free period: 115 to 155 days
Farmland classification: Prime farmland if irrigated
Map Unit Composition
Satanta and similar soils: 90 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.
Description of Satanta
Setting
Landform: Paleoterraces
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Head slope
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Eolian sands
Typical profile
Ap - 0 to 9 inches: loam
Bt - 9 to 18 inches: clay loam
C- 18 to 79 inches: loam
Properties and qualities
Slope: 1 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage c/ass: Well drained
Runoff c/ass: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20
to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content.• 10 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
18
Custom Soil Resource Report
Available water supply, 0 to 60 inches: Very high (about 12.2 inches)
Interpretive groups
Land capability classification (irrigated): 3e
Land capability classification (nonirrigated): 4c
Hydrologic Soil Group: C
Ecological site: R067BY002C0 - Loamy Plains
Hydric soil rating: No
Minor Components
Nunn
Percent of map unit: 5 percent
Landform: Terraces
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-s/ope shape: Linear
Ecological site: R067BY002C0 - Loamy Plains
Hydric soil rating: No
Fort collins
Percent of map unit.• 5 percent
Landform: Alluvial fans
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Head slope
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: R067BY002C0 - Loamy Plains
Hydric soil rating: No
98—Satanta Variant clay loam, 0 to 3 percent slopes
Map Unit Setting
National map unit symbol: jpyh
E/evation: 4,800 to 5,600 feet
Mean annual precipitation: 13 to 15 inches
Mean annual air temperature: 48 to 50 degrees F
Frost-free period: 135 to 150 days
Farmland classification: Prime farmland if irrigated
Map Unit Composition
Satanta variant and similar soils: 90 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.
Description of Satanta Variant
Setting
Landform: Terraces
Landform position (three-dimensional): Tread
Down-slope shape: Linear
19
Custom Soil Resource Report
Across-slope shape: Linear
Parent material: Alluvium
Typical profile
H1 - 0 to 9 inches: clay loam
H2 - 9 to 22 inches: clay loam
H3 - 22 to 60 inches: loam
Properties and qualities
Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat poorly drained
Runoff c/ass: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to
moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 24 to 48 inches
Frequency of flooding: Occasional
Frequency of ponding: None
Calcium carbonate, maximum content.• 15 percent
Gypsum, maximum content: 10 percent
Maximum salinity: Very slightly saline to slightly saline (2.0 to 4.0 mmhos/cm)
Available water supply, 0 to 60 inches: Moderate (about 8.7 inches)
Interpretive groups
Land capability classification (irrigated): 2e
Land capability classification (nonirrigated): 4e
Hydrologic Soil Group: D
Ecological site: R067BY036C0 - Overflow
Hydric soil rating: No
Minor Components
Nunn
Percent of map unit: 5 percent
Ecological site: R067BY002C0 - Loamy Plains
Hydric soil rating: No
Caruso
Percent of map unit.• 3 percent
Ecological site: R067BY036C0 - Overflow
Hydric soil rating: No
Loveland
Percent of map unit.• 2 percent
Ecological site: R067BY036C0 - Overflow
Hydric soil rating: No
101—Stoneham loam, 1 to 3 percent slopes
Map Unit Setting
National map unit symbol: jptt
Elevation: 4,800 to 5,600 feet
20
Custom Soil Resource Report
Mean annual precipitation: 13 to 15 inches
Mean annual air temperature: 48 to 50 degrees F
Frost-free period: 135 to 150 days
Farmland classification: Prime farmland if irrigated
Map Unit Composition
Stoneham and similar soils: 90 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.
Description of Stoneham
Setting
Landform: Benches, terraces
Landform position (three-dimensional): Base slope, tread
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Mixed alluvium and/or eolian deposits
Typical profile
H1 - 0 to 4 inches: loam
H2 - 4 to 10 inches: sandy clay loam
H3 - 10 to 60 inches: clay loam
Properties and qualities
Slope: 1 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high
(0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: High (about 9.6 inches)
Interpretive groups
Land capability classification (irrigated): 2e
Land capability classification (nonirrigated): 3e
Hydrologic Soil Group: B
Ecological site: R067BY002C0 - Loamy Plains
Hydric soil rating: No
Minor Components
Fort collins
Percent of map unit.• 5 percent
Ecological site: R067BY002C0 - Loamy Plains
Hydric soil rating: No
Kim
Percent of map unit.• 5 percent
Ecological site: R067BY002C0 - Loamy Plains
Hydric soil rating: No
21
Custom Soil Resource Report
22
Soil Information for All Uses
Soil Properties and Qualities
The Soil Properties and Qualities section includes various soil properties and
qualities displayed as thematic maps with a summary table for the soil map units in
the selected area of interest. A single value or rating for each map unit is generated
by aggregating the interpretive ratings of individual map unit components. This
aggregation process is defined for each property or quality.
Soil Qualities and Features
Soil qualities are behavior and perFormance attributes that are not directly
measured, but are inferred from observations of dynamic conditions and from soil
properties. Example soil qualities include natural drainage, and frost action. Soil
features are attributes that are not directly part of the soil. Example soil features
include slope and depth to restrictive layer. These features can greatly impact the
use and management of the soil.
Hydrologic Soil Group
Hydrologic soil groups are based on estimates of runoff potential. Soils are
assigned to one of four groups according to the rate of water infiltration when the
soils are not protected by vegetation, are thoroughly wet, and receive precipitation
from long-duration storms.
The soils in the United States are assigned to four groups (A, B, C, and D) and
three dual classes (A/D, B/D, and C/D). The groups are defined as follows:
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly
wet. These consist mainly of deep, well drained to excessively drained sands or
gravelly sands. These soils have a high rate of water transmission.
Group B. Soils having a moderate infiltration rate when thoroughly wet. These
consist chiefly of moderately deep or deep, moderately well drained or well drained
soils that have moderately fine texture to moderately coarse texture. These soils
have a moderate rate of water transmission.
23
Custom Soil Resource Report
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist
chiefly of soils having a layer that impedes the downward movement of water or
soils of moderately fine texture or fine texture. These soils have a slow rate of water
transmission.
Group D. Soils having a very slow infiltration rate (high runoff potential) when
thoroughly wet. These consist chiefly of clays that have a high shrink-swell
potential, soils that have a high water table, soils that have a claypan or clay layer at
or near the surface, and soils that are shallow over nearly impervious material.
These soils have a very slow rate of water transmission.
If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is
for drained areas and the second is for undrained areas. Only the soils that in their
natural condition are in group D are assigned to dual classes.
24
�
�
0
as�soo
40° 3T 15" N � I^.
I� .�� M .
e4 � Y
� ��
� —M
�Y �
H �
!li
s ' �,
�) t
� �1
� N � �
N
r � �tt
� �� e
� ,
�� .'�_�I
�-�,
�-
� , �
�� �
� i
,
,+'
a� 'n �.
r � � � � 'r,
,� -
� k ',
'��
� ti �J�
�—`�ti� � �
;.'
I�f.r. '�Ir-
o � � R�
Custom Soil Resource Report
Map—Hydrologic Soil Group
497600 497700 497800 497900 498000 494100 498200
.�.. . �. �. . . .. .�. _ . �,. .� �.
_ 7�Z
g� �., . .Y �r{qv .a � r �� � �
� - , �����r
� �
Y I
- � �f A �
' ^ �'I'1�L�F�. L 4. ' ���`� � ���F.f � .r
�— , - . � 5a — '�,., � V
. � . ��'��
�
� .. w.���;� r �� � � . �� �_ � . �.r�l�:
� V � ' 1i�� � �y�,- � . �
`� — �"i .�. . . - .
a ,
'�
Soil'M��p m�y iiot be valid at this scale.
40° 36' 33" N� I I I I I I I
as�soo as�soo asnoo as�eao as�soo aseaoo ase�oo asi
ao as
3
� Map Scale: 1:6,260 if printed on A porhait (8.5" x 11") sheet.
° N Meters
� 0 50 100 200 300
� Feet
0 300 600 1200 1800
Map projectlon: Web Mercator Comer coordinates: WGS84 Edge dcs: UTM Zone 13N WGS84
25
493900
�
1
f,l
_ t i
I
�
�
�
��' � �
�
� ���.
�
g
,� � ; �
�� �
I �
' —�
�
� � �•�
�� '-�
_ �
�
I �
I 0
— �
�
�—�—_—' �, I I �= � �
�
�� , ; ---
� -;� I
� �I 40° 36' 33" N
200 498.'300 498400
3
0
�
0
4.98I4W
si� 40° 3i 15" N
Custom Soil Resource Report
MAPLEGEND
Area of Interest (AOI)
Area of Interest (AOI)
Soils
Soil Rating Polygons
� A
0 A/D
0 B
0 B/D
0 C
0 cio
� D
� Not rated or not available
Soil Rating Lines
F;-� A
� A/D
+�/ B
„y B/D
. . C
,.y C/D
,,� D
.. Not rated or not available
Soil Rating Points
a A
� A/D
■ B
� a/�
a �
� C/D
� D
� Not rated or not available
Water Features
Streams and Canals
Transportation
�� . Rails
� Interstate Highways
US Routes
Major Roads
Local Roads
Background
� Aerial Photography
MAP INFORMATION
The soil surveys that comprise your AOI were mapped at
1:24,000.
Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause
misunderstanding of the detail of mapping and accuracy of soil
line placement. The maps do not show the small areas of
contrasting soils that could have been shown at a more detailed
scale.
Please rely on the bar scale on each map sheet for map
measurements.
Source of Map: Natural Resources Conservation Service
Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator
projection, which preserves direction and shape but distorts
distance and area. A projection that preserves area, such as the
Albers equal-area conic projection, should be used if more
accurate calculations of distance or area are required.
This product is generated from the USDA-NRCS certified data as
of the version date(s) Iisted below.
Soil Survey Area: Larimer County Area, Colorado
Survey Area Data: Version 18, Aug 24, 2023
Soil map units are labeled (as space allows) for map scales
1:50,000 or larger.
Date(s) aerial images were photographed: Jul 2, 2021—Aug 25,
2021
The orthophoto or other base map on which the soil lines were
compiled and digitized probably differs from the background
imagery displayed on these maps. As a result, some minor
shifting of map unit boundaries may be evident.
26
Custom Soil Resource Report
Table—Hydrologic Soil Group
Map unit symbol Map unit name Rating Acres in AOI Percent of AOI
5 Aquepts, loamy A/D
22 Caruso clay loam, 0 to 1 D
percent slope
35 Fort Collins loam, 0 to 3 C
percent slopes
36 Fort Collins loam, 3 to 5 C
percent slopes
95 Satanta loam, 1 to 3 C
percent slopes
98 Satanta Variant clay D
loam, 0 to 3 percent
slopes
101 Stoneham loam, 1 to 3 B
percent slopes
Totals for Area of Interest
0.4
0.1
34.3
4.4
2.1
67.7
1.1
110.1
0.4%
0.1 %
31.2%
4.0%
1.9%
61.5%
Rating Options—Hydrologic Soil Group
Aggregation Method: Dominant Condition
Component Percent Cutoff.� None Specified
Tie-break Rule: Higher
1.0%
100.0%
27
References
American Association of State Highway and Transportation Officials (AASHTO).
2004. Standard specifications for transportation materials and methods of sampling
and testing. 24th edition.
American Society for Testing and Materials (ASTM). 2005. Standard classification of
soils for engineering purposes. ASTM Standard D2487-00.
Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of
wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife
Service FWS/OBS-79/31.
Federal Register. July 13, 1994. Changes in hydric soils of the United States.
Federal Register. September 18, 2002. Hydric soils of the United States.
Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric
soils in the United States.
National Research Council. 1995. Wetlands: Characteristics and boundaries.
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service.
U.S. Department of Agriculture Handbook 18. http://www.nres.usda.gov/wps/portal/
nres/detail/nationaUsoils/?cid=nres142p2_054262
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for
making and interpreting soil surveys. 2nd edition. Natural Resources Conservation
Service, U.S. Department of Agriculture Handbook 436. http://
www.nres.usda.gov/wps/portal/nres/detail/national/soils/?cid=nres142p2_053577
Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of
Agriculture, Natural Resources Conservation Service. http://
www.nres.usda.gov/wps/portal/nres/detail/national/soils/?cid=nres142p2_053580
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and
Delaware Department of Natural Resources and Environmental Control, Wetlands
Section.
United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of
Engineers wetlands delineation manual. Waterways Experiment Station Technical
Report Y-87-1.
United States Department of Agriculture, Natural Resources Conservation Service.
National forestry manual. http://www.nres.usda.gov/wps/portal/nres/detail/soils/
home/?cid=nres 142p2_053374
United States Department of Agriculture, Natural Resources Conservation Service.
National range and pasture handbook. http://www.nres.usda.gov/wps/portal/nres/
detail/national/landuse/rangepasture/?cid=stelprdb1043084
28
Custom Soil Resource Report
United States Department of Agriculture, Natural Resources Conservation Service.
National soil survey handbook, title 430-VI. http://www.nres.usda.gov/wps/portal/
nres/detail/soils/scientists/?cid=nres142p2_054242
United States Department of Agriculture, Natural Resources Conservation Service.
2006. Land resource regions and major land resource areas of the United States,
the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook
296. http://www.nres.usda.gov/wps/portal/nres/detail/national/soils/?
cid=nres142p2_053624
United States Department of Agriculture, Soil Conservation Service. 1961. Land
capability classification. U.S. Department of Agriculture Handbook 210. http://
www.nres.usda.gov/I nternet/FSE_DOCUMENTS/nres142p2_052290. pdf
29
APPENDIX E
DRAINAGE PLANS
� � \ \�� � � / / � �/ �� �
` � \�� � �/
� � �-� �//� �
� � �� �
\ f ///
�
�, � � � � � � ` � � % �� � y�� �
� � �—, � , �ir , / ,� �+ � � �i .� . �j ��
� y � �� � � ��i � / l �/ , /// �, �� � ���
� \ � \ \ p � / � / / / �j . / // , �
\ � � � �� �� � � °� � \ / + �� �/�� �� �/� � �
� — � � � /% /� � � � � � / % /� > ,' �
\ � � `� � � / ��/ � � � � /�°� %�� � �% ��°� � �
� \ \ \ � \ \ / \\� \ \�+ + / � � �j�� � j/ / � / �
� � � � � / /// / / � r/% ' // �
�
i�
,� ,
� � l � � � �; � � �� � �` , > > / � 1 /// ��� /� � ,' �' �'� �- ���
� � �\� \ �\ � � + / / � //�% �j// /�� �� �
� � � � � \ �`�� ./ � �� �. /� �� � , �� \
� � � � \ �� � � � /�/ y // /
\ � � � ��
� � — —� ��� \ \� \�\
� \ � \ �\ \ ,
\ � � � � � � � �.
) \ / \ � ��
� � � � `� �
� � �< � � �
\ � � � � j� —� �,
\ � � � �
\ / �
/ � ` � �\�. �I�
� � � / � \ `, �
\ l \ � J \ � � /� � �
� � � / �/�%
� \ —� � � � j//%
1 � � — � � �%
� � .
\ � �/�// �
\ \ � � �- —� / ��� /i
/ ��� � � / //�� %
� � \ � � � ��//� ��
\ � \� � ��% /%� �
� � � /��� -� / '-
� \ � \ � � ��� . ., � � ���
\ � � / ��/�/, .. � � ;;�:
\ � � ////% / �;,:�
\ � \ ,, //j� . .. e / � ;,.
� �,
i \ � �� � �%%/ � � � l
� �� � /
\ � \ 1 � � ���/ /� / /
� • /%�� � / ,.b���
� � �� \ I /���' �/ / � ��.
\ \ �� /�/%���� � ��/ � �
� � \ �� � �� //�
� v � � f //%� � % � �
� � � �� %�� / ..
Z � //� � % �
\ � / � y��/ �
\ � � � ��� � ��
, � / � /// / /
\ \ � \ //�� �� �
� \ I ���/ /� /
� � %/ / / / ;�:�,' /
i
� \\ \ \ � � ��// �� � �
\ � ' //� � �
\ %/ � /// / / � �;;�
� � � /%/� " // / / /
� � // � �� — —
� 1 � �� /%/ �/%/ / � i ; �
) ( %/�\ "j/ / / i i
� � � k
1 /� � / / /
� / � // /e � i � i
� � � �//% j / / � ���:��..
� � � / � �� )
1 1 � � �� � � �� �
- � ii , �� � `����:�:,
-� � // � / � i i
, � � // �/ i i / _
� � �� J //� �� � � ,�--� /
� � � � ,,/ . �� I / � ` -
� � i „�' � I
` / ��, � ,� � � �
� � � �� � � �
�� � � / .�,.
� / / �� � 1 � .
� �� � ( ��s�.,, �
'� / /�� ; �� , � _.4�
������� �� � � �
� � � � �� , � ��� � � ( � 5���:.
/ � %/�� � / � � � � `
> � / j/ � � � �
��, //�/ / � �
� 1 %/, , �/ � \ � �
�,�'�/�/ .� � � �) /
� / I
/ �/� ' / / — � �
/ � ,�� � / � �
/ �,. �
�
�
� �
�
�
�
\
�
,
I
I
�
I �
�
I�
1
��
� � / �`/// y� /// �i �� �� o�
( � j/ , � / /, � � �o
� � /�/ : /� /,� i� �� /
/�/ //�� %/ / i � �
x� j/ // � , � � �
�/ / /// . � /� � �� , �� �
� /% , �� , �
�`�%/ ��/ / � , �� /
� /�% ,���� � �� i� �
I /�� ' �� � � � �� /
��� / � /� �� � �
� � ' / � � ��
/ �
� ti� � �� � �
� ,� // , � � .� _ 1 � �� /
--� --
l
\
o�
�
�
/
/
� ;.
I �//
�
I � �
� �
\ �
� I
� \
�
,
_ \
\
/ �
� \ � I
�/
� I
�
�
�
�
W
w
2
W
w
�
�
�
�
�
W
W
_
w
W
�
N
KEY MAP
N.T.S.
x
AB-C
Y
� � � �
�
__ �`�'� �
i
�
,5` i
_�
�
������
50 �
LEQEND
X = AREA (ACRES)
AB—C = BASIN NUMBER
Y = IMPERVIOUSNESS
EXISIING STORM SEWER
PROPOSED STORM SEWER
PROPOSED BASIN BOUNDARY
PROPOSED CONTOURS
EXISIING CONTOURS
FLOW DIRECTION
POSSIBLE LID LOCATION
scale 1 "=50'
�
��
50 100
�
Z
�
�
%
W
�
z
0
�
�
�
U
�
W
�
�
Q
0
�
m
DRAWN
BRB
CHECKED
DAP
DESIGNED
BRB
FILENAME
0009_Drainage
r•..••••.
:�
�:. �o QQ�o���o�'
:
Q���O� G��S �'� �
F ?: ��,
�o� ........ .
�aG
Z
0
�
�
�
�
� 0
m W
� �
Cn Q
Q =
> �
Q
H
z
0
�
II
�
�
�
W
C�
Q
Z
—
Q
�
�
CONSULTING ENGINEERS
748 Whalers Way
Suite 200 Fort Collins
Colorado 80525
Phone: 970.226.0557
JOB N0.
1230.0009.00
SCALE 1 " = 50�
DATE
JULY 17, 2024
feet SHEET
195 of 218
0
�
�
w
W
_
W
W
�
//,� / /�, � �.
� �� � �� �
r %/� ��/
� � �
� � � �
// /� � ,� /
�� � � � �
/ ! /
%/ � +/,
��/ ,�� �� � ��,
/ �� � + � //
% � / �ir
� � / � j�%
� � +��
l / j/ /%
, \ + �� � ���,
� � �! ��
� ��� �� ,
/ +/////� �/�� .�
� ✓ �� �� Y/�/��� lil��
+�/���
/ �
rr i� �
�� �
, �,���
����
i�%/ r�
/��� ����
�` /���
�/////
�j/ /
/// / �
�
r/ / /
�� ,
� �'
, ��
�
/, ,
� � /
/ /
�, � � ���,� ,. �/, , ,. ,
/� � / ��� / �/ �/ � � �
+ � j/� ��� �� � / // �
�� / /�� ��� � / � / � ��
i � %% ' %/� / � � � / �
/� /� , �� ,� , ��
� /�// /� � � � � �►
/,' ,,, i'��Y,,� , . , ./ _
% �� ///// / /�� ��
,�� %�� / /,' i' �
; ����� , � ��►
.��� � ;� ,� �
` ,�� � �� � �
� /%��/ � � ,' ��i � ,
i� ;' � .� �►�
� / / /� � / �
� / /i� ��� / ��
/ /,� i � ��
� /�� i� � ��
�, �
� �
, � � � �—�
�, , � �� � �
� ,� � �
� / �'► �
� � � �
�' �►
� �� �
� I �
� \
� � I
�� � ( "�—
'�� � 1
� / /
� �
/ �
� / �
� r
� / �
� / �
,� , 1 /
/�� ��� � �' � � � ��� I � /
/�// /// / /,' � ��1' � / � /
' \ /� � �' � / �� � �
� /
� o � �� ��' �► � 1 /
� / �/ � �� �
/�/ � /� � � � � � �
�
� i ��' � �► � I � = �
� �/ / � / �� / �1 � ����\
/ � � � I ��� �� �
�� � � '►� f � � � ���,`�'� 1
/�j /� � � � �+ I \ '��
� / �
� �/ � � r I � �\�
��, �� � � l ���
� � / 1 �.���
,' �� � / � a
/ � I � I ��L
�� � � I ��
�►�► � I �� 4 .
��► � � � � � � S,
t
� � � � T�
� � I �
�� / � EX. WETLANDS CHANNEL
� � � i I '
� �� / � �
\�, , ��\\ � I � \
�- � � ���� � � r �
� � � � �� — _ % �
\ ��� ��� \ � / � � �
\ � _ _ �� � � .
�- ��
�-
�
��
��
�
��
` �� � �' �
�- � .
��� � � �
�� t �
�� �
� � �
�� - �
�_ � �
1�
� � �
��-
� � 1
� � 1 �- -
SEE SHEET 197
\ ` � ' � 1 / � "f ' l I ' � ' I
� \ I � I � �
I � � � I ,
� I I � I � �
1 � I � I
\� � � � � I I
\ � � � I �
� � � � � /
\ 1 � 1 I I I
\ I � � ( � I
\ � � � � l � �
� � I � �
� \ \ � \ � / � � /
� � I I
� � \ � � 1 � � / � I �
� � � / � I I
� � I � / � �
1 \ � I � � I l
� 1 � I � I
� � �� � � � I 1
1 � I � I
\ � �� � � � � I I �
I � I /
� ` I I I I I I � '
l I I I
\ \ I \ I I ' ' 103.58 1 1
\ \ I I OFFSITE-1
1 I 1 I I / 2�.�� � ,
\ � � �
� � � � � � � � I
I I
� I \ I I I I I 1
� 1 1 I I
� 1 1 I � I � I
� \ I � I I
� I � � I \ � �
\ \ \ \ I I \
\ 1 1 \ 1 I ' \ / \
\ \ \ � \ \ � 1
� � � � � 1 I 1 \ � o
I \ � I \ I � �
� 1 � � I � � � �
� �� � � � I
� � � 1 ` � \ � , �
� \ I � \ � �,
\ \ \ ' \ \ \ \ o
� � I �
1 � \ \ � \ \ I �
� 1 �� � � \ � I \
� � \ � � � � \ � \ \ �
� � � ! \
� \ � � � \ � � \ � 1 � � �
� � � � \ � \ � \ �
\ ` � � \ \ \ \ �
� � � \ \ � � \ � � 1 \
� 1 � � � o
� � � � � � � \ � � I �
1 I � � � � �
� \ \ I \ ��� \ � \ \ � � \ \
1 � \ \ � �
\ \ \ � � �\ � � \ � s�� � � �
� 1 �. � � � �
� 1 I 1 � � �,\ � � � \ o�� � \ \ �
� �► \ , �
� I I 1 � � �►\ � � � � � � �
I � �, � , �o �
� � � � � �� � � � � � � �
I I s �� \ � 1 �
\ � \ � �h oo � \ \ \ \
� � �� � � �
� \ \ 1 � � �o, � \ � � \ 1
\ I ` I �� \ 1 � \ \ � \ 1
\ � I � �• � \ � I
, � � \ \ ` �\ \ \ \ \ \ \ l
\ � � � � �
� � � � \ I \ �\ � � \ � \ \
�� � � i � � � � � \
` � � � \ oos i \ � \ � �
/� \ so � i � � \ � � � � �
� � \ � � i \ � � \
� � s �,, � � i � � � � � �
\ oo� � � r• � � \ � � \
� so � � � \� , � � \ � �
� \� o� � �r• � � � �
000 \ \ � I i � � \ � � �
� � �i � � \ � � �
��� � � � � � * � � � �
� 9 \ � \ � � � � �
� \
� � � � � � � � � � \ � � �
_ � i � � \ � \
,� I I I � \ r.\ \ \ \ \ �
� r, � � � \ \
� I I I \ \ � i\ � \ � \ \ \ �
� i � \ � \ �
� � � � � r. \ � \ � \ 1 I
� \ r� \ � � �
� � � � r. � \ \ � \ 1 1
� � � � � � \ �
� � � � r. \� � I \ 1
\ � \ r. � \ � 1
1 � I � �. \\ �\ I \
� � �� � � \ 1
� � � ) � � \ � \ 1 � \
� � �� � \ \ 1
� � / � \ � � \ \ \ I
� � � �+ � \ � 1
� I \ � � \ 1 � � � \
� � � \ �\ \
�� \ \ INFRASiRUCiURE \ \ \ \ �
�r � � � s�owN �
\ REFQiQdCE ONLY \ \ \ \ \ \
������\ ���� \ �� � ��� \
.,. . �����������i���ll������'�� \ 1
.� . 'r � .� � . .__.... , . _ .. . .. . _ "a. . _ .. . _ . . . . _ . . � � \ \ — —
�� �''�� ��
!� ��i O`� �
�i�` % '•� I
�i % i �
,
�i�� � !o �,
��`�...•��`%
50
�
scale
N
Z
0
��
Z v
o Q
>
w
�
�
Q
0
�
m
DRAWN
BRB
CHECKED
DAP
DESIGNED
BRB
FILENAME
0009_Drainage
P�� ��C
� .......
:•
�:. �o QQ�o���o�'
KEY MAP �O��G G ��'� : �
Q� Fo� �° �,�,
N.T.S. �o� .•.
•....•• �G
��NA� E
LEQEND
X X = AREA (ACRES)
AB—C AB—C = BASIN NUMBER
Y Y = IMPERVIOUSNESS
EXISIING STORM SEWER
� PROPOSED STORM SEWER
PROPOSED BASIN BOUNDARY
�b,d'� PROPOSED CONTOURS
_�
y,,00� EXIS11NG CONTOURS Z
_ �
� FLOW DIREC110N Q
—
� POSSIBLE LID LOCAl10N � Z
> �
00 �
°° w w
� � C�
�a Q
a= z
> � �
Q a
� �
z �
�
�
TST, INC.
CONSULTING ENGINEERS
748 Whalers Way
Suite 200 Fort Collins
Colorado 80525
Phone: 970.226.0557
JOB N0.
1230.0009.00
SCALE 1 " = 50�
0 50 �oo �A� JULY 17, 2024
1 »=50� feet SHEET
196 of 218
� -
� I
�
�`
��
�
/
� � ` ::,�.
� - �
\ `
LID#1 (UNDERGROUND
FULL INFILTRATION
) 1
�
�T �
VI
r
�
H
w �
�I
�
W �
� I
���
F;
��r
�,
(
,
�
�
��
�
�
�
�I I
��p����� ��
@F � �_ � � �.
,
I
. �
i �� �
i �
� �� �� � .
r
� _ � � I � I
�-����, �
' � ..
SEE SHEET 196
, I � - � ,� , ---\---- � � � � � �
.,
� �
:..: .. .z _ � ..
� � � � �
.. � _ : . . -
_: _ �.�.s � � �
..;... ,.. ..
.: .
� � �
� �
� � � �
�
� � �� s �
..
��� ����
.. . . . .. _
.. .. ... . .,:..:. �
� �.
.. . .. .. . ..:. . .. . .. . ..:..... x _
. :. �.:. :... ;.
...
.....
.•
,..
.
_
, .., . . .. . ... :.
�:
i '1 �
'��
"�.
�1.
\
I
o -
_ � \ �
� �
/ � ° - � � �, � �, \
( 0.79 � � �,\ � \ � _1� 1
f o-, �, � � ri \ �
� � 80.40 � _ � - � i%� � � -
�' t. °` /� `\ \�� \ � . � \
:,
8 �
�
. ..
\
\
� � \
. . :t
� � � �� �. � �
. .; ,. ..,,
``�� �
. . . . . .. . .:.
� .: _. � . . . ,� . . . : ,
...
. _,
.
, ..
, _ . ,. . ,. . ...' �
. . ..
.
, �
,<. .. .. ..
. . - . . , .. . _ . . ,. . ..� ... ; ._ - r
:�. ��
s. ' -
�':
I � � � �
�'T � _ ' � \
1.63
I d �'
. � . . . . . . � � .
. •: i. � � .�.. .
. .. ��. : . . . i '. �. . � • " _
�
. ... . � . . � '.�. . � .. . ..� . . �
.
!.. p �
.. . . -, . . � . .. .^' j ... �i .� .. ..- : :.�' : ' �y'
�\
� .. • .
: . �. .. . � :;' �
• �:
�.
�
. . . . . .�':.
' '' •
�.�
'•
:��. ' :.��. .. ':�� .. ..�,.. . �' ':.i.� `
- \
�, '
�, .. .. �
..- ..'�'. '��'
.
•
/ � ..
. . �� � . . � � � .
•
% / , /�/ � \
.
� . v
�. '
•
. . . ., . . � . : � , ' .. ... '... .•� �.
� �� � \ \` �
. . a... :. � ♦
.�":�: .
� 1
■
� \
� � i 7C.7. O � \ �� \ \ � \
�t � - - I �� �� � � \ �
L� y �'`:�i '" �, < � � �y� � \ \ � � ` ,��
,� � l �- � � �. - � � � � \ � \
ffff � ::� �-� -��-�-� � � \ \ �� � \ �
) I - � � � ` ,\ `\ � f
r' � � � � I � - I .::• � 1 .. � � \ �� \ � \ �
,�-�� �> / ' \
.. I � :�• I � �� �
;; ��' --- -- --� -- , - -_-� ---- ----� --- --- ----- � �-, � � � �� � \ \ ,
, ... �
�
.. ,
0.40 \
.,. �
� ; - - �-.- �-- . .. . � - �. � :;:-= � - ; �-- - •�:-�- f 1
. : .. : T.
: , . ., . :_ r.�
..
T
:
, ..; .. . .---�
. .. � .�.
:�-- .
:.:-.:..
,, : � . .... .. a. . .. , i. =�..
:. �..
...._�
, ,. . . . . , . ,: �
.
..
T; .
.. ,
, .
:�
,� . ... . . . . . . . .. .,
. . . ...
, . ,.:,
i �
, .� . . .
. �.....
_:
. . . . . .. .. . . . . � .Y :�.
,
,...
.:
. ... . . . n � . - -
,.
. ....
..
. .. . . . .. , . . . , .:.. ,
,. :. �
\ / ': .'.
.:
;
.. . ... . ... .. . . . . . . . .. .. .. �
. . . ... . � . .. ,:.
. ;,
,.: .
..•
. . ,... . . .. ._ .: �
.-
:.-
.. .. ... . , ... . . . . '�:
, : . . . .. . . . . . . . .. .. . . ., . . . .. .. �.�: :�+;.. 'i..
. , . . . .. .. .. . . . . .. . . . . - . . .. . . . . .. . .. .. . . � �'� ''i•.
. . . . . . .. .. . � . . . . . . .. . . � . . . . .. . .. . . .
;;�=: "- D 3 ��
. . . .
... � . , . . . .. ,
+� � �
„ . ..... . . .,... .. .:. .
. . . .
\
, . .. , . �/
�.. . .. .... , .
. / . . . . . . . . .. . .. . �
.. . .... . , .. . . . .. .. _.. . . _ �.
\
. e .. ; .. . ...
, .. . }7�
. . . . .. . ..... . , ..,
. . . ...... . . .
.. . . ....., . .
.. , ..;
; . . � ':
�. .
. ...,:.
..
. \
D . , .. . �. .:.... .:........ y 8125 \
,�. .� _ � . � 1
.. � ... ..
.. .. ...
. . ..,. .
... . .. . . . . . . . , . ::.
,....
�.
, . . . ...
,.. : . . : -
•< -
, , . . ... .
, . . .. . .
.. . . .:. .:
.- • .. :. . , ... ... .
...
, ..... , .
, .. .. � . ... ,' �' • ,
. . ...
.
. , r? ..., : .. ..., .. �: , ,//
. . .. . ..:J .. .. : . . . . �.. . _ - _ - - _ _ , . � . .' � ..1'. �
♦ / ;:.
.
. ... . . e. . •.r . �� � ' _ _ _ _ _ _ y _ _ � _ _ �
� s. - . ... �. .. � ..
'. . � . �.;.�K ... . . � �_ ..� ■ ■ � . .v r �� \
.r.� .. .. . .. ' � r. T � r •�(}4�` I \ \
i
. . .. . \
•
• � .. +_
.. .
. v. . . .�. . � � ..�.... ' ''�..
,A, r �^�\ „•� \ \ (L
'. /� , � �p � � � i �y � I . � i� �
/ I:; I I {.<�' I \ � �
, 0.22 '% `� -� ,� ::' / � ��: �' _� � I � � ."� 1 �� , ��1 � �
' • �: / � .� � 2.�4 I I ��-:'�:. I ' � \
D-4 � '°. / � `s � -I \ � � \ 1
86.64 / / ��� � � � D-7 '�� \ \ \ �� \ \
�: � � - ���.
� � � , � `'? � � 76.47 � : I � 1 \ \
�� , �,. _ � _* i. � � f� ,� � I �Y.•;f � \ �
/ � � `�' .�- � >` ' " * � j , � \
o.3s� � , � :� � � _�� � � ::.. ; i �.: i :�i � �■ i :�� i \ \
� .� � �� \
D-18 � . `� - - s �.r - - `..` � � f . � \ � \ \ \
.
..
. :
. =' _
,. . .:.
..
,. - .: ..: _.:
!;
.
'...i.�! �il= a`
.. ��.ss ; � :.: : . ..,: � :.�,. ,.°. � = j
... .:-• �: :;
.6 � ra;i , ,ye: .:t � ';`r. �:.R'= 'aa',7:•,e..• y \ �� \ \
� �� � � '� _ � I I I \
z ,,., _I '`w` � � � � � \
�: T� - ��:' - I �l .
L � I � �
�� / - �� I � , �� \ \
i - I� II , '�
.
J � n'
� p�
I �1p�
,•1
� �.
I
\
fVIV
I !�G
H�
1� ••+` RV
- �
I �Y
ADWAY
�
:p
.:�w
I
o � 1
"5 `
\ IN
U \
'�' s• I
� FR/1S7R CiURE
� -
~n •
\
`� ,::
�.
: . \ � , - . f`� '� � �sHowri �at
;� t'` `r" 's``c �.y. : ,� I ,�
I :r, N �
k �=• - I I � R�to�c�
�.�. � \ oN�Y �
F \
. .
� I
� �
/, �.+jY :���� �
` �'
�r
\
i � :�;. , � � ` � I �
-.:,. :'I .
,� �:r
<.
I
,� .. �
�
�; �-.': � -:.��;:
� ,;q'yt•' •� - I I I A
��-S..i�'• �':Fi.,. ���.� 1.=: .`P."� - 1 Ii ��• ��
\ / "�V, .4 5� '��.. r I !')�' '�..I \ \ \
� I
* .i.e��� i:R . I � �.�.
: �: � \
�y � .'•F `�9a. � I- � - �•�� I I
� .�r� a.e;.> � � � , \
o '� \ :+F' r :r s:�x \ \
� � �� � � 1
� / �; � � .�;: ��` �.x., ... s :` � 1 1.37 * 0.70 -� \ \�� \ \ \
� � ,� �` J � � I I ` \ \
* � -� . �z • � ,::> .a _ � � D-14 \
/ ,/.: � : � :'�< �;, � ��. D-10 * � � i �
•-'i�. s , , ,
�' � �; . _ 1.72 :� F< =� L� �� � - � 92.71 \ �
/ �� � y r D-S �' f� I � � � a • • -. I � � 82.73 � � * I � � � �� I \ \ \
` h:. � .,k��` �� � �:� �:.�.�: �''��� I�, �,I I I , \ \ \
- ,a�� , 52.57 :,� � \ �
\ \
!`:
e�y � f� �
�
I ':
•� �
� , s: = � �
,� � �' '' > � .c:,:
��" i'' I �
:�-= t � �;- i � . � � �
i � _ �� - :Y o.4� � i � i ��� `" � i i �
J � � , , �� \
� \
���: � �°=f `� � \ �� \
0.24 I �� LID#2 (UNDERGROUND �� I '� �- � _9 I � I �� � �, � �
' "' D
� `�� -�k.� � � � I �
�-s -6 FULL INFILTRAl10N) ���. � ;�° <.� - i I '� '� 1 � � � 1 ` � �
��'= �` �s.3o a i� , �
75.58 � � ' � ;,; � :�. �* 'i. - _ i ' _ * � : � � �
II •�r. =:,
�
i:.
`
�
�Y i3.
�
'r4
.\
�:�: ,�r: r
��
� �
�..
�
y�
� �
:f
�
� ♦ v. �
�
; .
...,� • �:. :..
. . ..
, '. �'
\
I ,
'.�•
�
`' L'7 �
I 'i •.
� . � :. x. � .. �: : . .
.' '
. . :....
, .. �. .� .�r:�� �
. .. . . . e .. .
'w..: �:.�_
�{
I
s2.
§. _
� �A '
� }. Yi�'.
'.�
Y y w.� w
:l
�
:%Y \
I �
�
�
r. �..
_ 1
�
\
I •Y''.�'
r.�. �
t I \
.f
�
� -�:
5
y�,
. (+ J•:
�
� �
� .w
1'� - �ir^� I �
:
.a�
�
. , ,�
I \
�
�
,��
::4:, 4 �
�
:�
.`Al.:w �:• ,�3�•
� � _ � � _ _ _ •� �
•I - S.t. � � I
�� j/,�./� 1� _� �q� � �/� \ � �
� 4•t.' - • "�" ii;/ �� G�� II � - � 1 � � I I \ \
� ti1 �y,� ji ��j �';../� �� �{ �i ".J I � J '.I. 4- �`e; �� I 1 ��� \ \
� � ' � � � o % �r�_I � � - � � ' �'" � � �i '.� � � � � �� � �
- _ _ ,_,� 'R • � •�.I �� r*� - /; � � %/ � //1%-�."-i'= t a. � �'f' __ `e� ��f - - � - �_ _ _ _ _ _ _ _ - �� \ I • u I � _ _ .� I I 111 \ \ ? \ \
. ..+ '; . - - - - _ _ _ \
'. : .. . .. � \ \ \
.
,
; '�.
:. . . . �.. � �.� .�. . .. �. • . � .
. . . . . � .. . : , � ..� . . .. � � �
�� �
� .. ... . ., . ...,. . 0.38 • . -
. �
`
,..
_. ..._ ,. _
.. .. _..
_. _ . _ .
.
_ . .
i �
1 �
. . . . . . . . . .. . ... .. .
. , . . . ,. . ..
.. � _
�;
r
�
.. .. . .. ... . .. . . - -:.
,::.
A
■
. .
�
�:
�\I I � � I
.
. . . . . i . . < .. �' : ' '
. . , . . . . . . . . . . . .Y . . + -
-. �. . -
� I '
. .. . .. .. . ... . . .. � . : . . . . . ... . •. . �.• �.. . . .. :.. :. �
r s V '.. : ' .�♦ .. .: '. ....� �...
. . .. . .. . . � . ... .. . . . . �. , .. .. . .. .. . . . �-.. .J
. .. . . . �e. �. . . ,. •, . .� . . . . . .. . ... ..
� , . . . . . . ... ... .. . a.:
. . . . . . . . . . . . .. . . . . .. . . .. .. ,x . �. r.. . . . . . . . , .
,. : . , �
. .. .. . . .. x :.�':' ....
�,.
�
• , . ....:�.
. .. ... .. . � .w . . . , . . .. .. ,...,:. .' .:. '�;�:
�
1 r
•` � Z:.
� I 1 I I I I I
I
� '
D 11 \
, 1
�
��.
� � \
. ,
� \
0
. 1
� ;.. �I��IIIIIII� � ;�� , ���
9 8 7 / � _ _ .i _..,. ., , , ' � � \
s�.�i ° � �.:,;-�; �,;;;;,, � � ..
, , s ° 5 � `I.1� �! 1� I I f { I I � ' 1 }� ' , ' :-� ` `
-I . 6..; i�
� - (: -'-}. I II II I Y I I I I I� I I I � Fu1u f�E-�1 � � � y' \ \
� ,� �� � �� � , � �%�:�i�i�iiii � � �_ ;
F-2 '� ' _ - , , I � 56. �i� \ l � �
s.� iA" � ��� �u.�e ��i i i v i i � i� � � � � i � �.-�v ��
�
- �
, �
,
� �
� �
I \
� ... . '
. . ' .: t ... • ' � ' ♦. ... ' . .. . . . .. �
�
.. ..: .... ". �. �� : "�� �.. . i, ... . .'. ":. ,
� . , . . ... ..• •' . � �
i � . . .. . . .. .'. ..�:
. . . . . y. . . , . � .� . . . '. .. '.'i� :��
'� ': ._ '
• .
� �
J. ',l ...Ai.� ]
�.� . . :. � � . . � . .. . � c
'
. _ . . .. . .., ., . . . - �. .. �. . . _ . . . .. . . �: :.: �
♦ . . : .
. . ..�a. .. . � . n .. , ' ..� � '
. . �..
e �
. . . . . � . ... . �.. _ ,. _ '..
�
�.
�
•
:
� . � �. .�. � . ' .� . : :
O.00 . . . .. : . . . .. .. . Y . . .. : .. . .. . . .. . � . �:' . 1
' . . . • . . . � c. - � �-. . '�: . . ' • �.. . � . . � . 1� . . .. . . . . . . . . . . : .
\
. � . . . .v . . . . . . . � . .. . • . . .' .- . .r . .s .. • .� . . .. �. . . -� a
� -
\ �
'
i / 1 \
. .. . .. . . . . . , s .. .. . .. . . . .. .e...4 . . . . . . � . .. .. . \
r
• � � •
�
. . .. . . . � a� . . . � . .. ' . . ' . . � ^ ,_ , • �� . \
� . . .
�
/ I / , /
,
a I
.r . . ... . ♦. . � . a �� •
� I
,
. . . . . . .... .. .. . ' v.... . � . . . .. �.. :. . '. • .�� . .� �,p'
..:.
.� , .:�... . . ,• . .�.r . �� �'C'. " . �
.t.
. � .. . . . . . i . .. .. . .��� ♦ • � • � . � - -
..
�Y I .: . . '.� ''
. . . . . � I i .� .
�.'. � _
r
•
�. �
.. . . "' a
•
�� .a.
� .
�r.
•
.' .'- ' .. . �'
• .. . . ��'.: .
.
�, ��
•
±
i
�'
. . . . . . . . . . .. . . . . . . . . . . . . . . - •. . .. • . . :. ': .
�.. �
••
• .. . e . ' •: �
�. .�.. .. �:�
�i /
. . ' . �.�. . .
d•
�.. �
• • . . • . • �. . . � • � . ..��.. .. ♦
� . �.'. : ...
1 I
. � � . . . . . . . . .. . . .. . .. ... . .\ � . ./. �: .. . .. :
: :� .
- �� -ti. - / / I I 1 I / I \. \
:,
F.. •,.
�.
10 . .. � � � _ �
_ :� . �'�
� _
_ _ , ,
- �
_ __ I
- -���- - �- ---- . --- -- --- � --�- �- -- ------- � - - ---- I ; � � ♦� ,
�►'� i ;:�t �► !� � f �� � � - � � f f f ff � i ��`�:��� i i ' � � i ` , �� ` �
_: � , , �I � _ \
� � � � . ;, ��, �,
;� :� �► � �► - - � --� 0.82 ♦ - o.�� - � _ f I �I �►
� � � -�- � 0.22� "l � �� �-i 2 °� � � � � � �' D-13 ':7 i .� � � `�� I I I � � ��* �
1 :�. ' -. 1 � �
D-15 � _ � :�.� �� � � - - �� '� � � �::� S � � _ � � � �
� � 80.85 \ n � � 83.90 � j� � � � � \
.� 1
� � 1
;;� � -.��= :: , ♦
.,
* �
� =� � �
\
�
80 9
� ,
/
.� ,
� \
_ �' � i� r � ♦
�
� �,- - � - ♦
� � \
�.f I
� I �
� i 'i� �,.�:
/ � �
I �J� �:1� �!�
�: ��
� •.�� �
�;-
f ::�� H-�- � ,
0.10 �0.29
� � I �' I � 1 I �
�
I �
i. � -.''�- '. � 'r �
� � , �,� � ��.�� =.: � �
D-16 +� D-17 � - - � �. � / . 2.00 �� : � � � � � \
- I _ - _ - _� \r � J( .ia � F�7 I ` i f�� I � / ��
\
/
J+ '
. \
80 40 �
75.66
��
- �� � '•� �`�
J
I
l
z ■� - �
76.83 �
�
�
.'� `
s�`
�
�
.,.e
�
;s
L
]
I �i .
.�'..•'
�
*.
~�.
�
/ I
�
�:
,
i
:�r+
�
� `
�
, ti
�;=:
1
-�:;���: r
��:
�� �
� �
.�
J : i ::f
�
\
��'°: / I
I �
�
��
�= �
�
�
L
I
�
/
/ �
: I� �; �
:;:' �
:� / I I :'� I �
� �
.��
/
�
i
ti
I � '�
/ �
\
� ._�. ,� � ;T; � f �:.,. � ; I � �
� � 1.:`�.; =:: =' o.s� � L�
. � � �`� * f; '::;: ` , . � : j � I� � i � 7 � rn
/ ' '� � , �� F-s i I � rn
I •�a ��:. � / �:�'::�:�.. `: � � �` ~`�= � y �:� I i
�� � �, � � ':� �. : � : - � � � • ::. � / �� :�:' `.'.:: •� �" (.` � � 77.41 :�� � \ �� \ �
I ; �. � `. C` ''-< ` y� �, � " ` ; I �
., � ,. , � -, �: � , � : � �. �
� ` f . �, ♦ =;. �:�� �°a i � W
�� -;:� , � i �, �..,:. i � � \ W
i ��..:t � � �, +��r � � a \ ��
0.05 ,•0.14 � � � � � ��. � � � y 2
,.32 L--- I
�.��.� --- � : . '
I �� ` ,i� l : ...r - � - � I / ♦ � cn
_ �.�`: _:= � ( ,.- . :I l �
F 3 F-4 - � / �;' _ fviu� Ro�ww�Y
{ F 31 � '� � �. ) I
-� �` �F:� '!� T' M�
�:� � / � '1=
- :�.� ." IN W
�J FR11S1RU
CiU
.�:
i :, .
RE
'k � � F \ �
�::.
�5.� � • _ .i�.'�
� .
/� �., �
• �..,
� -
�/
; �
80.40
82.86
�
�
\ o W
�� wN \
. �
5.1
FOR
7 8
�: �:� \
_:
_ •. '•�,�
_ �
�:• ��:- I
: � ��.
''�:'
� •'•.
� �EN
,:
� . �. . CE
I � oriL
�
�-
��..
I Y �
N
LID 3 RAIN , ,�
� �t := ,
,� �
� \�.��•..:,r�.''�' ,'i �+
N
� �
�
;,:. 1
.•�� �'�.•a .
� .'
.' �
4... �
�• �
.�
� � `��..
i
��'
_.�.�
::�•; • `..'
�■ S /� � -- - i r■ l
:� GARDEN) z , _ / . ; , �
: � /; / - - - - I � �
I �:} I
:
%. �
� �f' �
� \
� � I �.. - � I r,�
� � ;:` � , �,��� .� �
- `1. � � � � � I � I �
� / ` � =:�:' , / � � \� �
''� 1:: � �.'' o -�- ♦ ♦ �
P, 'I / � �� � �.���;.�: � � �
. ..
14 �;� ,� � �:� � .�,, 1 M'�
::�.j � • . . `�, / j :''.:: � � � � , - ♦ • 1
i �; . • � � ,
`;.:�;; r.:" t � �� `= I � ♦ � � � � ` � �
/: �� 1� ..� � ,� -I � � � \
I � `� ' .. , � * � � - �T � \ M
�`�' � � � 2.0� � � � ��, � r`l I � � � T , ,
� � /;, � � � \ � �ri � �� i�
� `:f / , � - ► � \
� �
II �
/'
;
�
'J
_ �
� �
� �
F 6 ; �,
/
T
ti: �
�
♦ -
�
�
�
,. ,
� �
:,�. �. ,:
`
�
� - �
;T
/ /
�
� 1. '�S
,:
I
�
�
� =�.. � �
�
% � ♦
�`. J _4
78.85 0►
� �
�
\� , � �
: :..�.
\ \, � i
I � \
/' 1 i
i i � r \
'� / � / � � - o� - `o � �
..
.._
,., .
Y� M
>. �.. .:,
.
�� -
..
.. . .: .:
. . � .. ;
.,
, ..`
�: • `
..
...;,. :... ,l.: - : . <.- � ..^�
�
:, . , . .. ,,. ::.
, ,.. � � � ' ' � ''''^ O \� �
.
;
' ._
. l
.. ,. � . ...: :� �.. .." I -,
.
� ' �
. .,. . . /.. : � / � � ��-. 1� � � ♦
:.. �. ; . ; � , ,. : , . . , �.
:
,:
. / , ' 5 �
.
.:.
:
� . . .. . . . �, ._ .,-' .� . � � �\
.
2 s \�. '..' . I '' ., s � j '\ , ` i
� �; ;� /. . / , F-8 . .��. . \ , 17 � \� � � � � � � � I �� i� \
:� `` '�- l ' / � � `:��� / � � .
ff�� � - � '-� . � y , ) •• �
' •� ,,. ' `� � � 73.91 �t � , � � �
I ;, , ,. /.: . � � � �: ' o .: : J � \ % _, � � i�
. ,�.
i�:�' ;x l 1� j�: / 0 �' ♦ �
. ..
.:. . :
. ..
.
: .. , , ..
.. . . ,
., -: . . ;::
..:. '
::
�
, ' y..
:. �...... .... : ;.
. � ! ` ..
, .. . . �_, �
. ....
'� I -
:
. � . ; � : �--`
. . . . , �:
.
� . . ..._ .
.:
::
.
,
:.
. .�
.. , ... . / . �� �
,
::; t
.
:
R .. . ,
�/ '
`..
. , .. .e .. .. . .. .. .. �/ : � � �
_
�� / \� \� ��
. �► � _ : �■ \�, i :�� �i� \ � �♦
0.22 0.54 � � :1' =.` � ./ / � ( _ � � � �� \ ��
i ��:. ... �
, �_ , - , :.�': � - \ , � � � \
J�
,
� �
_ <�
F 11 - � � � , �
F 12 - �. \ �
. ;•. • ..
,:,,. . ... ..
_. : ,;:
, .. . .... :_.-
� I 0.64 � - �i• / �> �� . ;`. � ',: � � \ � �
82.18 '� 79.96 � F-5 � � � C � y ' � �
$ / i' �� �' �.� ' � • � �a � �� �
� h � � , � � � � � � � 0.20 ��` ;` I \ A i •
80.31 ` , i �: � � �� � �:. � �
� � ' � � F-10 � i � M� �
� j:: � o � ':� \ \ �
�� � %'`� � i �
� I , �,��
� 0 1
, -�.7 � •
/ �
�
79.00
i
�
h ,
�
�
\
�
� � _
/:
�
:;,
� �
��"s ' � � / � �s' - �7'�
� � - �'� � \
�
_ M�
�
�
�
�:
.. .
,
. �'
`: : , . �:. :.:
/ i / , � \
. . : .: :: _
� � \
.:
I '
, . . . . ... .
�_... . .. .. .:: -
�'i ' - - - •
., ,
r �_� � •
�
�
:, _ �
�
:.
� �
, � /- �
f ,
50
��
� - -
/ .�y..:��
�
. .
_
� .. : . .: .
- / 0.86 .
:`
,: <. . .,
.
,.. :�
. . .. . : . .': �
`. .:.
•
;.
�
�
f:
M
I �, -
. �. :...
,
.
.. .
.:
.
.:. .:.
�..
...
,.
. .:
,. ,,.
, .,: , . , ., , T-
:
;..:.:�
:
. . . �;. _. :. .: . . . . . �.. ..: .�.. ; �. �� 5.�. .
i ,,� :� "-� ♦ \ i � \
�1► � �. - �
15 I
�
�
,
) �
:� �
� ���. _
�
�''� �: :,- �.
a
, �
. • .. .
. , . ,. . ;
.,.,
.. .
�
;�.. � F 30 � �
�
.. / ,� � � � . , '0.74' :� :../ � scale
/ I � � / t =� � _ � ♦ � \
----�/ � �` a� � 1 � �
::� . M
- � 1
83.05 .< .
� �
- �
w Y
�•l. \
s•.,,
\
\\ \
� F-27
•��+'•:. ,��
� \ ��. �
SEE SHEET 198
N
�
•' �/ :•'��I
`'� ��`� '��` ,
� �
� i
` �
�
I
`
�
�
♦
, �
♦
♦
�
♦
i
, ♦ �
I
,���, i I �/I
,� �
,:`�/..����`����
,���-````�� -.
� I
KEY MAP
N.T.S.
LEQEND
X X = AREA (ACRES)
AB-C AB-C = BASIN NUMBER
Y Y = IMPERVIOUSNESS
EXISIING STORM SEWER
� PROPOSED STORM SEWER
PROPOSED BASIN BOUNDARY
.
�b,d'� � PROPOSED CONTOURS
_�
y,,00� EXISIING CONTOURS
_�
� FLOW DIRECTION
POSSIBLE LID LOCAT10N
�
�
�I
� 50 100
1 »=50� feet
Z
O
� �
Z v
O
`^ �
�.I..�
V\ / Q
/
w
�
�
Q
0
�
m
DRAWN
BRB
CHECKED
DAP
DESIGNED
BRB
FILENAME
0009_Drainage
'(�'���"�•
••
�
. �
P
�
J
.
�
c�
. O O
�
�
� �
: G PQQ �,��G
•
���� G�� �
Q� ��� �1�' lv�
.• `'�'
�0� •...... \
�aG
�
0
�
�
-
�
� �
mW
� �
� �
Q =
� �
�
�
Z
�
�
�
�
�
W
�
Q
Z
�
Q
�
�
CONSULTING ENGINEERS
748 Whalers Way
Suite 200 Fort Collins
Colorado 80525
Phone: 970.226.0557
JOB N0.
1230.0009.00
SCALE 1 " = 50�
DATE
JULY 17 2024
SHEET '
197 of 218
�
�
�
�
w
w
_
W
w
�
�
�
�
H
w
w
_
W
w
�
.1
"�� '/// �' '' / � ,\ \ \ \ �
��� �/ � / � � \� \� \
1 � / �� / \ � � � �
� / �� �/ � � \ � � � \
� �� � �� � � � \ I
/ / / � /� �'� � � � � � �
/� /� � � � )
� � /�// /�� � � \ � ( ;
, � �/ I /// \ ) � �
��� /, � � � \ \
\ _ / � �� , � � \ \
/ , //� � � \ � � � �
/� �_ r// � \ � � / /
/�� � \ \ � � /
� /��� � \ � � / /
/ � //�� , \ \ � � /
, / / � � ��/ \ \ � \ � � l l ,
� /� ' ��/� \ \ ` � � \ \ �
// � � � � � �
/� ��� � \ � \ � � \ \
� � I �� / , � � \ � � \
� �i I�� �// � \ � � � � � �
// � I � ���� � \ �
/ � �� � � � \ � � � �
�� � �� � � \ � � � \\\\ � �
�� � \ � � � � � � \
� /� ` � \ � � \ \
/ � �i � � � � � � � � \
/ � \ \ � \ \ \ \
, / � � � � �
, /� � � � � � � \
/ � \ \ 1 \ \
� � � \ � � —
/� � � \ \ \ � \ � �
/ � \ � � \ � � i
� �, -/ �� , � \ � � /
i / �� �/ / i�� � � \ \ \ � / �
� i� / I , �� � \ � \ I �
// �� // �h h � \ l ll � �
/ / / / ���`�a�4 \ � � \ \ /� �
� / / � �' �O r � I % � � �
� , / / / °�,; 4�p � � � � / � / \
� \ \ � l� / � �
/ / � / � / // � �~o`�° �'7 \ ` 1 —
\ � //� �� � �����'ro � \ � � � � \ /�
� � � / 1 � � / � �`s ss�v/ \ � ` � /
'� // /� / � \ � � � � � % ��
� / / � \ \ \ \ � � /o �o
/ �// � \ � \ � � � � �
/�j/� /� \ � \ \ � �� l
' / �� / \ \ � \ � I \ �,o � /
, / 1 , � � � � \ � � ' � �
/ ��%��� � � � � � `° o���� �
- � � � � � � I \ � � /
� � \ 1 1 �/
�� � � � � � J � I �
/�� � � � � ,� ; � / / �
� �� � � ,\ � l � � � � � I
� � n ,/ � � o So�2 � , ( ( �
� � � � � ' 1 I \ \ \ \ I \
/ ' � \ \ 1 \ \ \ \
,�,� � / � \ � � \ \ � � \
�`,�, �
� � � � � � � � � �
�,, S��o
� � � � � � � \ �
� , � � � \ 1 � \ �
� \ \
\ `� � � � � �
� \.� � � ; . � ,\ / � �/ �� `, � ` �� ` \ o � _ \ � \ \ �
\ �` � �' � � / // � � �� � � � � � � \ \ �
\ \ \ \ \ �
� ��jr � , // % / � �� � � � � � � � � � � � �
� � 1►�►., , � V �ii �� � � � � � �•� � \ � � � � \ \ \
� �_ �' , � , '�► � � •� \ \ \
1 � .+�' , ,- /�� �, �/�/ � � � � \ \ � �
�,� , � /� � , , �, �� , ,� ,\ ,� �� � ` � \ \ � \ \
�,►� , ,� /� ,� ,/ , ,� � \ ,�, � �, � \ � \ � � �
� '� , �/ �� r� �� ��� � \ I \ I
� , �/ % ///;� �� `, �� � � � � i \ \
� / /- � � � I I \
INTERIM POND , � -��. � ��/`� �, \ \ `� , � \ � � \ �
/ I / / \ . � �
� � � �/ ��� , � , � �� � � � I � � � � �
�/ // // i \ � � \ � � 1
�/ � � �� � I I � I\
' �/ ���� � � � ,� � \ �
I POND � j % J/ / � � , � \ �� ♦ � I / � \
JCTURE I � /�/ /� / / \ ` \ \ � � I I I I 1 \ �
� � �
� (/' %� . / /�/ /�� / �i � � ' ` � � � � � � 1 � \
INTERIM l /% �/ , �� ' 1 � � �
POND > ! / � � � � �' � � � � � � � �
, _ \�� /'/ � r � /� < \ � \ � l % I
jILLWAY �� - `�. _ ,; r/ � �� / / / �� � 1 � / / � � � �
� '� � � , � �/ � / % , � I � v� � � � \ \ v
� i�. � , / � / //� , � �� � � � 1
� // , �,� �j � �� � � � ��,� � �� � � � �
� � � 1
� , � / � �
� � � r I � � � �
�� � � � �� / 1 � � I
/// � ,� � � � I �� � � 1
�,� % , � � ��, � � � � , I �
�, �� � � i I � � I
, �, � �� �, � � � � � � � 1 1 �
�i%, �� �� � � � � � /
���� i � ��/ -� � � l \ � � � I �
%�� �� i ��� � � � \ �
� / // 1 \ I � \. � I
�j/� � /��j /� \ \ \ � I \
/� / / /� � % / \ ' � � � \ I \
� \ � I \ \ / \
�� � � /� �// `\ \ \ \ \ �
/ � / � I
� /� � / � I 1 � � � \
� ��i / / �/ % �I I 1 1 � � I �
% '/ � / r �j � j, � � � � � \ \ � �
/ � ��/ \ � \ \ I � \
r� / / / � // ' 1 I I ♦ ) \
/,/� !�' � , 1 � 1 1 �, I , ��,. / � 1 �
50
sc�ale
N
KEY MAP
N.T.S.
LEQEND
X X = AREA (ACRES)
AB—C AB—C = BASIN NUMBER
Y Y = IMPERVIOUSNESS
EXISIING STORM SEWER
� PROPOSED STORM SEWER
PROPOSED BASIN BOUNDARY
�b,d'� PROPOSED CONTOURS
_�
y,,00� EXISIING CONTOURS
_,
� FLOW DIRECTION
� POSSIBLE LID LOCATION
�
��
� 50
1 "=50'
100
�
feet
Z
0
�
��
Z v
o�
�o
>
w
�
�
Q
0
�
m
DRAWN
BRB
CHECKED
DAP
DESIGNED
BRB
FILENAME
0009_Drainage
r•..••••.
:'
�:. �o QQ�o���o�'
:
Q���O� G��S �'� �
F ?: ��,
�o� ........ .
�aG
Z
O
—
�
>
� �
� �
��
�Q
Q=
>�
Q
H
Z
O
�
Z
�
�
w
c�
Q
z
Q
�
�
CONSULTING ENGINEERS
748 Whalers Way
Suite 200 Fort Collins
Colorado 80525
Phone: 970.226.0557
JOB N0.
1230.0009.00
SCALE 1 " = 50�
DATE
JULY 17, 2024
SHEET
199 of 218
�- , �'T ,�
�
�
�
�
i �
�
� ��
�
�
Q�
�
i
�
J �
.�
\\\ �
� �
�
�
�
.�
,�
�
�
�
�
�
� �
,�
-I
_�
�
O
�
�9 �
�
�
�
1
� s
,�
�
1
�
� �
�
i l
I �
� �
� �
� 1
� �
� \
\ I
\ �ci>
1 �
� �\
�
�
N
�� \9>
� 1
� `
'� �
� .
�
�
I
I
S '
1
A9
9
�
I
I
�
�
�
�
�
�
SEE SHEET 200
� \� �� � � � �
\\
\� ` � � �
\ �
\ � �� �� �— � '�
\ �� ��� � �� �
� � �� �� � �
i \� � � � � � ,� � �
� \\\ � � � '�
\� � �,
�` ��\ �; ' -�
� �
�, �\\� � �, �
� ��� � � � �
���� ��,��� - I
�� ��\\� ,
� ��� � � � �
\
� �
�,n.� ��� \ � ,
'�-, �� � ` � �
� � ,
� � � �\\\`� �, ��
�\ �
� �
-r ' � , �" � �\\� ``
"—r ` i T �\\ \
� � � �
�� ✓ ��\\ ��
�, � — � �.�� �
� � � '�.\\
�� � ��
�
�
f
�
E �
� ��
��
� ?—
�� �
�� �
� r
� �
r
r
F
F
�-
�
�
�
�
�
�
�
�
,
� � '� � �/ '///%/'/� /
� � � / � �/ �
i� � // // � _'
� � � /// //��� �
� /1 / �� /� �
� / // / �� ��
/ � � / /� / �
�/ �� ��i �
i � ��/��� /
/� // ///// /
� // i �/ // / /
� / /� // / i /
� ) � // /
� � //�// /
� /
� ��%//, /
� ��j//� � /
, � // //� /,
�/ ///// // / i
�
, . , � /����%�� � �
��\ /T � T \�\ ` � // / / /////// / / � _ �
� �� � �
� � �� � � � � � ��//�� � �
� � � � � � � % / ���� �
� \ � ��'� � �/ / � � � �
�- �� � � � �,'� � / ��`/��� , �- ,� � �
� �� ��� ��� //��// � ,� �-------�
\ � /���/ �
,� � �\� � • �� � ,�� -,��
�� �
�� � � �. � / �
� �� �� �����, ��, �� � �
�
.�� �� � � ��, , , � , �,, �
� ���. � - ��� �
� � �� �, � �� � � > ,
� � �� � � ���� � �
.� � � � \ �,
y�,��- � � �,�% J� � � �,
�� � � 7 � ��i.�'�% `` � ` ` �
- % � — � . � '���
��" , � �,��/ �� � \
��' � % j � � -r-, �� ��� � �� '� �
� � %�,-� , ������ �\��
�' � � %� ,!, - �� �� � � ���
� / / / /��,� � i � � �� ����
� �° �� �'�� �% � / ,� ��� � � ���
�j �,�/ /� � < ���� �,� � . � ���
� ,� . � � I � � J \ . � �
� �i����� � J v�� \ ���,
`� ,� ' � / �,�",� / %� � ,% � � / � � , � `� \\\�
. , �` /` / / � \ � �
� � � ��� �` � ,i � � � \ � � ���� � � � \\\
� � / � — � \\
� � � � � �' � � � � _ _ --� \� \ �
� ,�' /'�' '-�� � y � � � — ! � � � \� \\�� �
� � � — —
� -�_— �� ��\
`� , � � J � '\ � �\ \ � � � ` �
,% � ' ,% � � � '� �� � T ,� \ \ � � �\,� � \\�\
� � � ' �' � �` �' �� � \ � \ '�\ \\�\�
� �r \ il �.�� � � \
� � / � � � -r, � - � �� � � \ \ \\\\
�, ,� 1 _ �III ^ / ,-� �,, -� �. � � \ \ � � � . � ��
� 1 \/ , kl . � i � . � , \ � �\ . � \
� —
�
�
/
�
/
�
/
�
N
KEY MAP�
N.T.S.
x
AB-C
Y
� � � �
/
__ ��/ �
i
�
,5` i
_�
�
%///%/
50 �
LEQEND
X = AREA (ACRES)
AB-C = BASIN NUMBER
Y = IMPERVIOUSNESS
EXISIING STORM SEWER
PROPOSED STORM SEWER
PROPOSED BASIN BOUNDARY
PROPOSED CONTOURS
EXISIING CONTOURS
FLOW DIRECTION
POSSIBLE LID LOCATION
scale 1 "=50'
�
��
50 100
�
Z
�
�
%
W
�
Z
0
�
�
�
U
�
W
�
�
Q
�
�
m
DRAWN
BRB
CHECKED
DAP
DESIGNED
BRB
FILENAME
� 0009_Drainage
r•..••••.
:'
�:. �o QQ�o���o�'
:
Q���O� G��S �'� �
F ?: ��,
�o� ........ .
�aG
Z
0
-
�
—
�
� �
m W
� �
c� Q
Q =
> �
Q
H
Z
0
�
ii
�
f
7
W
C�
Q
Z
—
Q
�
�
CONSULTING ENGINEERS
748 Whalers Way
Suite 200 Fort Collins
Colorado 80525
Phone: 970.226.0557
JOB N0.
1230.0009.00
SCALE 1 " = 50�
DATE
JULY 17, 2024
feet SHEET
201 of 218
r � � � � � � � � � � ,
� `
'� � � � � � � � � � � � � �. � � � � � . `
r � �
1 � � ♦
� � � �
i � � �
� � ' FARM `�
� PHASE A �
� �
i �' � �
i ,� � �
�
� � i
� � � •' � �
� � PHASE 6 � � � �
�-�� ♦ �- ••� ♦ ♦
� ` � � � �
♦` � � � �
'� �--r ♦ I
�� �� � �x
� , PHASE M , �
, � . � � �
�� � ,' � �� �
♦� ,�.�� � �� ,` -'
� � PHASE C , , �
r �� i �� �
� �� � ♦� ♦
1 �� �_J� `
� `�� ♦
�� � PHASE L �
�
,"� PHASE D �_,. _ �� �
� ♦` �� 7 ♦` 1
,♦ ` ,� � ♦` 1
♦ ♦ ♦ 1 � � �
I ♦ �� � �♦` �
/ � ♦ 1 � � �
1 I� � 1 ♦ � I
1 � I� 1 � ���,
� PHASE E c� ` PHASE F � PHASE K � �
�� � ���7 � �` � � �
j � �� �� 1 ♦ ♦ � �� 1
� � � �`� `� � � � ►
' ' '� ``` ' , ' ,� �
� � ♦ ��� �� ♦ �- � � � � �� `♦
1 1 �I ' �, ♦` 'I ♦, � �
� PHASE G � � �� .► �' i
� � � � PHASE J
� ► � PHASE H �� � �
� � � �� PHASE I � ►
� i � ii � �
�____________�___L______.��._______________.�_____________�
�_______�___________,
� � ,
� � �
� � �
� � �
� � �
� � PHASE 0 �
� PHASE N � �
� � �
� � �
� � �
� � �
� � �
� � �
�-------;---------- - - �
C�DESIGN
0
U
N
-o
d
�
Q
�
z
�
L
Q
�
Q
�
z
O
�
Revision & Date:
�
Project Number:
Date:
Produced by:
Sheet Number:
�
N
L.L
_
C
�
U
z
Q
�
�
w
�
�
Q
�
0
�
�
1734
02104120
DPZ CODESIGN
r�
�
�
�
ui
0
�
�
0
U
N
�
�
�
C
0
J
U
.L
0
�
�
_
��
�
0
�t
N
O
N
C
�
�
�
D
_
�
�
�
�
D
s
d.
U
�
J
O
�
�
�
0
a
�
N
�
�I
O
�
O
�
N
O
Z /
m i
� w
U
� W
m �
� �
w �
Q�
� �
O
H �
� �
� a
1
Q
Q O
�
� I
.— L!�
� r�
�t- �
N
O �
N �
� �
0
�
��
� �
�
z
II �
� �
� �
U
�
�j J
��
z
� �
o �
� �
�r * �so� -f�- .� . . , -_ .r•
r =� � '
��
� �
`�
:,
��
��,.
� ��r
_ � �' .,� .
SOD
FARM
RICHARDS LAKE RD. (CR 52)
- i' �
i
�
�
a
}, _ . , �...._ . - ,. . . •--• � ' � � � � � � � � � � � � � � � _ � — � � � � � � � � � � � � � � � � � � � `
' � � ��i� '
� r� . � �� � � � ! 1� , � � � � ��-��
4 ,, .r� . _ 1. � . . - « i I
�
rf .. .' ' ' - � r; ' � � • _ _
� T
I '� 7 _ _ , • �"�' I _ . , ' � ' - �'I
py �Y�• 1 � . _ _ • NL
,. , r
� _ _ ..� , _ _� � � - _ _ ��
�' . 1 � ' '
' 1` , ' r,_.r - —
i
� � � MAPLE HILL , '
� � _ �
SUBDIVISION �
1 � � - , �. - _ _ 1
_ ! � � � L � , � ' ' , • i ,
' � - ' ' �` � - �r _ _
. . , � Q ' � �� � Y 1 r' � � o �
1 , , � _
_ , 1 � ���i «� � � � �
1 ' p � •� � �` �' ' �
� �'�; ` �
� " �� � � � ' ♦ ' Q , . �
. z ♦ 1�
' ' _ , , � ANHEUSER �I
- �,� o � BUSCH r
�: � ! — _
>��._s� . « --�' � � � � � U �
� � � �� ��
'��� ���������� z� ���� ������ ��,I
� ■�' �— � I� N
� � � —
' t ' �
� '
i � � ,�
1 �
1 'r � � !�
.�� 1 � - _ � I'
� � u �
, ��'�___ � -.
� i � � �
� �
1 �
, � — � � � � � ,
' � /
' , ' ,
' '
� ♦ �� � ♦ � �
� � � � , - - _ , '
'i "� � � �
, . � �
� ,�-,�. � ♦ � �
��.�� � ♦ - �
� � �`�� � � � � � � � �
1 ,
��" ' '
, '
STORYBOOK , ' �
SUBDIVISION I �
�
- � � � � � � � � � � � � �,Iw�� � � � � � � � �■ � r � � � � � � � � � � � I■� � � � � � � � ��
��
MOUNTAIN VISTA DR. (CR 50) ,
.r ' ,
' �
, ' I
1 � 1 �� �
U � ' �,
� 1
� ����� _i ' ' �_i
� �
' �r . ! '
� �i �
z � �
' � '
�.
� '
�!
� �i
, 1.1
� '
� ����
� � � i. � __� �� L&W CANAL
� � U� �:a E �- �. .
. �. � . . � _ � � : � ��s� . .
i � � s:1 4 a �� � " " - _ . ." ,
� . � . . .. .. . � .. . � - -41C�< 4�9d� ,a:=�� . =� :8i.. « q �: . . �t ���;,,� �'�, .1.� i��.
i I ' � �'
i e � �
e�� , - � � � _ � _ , r" d� � ,; F rS�y��, ;y p� ��-+
�,��� � a����� � �
�!� �_ � : ,� �+
.� � ��- � . .. � � � � r� -� "' �♦� � !-� `f �`�. -� ( � *y `�' - f� �'-
- ,,a r.� _ - . . . . ,� ■ ' a �
� � ` �' � =a " ��' ,r ;� � _ ,;�,�' ����� � ,� �
; _ _ � ,�,_, � .�� , �.. ~' � '�� `
�1 _ ° � ..�
. . I � 1 !� _ p st 1
.:��r�,F�y� �, �
�&IlV CqN� I � I � � WATERGLEN � a ���,'
� � ��� '��� SUBDIVISION '��`�
�� I �v�� �
'. , ��- � ; , _ ,, ,.. ; � . � . , - ,r `
y , � - � _ - = _ . �
� � �, � � �► .� ` �, i ��
, � '��� ' y ��` , r �:_��. i��j
� �_ �� � � '��� A � ��.��' `-"� -9, �� nj�'�.�
�� TRAI L H EAD ` � ,� � -� � �� � r _ �'�
I ,� ` ,// � � ' ;y -� �R��� � �
�► SUBDIVISION ' ",,.f� '9� in / � ,� ? , `M "`f r �u�
500 250 0 500 1000
SCALE: 1 "=500'
ALL DIMENSIONS SHOWN ARE U.S. SURVEY FEET
Z" `" �
� � o
W o u
� w � �
ocZ ��
Q - �,
c� o�
G z o �
w U �
m
� � �
�O
Z O
� ~ Y
� J
� �
az
�°
�
v
�
�
v
Q
x
w°
u° o
0
� �
3 �
�
� M
t7
� M
rl M
O
U
�
�
O
�
O
O
z
Q
/
Q
�
z
O
�
�
�
z
a�
�
�
0
�
:°
a�
�
�
�
L1�
�
Q
_
�
z
O
�
�
O
W
�
0
Q
J
U
�
0
_
N
�
�
�
O
z
W W J Z
� z z Q �
�
�' m m � �
� . . . .
� � � � �
� L � �
� � m m
� �
� � � �
� � � �
z � ' cn �
N 0
� � �
O C�
� �
�
virwz
c���w
z¢o�
�WJ�
����
�
oow�
��r�
Q���
UWQ� C_j
U Q � w Z
w
���� z
���a Q
U
¢ _ � � \
z�Ocn z
o�ow �
�ww=¢
�o�� �
U 0 Q
z � U � O
Z�Sj�� �
w ���
�o�� z
=�o� o
Qw� �n
Z � � Q ( n
��,o� �
� � U z �
w
cn�w—�
�m�
zw�o
c� � o ,�
( n U Z �
w- o
o�z=
W � U �
��,�z
�
�
�
�
�
�
U
�
�
Q
.�
�
Sheet Number:
APPENDIX F
STREET CAPACITY & STORM
INLET ANALYSIS
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: FLINT HILL DR
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
of Curb at Gutter Flow Line
:e from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - ?F1.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 10.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.005 ft/ft
�sraeer = 0.013
Minor Storm Ma'or Storm
Allowable Spread for Minor & Major Storm TMAx = 10.0 10.0 ft
Allowable Depth at Gutter Flowline for Minor & Major Storm dMAx = 6.0 7.0 inches
Flow Depth at Street Crown (check box for yes, leave blank for no) �
iR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm
�R STORM Allowable Capacity is based on Depth Criterion Qa��ow = 2J 16.1 cfs
�r storm max. allowable capacity GOOD - greater than the design peak flow of 2.33 cfs on sheet'Inlet Management'
�r storm max. allowable caoacitv GOOD - areater than the desian oeak flow of 10.16 cfs on sheet'Inlet Manaaement'
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: N TIMBERLINE RD
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
of Curb at Gutter Flow Line
:e from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - 29.0 ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 11.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.005 ft/ft
�sraeer = 0.013
Minor Storm Ma'or Storm
Allowable Spread for Minor & Major Storm TMAx = 11.0 11.0 ft
Allowable Depth at Gutter Flowline for Minor & Major Storm dMAx = 6.0 7.0 inches
Flow Depth at Street Crown (check box for yes, leave blank for no) �
iR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm
�R STORM Allowable Capacity is based on Depth Criterion Qa��ow = 3.4 16.9 cfs
�r storm max. allowable capacity GOOD - greater than the design peak flow of 2.41 cfs on sheet'Inlet Management'
�r storm max. allowable caoacitv GOOD - areater than the desian oeak flow of 10.53 cfs on sheet'Inlet Manaaement'
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: LONGWOOD DR
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
of Curb at Gutter Flow Line
:e from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - ZO.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 10.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.007 ft/ft
�sraeer = 0.013
Minor Storm Ma'or Storm
Allowable Spread for Minor & Major Storm TMAx = 10.0 10.0 ft
Allowable Depth at Gutter Flowline for Minor & Major Storm dMAx = 6.0 7.0 inches
Flow Depth at Street Crown (check box for yes, leave blank for no) �
iR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm
�R STORM Allowable Capacity is based on Depth Criterion Qa��ow = 3.2 19.0 cfs
�r storm max. allowable capacity GOOD - greater than the design peak flow of 3.11 cfs on sheet'Inlet Management'
�r storm max. allowable caoacitv GOOD - areater than the desian oeak flow of 13.58 cfs on sheet'Inlet Manaaement'
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: MONTAVA AVE
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
of Curb at Gutter Flow Line
:e from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LS.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 20.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.005 ft/ft
�sraeer = 0.013
Minor Storm Ma'or Storm
Allowable Spread for Minor & Major Storm TMAx = 20.0 20.0 ft
Allowable Depth at Gutter Flowline for Minor & Major Storm dMAx = 6.0 7.0 inches
Flow Depth at Street Crown (check box for yes, leave blank for no) �
iR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm
�R STORM Allowable Capacity is based on Depth Criterion Qa��ow = 12.0 20.1 cfs
�r storm max. allowable capacity GOOD - greater than the design peak flow of 2.45 cfs on sheet'Inlet Management'
�r storm max. allowable caoacitv GOOD - areater than the desian oeak flow of 10.71 cfs on sheet'Inlet Manaaement'
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: GOODHEART DR
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
of Curb at Gutter Flow Line
:e from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - 29.0 ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 11.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.005 ft/ft
�sraeer = 0.013
Minor Storm Ma'or Storm
Allowable Spread for Minor & Major Storm TMAx = 11.0 11.0 ft
Allowable Depth at Gutter Flowline for Minor & Major Storm dMAx = 6.0 7.0 inches
Flow Depth at Street Crown (check box for yes, leave blank for no) �
iR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm
�R STORM Allowable Capacity is based on Depth Criterion Qa��ow = 3.4 16.9 cfs
�r storm max. allowable capacity GOOD - greater than the design peak flow of 2.20 cfs on sheet'Inlet Management'
�r storm max. allowable caoacitv GOOD - areater than the desian oeak flow of 8.71 cfs on sheet'Inlet ManaaemenY
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: TEALBROOK DR
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
of Curb at Gutter Flow Line
:e from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - ZO.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 10.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.005 ft/ft
�sraeer = 0.013
Minor Storm Ma'or Storm
Allowable Spread for Minor & Major Storm TMAx = 10.0 10.0 ft
Allowable Depth at Gutter Flowline for Minor & Major Storm dMAx = 6.0 7.0 inches
Flow Depth at Street Crown (check box for yes, leave blank for no) �
iR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm
�R STORM Allowable Capacity is based on Depth Criterion Qa��ow = 2J 16.1 cfs
�r storm max. allowable capacity GOOD - greater than the design peak flow of 2.33 cfs on sheet'Inlet Management'
�r storm max. allowable caoacitv GOOD - areater than the desian oeak flow of 9.55 cfs on sheet'Inlet ManaaemenY
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: NANNA LN
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
of Curb at Gutter Flow Line
:e from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LI.S ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 10.D ft
W = 2.00 ft
Sx = 0.030 h/ft
SW = 0.083 ft/ft
So = 0.005 ft/ft
�sraeer = 0.013
Minor Storm Ma'or Storm
Allowable Spread for Minor & Major Storm TMAx = 10.0 10.0 ft
Allowable Depth at Gutter Flowline for Minor & Major Storm dMAx = 6.0 7.0 inches
Flow Depth at Street Crown (check box for yes, leave blank for no) �
iR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm
�R STORM Allowable Capacity is based on Depth Criterion Qa��ow = 4.8 14.2 cfs
�r storm max. allowable capacity GOOD - greater than the design peak flow of 3.11 cfs on sheet'Inlet Management'
�r storm max. allowable caoacitv GOOD - areater than the desian oeak flow of 13.58 cfs on sheet'Inlet Manaaement'
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: HARWOOD LN
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
of Curb at Gutter Flow Line
:e from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LI.S ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 14.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.007 ft/ft
�sraeer = 0.013
Minor Storm Ma'or Storm
Allowable Spread for Minor & Major Storm TMAx = 14.0 14.0 ft
Allowable Depth at Gutter Flowline for Minor & Major Storm dMAx = 6.0 7.0 inches
Flow Depth at Street Crown (check box for yes, leave blank for no) �
iR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm
�R STORM Allowable Capacity is based on Depth Criterion Qa��ow = 7.0 22.2 cfs
�r storm max. allowable capacity GOOD - greater than the design peak flow of 2.10 cfs on sheet'Inlet Management'
�r storm max. allowable caoacitv GOOD - areater than the desian oeak flow of 9.13 cfs on sheet'Inlet ManaaemenY
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: MIDDLE FARM WY
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
of Curb at Gutter Flow Line
:e from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LI.S ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 14.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.006 ft/ft
�sraeer = 0.013
Minor Storm Ma'or Storm
Allowable Spread for Minor & Major Storm TMAx = 14.0 14.0 ft
Allowable Depth at Gutter Flowline for Minor & Major Storm dMAx = 6.0 7.0 inches
Flow Depth at Street Crown (check box for yes, leave blank for no) �
iR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm
�R STORM Allowable Capacity is based on Depth Criterion Qa��ow = 6.2 19.6 cfs
�r storm max. allowable capacity GOOD - greater than the design peak flow of 2.10 cfs on sheet'Inlet Management'
�r storm max. allowable caoacitv GOOD - areater than the desian oeak flow of 9.13 cfs on sheet'Inlet ManaaemenY
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: MOUNTAIN WILLOW WY
. T
T, T�
�` _�" W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
of Curb at Gutter Flow Line
:e from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - 24.0 ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 10.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.005 ft/ft
�sraeer = 0.013
Minor Storm Ma'or Storm
Allowable Spread for Minor & Major Storm TMAx = 10.0 10.0 ft
Allowable Depth at Gutter Flowline for Minor & Major Storm dMAx = 6.0 7.0 inches
Flow Depth at Street Crown (check box for yes, leave blank for no) �
iR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm
�R STORM Allowable Capacity is based on Depth Criterion Qa��ow = 2J 16.1 cfs
�r storm max. allowable capacity GOOD - greater than the design peak flow of 2.20 cfs on sheet'Inlet Management'
�r storm max. allowable caoacitv GOOD - areater than the desian oeak flow of 8.71 cfs on sheet'Inlet ManaaemenY
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
D-3
� T""^" � This worksheet uses the NRCS vegetal
� T � retardance method to determine
� Manning's n for grass-lined channels.
i� - �i
z d z d Mnx
- 1 An override Manning's n can be
� � entered for other channel materials.
�I-B�
RCS Vegetal Retardance (A, B, C, D, or E)
anning's n(Leave cell D16 blank to manually enter an n value)
iannel Invert Slope
�ttom Width
�ft Side Slope
ght Side Sloe
Check one of the following soil types:
Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI
Non-Cohesive 5.0 fps 0.60
Cohesive 7.0 fps 0.80
Paved N/A N/A
aximum Allowable Top Width of Channel for Minor & Major Storm
aximum Allowable Water Depth in Channel for Minor & Major Storm
A, B, C, D, or E_
n = 0.013
So = 0.0050 k/ft
B = 0.00 ft
Z1 = 50.00 fUft
Z2 = 50.00 ft/ft
Choose One:
�; NomCohesive
� Cohesive
� Paved
Minor Storm Ma�or Storm
TM,ix = 28.00 28.00 ft
dMAX - O.ZS 0.28 ft
num Allowable Top Width
r Depth
Area
=_d Perimeter
3ulic Radius
iing's n
Velocity
ity-Depth Product
aulic Depth
ie Number
num Flow Based on Allowable Water Depth
imum Allowable Water Depth
Width
r Area
[ed Perimeter
�aulic Radius
ning's n
� Velocity
city-Depth Product
aulic Depth
ide Number
imum Flow Based On Allowable Water Depth
M WOR STORM Allowable Capaciry is based on Top Width Criterion
MAJOR STORM Allowable Capacity is based on Top Width Qiterion
TM,ix = 28.00 28.00 ft
d = 0.28 0.28 ft
A= 3.92 3.92 sq ft
P = 28.01 28.01 ft
R = 0.14 0.14 ft
n = 0.013 0.013
V = 2.18 2.18 fps
VR = 031 031 ft^2,
D = 0.14 0.14 ft
Fr = 1.03 1.03
Qr = 8.6 8.6 cfs
Minor Storm Ma�or Storm
dMAX - O.ZS 0.28
T = 28.00 28.00
A = 3.92 3.92
P = 28.01 28.01
ft
R = 0.14 0.14 ft
n = 0.013 0.013
V = 2.18 2.18 fps
VR = 031 031 fM;
D = 0.14 0.14 ft
Fr = 1.03 1.03
Qa = 8.6 8.6 cfs
Minor Storm Major Storm
Q,iio„, = 8.6 S.6 cfs
da��ow = 0.28 0.28 ft
Design Peak Flow Qa = 0.8
Water Depth d = 0.12
Top Width T = 11.56
Flow Area A = 0.67
Wetted Perimeter P = 11.57
Hydraulic Radius R = 0.06
Manning's n n = 0.013
Flow Velocity V = 1.21
Velocity-Depth Product VR = 0.07
Hydraulic Depth D = 0.06
Froude Number Fr = 0.89
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY
3.6 I cfs
20.13
0.10
0.013
1.75
ft
BASIN D INLETS.xlsm, D-3 7/15/2024, 329 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
D-3
� of Inlet User-Defned _I Inlet Type = User-Defned
e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees
h of Grate � W= 1.73 ft
th of Grate L= 6.00 ft
i Area Ratio A�no = OJO
ht of Indined Grate � � HB = 0.00 ft
�ing Factor . ' _ � Cf = 0.50
e Discharge Coefficient '� ��� Cd = N/A
:e Coeffcient ,
�� ,� � Cb = 0.64
Coefficient W � 1 C� = 2.05
`\`; 1.� ^
Depth at Inlet (for depressed inlets, 1 foot is added for depression)
MINOR MAJOR
d = 0.12 0.20
�erged Side Weir Length
ed Side Weir Flow
Weir Flow
:eption WithoutCloggging
:eption With Clogging
Without Clogging
With Clogging
Inlet Interception Capacity (assumes clogged condition)
sed Flow
re Percentage = Qa/Qo
X = 6.00 6.00 ft
Qws = 0.8 19 cfs
Qwn = 0.3 0.8 cfs
Q„; = 2.0 4J cfs
Qwa = 1.0 23 cfs
Qa; = 12J 16J cfs
Qoa = 6.3 8.4 cfs
Q, = 1.0 2.3 cfs
Qb = 0.0 1.2 cfs
C% — 100 66 %
BASIN D INLETS.xlsm, D-3 7/15/2024, 329 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
D-7
� T""^" � This worksheet uses the NRCS vegetal
� T � retardance method to determine
� Manning's n for grass-lined channels.
i� - �i
z d z d Mnx
- 1 An override Manning's n can be
� � entered for other channel materials.
�I-B�
RCS Vegetal Retardance (A, B, C, D, or E)
anning's n(Leave cell D16 blank to manually enter an n value)
iannel Invert Slope
�ttom Width
�ft Side Slope
ght Side Sloe
Check one of the following soil types:
Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI
Non-Cohesive 5.0 fps 0.60
Cohesive 7.0 fps 0.80
Paved N/A N/A
aximum Allowable Top Width of Channel for Minor & Major Storm
aximum Allowable Water Depth in Channel for Minor & Major Storm
A, B, C, D, or E_
n = 0.013
So = 0.0050 k/ft
B = 0.00 ft
Z1 = 33.33 fUft
Z2 = 33.33 ft/ft
Choose One:
�; NomCohesive
� Cohesive
� Paved
Minor Storm Ma�or Storm
TM,ix = 38.00 38.00 ft
dMAX - 0.42 0.42 ft
num Allowable Top Width
r Depth
Area
=_d Perimeter
3ulic Radius
iing's n
Velocity
ity-Depth Product
aulic Depth
ie Number
num Flow Based on Allowable Water Depth
imum Allowable Water Depth
Width
r Area
[ed Perimeter
�aulic Radius
ning's n
� Velocity
city-Depth Product
aulic Depth
ide Number
imum Flow Based On Allowable Water Depth
M WOR STORM Allowable Capaciry is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion
TM,ix = 38.00 38.00 ft
d = 0.57 0.57 ft
A= 10.83 10.83 sq ft
P = 38.02 38.02 ft
R = 0.28 0.28 ft
n = 0.013 0.013
V = 3.51 3.51 fps
VR = 1.00 1.00 ft^2,
D = 0.29 0.29 ft
Fr = 1.16 1.16
Qr = 35.0 38.0 cfs
dMAX -
T=
A=
P=
R=
Minor Storm Ma�or Storm
0.42 0.42
ft
n = 0.013 0.013
V = 2.86 2.86 fps
VR = 0.60 0.60 fM;
D = 0.21 0.21 ft
Fr = 1.10 1.10
Qa = 16.8 16.8 cfs
Minor Storm Major Storm
Q,iio„, = 16.8 16.5 cfs
da��ow = 0.42 0.42 ft
Design Peak Flow Qa = 3.1
Water Depth d = 0.22
Top Width T = 14.81
Flow Area A = 1.65
Wetted Perimeter P = 14.82
Hydraulic Radius R = 0.11
Manning's n n = 0.013
Flow Velocity V = 1.87
Velocity-Depth Product VR = 0.21
Hydraulic Depth D = 0.11
Froude Number Fr = 0.99
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY
13.5 I cfs
25.76
0.19
0.013
2.71
ft
BASIN D INLETS.xlsm, D-7 7/15/2024, 330 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
D-7
� of Inlet User-Defned _I Inlet Type = User-Defned
e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees
h of Grate � W= 1.92 ft
th of Grate L= 9.00 ft
i Area Ratio A�no = OJO
ht of Indined Grate � � HB = 0.00 ft
�ing Factor . ' _ � Cf = 0.50
e Discharge Coefficient '� ��� Cd = N/A
:e Coeffcient ,
�� ,� � Cb = 0.64
Coefficient W � 1 C� = 2.05
`\`; 1.� ^
Depth at Inlet (for depressed inlets, 1 foot is added for depression)
MINOR MAJOR
d = 0.22 039
�erged Side Weir Length
ed Side Weir Flow
Weir Flow
:eption WithoutCloggging
:eption With Clogging
Without Clogging
With Clogging
Inlet Interception Capacity (assumes clogged condition)
sed Flow
re Percentage = Qa/Qo
X = 9.00 9.00 ft
Qws = 3.4 7.8 cfs
Qwn = 1.0 2.4 cfs
Q„; = 7J93 17.863 cfs
Qwa = 3.896 8.931 cfs
Qa; = 293 38.6 cfs
Qoa = 14.6 19.3 cfs
Q, = 3.9 8.9 cfs
Qb = 0.0 4.5 cfs
C% — 100 66 %
BASIN D INLETS.xlsm, D-7 7/15/2024, 330 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
D-9
� T""^" � This worksheet uses the NRCS vegetal
� T � retardance method to determine
� Manning's n for grass-lined channels.
i� - �i
z d z d Mnx
- 1 An override Manning's n can be
� � entered for other channel materials.
�I-B�
RCS Vegetal Retardance (A, B, C, D, or E)
anning's n(Leave cell D16 blank to manually enter an n value)
iannel Invert Slope
�ttom Width
�ft Side Slope
ght Side Sloe
Check one of the following soil types:
Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI
Non-Cohesive 5.0 fps 0.60
Cohesive 7.0 fps 0.80
Paved N/A N/A
aximum Allowable Top Width of Channel for Minor & Major Storm
aximum Allowable Water Depth in Channel for Minor & Major Storm
A, B, C, D, or E_
n = 0.013
So = 0.0050 k/ft
B = 0.00 ft
Z1 = 50.00 fUft
Z2 = 50.00 ft/ft
Choose One:
�; NomCohesive
� Cohesive
� Paved
Minor Storm Ma�or Storm
TM,ix = 28.00 28.00 ft
dMAX - O.ZS 0.28 ft
num Allowable Top Width
r Depth
Area
=_d Perimeter
3ulic Radius
iing's n
Velocity
ity-Depth Product
aulic Depth
ie Number
num Flow Based on Allowable Water Depth
imum Allowable Water Depth
Width
r Area
[ed Perimeter
�aulic Radius
ning's n
� Velocity
city-Depth Product
aulic Depth
ide Number
imum Flow Based On Allowable Water Depth
M WOR STORM Allowable Capaciry is based on Top Width Criterion
MAJOR STORM Allowable Capacity is based on Top Width Qiterion
TM,ix = 28.00 28.00 ft
d = 0.28 0.28 ft
A= 3.92 3.92 sq ft
P = 28.01 28.01 ft
R = 0.14 0.14 ft
n = 0.013 0.013
V = 2.18 2.18 fps
VR = 031 031 ft^2,
D = 0.14 0.14 ft
Fr = 1.03 1.03
Qr = 8.6 8.6 cfs
Minor Storm Ma�or Storm
dMAX - O.ZS 0.28
T = 28.00 28.00
A = 3.92 3.92
P = 28.01 28.01
ft
R = 0.14 0.14 ft
n = 0.013 0.013
V = 2.18 2.18 fps
VR = 031 031 fM;
D = 0.14 0.14 ft
Fr = 1.03 1.03
Qa = 8.6 8.6 cfs
Minor Storm Major Storm
Q,iio„, = 8.6 S.6 cfs
da��ow = 0.28 0.28 ft
Design Peak Flow Qa = 0.9
Water Depth d = 0.12
Top Width T = 12.13
Flow Area A = 0.74
Wetted Perimeter P = 12.13
Hydraulic Radius R = 0.06
Manning's n n = 0.013
Flow Velocity V = 1.25
Velocity-Depth Product VR = 0.08
Hydraulic Depth D = 0.06
Froude Number Fr = 0.90
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY
4.0 I cfs
21.07
0.11
0.013
1.81
ft
BASIN D INLETS.xlsm, D-9 7/15/2024, 330 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
D-9
� of Inlet User-Defned _I Inlet Type = User-Defned
e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees
h of Grate � W= 1.92 ft
th of Grate L= 6.00 ft
i Area Ratio A�no = OJO
ht of Indined Grate � � HB = 0.00 ft
�ing Factor . ' _ � Cf = 0.50
e Discharge Coefficient '� ��� Cd = N/A
:e Coeffcient ,
�� ,� � Cb = 0.64
Coefficient W � 1 C� = 2.05
`\`; 1.� ^
Depth at Inlet (for depressed inlets, 1 foot is added for depression)
MINOR MAJOR
d = 0.12 0.21
�erged Side Weir Length
ed Side Weir Flow
Weir Flow
:eption WithoutCloggging
:eption With Clogging
Without Clogging
With Clogging
Inlet Interception Capacity (assumes clogged condition)
sed Flow
re Percentage = Qa/Qo
X = 6.00 6.00 ft
Qws = 0.9 2.1 cfs
Qwn = 0.4 lA cfs
Q„; = 2.2 5.1 cfs
Qwa = 1.1 2b cfs
Qa; = 14.4 19A cfs
Qoa = 7.2 9.5 cfs
Q, = 1.1 2.6 cfs
Qb = 0.0 1.5 cfs
C% — 100 64 %
BASIN D INLETS.xlsm, D-9 7/15/2024, 330 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
D-14
� T""^" � This worksheet uses the NRCS vegetal
� T � retardance method to determine
� Manning's n for grass-lined channels.
i� - �i
z d z d Mnx
- 1 An override Manning's n can be
� � entered for other channel materials.
�I-B�
RCS Vegetal Retardance (A, B, C, D, or E)
anning's n(Leave cell D16 blank to manually enter an n value)
iannel Invert Slope
�ttom Width
�ft Side Slope
ght Side Sloe
Check one of the following soil types:
Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI
Non-Cohesive 5.0 fps 0.60
Cohesive 7.0 fps 0.80
Paved N/A N/A
aximum Allowable Top Width of Channel for Minor & Major Storm
aximum Allowable Water Depth in Channel for Minor & Major Storm
A, B, C, D, or E_
n = 0.013
So = 0.0050 k/ft
B = 0.00 ft
Z1 = 50.00 fUft
Z2 = 50.00 ft/ft
Choose One:
�; NomCohesive
� Cohesive
� Paved
Minor Storm Ma�or Storm
TM,ix = 28.00 28.00 ft
dMAX - O.ZS 0.28 ft
num Allowable Top Width
r Depth
Area
=_d Perimeter
3ulic Radius
iing's n
Velocity
ity-Depth Product
aulic Depth
ie Number
num Flow Based on Allowable Water Depth
imum Allowable Water Depth
Width
r Area
[ed Perimeter
�aulic Radius
ning's n
� Velocity
city-Depth Product
aulic Depth
ide Number
imum Flow Based On Allowable Water Depth
M WOR STORM Allowable Capaciry is based on Top Width Criterion
MAJOR STORM Allowable Capacity is based on Top Width Qiterion
TM,ix = 28.00 28.00 ft
d = 0.28 0.28 ft
A= 3.92 3.92 sq ft
P = 28.01 28.01 ft
R = 0.14 0.14 ft
n = 0.013 0.013
V = 2.18 2.18 fps
VR = 031 031 ft^2,
D = 0.14 0.14 ft
Fr = 1.03 1.03
Qr = 8.6 8.6 cfs
Minor Storm Ma�or Storm
dMAX - O.ZS 0.28
T = 28.00 28.00
A = 3.92 3.92
P = 28.01 28.01
ft
R = 0.14 0.14 ft
n = 0.013 0.013
V = 2.18 2.18 fps
VR = 031 031 fM;
D = 0.14 0.14 ft
Fr = 1.03 1.03
Qa = 8.6 8.6 cfs
Minor Storm Major Storm
Q,iio„, = 8.6 S.6 cfs
da��ow = 0.28 0.28 ft
Design Peak Flow Qa = 1.8
Water Depth d = 0.15
Top Width T = 15.44
Flow Area A = 1.19
Wetted Perimeter P = 15.44
Hydraulic Radius R = 0.08
Manning's n n = 0.013
Flow Velocity V = 1.47
Velocity-Depth Product VR = 0.11
Hydraulic Depth D = 0.08
Froude Number Fr = 0.93
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY
7.0 I cfs
25.92
0.13
0.013
2.08
ft
BASIN D INLETS.xlsm, D-14 7/15/2024, 331 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
D-14
� of Inlet User-Defned _I Inlet Type = User-Defned
e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees
h of Grate � W= 1.92 ft
th of Grate L= 9.00 ft
i Area Ratio A�no = OJO
ht of Indined Grate � � HB = 0.00 ft
�ing Factor . ' _ � Cf = 0.50
e Discharge Coefficient '� ��� Cd = N/A
:e Coeffcient ,
�� ,� � Cb = 0.64
Coefficient W � 1 C� = 2.05
`\`; 1.� ^
Depth at Inlet (for depressed inlets, 1 foot is added for depression)
MINOR MAJOR
d = 0.15 0.26
�erged Side Weir Length
ed Side Weir Flow
Weir Flow
:eption WithoutCloggging
:eption With Clogging
Without Clogging
With Clogging
Inlet Interception Capacity (assumes clogged condition)
sed Flow
re Percentage = Qa/Qo
X = 9.00 9.00 ft
Qws = 2.0 43 cfs
Qwn = 0.6 1.3 cfs
Q„; = 4.5 9.8 cfs
Qwa = 2.3 4.9 cfs
Qa; = 24.4 31.6 cfs
Qoa = 12.2 15.8 cfs
Q, = 2.3 4.9 cfs
Qb = 0.0 2.1 cfs
C% — 100 70 %
BASIN D INLETS.xlsm, D-14 7/15/2024, 331 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
D-15
� T""^" � This worksheet uses the NRCS vegetal
� T � retardance method to determine
� Manning's n for grass-lined channels.
i� - �i
z d z d Mnx
- 1 An override Manning's n can be
� � entered for other channel materials.
�I-B�
RCS Vegetal Retardance (A, B, C, D, or E)
anning's n(Leave cell D16 blank to manually enter an n value)
iannel Invert Slope
�ttom Width
�ft Side Slope
ght Side Sloe
Check one of the following soil types:
Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI
Non-Cohesive 5.0 fps 0.60
Cohesive 7.0 fps 0.80
Paved N/A N/A
aximum Allowable Top Width of Channel for Minor & Major Storm
aximum Allowable Water Depth in Channel for Minor & Major Storm
A, B, C, D, or E_
n = 0.013
So = 0.0050 k/ft
B = 0.00 ft
Z1 = 50.00 fUft
Z2 = 50.00 ft/ft
Choose One:
�; NomCohesive
� Cohesive
� Paved
Minor Storm Ma�or Storm
TM,ix = 28.00 28.00 ft
dMAX = 0.33 0.33 ft
num Allowable Top Width
r Depth
Area
=_d Perimeter
3ulic Radius
iing's n
Velocity
ity-Depth Product
aulic Depth
ie Number
num Flow Based on Allowable Water Depth
imum Allowable Water Depth
Width
r Area
[ed Perimeter
�aulic Radius
ning's n
� Velocity
city-Depth Product
aulic Depth
ide Number
imum Flow Based On Allowable Water Depth
M WOR STORM Allowable Capaciry is based on Top Width Criterion
MAJOR STORM Allowable Capacity is based on Top Width Qiterion
TM,ix = 28.00 28.00 ft
d = 0.28 0.28 ft
A= 3.92 3.92 sq ft
P = 28.01 28.01 ft
R = 0.14 0.14 ft
n = 0.013 0.013
V = 2.18 2.18 fps
VR = 031 031 ft^2,
D = 0.14 0.14 ft
Fr = 1.03 1.03
Qr = 8.6 8.6 cfs
dMAX -
T=
A=
P=
R=
Minor Storm Ma�or Storm
0.33 0.33
ft
n = 0.013 0.013
V = 2.44 2.44 fps
VR = 0.40 0.40 fM;
D = 0.17 0.17 ft
Fr = 1.06 1.06
Qa = 13.3 13.3 cfs
Minor Storm Major Storm
Q,iio„, = 8.6 S.6 cfs
da��ow = 0.28 0.28 ft
Design Peak Flow Qa = 0.5
Water Depth d = 0.10
Top Width T = 9.51
Flow Area A = 0.45
Wetted Perimeter P = 9.51
Hydraulic Radius R = 0.05
Manning's n n = 0.013
Flow Velocity V = 1.06
Velocity-Depth Product VR = 0.05
Hydraulic Depth D = 0.05
Froude Number Fr = 0.86
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY
2.1 Icfs
16.47
0.08
0.013
1.53
ft
BASIN D INLETS.xlsm, D-15 7/15/2024, 331 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
D-15
� of Inlet User-Defned _I Inlet Type = User-Defned
e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees
h of Grate � W= 1.92 ft
th of Grate L= 6.00 ft
i Area Ratio A�no = OJO
ht of Indined Grate � � HB = 0.00 ft
�ing Factor . ' _ � Cf = 0.50
e Discharge Coefficient '� ��� Cd = N/A
:e Coeffcient ,
�� ,� � Cb = 0.64
Coefficient W � 1 C� = 2.05
`\`; 1.� ^
Depth at Inlet (for depressed inlets, 1 foot is added for depression)
MINOR MAJOR
d = 0.10 0.16
�erged Side Weir Length
ed Side Weir Flow
Weir Flow
:eption WithoutCloggging
:eption With Clogging
Without Clogging
With Clogging
Inlet Interception Capacity (assumes clogged condition)
sed Flow
re Percentage = Qa/Qo
X = 6.00 6.00 ft
Qws = 0.6 1.4 cfs
Qwn = 0.3 OJ cfs
Q„; = 1.6 3.5 cfs
Qwa = 0.8 1.8 cfs
Qa; = 12.8 16.8 cfs
Qoa = 6.4 8.4 cfs
Q, = 0.8 1.8 cfs
Qb = 0.0 0.3 cfs
C% — 100 85 %
BASIN D INLETS.xlsm, D-15 7/15/2024, 331 PM
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
InIetID: D-1
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LS.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 29.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 18.0 18A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 4.32 432 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 5.83 5.83 inches
Tx = 16.0 16.0 �
Eo = 0.330 0.330
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 5.8 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 4.9 7.0 cfs
with Clogging Q„„ = 2.5 3.5 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 7J 8.4 cfs
with Clogging Qoa = 3.8 4.2 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.17 0.17
MINOR MAJOR
Qw; = 4.0 6.6 cfs
Qwa = 3.4 5.5 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 3.00 3.00 feet
T = 18.0 22.9 ft
dceowry = 0.0 0.0 inches
MINOR MAIOR
d�,a�e = 0.51 0.61 ft
dc�ro = 032 0.42 ft
RF�,a�e = 0.91 1.00
RFc,,,b = N/A N/A
RFcombmano� = 0.91 1.00
MINOR MAJOR
Q, = 4.8 6.6 cfs
�Fae aFnivaFn = 13 5.7 cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
InIetID: D-2
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LS.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 18.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 18.0 18A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 4.32 432 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 5.83 5.83 inches
Tx = 16.0 16.0 �
Eo = 0.330 0.330
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 2
Ponding Depth = 5.8 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 5.4 8.5 cfs
with Clogging Q„„ = 3.4 53 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 15.3 16J cfs
with Clogging Qoa = 9.6 10.5 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.08 0.08
MINOR MAJOR
Qw; = 4.4 7.9 cfs
Qwa = 4.0 7.2 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 6.00 6.00 feet
T = 18.0 22.9 ft. >T-Crown
dceowry = 0.0 1.2 inches
MINOR MAIOR
d�,a�e = 0.51 0.61 ft
dc�ro = 032 0.42 ft
RF�,a�e = 0.69 0.82
RFc,,,b = N/A N/A
RFcomb;,,ae�,o„ = 0.69 0.82
MINOR MAJOR
Q, = 6.1 10.2 cfs
�Fae aFnivaFn = 23 10.2 cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
InIetID: D-4
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LZ.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 29.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 29A 29A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 6.96 6.96 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 8.47 8.47 inches
Tx = 27.0 27.0 �
Eo = 0.201 0.201
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 2
Ponding Depth = 6.0 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 5.8 8.5 cfs
with Clogging Q„„ = 3.6 53 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 15.5 16J cfs
with Clogging Qoa = 9J 10.5 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.08 0.08
MINOR MAJOR
Qw; = 4.8 7.9 cfs
Qwa = 4.4 7.2 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 6.00 6.00 feet
T = 18.7 22.9 ft
dceowry = 0.0 0.0 inches
MINOR MAIOR
d�,a�e = 0•52 0.61 ft
dc�ro = 033 0.42 ft
RF�,a�e = OJl 0.82
RFc,,,b = N/A N/A
RFcombmano� = OJl 0.82
MINOR MAJOR
Q, = 6.6 10.2 cfs
�Fae aFnivaFn = 0.5 2.2 cf5
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
InIetID: D-5
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LS.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 18.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 18.0 18A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 4.32 432 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 5.83 5.83 inches
Tx = 16.0 16.0 �
Eo = 0.330 0.330
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 5.8 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 4.9 7.0 cfs
with Clogging Q„„ = 2.5 3.5 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 7J 8.4 cfs
with Clogging Qoa = 3.8 4.2 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.17 0.17
MINOR MAJOR
Qw; = 4.0 6.6 cfs
Qwa = 3.4 5.5 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 3.00 3.00 feet
T = 18.0 22.9 ft. >T-Crown
dceowry = 0.0 1.2 inches
MINOR MAIOR
d�,a�e = 0.51 0.61 ft
dc�ro = 032 0.42 ft
RF�,a�e = 0.91 1.00
RFc,,,b = N/A N/A
RFcombmano� = 0.91 1.00
MINOR MAJOR
Q, = 4.8 6.6 cfs
�Fae aFnivaFn = 0.4 1.8 cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
InIetID: D-6
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LS.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 18.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 18.0 18A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 4.32 432 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 5.83 5.83 inches
Tx = 16.0 16.0 �
Eo = 0.330 0.330
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 5.8 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 4.9 7.0 cfs
with Clogging Q„„ = 2.5 3.5 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 7J 8.4 cfs
with Clogging Qoa = 3.8 4.2 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.17 0.17
MINOR MAJOR
Qw; = 4.0 6.6 cfs
Qwa = 3.4 5.5 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 3.00 3.00 feet
T = 18.0 22.9 ft. >T-Crown
dceowry = 0.0 1.2 inches
MINOR MAIOR
d�,a�e = 0.51 0.61 ft
dc�ro = 032 0.42 ft
RF�,a�e = 0.91 1.00
RFc,,,b = N/A N/A
RFcombmano� = 0.91 1.00
MINOR MAJOR
Q, = 4.8 6.6 cfs
�Fae aFnivaFn = 0.4 1.8 cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
InIetID: D-10
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - ZL.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 19.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 19.0 19A ft
drnnx = 6.0 8.0 inches
Minor Storm Ma'or Storm
y = 4.56 4.56 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 6.07 6.07 inches
Tx = 17.0 17.0 �
Eo = 0.313 0.313
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 27.0 ff
Tx ni = 167 25.0 ft
Eo = 0315 0.216
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 3
Ponding Depth = 6.0 8.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 6.2 12.4 cfs
with Clogging Q„„ = 4.4 8.8 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 233 26.8 cfs
with Clogging Qoa = 16.5 19A cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.06 0.06
MINOR MAJOR
Qw; = 5.1 12.5 cfs
Qwa = 4.8 11.8 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 9.00 9.00 feet
T = 18J 27.0 ft. >T-Crown
dceowry = 0.0 1.9 inches
MINOR MAIOR
d�,a�e = 0•52 0.69 ft
dc�ro = 0.33 0.50 ft
RF�,a�e = 0.57 0.75
RFc,,,b = N/A N/A
RFcombmano� = 0.57 OJS
MINOR MAJOR
Q, = 7.5 16.8 cfs
�Fae aFnivaFn = 2.4 15.3 cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
InIetID: D-11
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - ZL.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 19.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 19.0 19A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 4.56 4.56 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 6.07 6.07 inches
Tx = 17.0 17.0 �
Eo = 0.313 0.313
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 2
Ponding Depth = 6.0 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 5.8 8.5 cfs
with Clogging Q„„ = 3.6 53 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 15.5 16J cfs
with Clogging Qoa = 9J 10.5 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.08 0.08
MINOR MAJOR
Qw; = 4.8 7.9 cfs
Qwa = 4.4 7.2 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 6.00 6.00 feet
T = 18.7 22.9 ft. >T-Crown
dceowry = 0.0 0.9 inches
MINOR MAIOR
d�,a�e = 0•52 0.61 ft
dc�ro = 033 0.42 ft
RF�,a�e = OJl 0.82
RFc,,,b = N/A N/A
RFcombmano� = OJl 0.82
MINOR MAJOR
Q, = 6.6 10.2 cfs
�Fae aFnivaFn = 0.9 8.1 Cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
InIetID: D-12
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - ZL.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 19.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 19.0 19A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 4.56 4.56 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 6.07 6.07 inches
Tx = 17.0 17.0 �
Eo = 0.313 0.313
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 2
Ponding Depth = 6.0 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 5.8 8.5 cfs
with Clogging Q„„ = 3.6 53 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 15.5 16J cfs
with Clogging Qoa = 9J 10.5 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.08 0.08
MINOR MAJOR
Qw; = 4.8 7.9 cfs
Qwa = 4.4 7.2 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 6.00 6.00 feet
T = 18.7 22.9 ft. >T-Crown
dceowry = 0.0 0.9 inches
MINOR MAIOR
d�,a�e = 0•52 0.61 ft
dc�ro = 033 0.42 ft
RF�,a�e = OJl 0.82
RFc,,,b = N/A N/A
RFcombmano� = OJl 0.82
MINOR MAJOR
Q, = 6.6 10.2 cfs
�Fae aFnivaFn = 1.5 6.7 cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
InIetID: D-13
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - ZL.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 19.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 19.0 19A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 4.56 4.56 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 6.07 6.07 inches
Tx = 17.0 17.0 �
Eo = 0.313 0.313
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 6.0 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 53 7.0 cfs
with Clogging Q„„ = 2.6 3.5 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 7.8 8.4 cfs
with Clogging Qoa = 3.9 4.2 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.17 0.17
MINOR MAJOR
Qw; = 4.4 6.6 cfs
Qwa = 3.7 5.5 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 3.00 3.00 feet
T = 18.7 22.9 ft. >T-Crown
dceowry = 0.0 0.9 inches
MINOR MAIOR
d�,a�e = 0•52 0.61 ft
dc�ro = 0.33 0.42 ft
RF�,a�e = 0.94 1.00
RFc,,,b = N/A N/A
RFcombmano� = 0.94 1.00
MINOR MAJOR
Q, = 5.1 6.6 cfs
aF� = 1.5 6.5 cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
InIetID: D-16
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LZ.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 18.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 18.0 18A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 4.32 432 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 5.83 5.83 inches
Tx = 16.0 16.0 �
Eo = 0.330 0.330
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 5.8 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 4.9 7.0 cfs
with Clogging Q„„ = 2.5 3.5 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 7J 8.4 cfs
with Clogging Qoa = 3.8 4.2 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.17 0.17
MINOR MAJOR
Qw; = 4.0 6.6 cfs
Qwa = 3.4 5.5 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 3.00 3.00 feet
T = 18.0 22.9 ft. >T-Crown
dceowry = 0.0 1.2 inches
MINOR MAIOR
d�,a�e = 0.51 0.61 ft
dc�ro = 032 0.42 ft
RF�,a�e = 0.91 1.00
RFc,,,b = N/A N/A
RFcombmano� = 0.91 1.00
MINOR MAJOR
Q, = 4.8 6.6 cfs
�Fae aFnivaFn = 0.2 1.0 Cf5
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
InIetID: D-17
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LZ.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 18.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 18.0 18A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 4.32 432 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 5.83 5.83 inches
Tx = 16.0 16.0 �
Eo = 0.330 0.330
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 5.8 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 4.9 7.0 cfs
with Clogging Q„„ = 2.5 3.5 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 7J 8.4 cfs
with Clogging Qoa = 3.8 4.2 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.17 0.17
MINOR MAJOR
Qw; = 4.0 6.6 cfs
Qwa = 3.4 5.5 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 3.00 3.00 feet
T = 18.0 22.9 ft. >T-Crown
dceowry = 0.0 1.2 inches
MINOR MAIOR
d�,a�e = 0.51 0.61 ft
dc�ro = 032 0.42 ft
RF�,a�e = 0.91 1.00
RFc,,,b = N/A N/A
RFcombmano� = 0.91 1.00
MINOR MAJOR
Q, = 4.8 6.6 cfs
�Fae aFnivaFn = 0.6 2.5 cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
InIetID: D-18
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LS.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 18.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 18.0 18A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 4.32 432 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 5.83 5.83 inches
Tx = 16.0 16.0 �
Eo = 0.330 0.330
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 5.8 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 4.9 7.0 cfs
with Clogging Q„„ = 2.5 3.5 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 7J 8.4 cfs
with Clogging Qoa = 3.8 4.2 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.17 0.17
MINOR MAJOR
Qw; = 4.0 6.6 cfs
Qwa = 3.4 5.5 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 3.00 3.00 feet
T = 18.0 22.9 ft. >T-Crown
dceowry = 0.0 1.2 inches
MINOR MAIOR
d�,a�e = 0.51 0.61 ft
dc�ro = 032 0.42 ft
RF�,a�e = 0.91 1.00
RFc,,,b = N/A N/A
RFcombmano� = 0.91 1.00
MINOR MAJOR
Q, = 4.8 6.6 cfs
�Fae aFnivaFn = 0.8 3.4 Cfs
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
F-5
� T""^" � This worksheet uses the NRCS vegetal
� T � retardance method to determine
� Manning's n for grass-lined channels.
i� - �i
z d z d Mnx
- 1 An override Manning's n can be
� � entered for other channel materials.
�I-B�
RCS Vegetal Retardance (A, B, C, D, or E)
anning's n(Leave cell D16 blank to manually enter an n value)
iannel Invert Slope
�ttom Width
�ft Side Slope
ght Side Sloe
Check one of the following soil types:
Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI
Non-Cohesive 5.0 fps 0.60
Cohesive 7.0 fps 0.80
Paved N/A N/A
aximum Allowable Top Width of Channel for Minor & Major Storm
aximum Allowable Water Depth in Channel for Minor & Major Storm
A, B, C, D, or E_
n = 0.013
So = 0.0050 k/ft
B = 0.00 ft
Z1 = 50.00 fUft
Z2 = 50.00 ft/ft
Choose One:
�; NomCohesive
� Cohesive
� Paved
Minor Storm Ma�or Storm
TM,ix = 28.00 28.00 ft
dMAX - 0.42 0.42 ft
num Allowable Top Width
r Depth
Area
=_d Perimeter
3ulic Radius
iing's n
Velocity
ity-Depth Product
aulic Depth
ie Number
num Flow Based on Allowable Water Depth
imum Allowable Water Depth
Width
r Area
[ed Perimeter
�aulic Radius
ning's n
� Velocity
city-Depth Product
aulic Depth
ide Number
imum Flow Based On Allowable Water Depth
M WOR STORM Allowable Capaciry is based on Top Width Criterion
MAJOR STORM Allowable Capacity is based on Top Width Qiterion
TM,ix = 28.00 28.00 ft
d = 0.28 0.28 ft
A= 3.92 3.92 sq ft
P = 28.01 28.01 ft
R = 0.14 0.14 ft
n = 0.013 0.013
V = 2.18 2.18 fps
VR = 031 031 ft^2,
D = 0.14 0.14 ft
Fr = 1.03 1.03
Qr = 8.6 8.6 cfs
dMAX -
T=
A=
P=
R=
Minor Storm Ma�or Storm
0.42 0.42
ft
n = 0.013 0.013
V = 2.86 2.86 fps
VR = 0.60 0.60 fM;
D = 0.21 0.21 ft
Fr = 1.10 1.10
Qa = 25.3 25.3 cfs
Minor Storm Major Storm
Q,iio„, = 8.6 S.6 cfs
da��ow = 0.28 0.28 ft
Design Peak Flow Qa = 1.2
Water Depth d = 0.13
Top Width T = 13.23
Flow Area A = 0.88
Wetted Perimeter P = 13.23
Hydraulic Radius R = 0.07
Manning's n n = 0.013
Flow Velocity V = 133
Velocity-Depth Product VR = 0.09
Hydraulic Depth D = 0.07
Froude Number Fr = 0.91
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY
5.1 Icfs
22.97
0.11
0.013
1.91
ft
BASIN F INLETS.xlsm, F-5 7/15/2024, 3:36 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
F-5
� of Inlet User-Defned _I Inlet Type = User-Defned
e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees
h of Grate � W= 1.92 ft
th of Grate L= 6.00 ft
i Area Ratio A�no = OJO
ht of Indined Grate � � HB = 0.00 ft
�ing Factor . ' _ � Cf = 0.50
e Discharge Coefficient '� ��� Cd = N/A
:e Coeffcient ,
�� ,� � Cb = 0.64
Coefficient W � 1 C� = 2.05
`\`; 1.� ^
Depth at Inlet (for depressed inlets, 1 foot is added for depression)
MINOR MAJOR
d = 0.13 0.23
�erged Side Weir Length
ed Side Weir Flow
Weir Flow
:eption WithoutCloggging
:eption With Clogging
Without Clogging
With Clogging
Inlet Interception Capacity (assumes clogged condition)
sed Flow
re Percentage = Qa/Qo
X = 6.00 6.00 ft
Qws = 1.0 2.4 cfs
Qwb - �.S 1.1 Cf5
Q„; = 2.5 5.8 cfs
Qwa = 1.3 2.9 cfs
Qa; = 15.1 19.8 cfs
Qoa = 7.5 9.9 cfs
Q, = 1.3 2.9 cfs
Qb = 0.0 2.1 cfs
C% — 100 58 %
BASIN F INLETS.xlsm, F-5 7/15/2024, 3:36 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
F-7
� T""^" � This worksheet uses the NRCS vegetal
� T � retardance method to determine
� Manning's n for grass-lined channels.
i� - �i
z d z d Mnx
- 1 An override Manning's n can be
� � entered for other channel materials.
�I-B�
RCS Vegetal Retardance (A, B, C, D, or E)
anning's n(Leave cell D16 blank to manually enter an n value)
iannel Invert Slope
�ttom Width
�ft Side Slope
ght Side Sloe
Check one of the following soil types:
Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI
Non-Cohesive 5.0 fps 0.60
Cohesive 7.0 fps 0.80
Paved N/A N/A
aximum Allowable Top Width of Channel for Minor & Major Storm
aximum Allowable Water Depth in Channel for Minor & Major Storm
A, B, C, D, or E_
n = 0.013
So = 0.0050 k/ft
B = 0.00 ft
Z1 = 33.33 fUft
Z2 = 33.33 ft/ft
Choose One:
�; NomCohesive
� Cohesive
� Paved
Minor Storm Ma�or Storm
TM,ix = 28.00 28.00 ft
dMAX - 0.42 0.42 ft
num Allowable Top Width
r Depth
Area
=_d Perimeter
3ulic Radius
iing's n
Velocity
ity-Depth Product
aulic Depth
ie Number
num Flow Based on Allowable Water Depth
imum Allowable Water Depth
Width
r Area
[ed Perimeter
�aulic Radius
ning's n
� Velocity
city-Depth Product
aulic Depth
ide Number
imum Flow Based On Allowable Water Depth
M WOR STORM Allowable Capaciry is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion
TM,ix = 28.00 28.00 ft
d = 0.42 0.42 ft
A= 5.88 5.88 sq ft
P = 28.01 28.01 ft
R = 0.21 0.21 ft
n = 0.013 0.013
V = 2.86 2.86 fps
VR = 0.60 0.60 ft^2,
D = 0.21 0.21 ft
Fr = 1.10 1.10
QT = 16.8 16.8 cfs
dMAX -
T=
A=
P=
R=
Minor Storm Ma�or Storm
0.42 0.42
ft
n = 0.013 0.013
V = 2.86 2.86 fps
VR = 0.60 0.60 fM;
D = 0.21 0.21 ft
Fr = 1.10 1.10
Qa = 16.8 16.8 cfs
Minor Storm Major Storm
Q,iio„, = 16.8 16.5 cfs
da��ow = 0.42 0.42 ft
Design Peak Flow Qa = 2.9
Water Depth d = 0.22
Top Width T = 14.50
Flow Area A = 1.58
Wetted Perimeter P = 14.50
Hydraulic Radius R = 0.11
Manning's n n = 0.013
Flow Velocity V = 1.85
Velocity-Depth Product VR = 0.20
Hydraulic Depth D = 0.11
Froude Number Fr = 0.99
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY
12.7 I cfs
25.20
0.19
0.013
2.67
ft
BASIN F INLETS.xlsm, F-7 7/15/2024, 3:36 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
F-7
� of Inlet User-Defned _I Inlet Type = User-Defned
e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees
h of Grate � W= 1.92 ft
th of Grate L= 9.00 ft
i Area Ratio A�no = OJO
ht of Indined Grate � � HB = 0.00 ft
�ing Factor . ' _ � Cf = 0.50
e Discharge Coefficient '� ��� Cd = N/A
:e Coeffcient ,
�� ,� � Cb = 0.64
Coefficient W � 1 C� = 2.05
`\`; 1.� ^
Depth at Inlet (for depressed inlets, 1 foot is added for depression)
MINOR MAJOR
d = 0.22 038
�erged Side Weir Length
ed Side Weir Flow
Weir Flow
:eption WithoutCloggging
:eption With Clogging
Without Clogging
With Clogging
Inlet Interception Capacity (assumes clogged condition)
sed Flow
re Percentage = Qa/Qo
X = 9.00 9.00 ft
Qws = 3.3 7.5 cfs
Qwn = 1.0 2.3 cfs
Q„,; = 7.5 17.3 cfs
Qwa = 3.8 Sb cfs
Qa; = 29.0 38.2 cfs
Qoa = 14.5 19.1 cfs
Q, = 3.8 8.6 cfs
Qb = 0.0 4.1 cfs
C% — 100 68 %
BASIN F INLETS.xlsm, F-7 7/15/2024, 3:36 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
F-9
� T""^" � This worksheet uses the NRCS vegetal
� T � retardance method to determine
� Manning's n for grass-lined channels.
i� - �i
z d z d Mnx
- 1 An override Manning's n can be
� � entered for other channel materials.
�I-B�
RCS Vegetal Retardance (A, B, C, D, or E)
anning's n(Leave cell D16 blank to manually enter an n value)
iannel Invert Slope
�ttom Width
�ft Side Slope
ght Side Sloe
Check one of the following soil types:
Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI
Non-Cohesive 5.0 fps 0.60
Cohesive 7.0 fps 0.80
Paved N/A N/A
aximum Allowable Top Width of Channel for Minor & Major Storm
aximum Allowable Water Depth in Channel for Minor & Major Storm
A, B, C, D, or E_
n = 0.013
So = 0.0050 k/ft
B = 0.00 ft
Z1 = 50.00 fUft
Z2 = 50.00 ft/ft
Choose One:
�; NomCohesive
� Cohesive
� Paved
Minor Storm Ma�or Storm
TM,ix = 28.00 28.00 ft
dMAX - O.ZS 0.28 ft
num Allowable Top Width
r Depth
Area
=_d Perimeter
3ulic Radius
iing's n
Velocity
ity-Depth Product
aulic Depth
ie Number
num Flow Based on Allowable Water Depth
imum Allowable Water Depth
Width
r Area
[ed Perimeter
�aulic Radius
ning's n
� Velocity
city-Depth Product
aulic Depth
ide Number
imum Flow Based On Allowable Water Depth
M WOR STORM Allowable Capaciry is based on Top Width Criterion
MAJOR STORM Allowable Capacity is based on Top Width Qiterion
TM,ix = 28.00 28.00 ft
d = 0.28 0.28 ft
A= 3.92 3.92 sq ft
P = 28.01 28.01 ft
R = 0.14 0.14 ft
n = 0.013 0.013
V = 2.18 2.18 fps
VR = 031 031 ft^2,
D = 0.14 0.14 ft
Fr = 1.03 1.03
Qr = 8.6 8.6 cfs
Minor Storm Ma�or Storm
dMAX - O.ZS 0.28
T = 28.00 28.00
A = 3.92 3.92
P = 28.01 28.01
ft
R = 0.14 0.14 ft
n = 0.013 0.013
V = 2.18 2.18 fps
VR = 031 031 fM;
D = 0.14 0.14 ft
Fr = 1.03 1.03
Qa = 8.6 8.6 cfs
Minor Storm Major Storm
Q,iio„, = 8.6 S.6 cfs
da��ow = 0.28 0.28 ft
Design Peak Flow Qa = 1.4
Water Depth d = 0.14
Top Width T = 14.24
Flow Area A = 1.01
Wetted Perimeter P = 14.24
Hydraulic Radius R = 0.07
Manning's n n = 0.013
Flow Velocity V = 1.39
Velocity-Depth Product VR = 0.10
Hydraulic Depth D = 0.07
Froude Number Fr = 0.92
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY
6.1 Icfs
24.72
0.12
0.013
2.01
ft
BASIN F INLETS.xlsm, F-9 7/15/2024, 3:37 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
F-9
� of Inlet User-Defned _I Inlet Type = User-Defned
e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees
h of Grate � W= 1.92 ft
th of Grate L= 6.00 ft
i Area Ratio A�no = OJO
ht of Indined Grate � � HB = 0.00 ft
�ing Factor . ' _ � Cf = 0.50
e Discharge Coefficient '� ��� Cd = N/A
:e Coeffcient ,
�� ,� � Cb = 0.64
Coefficient W � 1 C� = 2.05
`\`; 1.� ^
Depth at Inlet (for depressed inlets, 1 foot is added for depression)
MINOR MAJOR
d = 0.14 0.25
�erged Side Weir Length
ed Side Weir Flow
Weir Flow
:eption WithoutCloggging
:eption With Clogging
Without Clogging
With Clogging
Inlet Interception Capacity (assumes clogged condition)
sed Flow
re Percentage = Qa/Qo
X = 6.00 6.00 ft
Qws = 1.2 2.6 cfs
Qwb - �.S 1.2 Cf5
Q„; = 2.8 6.5 cfs
Qwa = 1.4 3.2 cfs
Qa; = 15.6 20.6 cfs
Qoa = 7.8 10.3 cfs
Q, = 1.4 3.2 cfs
Qb = 0.0 2.9 cfs
C% — 100 53 %
BASIN F INLETS.xlsm, F-9 7/15/2024, 3:37 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
F-10
� T""^" � This worksheet uses the NRCS vegetal
� T � retardance method to determine
� Manning's n for grass-lined channels.
i� - �i
z d z d Mnx
- 1 An override Manning's n can be
� � entered for other channel materials.
�I-B�
RCS Vegetal Retardance (A, B, C, D, or E)
anning's n(Leave cell D16 blank to manually enter an n value)
iannel Invert Slope
�ttom Width
�ft Side Slope
ght Side Sloe
Check one of the following soil types:
Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI
Non-Cohesive 5.0 fps 0.60
Cohesive 7.0 fps 0.80
Paved N/A N/A
aximum Allowable Top Width of Channel for Minor & Major Storm
aximum Allowable Water Depth in Channel for Minor & Major Storm
A, B, C, D, or E_
n = 0.013
So = 0.0050 k/ft
B = 0.00 ft
Z1 = 50.00 fUft
Z2 = 50.00 ft/ft
Choose One:
�; NomCohesive
� Cohesive
� Paved
Minor Storm Ma�or Storm
TM,ix = 28.00 28.00 ft
dMAX - O.ZS 0.28 ft
num Allowable Top Width
r Depth
Area
=_d Perimeter
3ulic Radius
iing's n
Velocity
ity-Depth Product
aulic Depth
ie Number
num Flow Based on Allowable Water Depth
imum Allowable Water Depth
Width
r Area
[ed Perimeter
�aulic Radius
ning's n
� Velocity
city-Depth Product
aulic Depth
ide Number
imum Flow Based On Allowable Water Depth
M WOR STORM Allowable Capaciry is based on Top Width Criterion
MAJOR STORM Allowable Capacity is based on Top Width Qiterion
TM,ix = 28.00 28.00 ft
d = 0.28 0.28 ft
A= 3.92 3.92 sq ft
P = 28.01 28.01 ft
R = 0.14 0.14 ft
n = 0.013 0.013
V = 2.18 2.18 fps
VR = 031 031 ft^2,
D = 0.14 0.14 ft
Fr = 1.03 1.03
Qr = 8.6 8.6 cfs
Minor Storm Ma�or Storm
dMAX - O.ZS 0.28
T = 28.00 28.00
A = 3.92 3.92
P = 28.01 28.01
ft
R = 0.14 0.14 ft
n = 0.013 0.013
V = 2.18 2.18 fps
VR = 031 031 fM;
D = 0.14 0.14 ft
Fr = 1.03 1.03
Qa = 8.6 8.6 cfs
Minor Storm Major Storm
Q,iio„, = 8.6 S.6 cfs
da��ow = 0.28 0.28 ft
Design Peak Flow Qa = 0.4
Water Depth d = 0.09
Top Width T = 9.05
Flow Area A = 0.41
Wetted Perimeter P = 9.05
Hydraulic Radius R = 0.05
Manning's n n = 0.013
Flow Velocity V = 1.03
Velocity-Depth Product VR = 0.05
Hydraulic Depth D = 0.05
Froude Number Fr = 0.85
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY
1.S Icfs
15.73
0.08
0.013
1.49
ft
BASIN F INLETS.xlsm, F-10 7/15/2024, 3:37 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
F-10
� of Inlet User-Defned _I Inlet Type = User-Defned
e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees
h of Grate � W= 1.92 ft
th of Grate L= 3.00 ft
i Area Ratio A�no = OJO
ht of Indined Grate � � HB = 0.00 ft
�ing Factor . ' _ � Cf = 0.50
e Discharge Coefficient '� ��� Cd = N/A
:e Coeffcient ,
�� ,� � Cb = 0.64
Coefficient W � 1 C� = 2.05
`\`; 1.� ^
Depth at Inlet (for depressed inlets, 1 foot is added for depression)
MINOR MAJOR
d = 0.09 0.16
�erged Side Weir Length
ed Side Weir Flow
Weir Flow
:eption WithoutCloggging
:eption With Clogging
Without Clogging
With Clogging
Inlet Interception Capacity (assumes clogged condition)
sed Flow
re Percentage = Qa/Qo
X = 3.00 3.00 ft
Qws = 03 OJ cfs
Qwn = 0.3 0.6 cfs
Q„; = 0.9 2A cfs
Qwa = 0.4 lA cfs
Qa; = 6.2 8.2 cfs
Qoa = 3.1 4.1 cfs
Q, = 0.4 1.0 cfs
Qb = 0.0 0.9 cfs
C% — 100 53 %
BASIN F INLETS.xlsm, F-10 7/15/2024, 3:37 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
F-14
� T""^" � This worksheet uses the NRCS vegetal
� T � retardance method to determine
� Manning's n for grass-lined channels.
i� - �i
z d z d Mnx
- 1 An override Manning's n can be
� � entered for other channel materials.
�I-B�
RCS Vegetal Retardance (A, B, C, D, or E)
anning's n(Leave cell D16 blank to manually enter an n value)
iannel Invert Slope
�ttom Width
�ft Side Slope
ght Side Sloe
Check one of the following soil types:
Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI
Non-Cohesive 5.0 fps 0.60
Cohesive 7.0 fps 0.80
Paved N/A N/A
aximum Allowable Top Width of Channel for Minor & Major Storm
aximum Allowable Water Depth in Channel for Minor & Major Storm
A, B, C, D, or E_
n = 0.013
So = 0.0055 k/ft
B = 0.00 ft
Z1 = 50.00 fUft
Z2 = 50.00 ft/ft
Choose One:
�; NomCohesive
� Cohesive
� Paved
Minor Storm Ma�or Storm
TM,ix = 28.00 28.00 ft
dMAX - O.ZS 0.28 ft
num Allowable Top Width
r Depth
Area
=_d Perimeter
3ulic Radius
iing's n
Velocity
ity-Depth Product
aulic Depth
ie Number
num Flow Based on Allowable Water Depth
imum Allowable Water Depth
Width
r Area
[ed Perimeter
�aulic Radius
ning's n
� Velocity
city-Depth Product
aulic Depth
ide Number
imum Flow Based On Allowable Water Depth
M WOR STORM Allowable Capaciry is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion
TM,ix = 28.00 28.00 ft
d = 0.28 0.28 ft
A= 3.92 3.92 sq ft
P = 28.01 28.01 ft
R = 0.14 0.14 ft
n = 0.013 0.013
V = 2.29 2.29 fps
VR = 032 032 ft^2,
D = 0.14 0.14 ft
Fr = 1.08 1.08
Qr = 9.0 9.0 cfs
Minor Storm Ma�or Storm
dMAX - O.ZS 0.28
T = 28.00 28.00
A = 3.92 3.92
P = 28.01 28.01
ft
R = 0.14 0.14 ft
n = 0.013 0.013
V = 2.29 2.29 fps
VR = 032 032 fM;
D = 0.14 0.14 ft
Fr = 1.08 1.08
Qa = 9.0 9.0 cfs
Minor Storm Major Storm
Q,iio„, = 9.0 9.0 cfs
da��ow = 0.28 0.28 ft
Design Peak Flow Qa = 1.6
Water Depth d = 0.15
Top Width T = 14.66
Flow Area A = 1.08
Wetted Perimeter P = 14.67
Hydraulic Radius R = 0.07
Manning's n n = 0.013
Flow Velocity V = 1.49
Velocity-Depth Product VR = 0.11
Hydraulic Depth D = 0.07
Froude Number Fr = 0.97
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY
7.0 I cfs
25.48
0.13
0.013
2.15
ft
BASIN F INLETS.xlsm, F-14 7/15/2024, 3:37 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
F-14
� of Inlet User-Defned _I Inlet Type = User-Defned
e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees
h of Grate � W= 1.92 ft
th of Grate L= 9.00 ft
i Area Ratio A�no = OJO
ht of Indined Grate � � HB = 0.00 ft
�ing Factor . ' _ � Cf = 0.50
e Discharge Coefficient '� ��� Cd = N/A
:e Coeffcient ,
�� ,� � Cb = 0.64
Coefficient W � 1 C� = 2.05
`\`; 1.� ^
Depth at Inlet (for depressed inlets, 1 foot is added for depression)
MINOR MAJOR
d = 0.15 0.25
�erged Side Weir Length
ed Side Weir Flow
Weir Flow
:eption WithoutCloggging
:eption With Clogging
Without Clogging
With Clogging
Inlet Interception Capacity (assumes clogged condition)
sed Flow
re Percentage = Qa/Qo
X = 9.00 9.00 ft
Qws = 1.8 4.2 cfs
Qwn = 0.6 1.3 cfs
Q„; = 4.2 9.6 cfs
Qwa = 2.1 4.8 cfs
Qa; = 23.8 31.4 cfs
Qoa = 11.9 15.7 cfs
Q, = 2.1 4.8 cfs
Qb = 0.0 2.2 cfs
C% — 100 69 %
BASIN F INLETS.xlsm, F-14 7/15/2024, 3:37 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
F-15
� T""^" � This worksheet uses the NRCS vegetal
� T � retardance method to determine
� Manning's n for grass-lined channels.
i� - �i
z d z d Mnx
- 1 An override Manning's n can be
� � entered for other channel materials.
�I-B�
RCS Vegetal Retardance (A, B, C, D, or E)
anning's n(Leave cell D16 blank to manually enter an n value)
iannel Invert Slope
�ttom Width
�ft Side Slope
ght Side Sloe
Check one of the following soil types:
Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI
Non-Cohesive 5.0 fps 0.60
Cohesive 7.0 fps 0.80
Paved N/A N/A
aximum Allowable Top Width of Channel for Minor & Major Storm
aximum Allowable Water Depth in Channel for Minor & Major Storm
A, B, C, D, or E_
n = 0.013
So = 0.0050 k/ft
B = 0.00 ft
Z1 = 33.33 fUft
Z2 = 33.33 ft/ft
Choose One:
�; NomCohesive
� Cohesive
� Paved
Minor Storm Ma�or Storm
TM,ix = 28.00 28.00 ft
dMAX - 0.42 0.42 ft
num Allowable Top Width
r Depth
Area
=_d Perimeter
3ulic Radius
iing's n
Velocity
ity-Depth Product
aulic Depth
ie Number
num Flow Based on Allowable Water Depth
imum Allowable Water Depth
Width
r Area
[ed Perimeter
�aulic Radius
ning's n
� Velocity
city-Depth Product
aulic Depth
ide Number
imum Flow Based On Allowable Water Depth
M WOR STORM Allowable Capaciry is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion
TM,ix = 28.00 28.00 ft
d = 0.42 0.42 ft
A= 5.88 5.88 sq ft
P = 28.01 28.01 ft
R = 0.21 0.21 ft
n = 0.013 0.013
V = 2.86 2.86 fps
VR = 0.60 0.60 ft^2,
D = 0.21 0.21 ft
Fr = 1.10 1.10
QT = 16.8 16.8 cfs
dMAX -
T=
A=
P=
R=
Minor Storm Ma�or Storm
0.42 0.42
ft
n = 0.013 0.013
V = 2.86 2.86 fps
VR = 0.60 0.60 fM;
D = 0.21 0.21 ft
Fr = 1.10 1.10
Qa = 16.8 16.8 cfs
Minor Storm Major Storm
Q,iio„, = 16.8 16.5 cfs
da��ow = 0.42 0.42 ft
Design Peak Flow Qa = 2.2
Water Depth d = 0.20
Top Width T = 13.14
Flow Area A = 1.30
Wetted Perimeter P = 13.15
Hydraulic Radius R = 0.10
Manning's n n = 0.013
Flow Velocity V = 1J3
Velocity-Depth Product VR = 0.17
Hydraulic Depth D = 0.10
Froude Number Fr = 0.97
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY
9.S Icfs
22.83
0.17
0.013
2.50
ft
BASIN F INLETS.xlsm, F-15 7/15/2024, 3:38 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
F-15
� of Inlet User-Defned _I Inlet Type = User-Defned
e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees
h of Grate � W= 1.92 ft
th of Grate L= 6.00 ft
i Area Ratio A�no = OJO
ht of Indined Grate � � HB = 0.00 ft
�ing Factor . ' _ � Cf = 0.50
e Discharge Coefficient '� ��� Cd = N/A
:e Coeffcient ,
�� ,� � Cb = 0.64
Coefficient W � 1 C� = 2.05
`\`; 1.� ^
Depth at Inlet (for depressed inlets, 1 foot is added for depression)
MINOR MAJOR
d = 0.20 034
�erged Side Weir Length
ed Side Weir Flow
Weir Flow
:eption WithoutCloggging
:eption With Clogging
Without Clogging
With Clogging
Inlet Interception Capacity (assumes clogged condition)
sed Flow
re Percentage = Qa/Qo
X = 6.00 6.00 ft
Qws = 1.9 43 cfs
Qwn = 0.9 2.0 cfs
Q„; = 4.6 10.6 cfs
Qwa = 2.3 53 cfs
Qa; = 18.4 24.2 cfs
Qoa = 9.2 12.1 cfs
Q, = 2.3 5.3 cfs
Qb = 0.0 4.5 cfs
C% — 100 54 %
BASIN F INLETS.xlsm, F-15 7/15/2024, 3:38 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
F-20
� T""^" � This worksheet uses the NRCS vegetal
� T � retardance method to determine
� Manning's n for grass-lined channels.
i� - �i
z d z d Mnx
- 1 An override Manning's n can be
� � entered for other channel materials.
�I-B�
RCS Vegetal Retardance (A, B, C, D, or E)
anning's n(Leave cell D16 blank to manually enter an n value)
iannel Invert Slope
�ttom Width
�ft Side Slope
ght Side Sloe
Check one of the following soil types:
Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI
Non-Cohesive 5.0 fps 0.60
Cohesive 7.0 fps 0.80
Paved N/A N/A
aximum Allowable Top Width of Channel for Minor & Major Storm
aximum Allowable Water Depth in Channel for Minor & Major Storm
A, B, C, D, or E_
n = 0.013
So = 0.0050 k/ft
B = 0.00 ft
Z1 = 50.00 fUft
Z2 = 50.00 ft/ft
Choose One:
�; NomCohesive
� Cohesive
� Paved
Minor Storm Ma�or Storm
TM,ix = 28.00 28.00 ft
dMAX - O.ZS 0.28 ft
num Allowable Top Width
r Depth
Area
=_d Perimeter
3ulic Radius
iing's n
Velocity
ity-Depth Product
aulic Depth
ie Number
num Flow Based on Allowable Water Depth
imum Allowable Water Depth
Width
r Area
[ed Perimeter
�aulic Radius
ning's n
� Velocity
city-Depth Product
aulic Depth
ide Number
imum Flow Based On Allowable Water Depth
M WOR STORM Allowable Capaciry is based on Top Width Criterion
MAJOR STORM Allowable Capacity is based on Top Width Qiterion
TM,ix = 28.00 28.00 ft
d = 0.28 0.28 ft
A= 3.92 3.92 sq ft
P = 28.01 28.01 ft
R = 0.14 0.14 ft
n = 0.013 0.013
V = 2.18 2.18 fps
VR = 031 031 ft^2,
D = 0.14 0.14 ft
Fr = 1.03 1.03
Qr = 8.6 8.6 cfs
Minor Storm Ma�or Storm
dMAX - O.ZS 0.28
T = 28.00 28.00
A = 3.92 3.92
P = 28.01 28.01
ft
R = 0.14 0.14 ft
n = 0.013 0.013
V = 2.18 2.18 fps
VR = 031 031 fM;
D = 0.14 0.14 ft
Fr = 1.03 1.03
Qa = 8.6 8.6 cfs
Minor Storm Major Storm
Q,iio„, = 8.6 S.6 cfs
da��ow = 0.28 0.28 ft
Design Peak Flow Qa = 1.1
Water Depth d = 0.13
Top Width T = 12.88
Flow Area A = 0.83
Wetted Perimeter P = 12.88
Hydraulic Radius R = 0.06
Manning's n n = 0.013
Flow Velocity V = 1.30
Velocity-Depth Product VR = 0.08
Hydraulic Depth D = 0.06
Froude Number Fr = 0.90
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY
4.7 I cfs
22.38
0.11
0.013
1.88
ft
BASIN F INLETS.xlsm, F-20 7/15/2024, 3:38 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
F-20
� of Inlet User-Defned _I Inlet Type = User-Defned
e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees
h of Grate � W= 1.92 ft
th of Grate L= 6.00 ft
i Area Ratio A�no = OJO
ht of Indined Grate � � HB = 0.00 ft
�ing Factor . ' _ � Cf = 0.50
e Discharge Coefficient '� ��� Cd = N/A
:e Coeffcient ,
�� ,� � Cb = 0.64
Coefficient W � 1 C� = 2.05
`\`; 1.� ^
Depth at Inlet (for depressed inlets, 1 foot is added for depression)
MINOR MAJOR
d = 0.13 0.22
�erged Side Weir Length
ed Side Weir Flow
Weir Flow
:eption WithoutCloggging
:eption With Clogging
Without Clogging
With Clogging
Inlet Interception Capacity (assumes clogged condition)
sed Flow
re Percentage = Qa/Qo
X = 6.00 6.00 ft
Qws = lA 23 cfs
Qwb - �.S 1.� Cf5
Q„; = 2.4 5.6 cfs
Qwa = 1.2 2.8 cfs
Qa; = 14.9 19.6 cfs
Qoa = 7.4 9.8 cfs
Q, = 1.2 2.8 cfs
Qb = 0.0 1.9 cfs
C% — 100 59 %
BASIN F INLETS.xlsm, F-20 7/15/2024, 3:38 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
F-22
� T""^" � This worksheet uses the NRCS vegetal
� T � retardance method to determine
� Manning's n for grass-lined channels.
i� - �i
z d z d Mnx
- 1 An override Manning's n can be
� � entered for other channel materials.
�I-B�
RCS Vegetal Retardance (A, B, C, D, or E)
anning's n(Leave cell D16 blank to manually enter an n value)
iannel Invert Slope
�ttom Width
�ft Side Slope
ght Side Sloe
Check one of the following soil types:
Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI
Non-Cohesive 5.0 fps 0.60
Cohesive 7.0 fps 0.80
Paved N/A N/A
aximum Allowable Top Width of Channel for Minor & Major Storm
aximum Allowable Water Depth in Channel for Minor & Major Storm
A, B, C, D, or E_
n = 0.013
So = 0.0050 k/ft
B = 0.00 ft
Z1 = 33.33 fUft
Z2 = 33.33 ft/ft
Choose One:
�; NomCohesive
� Cohesive
� Paved
Minor Storm Ma�or Storm
TM,ix = 28.00 28.00 ft
dMAX - 0.42 0.42 ft
num Allowable Top Width
r Depth
Area
=_d Perimeter
3ulic Radius
iing's n
Velocity
ity-Depth Product
aulic Depth
ie Number
num Flow Based on Allowable Water Depth
imum Allowable Water Depth
Width
r Area
[ed Perimeter
�aulic Radius
ning's n
� Velocity
city-Depth Product
aulic Depth
ide Number
imum Flow Based On Allowable Water Depth
M WOR STORM Allowable Capaciry is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion
TM,ix = 28.00 28.00 ft
d = 0.42 0.42 ft
A= 5.88 5.88 sq ft
P = 28.01 28.01 ft
R = 0.21 0.21 ft
n = 0.013 0.013
V = 2.86 2.86 fps
VR = 0.60 0.60 ft^2,
D = 0.21 0.21 ft
Fr = 1.10 1.10
QT = 16.8 16.8 cfs
dMAX -
T=
A=
P=
R=
Minor Storm Ma�or Storm
0.42 0.42
ft
n = 0.013 0.013
V = 2.86 2.86 fps
VR = 0.60 0.60 fM;
D = 0.21 0.21 ft
Fr = 1.10 1.10
Qa = 16.8 16.8 cfs
Minor Storm Major Storm
Q,iio„, = 16.8 16.5 cfs
da��ow = 0.42 0.42 ft
Design Peak Flow Qa = 2.5
Water Depth d = 0.21
Top Width T = 13.78
Flow Area A = 1.42
Wetted Perimeter P = 13.78
Hydraulic Radius R = 0.10
Manning's n n = 0.013
Flow Velocity V = 1J8
Velocity-Depth Product VR = 0.18
Hydraulic Depth D = 0.10
Froude Number Fr = 0.98
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY
11.0 I cfs
23.91
0.18
0.013
2.58
ft
BASIN F INLETS.xlsm, F-22 7/15/2024, 3:39 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
F-22
� of Inlet User-Defned _I Inlet Type = User-Defned
e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees
h of Grate � W= 1.92 ft
th of Grate L= 9.00 ft
i Area Ratio A�no = OJO
ht of Indined Grate � � HB = 0.00 ft
�ing Factor . ' _ � Cf = 0.50
e Discharge Coefficient '� ��� Cd = N/A
:e Coeffcient ,
�� ,� � Cb = 0.64
Coefficient W � 1 C� = 2.05
`\`; 1.� ^
Depth at Inlet (for depressed inlets, 1 foot is added for depression)
MINOR MAJOR
d = 0.21 036
�erged Side Weir Length
ed Side Weir Flow
Weir Flow
:eption WithoutCloggging
:eption With Clogging
Without Clogging
With Clogging
Inlet Interception Capacity (assumes clogged condition)
sed Flow
re Percentage = Qa/Qo
X = 9.00 9.00 ft
Qws = 3.0 69 cfs
Qwn = 0.9 2.1 cfs
Q„; = 7.0 16A cfs
Qwa = 3.5 SA cfs
Qa; = 28.2 37.2 cfs
Qoa = 14.1 18.6 cfs
Q, = 3.5 8.0 cfs
Qb = 0.0 3.1 cfs
C% — 100 72 %
BASIN F INLETS.xlsm, F-22 7/15/2024, 3:39 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
F-27
� T""^" � This worksheet uses the NRCS vegetal
� T � retardance method to determine
� Manning's n for grass-lined channels.
i� - �i
z d z d Mnx
- 1 An override Manning's n can be
� � entered for other channel materials.
�I-B�
RCS Vegetal Retardance (A, B, C, D, or E)
anning's n(Leave cell D16 blank to manually enter an n value)
iannel Invert Slope
�ttom Width
�ft Side Slope
ght Side Sloe
Check one of the following soil types:
Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI
Non-Cohesive 5.0 fps 0.60
Cohesive 7.0 fps 0.80
Paved N/A N/A
aximum Allowable Top Width of Channel for Minor & Major Storm
aximum Allowable Water Depth in Channel for Minor & Major Storm
A, B, C, D, or E_
n = 0.013
So = 0.0050 k/ft
B = 0.00 ft
Z1 = 50.00 fUft
Z2 = 50.00 ft/ft
Choose One:
�; NomCohesive
� Cohesive
� Paved
Minor Storm Ma�or Storm
TM,ix = 28.00 28.00 ft
dMAX - O.ZS 0.28 ft
num Allowable Top Width
r Depth
Area
=_d Perimeter
3ulic Radius
iing's n
Velocity
ity-Depth Product
aulic Depth
ie Number
num Flow Based on Allowable Water Depth
imum Allowable Water Depth
Width
r Area
[ed Perimeter
�aulic Radius
ning's n
� Velocity
city-Depth Product
aulic Depth
ide Number
imum Flow Based On Allowable Water Depth
M WOR STORM Allowable Capaciry is based on Top Width Criterion
MAJOR STORM Allowable Capacity is based on Top Width Qiterion
TM,ix = 28.00 28.00 ft
d = 0.28 0.28 ft
A= 3.92 3.92 sq ft
P = 28.01 28.01 ft
R = 0.14 0.14 ft
n = 0.013 0.013
V = 2.18 2.18 fps
VR = 031 031 ft^2,
D = 0.14 0.14 ft
Fr = 1.03 1.03
Qr = 8.6 8.6 cfs
Minor Storm Ma�or Storm
dMAX - O.ZS 0.28
T = 28.00 28.00
A = 3.92 3.92
P = 28.01 28.01
ft
R = 0.14 0.14 ft
n = 0.013 0.013
V = 2.18 2.18 fps
VR = 031 031 fM;
D = 0.14 0.14 ft
Fr = 1.03 1.03
Qa = 8.6 8.6 cfs
Minor Storm Major Storm
Q,iio„, = 8.6 S.6 cfs
da��ow = 0.28 0.28 ft
Design Peak Flow Qa = 1.4
Water Depth d = 0.14
Top Width T = 14.12
Flow Area A = 1.00
Wetted Perimeter P = 14.13
Hydraulic Radius R = 0.07
Manning's n n = 0.013
Flow Velocity V = 1.38
Velocity-Depth Product VR = 0.10
Hydraulic Depth D = 0.07
Froude Number Fr = 0.92
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY
6.0 I cfs
24.54
0.12
0.013
2.00
ft
BASIN F INLETS.xlsm, F-27 7/15/2024, 3:39 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
F-27
� of Inlet User-Defned _I Inlet Type = User-Defned
e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees
h of Grate � W= 1.92 ft
th of Grate L= 6.00 ft
i Area Ratio A�no = OJO
ht of Indined Grate � � HB = 0.00 ft
�ing Factor . ' _ � Cf = 0.50
e Discharge Coefficient '� ��� Cd = N/A
:e Coeffcient ,
�� ,� � Cb = 0.64
Coefficient W � 1 C� = 2.05
`\`; 1.� ^
Depth at Inlet (for depressed inlets, 1 foot is added for depression)
MINOR MAJOR
d = 0.14 0.25
�erged Side Weir Length
ed Side Weir Flow
Weir Flow
:eption WithoutCloggging
:eption With Clogging
Without Clogging
With Clogging
Inlet Interception Capacity (assumes clogged condition)
sed Flow
re Percentage = Qa/Qo
X = 6.00 6.00 ft
Qws = 11 2.6 cfs
Qwb - �.S 1.2 Cf5
Q„; = 2.8 6.4 cfs
Qwa = 1.4 3.2 cfs
Qa; = 15.6 20.5 cfs
Qoa = 7.8 10.3 cfs
Q, = 1.4 3.2 cfs
Qb = 0.0 2.S cfs
C% — 100 53 %
BASIN F INLETS.xlsm, F-27 7/15/2024, 3:39 PM
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: F-1
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - 29.0 ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 11.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 11.0 11A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 2.64 2.64 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 415 4.15 inches
Tx = 9.0 9A R
Eo = 0.532 0.532
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 4.2 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 2Z 7.0 cfs
with Clogging Q„„ = 1.1 3.5 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 6.5 8.4 cfs
with Clogging Qoa = 33 4.2 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.17 0.17
MINOR MAJOR
Qw; = 1.2 6.6 cfs
Qwa = 1.0 5.5 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 3.00 3.00 feet
T = 11.0 22.9 ft. >T-Crown
dceowry = 0.0 2.8 inches
MINOR MAIOR
d�,a�e = 037 0.61 ft
dc,,,b = 0.18 0.42 ft
RF�,a�e = 0.65 1.00
RFc,,,b = N/A N/A
RFcombmano� = 0.65 1.00
MINOR MAJOR
Q, = 1.7 6.6 cfs
�Fae aFnivaFn = 1.4 5.1 cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: F-2
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - 29.0 ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 11.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 11.0 11A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 2.64 2.64 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 415 4.15 inches
Tx = 9.0 9A R
Eo = 0.532 0.532
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 4.2 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 2Z 7.0 cfs
with Clogging Q„„ = 1.1 3.5 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 6.5 8.4 cfs
with Clogging Qoa = 33 4.2 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.17 0.17
MINOR MAJOR
Qw; = 1.2 6.6 cfs
Qwa = 1.0 5.5 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 3.00 3.00 feet
T = 11.0 22.9 ft. >T-Crown
dceowry = 0.0 2.8 inches
MINOR MAIOR
d�,a�e = 037 0.61 ft
dc,,,b = 0.18 0.42 ft
RF�,a�e = 0.65 1.00
RFc,,,b = N/A N/A
RFcombmano� = 0.65 1.00
MINOR MAJOR
Q, = 1.7 6.6 cfs
�Fae aFnivaFn = 13 4.9 Cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: F-3
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LZ.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 18.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 18.0 18A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 4.32 432 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 5.83 5.83 inches
Tx = 16.0 16.0 �
Eo = 0.330 0.330
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 5.8 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 4.9 7.0 cfs
with Clogging Q„„ = 2.5 3.5 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 7J 8.4 cfs
with Clogging Qoa = 3.8 4.2 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.17 0.17
MINOR MAJOR
Qw; = 4.0 6.6 cfs
Qwa = 3.4 5.5 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 3.00 3.00 feet
T = 18.0 22.9 ft. >T-Crown
dceowry = 0.0 1.2 inches
MINOR MAIOR
d�,a�e = 0.51 0.61 ft
dc�ro = 032 0.42 ft
RF�,a�e = 0.91 1.00
RFc,,,b = N/A N/A
RFcombmano� = 0.91 1.00
MINOR MAJOR
Q, = 4.8 6.6 cfs
�Fae aFnivaFn = 0.1 0.5 Cf5
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: F-4
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LZ.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 18.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 18.0 18A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 4.32 432 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 5.83 5.83 inches
Tx = 16.0 16.0 �
Eo = 0.330 0.330
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 5.8 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 4.9 7.0 cfs
with Clogging Q„„ = 2.5 3.5 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 7J 8.4 cfs
with Clogging Qoa = 3.8 4.2 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.17 0.17
MINOR MAJOR
Qw; = 4.0 6.6 cfs
Qwa = 3.4 5.5 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 3.00 3.00 feet
T = 18.0 22.9 ft. >T-Crown
dceowry = 0.0 1.2 inches
MINOR MAIOR
d�,a�e = 0.51 0.61 ft
dc�ro = 032 0.42 ft
RF�,a�e = 0.91 1.00
RFc,,,b = N/A N/A
RFcombmano� = 0.91 1.00
MINOR MAJOR
Q, = 4.8 6.6 cfs
�Fae aFnivaFn = 03 1.4 Cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: F-6
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LZ.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 18.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 18.0 18A ft
drnnx = 6.0 7.5 inches
Minor Storm Ma'or Storm
y = 4.32 432 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 5.83 5.83 inches
Tx = 16.0 16.0 �
Eo = 0.330 0.330
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 25.0 ff
Tx ni = 167 23.0 ft
Eo = 0315 0.235
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 4
Ponding Depth = 6.0 7.5 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 7.6 13.2 cfs
with Clogging Q„„ = 5.8 101 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 31.1 34.6 cfs
with Clogging Qoa = 23.8 26.5 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = L25 1.25
CIo9 = 0.05 0.05
MINOR MAJOR
Qw; = 63 12J cfs
Qwa = 6.0 12.0 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 12.00 12.00 feet
T = 18.7 25.0 ft. >T-Crown
dceowry = 0.2 1J inches
MINOR MAIOR
d�,a�e = 0•52 0.65 ft
dc�ro = 0.33 0.46 ft
RF�,a�e = 0.57 0.71
RFc,,,b = N/A N/A
RFcombmano� = 0.57 OJl
MINOR MAJOR
Q, = 9.6 18.0 cfs
�Fae aFnivaFn = 3.1 17.6 Cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: F-11
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LZ.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 18.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 18.0 18A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 4.32 432 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 5.83 5.83 inches
Tx = 16.0 16.0 �
Eo = 0.330 0.330
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 5.8 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 4.9 7.0 cfs
with Clogging Q„„ = 2.5 3.5 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 7J 8.4 cfs
with Clogging Qoa = 3.8 4.2 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.17 0.17
MINOR MAJOR
Qw; = 4.0 6.6 cfs
Qwa = 3.4 5.5 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 3.00 3.00 feet
T = 18.0 22.9 ft. >T-Crown
dceowry = 0.0 1.2 inches
MINOR MAIOR
d�,a�e = 0.51 0.61 ft
dc�ro = 032 0.42 ft
RF�,a�e = 0.91 1.00
RFc,,,b = N/A N/A
RFcombmano� = 0.91 1.00
MINOR MAJOR
Q, = 4.8 6.6 cfs
�Fae aFnivaFn = 0.5 2.2 cf5
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: F-12
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LZ.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 18.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 18.0 18A ft
drnnx = 6.0 8.0 inches
Minor Storm Ma'or Storm
y = 4.32 432 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 5.83 5.83 inches
Tx = 16.0 16.0 �
Eo = 0.330 0.330
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 27.0 ff
Tx ni = 167 25.0 ft
Eo = 0315 0.216
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 5.8 8.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 4.9 8.5 cfs
with Clogging Q„„ = 2.5 43 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 7J 8.9 cfs
with Clogging Qoa = 3.8 4.5 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.17 0.17
MINOR MAJOR
Qw; = 4.0 8J cfs
Qwa = 3.4 7.2 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 3.00 3.00 feet
T = 18.0 27.0 ft. >T-Crown
dceowry = 0.0 2.2 inches
MINOR MAIOR
d�,a�e = 0.51 0.69 ft
dc�ro = 032 0.50 ft
RF�,a�e = 0.91 1.00
RFc,,,b = N/A N/A
RFcombmano� = 0.91 1.00
MINOR MAJOR
Q, = 4.8 7.6 cfs
�Fak aFniiraFn = 1.1 7,0 Cf5
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: F-13
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LZ.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 18.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 18.0 18A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 4.32 432 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 5.83 5.83 inches
Tx = 16.0 16.0 �
Eo = 0.330 0.330
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 2
Ponding Depth = 5.8 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 5.4 8.5 cfs
with Clogging Q„„ = 3.4 53 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 15.3 16J cfs
with Clogging Qoa = 9.6 10.5 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.08 0.08
MINOR MAJOR
Qw; = 4.4 7.9 cfs
Qwa = 4.0 7.2 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 6.00 6.00 feet
T = 18.0 22.9 ft. >T-Crown
dceowry = 0.0 1.2 inches
MINOR MAIOR
d�,a�e = 0.51 0.61 ft
dc�ro = 032 0.42 ft
RF�,a�e = 0.69 0.82
RFc,,,b = N/A N/A
RFcomb;,,ae�,o„ = 0.69 0.82
MINOR MAJOR
Q, = 6.1 10.2 cfs
�Fae aFnivaFn = 0.8 7.4 Cf5
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: F-16
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LZ.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 29.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 29A 29A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 6.96 6.96 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 8.47 8.47 inches
Tx = 27.0 27.0 �
Eo = 0.201 0.201
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 6.0 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 53 7.0 cfs
with Clogging Q„„ = 2.6 3.5 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 7.8 8.4 cfs
with Clogging Qoa = 3.9 4.2 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.17 0.17
MINOR MAJOR
Qw; = 4.4 6.6 cfs
Qwa = 3.7 5.5 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 3.00 3.00 feet
T = 18.7 22.9 ft
dceowry = 0.0 0.0 inches
MINOR MAIOR
d�,a�e = 0•52 0.61 ft
dc�ro = 0.33 0.42 ft
RF�,a�e = 0.94 1.00
RFc,,,b = N/A N/A
RFcombmano� = 0.94 1.00
MINOR MAJOR
Q, = 5.1 6.6 cfs
aF� = 0.6 2.4 cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: F-17
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LS.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 18.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 18.0 18A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 4.32 432 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 5.83 5.83 inches
Tx = 16.0 16.0 �
Eo = 0.330 0.330
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 5.8 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 4.9 7.0 cfs
with Clogging Q„„ = 2.5 3.5 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 7J 8.4 cfs
with Clogging Qoa = 3.8 4.2 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.17 0.17
MINOR MAJOR
Qw; = 4.0 6.6 cfs
Qwa = 3.4 5.5 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 3.00 3.00 feet
T = 18.0 22.9 ft. >T-Crown
dceowry = 0.0 1.2 inches
MINOR MAIOR
d�,a�e = 0.51 0.61 ft
dc�ro = 032 0.42 ft
RF�,a�e = 0.91 1.00
RFc,,,b = N/A N/A
RFcombmano� = 0.91 1.00
MINOR MAJOR
Q, = 4.8 6.6 cfs
�Fae aFnivaFn = 0.8 3.2 cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: F-25
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - ZO.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 10.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 10.0 l0A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 2.40 2.40 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 3.91 3.91 inches
Tx = 8.0 8A R
Eo = 0.577 0.577
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 2
Ponding Depth = 3.9 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 2.1 8.5 cfs
with Clogging Q„„ = 13 53 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 12J 16J cfs
with Clogging Qoa = 7.9 10.5 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.08 0.08
MINOR MAJOR
Qw; = 1.0 7.9 cfs
Qwa = 1.0 7.2 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 6.00 6.00 feet
T = 10.0 22.9 ft. >T-Crown
dceowry = 0.0 3.1 inches
MINOR MAIOR
d�,a�e = 035 0.61 ft
dc,,,b = 0.16 0.42 ft
RF�,a�e = 0.46 0.82
RFc,,,b = N/A N/A
RFcombmano� = 0.46 0.82
MINOR MAJOR
Q, = 1.8 10.2 cfs
�Fae aFnivaFn = 0.7 6.9 Cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: F-26
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - ZO.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 10.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 10.0 l0A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 2.40 2.40 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 3.91 3.91 inches
Tx = 8.0 8A R
Eo = 0.577 0.577
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 2
Ponding Depth = 3.9 7.5 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 21 10.1 cfs
with Clogging Q„„ = 13 63 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 12J 173 cfs
with Clogging Qoa = 7.9 10.8 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.08 0.08
MINOR MAJOR
Qw; = 1.0 9J cfs
Qwa = 1.0 8.9 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 6.00 6.00 feet
T = 10.0 25.0 ft. >T-Crown
dceowry = 0.0 3.6 inches
MINOR MAIOR
d�,a�e = 035 0.65 ft
dc,,,b = 0.16 0.46 ft
RF�,a�e = 0.46 0.88
RFc,,,b = N/A N/A
RFcombmano� = 0.46 0.88
MINOR MAJOR
Q, = 1.8 12.2 cfs
�Fae aFnivaFn = 0.7 10.4 Cf5
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: F-29
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LZ.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 18.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 18.0 18A ft
drnnx = 6.0 7.5 inches
Minor Storm Ma'or Storm
y = 4.32 432 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 5.83 5.83 inches
Tx = 16.0 16.0 �
Eo = 0.330 0.330
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 25.0 ff
Tx ni = 167 23.0 ft
Eo = 0315 0.235
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 2
Ponding Depth = 5.8 8.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 5.4 11.8 cFs
with Clogging Q„„ = 3.4 7.4 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 15.3 17.8 cfs
with Clogging Qoa = 9.6 11.2 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.08 0.08
MINOR MAJOR
Qw; = 4.4 11.8 cfs
Qwa = 4.0 10.9 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 6.00 6.00 feet
T = 18.0 27.0 ft. >T-Crown
dceowry = 0.0 2.2 inches
MINOR MAIOR
d�,a�e = 0.51 0.69 ft
dc�ro = 032 0.50 ft
RF�,a�e = 0.69 0.94
RFc,,,b = N/A NJA
RFcomb;,,ae�,o„ = 0.69 0.94
MINOR MAJOR
Q, = 6.1 13.9 cfs
�Fae aFnivaFn = 13 13.2 cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: F-8
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LZ.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 18.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 18.0 18A ft
drnnx = 6.0 8.0 inches
Minor Storm Ma'or Storm
y = 4.32 432 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 5.83 5.83 inches
Tx = 16.0 16.0 �
Eo = 0.330 0.330
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 27.0 ff
Tx ni = 167 25.0 ft
Eo = 0315 0.216
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 5
Ponding Depth = 5.8 8.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 8.5 18.4 cFs
with Clogging Q„„ = 6.9 14.8 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 38.3 44.6 cfs
with Clogging Qoa = 30.9 36A cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.31 131
CIo9 = 0.04 0.04
MINOR MA]OR
Qw; = 6.9 18.4 cfs
Qwa = 6.6 17.6 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 15.00 15.00 feet
T = 18.0 27.0 ft. >T-Crown
dceowry = 0.0 2.2 inches
MINOR MAIOR
d�,a�e = 0.51 0.69 ft
dc�ro = 032 0.50 ft
RF�,a�e = 0.55 0.75
RFc,,,b = N/A N/A
RFcombmano� = 0.55 OJS
MINOR MAJOR
Q, = 10.9 26.5 cfs
�Fae aFnivaFn = 63 33.8 cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: F-32
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LZ.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 18.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 18.0 18A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 4.32 432 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 5.83 5.83 inches
Tx = 16.0 16.0 �
Eo = 0.330 0.330
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 5.8 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 4.9 7.0 cfs
with Clogging Q„„ = 2.5 3.5 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 7J 8.4 cfs
with Clogging Qoa = 3.8 4.2 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.17 0.17
MINOR MAJOR
Qw; = 4.0 6.6 cfs
Qwa = 3.4 5.5 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 3.00 3.00 feet
T = 18.0 22.9 ft. >T-Crown
dceowry = 0.0 1.2 inches
MINOR MAIOR
d�,a�e = 0.51 0.61 ft
dc�ro = 032 0.42 ft
RF�,a�e = 0.91 1.00
RFc,,,b = N/A N/A
RFcombmano� = 0.91 1.00
MINOR MAJOR
Q, = 4.8 6.6 cfs
�Fae aFnivaFn = 0.2 0.6 Cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: F-33
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LZ.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 18.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 18.0 18A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 4.32 432 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 5.83 5.83 inches
Tx = 16.0 16.0 �
Eo = 0.330 0.330
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 5.8 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 4.9 7.0 cfs
with Clogging Q„„ = 2.5 3.5 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 7J 8.4 cfs
with Clogging Qoa = 3.8 4.2 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.17 0.17
MINOR MAJOR
Qw; = 4.0 6.6 cfs
Qwa = 3.4 5.5 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 3.00 3.00 feet
T = 18.0 22.9 ft. >T-Crown
dceowry = 0.0 1.2 inches
MINOR MAIOR
d�,a�e = 0.51 0.61 ft
dc�ro = 032 0.42 ft
RF�,a�e = 0.91 1.00
RFc,,,b = N/A N/A
RFcombmano� = 0.91 1.00
MINOR MAJOR
Q, = 4.8 6.6 cfs
�Fae aFnivaFn = 0.5 2.1 cf5
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
Gl-6
� T""^" � This worksheet uses the NRCS vegetal
� T � retardance method to determine
� Manning's n for grass-lined channels.
i� - �i
z d z d Mnx
- 1 An override Manning's n can be
� � entered for other channel materials.
�I-B�
RCS Vegetal Retardance (A, B, C, D, or E)
anning's n(Leave cell D16 blank to manually enter an n value)
iannel Invert Slope
�ttom Width
�ft Side Slope
ght Side Sloe
Check one of the following soil types:
Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI
Non-Cohesive 5.0 fps 0.60
Cohesive 7.0 fps 0.80
Paved N/A N/A
aximum Allowable Top Width of Channel for Minor & Major Storm
aximum Allowable Water Depth in Channel for Minor & Major Storm
A, B, C, D, or E_
n = 0.013
So = 0.0050 k/ft
B = 0.00 ft
Z1 = 50.00 fUft
Z2 = 50.00 ft/ft
Choose One:
�; NomCohesive
� Cohesive
� Paved
Minor Storm Ma�or Storm
TM,ix = 28.00 28.00 ft
dMAX - O.ZS 0.28 ft
num Allowable Top Width
r Depth
Area
=_d Perimeter
3ulic Radius
iing's n
Velocity
ity-Depth Product
aulic Depth
ie Number
num Flow Based on Allowable Water Depth
imum Allowable Water Depth
Width
r Area
[ed Perimeter
�aulic Radius
ning's n
� Velocity
city-Depth Product
aulic Depth
ide Number
imum Flow Based On Allowable Water Depth
M WOR STORM Allowable Capaciry is based on Top Width Criterion
MAJOR STORM Allowable Capacity is based on Top Width Qiterion
TM,ix = 28.00 28.00 ft
d = 0.28 0.28 ft
A= 3.92 3.92 sq ft
P = 28.01 28.01 ft
R = 0.14 0.14 ft
n = 0.013 0.013
V = 2.18 2.18 fps
VR = 031 031 ft^2,
D = 0.14 0.14 ft
Fr = 1.03 1.03
Qr = 8.6 8.6 cfs
Minor Storm Ma�or Storm
dMAX - O.ZS 0.28
T = 28.00 28.00
A = 3.92 3.92
P = 28.01 28.01
ft
R = 0.14 0.14 ft
n = 0.013 0.013
V = 2.18 2.18 fps
VR = 031 031 fM;
D = 0.14 0.14 ft
Fr = 1.03 1.03
Qa = 8.6 8.6 cfs
Minor Storm Major Storm
Q,iio„, = 8.6 S.6 cfs
da��ow = 0.28 0.28 ft
Design Peak Flow Qa = 1.2
Water Depth d = 0.13
Top Width T = 13.27
Flow Area A = 0.88
Wetted Perimeter P = 13.28
Hydraulic Radius R = 0.07
Manning's n n = 0.013
Flow Velocity V = 133
Velocity-Depth Product VR = 0.09
Hydraulic Depth D = 0.07
Froude Number Fr = 0.91
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY
5.1 Icfs
23.06
0.12
0.013
1.92
ft
BASIN G INLETS.xlsm, G1-6 7/15/2024, 3:53 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
Gl-6
� of Inlet User-Defned _I Inlet Type = User-Defned
e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees
h of Grate � W= 1.92 ft
th of Grate L= 6.00 ft
i Area Ratio A�no = OJO
ht of Indined Grate � � HB = 0.00 ft
�ing Factor . ' _ � Cf = 0.50
e Discharge Coefficient '� ��� Cd = N/A
:e Coeffcient ,
�� ,� � Cb = 0.64
Coefficient W � 1 C� = 2.05
`\`; 1.� ^
Depth at Inlet (for depressed inlets, 1 foot is added for depression)
MINOR MAJOR
d = 0.13 0.23
�erged Side Weir Length
ed Side Weir Flow
Weir Flow
:eption WithoutCloggging
:eption With Clogging
Without Clogging
With Clogging
Inlet Interception Capacity (assumes clogged condition)
sed Flow
re Percentage = Qa/Qo
X = 6.00 6.00 ft
Qws = 1.0 2.4 cfs
Qwb - �.S 1.1 Cf5
Q„; = 2.6 59 cfs
Qwa = 1.3 2.9 cfs
Qa; = 15.1 19.9 cfs
Qoa = 7.5 9.9 cfs
Q, = 1.3 2.9 cfs
Qb = 0.0 2.2 cfs
C% — 100 57 %
BASIN G INLETS.xlsm, G1-6 7/15/2024, 3:53 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
G1-7
� T""^" � This worksheet uses the NRCS vegetal
� T � retardance method to determine
� Manning's n for grass-lined channels.
i� - �i
z d z d Mnx
- 1 An override Manning's n can be
� � entered for other channel materials.
�I-B�
RCS Vegetal Retardance (A, B, C, D, or E)
anning's n(Leave cell D16 blank to manually enter an n value)
iannel Invert Slope
�ttom Width
�ft Side Slope
ght Side Sloe
Check one of the following soil types:
Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI
Non-Cohesive 5.0 fps 0.60
Cohesive 7.0 fps 0.80
Paved N/A N/A
aximum Allowable Top Width of Channel for Minor & Major Storm
aximum Allowable Water Depth in Channel for Minor & Major Storm
A, B, C, D, or E_
n = 0.013
So = 0.0050 k/ft
B = 0.00 ft
Z1 = 33.33 fUft
Z2 = 33.33 ft/ft
Choose One:
�; NomCohesive
� Cohesive
� Paved
Minor Storm Ma�or Storm
TM,ix = 28.00 28.00 ft
dMAX - 0.42 0.42 ft
num Allowable Top Width
r Depth
Area
=_d Perimeter
3ulic Radius
iing's n
Velocity
ity-Depth Product
aulic Depth
ie Number
num Flow Based on Allowable Water Depth
imum Allowable Water Depth
Width
r Area
[ed Perimeter
�aulic Radius
ning's n
� Velocity
city-Depth Product
aulic Depth
ide Number
imum Flow Based On Allowable Water Depth
M WOR STORM Allowable Capaciry is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion
TM,ix = 28.00 28.00 ft
d = 0.42 0.42 ft
A= 5.88 5.88 sq ft
P = 28.01 28.01 ft
R = 0.21 0.21 ft
n = 0.013 0.013
V = 2.86 2.86 fps
VR = 0.60 0.60 ft^2,
D = 0.21 0.21 ft
Fr = 1.10 1.10
QT = 16.8 16.8 cfs
dMAX -
T=
A=
P=
R=
Minor Storm Ma�or Storm
0.42 0.42
ft
n = 0.013 0.013
V = 2.86 2.86 fps
VR = 0.60 0.60 fM;
D = 0.21 0.21 ft
Fr = 1.10 1.10
Qa = 16.8 16.8 cfs
Minor Storm Major Storm
Q,iio„, = 16.8 16.5 cfs
da��ow = 0.42 0.42 ft
Design Peak Flow Qa = 3.0
Water Depth d = 0.22
Top Width T = 14.57
Flow Area A = 1.59
Wetted Perimeter P = 14.58
Hydraulic Radius R = 0.11
Manning's n n = 0.013
Flow Velocity V = 1.85
Velocity-Depth Product VR = 0.20
Hydraulic Depth D = 0.11
Froude Number Fr = 0.99
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY
12.9 I cfs
25.32
0.19
0.013
2.68
ft
BASIN G INLETS.xlsm, G1-7 7/15/2024, 3:53 PM
MHFD-Inlet, �ersion 5.03 (August ZOZ3)
�• � � �
MONTAVA PHASE D
G1-7
� of Inlet User-Defned _I Inlet Type = User-Defned
e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees
h of Grate � W= 1.92 ft
th of Grate L= 9.00 ft
i Area Ratio A�no = OJO
ht of Indined Grate � � HB = 0.00 ft
�ing Factor . ' _ � Cf = 0.50
e Discharge Coefficient '� ��� Cd = N/A
:e Coeffcient ,
�� ,� � Cb = 0.64
Coefficient W � 1 C� = 2.05
`\`; 1.� ^
Depth at Inlet (for depressed inlets, 1 foot is added for depression)
MINOR MAJOR
d = 0.22 038
�erged Side Weir Length
ed Side Weir Flow
Weir Flow
:eption WithoutCloggging
:eption With Clogging
Without Clogging
With Clogging
Inlet Interception Capacity (assumes clogged condition)
sed Flow
re Percentage = Qa/Qo
X = 9.00 9.00 ft
Qws = 3.3 7.6 cfs
Qwn = 1.0 2.3 cfs
Q„,; = 7.6 17.4 cfs
Qwa = 3.8 8.7 cfs
Qa; = 29.0 38.3 cfs
Qoa = 14.5 19.1 cfs
Q, = 3.8 SJ cfs
Qb = 0.0 4.2 cfs
C% — 100 68 %
BASIN G INLETS.xlsm, G1-7 7/15/2024, 3:53 PM
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: Gl-1
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LS.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 20.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 20A 20A ft
drnnx = 6.0 7.5 inches
Minor Storm Ma'or Storm
y = 4.80 4.80 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 631 631 inches
Tx = 18.0 18.0 �
Eo = 0.296 0.296
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 25.0 ff
Tx ni = 167 23.0 ft
Eo = 0315 0.235
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 2
Ponding Depth = 6.0 7.5 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 5.8 10.1 cfs
with Clogging Q„„ = 3.6 63 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 15.5 173 cfs
with Clogging Qoa = 9J 10.8 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.08 0.08
MINOR MAJOR
Qw; = 4.8 9J cfs
Qwa = 4.4 8.9 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 6.00 6.00 feet
T = 18.7 25.0 ft. >T-Crown
dceowry = 0.0 1.2 inches
MINOR MAIOR
d�,a�e = 0•52 0.65 ft
dc�ro = 033 0.46 ft
RF�,a�e = OJl 0.88
RFc,,,b = N/A N/A
RFcombmano� = OJl 0.88
MINOR MAJOR
Q, = 6.6 12.2 cfs
�Fae aFnivaFn = 2.5 10.7 cf5
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: Gl-2
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LS.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 20.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 20A 20A ft
drnnx = 6.0 7.5 inches
Minor Storm Ma'or Storm
y = 4.80 4.80 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 631 631 inches
Tx = 18.0 18.0 �
Eo = 0.296 0.296
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 25.0 ff
Tx ni = 167 23.0 ft
Eo = 0315 0.235
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 2
Ponding Depth = 6.0 7.5 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 5.8 10.1 cfs
with Clogging Q„„ = 3.6 63 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 15.5 173 cfs
with Clogging Qoa = 9J 10.8 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.08 0.08
MINOR MAJOR
Qw; = 4.8 9J cfs
Qwa = 4.4 8.9 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 6.00 6.00 feet
T = 18.7 25.0 ft. >T-Crown
dceowry = 0.0 1.2 inches
MINOR MAIOR
d�,a�e = 0•52 0.65 ft
dc�ro = 033 0.46 ft
RF�,a�e = OJl 0.88
RFc,,,b = N/A N/A
RFcombmano� = OJl 0.88
MINOR MAJOR
Q, = 6.6 12.2 cfs
�Fae aFnivaFn = 23 9.9 cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: Gl-3
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LZ.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 29.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 29A 29A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 6.96 6.96 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 8.47 8.47 inches
Tx = 27.0 27.0 �
Eo = 0.201 0.201
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 6.0 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 53 7.0 cfs
with Clogging Q„„ = 2.6 3.5 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 7.8 8.4 cfs
with Clogging Qoa = 3.9 4.2 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.17 0.17
MINOR MAJOR
Qw; = 4.4 6.6 cfs
Qwa = 3.7 5.5 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 3.00 3.00 feet
T = 18.7 22.9 ft
dceowry = 0.0 0.0 inches
MINOR MAIOR
d�,a�e = 0•52 0.61 ft
dc�ro = 0.33 0.42 ft
RF�,a�e = 0.94 1.00
RFc,,,b = N/A N/A
RFcombmano� = 0.94 1.00
MINOR MAJOR
Q, = 5.1 6.6 cfs
aF� = 0.8 3.4 cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: Gl-4
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LS.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 18.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 18.0 18A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 4.32 432 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 5.83 5.83 inches
Tx = 16.0 16.0 �
Eo = 0.330 0.330
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 5.8 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 4.9 7.0 cfs
with Clogging Q„„ = 2.5 3.5 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 7J 8.4 cfs
with Clogging Qoa = 3.8 4.2 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.17 0.17
MINOR MAJOR
Qw; = 4.0 6.6 cfs
Qwa = 3.4 5.5 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 3.00 3.00 feet
T = 18.0 22.9 ft. >T-Crown
dceowry = 0.0 1.2 inches
MINOR MAIOR
d�,a�e = 0.51 0.61 ft
dc�ro = 032 0.42 ft
RF�,a�e = 0.91 1.00
RFc,,,b = N/A N/A
RFcombmano� = 0.91 1.00
MINOR MAJOR
Q, = 4.8 6.6 cfs
�Fae aFnivaFn = 0.8 3.1 Cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: Gl-9
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - ZL.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 19.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 19.0 19A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 4.56 4.56 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 6.07 6.07 inches
Tx = 17.0 17.0 �
Eo = 0.313 0.313
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 2
Ponding Depth = 6.0 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 5.8 8.5 cfs
with Clogging Q„„ = 3.6 53 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 15.5 16J cfs
with Clogging Qoa = 9J 10.5 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.08 0.08
MINOR MAJOR
Qw; = 4.8 7.9 cfs
Qwa = 4.4 7.2 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 6.00 6.00 feet
T = 18.7 22.9 ft. >T-Crown
dceowry = 0.0 0.9 inches
MINOR MAIOR
d�,a�e = 0•52 0.61 ft
dc�ro = 033 0.42 ft
RF�,a�e = OJl 0.82
RFc,,,b = N/A N/A
RFcombmano� = OJl 0.82
MINOR MAJOR
Q, = 6.6 10.2 cfs
�Fae aFnivaFn = 2.2 8.7 Cf5
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: G1-10
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - L9.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 19.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 19.0 19A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 4.56 4.56 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 6.07 6.07 inches
Tx = 17.0 17.0 �
Eo = 0.313 0.313
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 6.0 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 53 7.0 cfs
with Clogging Q„„ = 2.6 3.5 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 7.8 8.4 cfs
with Clogging Qoa = 3.9 4.2 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.17 0.17
MINOR MAJOR
Qw; = 4.4 6.6 cfs
Qwa = 3.7 5.5 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 3.00 3.00 feet
T = 18.7 22.9 ft. >T-Crown
dceowry = 0.0 0.9 inches
MINOR MAIOR
d�,a�e = 0•52 0.61 ft
dc�ro = 0.33 0.42 ft
RF�,a�e = 0.94 1.00
RFc,,,b = N/A N/A
RFcombmano� = 0.94 1.00
MINOR MAJOR
Q, = 5.1 6.6 cfs
aF� = 1.� 4.6 cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: Gl-il
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - SI.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 20.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 20A 20A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 4.80 4.80 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 631 631 inches
Tx = 18.0 18.0 �
Eo = 0.296 0.296
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 6.0 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 53 7.0 cfs
with Clogging Q„„ = 2.6 3.5 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 7.8 8.4 cfs
with Clogging Qoa = 3.9 4.2 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.17 0.17
MINOR MAJOR
Qw; = 4.4 6.6 cfs
Qwa = 3.7 5.5 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 3.00 3.00 feet
T = 18.7 22.9 ft. >T-Crown
dceowry = 0.0 OJ inches
MINOR MAIOR
d�,a�e = 0•52 0.61 ft
dc�ro = 0.33 0.42 ft
RF�,a�e = 0.94 1.00
RFc,,,b = N/A N/A
RFcombmano� = 0.94 1.00
MINOR MAJOR
Q, = 5.1 6.6 cfs
aF� = 0.6 2.7 cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: G1-12
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LS.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 20.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 20A 20A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 4.80 4.80 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 631 631 inches
Tx = 18.0 18.0 �
Eo = 0.296 0.296
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 6.0 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 53 7.0 cfs
with Clogging Q„„ = 2.6 3.5 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 7.8 8.4 cfs
with Clogging Qoa = 3.9 4.2 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.17 0.17
MINOR MAJOR
Qw; = 4.4 6.6 cfs
Qwa = 3.7 5.5 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 3.00 3.00 feet
T = 18.7 22.9 ft. >T-Crown
dceowry = 0.0 OJ inches
MINOR MAIOR
d�,a�e = 0•52 0.61 ft
dc�ro = 0.33 0.42 ft
RF�,a�e = 0.94 1.00
RFc,,,b = N/A N/A
RFcombmano� = 0.94 1.00
MINOR MAJOR
Q, = 5.1 6.6 cfs
aF� = 0.7 2.8 cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: G1-13
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
of Curb at Gutter Flow Line
:e from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - ZL.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 19.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
Minor Storm Ma'or Storm
Tnnx = 19.0 19A ft
drnnx = 6.0 7.0 inches
INOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm
AJOR STORM Allowable Capacity is not a��plicable to Sump Condition Qai�ow = SUMP SUMP efs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
�ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (typical value 23-3.7)
Opening Orifice Coefficient (typical value 0.60 - OJO)
ifor Grate Midwidth
i for Curb Opening Weir Equation
�d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
iination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capacity (assumes clogged condition)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 6.0 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
MINOR MAJOR
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Cw (C) = 3JD
Co (C) = 0.66
MINOR MAJOR
d��a�e = 0.52 0.61 ft
dc��b = 033 0.42 ft
RF��a�z = 0•94 1.00
RFc,,,b = N/A N/A
RFcomnmavo� = 0•94 1.00
MINOR MAJOR
Qa = 5.1 6.6 cfs
QPEAKftEQIIiRED— O.S Z.Z Cf5
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: G1-14
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - ZL.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 19.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 19.0 19A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 4.56 4.56 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 6.07 6.07 inches
Tx = 17.0 17.0 �
Eo = 0.313 0.313
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 6.0 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 53 7.0 cfs
with Clogging Q„„ = 2.6 3.5 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 7.8 8.4 cfs
with Clogging Qoa = 3.9 4.2 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.17 0.17
MINOR MAJOR
Qw; = 4.4 6.6 cfs
Qwa = 3.7 5.5 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 3.00 3.00 feet
T = 18.7 22.9 ft. >T-Crown
dceowry = 0.0 0.9 inches
MINOR MAIOR
d�,a�e = 0•52 0.61 ft
dc�ro = 0.33 0.42 ft
RF�,a�e = 0.94 1.00
RFc,,,b = N/A N/A
RFcombmano� = 0.94 1.00
MINOR MAJOR
Q, = 5.1 6.6 cfs
aF� = 0.5 2.1 cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: G1-15
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LZ.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 18.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 18.0 18A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 4.32 432 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 5.83 5.83 inches
Tx = 16.0 16.0 �
Eo = 0.330 0.330
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 5.8 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 4.9 7.0 cfs
with Clogging Q„„ = 2.5 3.5 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 7J 8.4 cfs
with Clogging Qoa = 3.8 4.2 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.17 0.17
MINOR MAJOR
Qw; = 4.0 6.6 cfs
Qwa = 3.4 5.5 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 3.00 3.00 feet
T = 18.0 22.9 ft. >T-Crown
dceowry = 0.0 1.2 inches
MINOR MAIOR
d�,a�e = 0.51 0.61 ft
dc�ro = 032 0.42 ft
RF�,a�e = 0.91 1.00
RFc,,,b = N/A N/A
RFcombmano� = 0.91 1.00
MINOR MAJOR
Q, = 4.8 6.6 cfs
�Fae aFnivaFn = 03 3.3 cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: G1-16
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LZ.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 18.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 18.0 18A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 4.32 432 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 5.83 5.83 inches
Tx = 16.0 16.0 �
Eo = 0.330 0.330
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 5.8 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 4.9 7.0 cfs
with Clogging Q„„ = 2.5 3.5 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 7J 8.4 cfs
with Clogging Qoa = 3.8 4.2 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.17 0.17
MINOR MAJOR
Qw; = 4.0 6.6 cfs
Qwa = 3.4 5.5 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 3.00 3.00 feet
T = 18.0 22.9 ft. >T-Crown
dceowry = 0.0 1.2 inches
MINOR MAIOR
d�,a�e = 0.51 0.61 ft
dc�ro = 032 0.42 ft
RF�,a�e = 0.91 1.00
RFc,,,b = N/A N/A
RFcombmano� = 0.91 1.00
MINOR MAJOR
Q, = 4.8 6.6 cfs
�Fae aFnivaFn = 03 5.3 cfs
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: G1-17
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
of Curb at Gutter Flow Line
:e from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LZ.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 29.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
Minor Storm Ma'or Storm
Tnnx = 29A 29A ft
drnnx = 6.0 7.0 inches
INOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm
AJOR STORM Allowable Capacity is not a��plicable to Sump Condition Qai�ow = SUMP SUMP efs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
�ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (typical value 23-3.7)
Opening Orifice Coefficient (typical value 0.60 - OJO)
ifor Grate Midwidth
i for Curb Opening Weir Equation
�d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
iination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capacity (assumes clogged condition)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 6.0 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
MINOR MAJOR
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Cw (C) = 3JD
Co (C) = 0.66
MINOR MAJOR
d��a�e = 0.52 0.61 ft
dc��b = 033 0.42 ft
RF��a�z = 0•94 1.00
RFc,,,b = N/A N/A
RFcomnmavo� = 0•94 1.00
MINOR MAJOR
Qa = 5.1 6.6 cfs
Q PEAK ftEQIIiRED — O.1 O.S Cf5
MHFD-Inlet �ersion 5.03 Au ust 2023
� � � i � � � �' � � � ' • i . • •
(Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread)
Project: MONTAVA PHASE D
Inlet ID: G1-18
r T
T, T�
`-e�cx W T.
STftEET
a I p, CROwN
3, _� ��
num Allowable Width for Spread Behind Curb
Slope Behind Curb Qeave blank for no conveyance aedit behind curb)
iing's Roughness Behind Curb (typically between 0.012 and 0.020)
�. of Curb at Gutter Flow Line
ce from Curb Face to Street Crown
W idth
Transverse Slope
Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R)
Longitudinal Slope - Enter 0 for sump condition
�g's Roughness for Street Section (typically between 0.012 and 0.020)
TBACK - LS.O ft
SBACK - O.OZO ft/ft
�encK = 0.013
HcuRs = 6.00 inches
TcaowN = 18.D ft
W = 2.00 ft
Sx = 0.020 h/ft
SW = 0.083 ft/ft
So = 0.000 ft/ft
�sraeer = 0.013
Allowable Spread for Minor & Major Storm
Allowable Depth at Gutter Flowline for Minor & Major Storm
< boxes are not applicable in SUMP conditions
=r Depth without Gutter Depression (T * Sx * 12)
cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12)
�r Depression (d� - (W * 5, * 12))
�r Depth at Gutter Flowline (y + a)
vable Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
iarge outside the Gutter Sedion, carried in Section Tx
�arge within the Gutter Section (Qr - Qx - Qsaa)
�arge Behind the Curb (e.g., sidewalk, driveways, & lawns)
mum Flow Based On Allowable Spread
Velociry within the Gutter Section
Product: Flow Velocity times Gutter Flowline Depth
�retical Water Spread
�retical Spread for Discharge outside the Gutter Section (T - W)
�r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)
�retical Discharge outride the Gutter Sedion, carried in Section TxrH
al Discharge outside the Gutter Section, Qimited by distance Tcaowrv)
�arge within the Gutter Sedion (Qtl ' Qx)
iarge Behind the Curb (e.g., sidewalk, driveways, & lawns)
I Discharge for Major & Minor Storm (Pre-Safety Factor)
age Flow Velocity Within the Gutter Section
Product: Flow Velocity Times Gutter Flowline Depth
e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6"
Flow based on Allowable Depth (Safety Factor Applied)
iltant Flow Depth at Gutter Flowline (Safety Factor Applied)
iltant Flow Depth at Street Crown (Safety Factor Applied)
STORM Allowable Capaciry is not applicable to Sump Condition
STORM Allowable CapaciCy is not applicable to Sump Condition
Minor Storm Ma'or Storm
Tnnx = 18.0 18A ft
drnnx = 6.0 7.0 inches
Minor Storm Ma'or Storm
y = 4.32 432 inches
dc = 2.0 2.0 inches
a = 1.51 1.51 inches
d = 5.83 5.83 inches
Tx = 16.0 16.0 �
Eo = 0.330 0.330
Qx = 0.0 0.0 �s
Qw = 0.0 0.0 cfs
QBACK = O.O O.O cfs
Qr = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
Minor Storm Maior Storm
TTn = 18J 22.9 ff
Tx ni = 167 20.9 ft
Eo = 0315 0.258
Qx rn = 0.0 0.0 �s
Qx = 0.0 0.0 cfs
Qw = 0.0 0.0 cfs
Qena = 0.0 OA cfs
Q = SUMP SUMP cfs
V = 0.0 0.0 fps
V*d = 0.0 0.0
R = SUMP SUMP
Qd = SUMP SUMP cFs
d = inches
dcaowm = inches
Minor Storm Major Storm
Q,iio„, = SUMP SUMP cfs
� • �• . � � �
MHFD-Inlet, �ersion 5. 03 (August 2023J
� Lo (C) X
H-Curb
H-Vert
Wo
Wp
W
Lo (G)
of Inlet I CDOT/Den�r 13 Combina[ion
Depression (additional to continuous gutter depression 'a' from above)
�er of Unit Inlets (Grate or Curb Opening)
� Depth at Flowline (outride of local depression)
� of a Unit Grate
of a Unit Grate
Area Ratio for a Grate (typical values 0.15-0.90)
ng Factor for a Single Grate (typical value 0.50 - 0.70)
Weir Coefficient (typical value 2.15 - 3.60)
Orifce Coefficient (typical value 0.60 - 0.80)
MINOR MAIOR
Type = CDOT/Denver 13 Combination
aio�ai = 2.00 inches
No = 1
Ponding Depth = 5.8 7.0 inches
MINOR MAJOR �.J O�rride Depths
Lo (G) = 3.00 feet
Wo = 1J3 feet
A,a��o = 0.43
Cf (G) = 0.50 0.50
C„, (G) = 330
Co (G) = 0.60
th of a Unit Curb Opening
�t of Vertical Curb Opening in Inches
it of Curb Orifce Throat in Inches
° of Throat
Width for Depression Pan (typically the gutter width of 2 feet)
3ing Factor for a Single Curb Opening (typical value 0.10)
Opening Weir Coefficient (rypical value 23-3.7)
Openinq Orifice Coefficient (tvpical value 0.60 - 0.70)
Coefficient for Multiple Units
Factor for Multiple Units
La (C) = 3.00 feet
H�en = 6.50 inches
Hen,oa� = 5.25 inches
Theta = O.OD degrees
WP = 2.00 feet
Cf(C) = 0.10 0.10
Coef
Clog
without Clogging Qw; = 4.9 7.0 cfs
with Clogging Q„„ = 2.5 3.5 cfs
�ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R
without Clogging Qo; = 7J 8.4 cfs
with Clogging Qoa = 3.8 4.2 cfs
:itV d5 Mix2d FIOw MINOR MAJOR
without Clogging
with Clogging
Qm� _
Qma =
QGrate -
cfs
cfs
CfS
Coefficient for Multiple Units
Factor for Multiple Units
�acitv as a Weir (based or
ion without Clogging
ion with Clogging
�acitv as an Orifice fbasec
ion without Clogging
ion with Clogging
�ning Capacity as Mixed F
ion without Clogging
ion with Clogging
Inlet Length
tant Street Flow Spread (based on street geometry from above)
tant Flow Depth at Street Crown
ifor Grate Midwidth
i for Curb Opening Weir Equation
d Inlet Performance Reduction Factor for Long Inlets
Opening Performance Reduction Factor for Long Inlets
�ination Inlet Performance Reduction Factor for Long Inlets
Inlet Interception Capaciry (assumes clogged condition)
Coef = 1.00 1.00
CIo9 = 0.17 0.17
MINOR MAJOR
Qw; = 4.0 6.6 cfs
Qwa = 3.4 5.5 cFs
MINOR MAJOR
•..
•
cfs
cfs
cfs
cfs
cfs
L = 3.00 3.00 feet
T = 18.0 22.9 ft. >T-Crown
dceowry = 0.0 1.2 inches
MINOR MAIOR
d�,a�e = 0.51 0.61 ft
dc�ro = 032 0.42 ft
RF�,a�e = 0.91 1.00
RFc,,,b = N/A N/A
RFcombmano� = 0.91 1.00
MINOR MAJOR
Q, = 4.8 6.6 cfs
�Fae aFnivaFn = 0.1 0.4 Cf5
APPENDIX G
STORM SEWER & CU LVERT
DESIGN
ST-01
�► ::
e
�
�
�:
�
�
"Y�'`= �' j�1A � INLET-1 AB
i.
� ��
�
i =
t7 Y � �
�• '�'
� �
� _...,�_._.�ic_.�._.�_._._
�� STMH-1B �N�,FT
• � INLET-1�1
!BA '
���'�-�� +�� DI-1BA
FT:S 1 A
Rainfall Parameters
Rainfall Return Period: 2
Backwater Calculations:
Tailwater Elevation (ft): 4999.50
Manhole Input Summary:
Given Flow Sub Basin Information
Total
Ground Local Drainage Overland Overland Gutter Gutter
Element Elevation Known Contribution Area Runoff Syr Length Slope Length Velocity
Name (ft) ��f � (cfs) (Ac.) Coefficient Coefficient �ft) (%) (ft) (fps)
FES-lA 4994.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-lA 5003.05 4.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET-lA 5002.32 4.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DI-lA 5002.32 0.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-1B 5003.03 4.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5003.03 0.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 BA
DI-1BA 5003.03 0.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-1C 5004.67 3.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5004.79 2.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
lAB
DI-lAB 5004.79 233 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5004.05 1.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
lAA
DI-lAA 5004.05 131 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-lD 5005.53 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-lE 5006.67 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FES-1B 5000.84 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Manhole Output Summary:
Local Contribution Total Design Flow
Overland Gutter Basin Local Manhole Peak
Element Time Time Tc Intensity Contrib Coeff. Intensity Tc Flow
Name �min) (min) (min) <<n/hr) �cfs) Area (in/hr) �min) (cfs)
FES-lA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-1 A
INLET-lA
DI-IA
STMH-I B
INLET-
1 BA
DI-1 BA
STMH-1 C
INLET-
lAB
DI-1 AB
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
4.43
4.43
0.53
4.07
0.77
0.77
3.55
2.33
2.33
Comment
Surface Water Present
(Upstream)
Surface Water Present
(Downstream)
INLET- 0.00
1 AA
DI-lAA 0.00
STMH-ID 0.00
STMH-IE 0.00
FES-1B 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
Sewer Input Summary:
0.00
0.00
0.00
0.00
0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00
0.00
0.00
0.00
0.00
Elevation Loss Coefficients
Element Sewer pownstream Slope Upstream Mannings Bend Lateral
Length Invert o InverY
Name (ft) (ft) � �O� (ft) n Loss Loss
STMH-lA 83J9 4994.93 03 4995.18 0.013 0.03 0.00
INLET-lA 24.65 4995.11 0.3 4995.18 0.013 0.05 0.00
DI-1 A 1.00 4995.18 03 4995.18 0.013 0.25 0.00
STMH-1B 29.00 4995.18 0.3 4995.27 0.013 0.05 0.00
INLET-1BA 19.90 4997.35 0.5 4997.45 0.013 0.15 0.00
DI-IBA 1.00 4997.45 0.5 4997.45 0.013 0.25 0.00
STMH-1C 171.42 4995.28 0.3 4995.79 0.013 1.32 0.00
INLET-lAB 17.75 4997.87 0.5 499796 0.013 1.32 0.00
DI-lAB L00 4997.96 0.5 499796 0.013 0.25 0.00
1NLET-lAA 30.95 4997.87 0.5 4998.02 0.013 0.83 0.00
D[-IAA 1.00 499R.02 0.5 4998.02 0.013 0.25 0.00
STMH-ID 163.89 4995.79 0.3 4996.28 0.013 0.05 0.00
STMH-lE 143.18 4996.28 0.3 4996.71 0.013 0.49 0.00
FES-1B 45.12 4996.70 03 4996.84 0.013 1.32 0.00
Sewer Flow Summary:
1.31
l31
1.50
1.50
1.50
Given Dimensions
Cross Rise Span
Section (ft or in) (ft or in)
ELLIPSE 48.00 in 76.00 in
ELLIPSE 43.00 in 68.00 in
ELLIPSE 48.00 in 76.00 in
ELLIPSE 43.00 in 68.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
ELLIPSE 43.00 in 68.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR l 8.00 in 18.00 in
CIRCULAR 48.00 in 48.00 in
CIRCULAR 48.00 in 48.00 in
CIRCULAR 48.00 in 48.00 in
Full Flow Critical Flow Normal Flow
Capacity
Element Flow Velocity Depth Velocity Depth Velocity Froude Flow Flow Surcharged
Name (cfs) (fps) (in) (fps) (in) (fps) Number Condition (cfs) Length
(ft)
STMH-lA 147.51 8.47 6.82 3.53 7.18 3.28 0.90 Pressurized 4.43 83.79
INLET- 109.88 7.87 7.02 3.59 7.40 3.32 0.90 Pressurized 4.43 24.65
lA
DI-lA 147.51 8.47 2.34 2.05 2.64 1.72 0.79 Pressurized 0.53 1.00
STMH-1B 109.88 7.87 6.72 3.51 7.11 3.24 0.90 Pressurized 4.07 29.00
INLET- �.45 4.21 3.91 2.72 3.91 2J2 1.00 Pressurized 0.77 19.90
1 BA
DI-1BA 7.45 4.21 3.91 2.72 3.91 2J2 1.00 Pressurized 0.77 1.00
Comment
Velociry is Too
Low
STMH-1C 109.88
INLET- �.45
lAB
DI-lAB 7.45
INLET- �.45
1 AA
DI-1 AA 7.45
STMH-1D 78.89
STMH-lE 78.89
FES-1B 78.89
7.87 6.27 339 6.66 3.11 0.89
4.21 6.93 3.72 6.91 3.73 1.00
4.21 6.93 3.72 6.91 3.73 1.00
4.21 5.14 3.15 5.11 3.17 1.01
4.21 5.14 3.15 S.11 3.17 1.01
6.28 4.22 2.77 4.59 2.45 0.85
6.28 4.22 2.77 4.59 2.45 0.85
6.28 4.22 2.77 4.59 2.45 0.85
Pressurized 3.55
Pressurized 2.33
Pressurized 233
Supercritical 131
Jump
Supercritical 1.31
Jump
Subcritical 1.50
Subcritical 1.50
Subcritical 1.50
171.42
17.75
i .00
29.87
0.36
0.00
0.00
0.00
�
�
�
�
• A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
• If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
• If the sewer is pressurized, full flow represents the pressurized flow conditions.
Sewer Sizing Summary:
Existing Calculated Used
Element Peak Cross Area
Name ��f � Section �se Span Rise Span Rise Span �ft�2� Comment
STMH-lA 4.43 ELLIPSE 48.00 in 76.00 in 18.00 in 18.00 in 48.00 in 76.00 in 17.42
INLET-lA 4.43 ELLIPSE 43.00 in 68.00 in 18.00 in 18.00 in 43.00 in 68.00 in 13.97
DI-IA 0.53 ELLIPSE 48.00 in 76.00 in 18.00 in 18.00 in 48.00 in 76.00 in 17.42
STMH-1 B 4.07 ELLIPSE 43.00 in 68.00 in 18.00 in 18.00 in 43.00 in 68.00 in ] 3.97
INLET-1BA 0.77 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-1BA 0.77 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
STMH-1C 3.55 ELLIPSE 43.00 in 68.00 in 18.00 in 18.00 in 43.00 in 68.00 in 13.97
INLET-lAB 2.33 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-]AB 233 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
CNLET-IAA 131 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-1 AA 131 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
STMH-1 D 1.50 CIRCULAR 48.00 in 48.00 in 18.00 in 18.00 in 48.00 in 48.00 in 12.57
STMH-lE 1.50 CIRCULAR 48.00 in 48.00 in 18.00 in 18.00 in 48.00 in 48.00 in 12.57
FES-1B 1.50 CIRCULAR 48.00 in 48.00 in 18.00 in 18.00 in 48.00 in 48.00 in 12.57
• Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially
available size.
• Sewer sizes should not decrease downstream.
• All hydraulics where calculated using the 'Used' parameters.
Grade Line Summary:
Tailwater Elevation (ft): 4999.50
Element Downstream Upstream
Name (ft) (ft)
STMH-1 A
INLET-lA
DI-lA
STMH-1 B
INLET-1 BA
D[-I BA
STMH-1 C
INLET-1 AB
DI-1 AB
INLET-1 AA
D[-lAA
STMH-1 D
STMH-1 E
FES-1B
4994.93
4995.11
4995.18
4995.18
499735
4997.45
4995.28
4997.87
499796
4997.87
4998.02
4995.79
4996.28
4996J0
Invert Elev
Downstream Manhole
Losses
Bend Lateral
Loss Loss
(ft) (ft)
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.04 0.00
0.01 0.00
0.01 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
HGL EGL
Downstream Upstream Downstream Friction Upstream
(ft) (ft) (ft) �t°.t�s (ft)
4999.50 4999.50 4999.50 0.00 4999.50
4999.50 4999.50 4999.50 0.00 4999.50
4999.50 4999.50 4999.50 0.00 4999.50
4999.50 4999.50 4999.50 0.00 4999.50
4999.50 4999.50 4999.50 0.00 4999.51
4999.50 4999.50 4999.51 0.00 4999.51
4999.50 4999.50 4999.50 0.00 4999.50
4999.54 4999.55 4999.57 0.01 4999.57
4999.55 4999.55 4999.58 0.00 4999.58
4999.51 4999.51 4999.52 0.00 4999.52
4999.52 4999.52 4999.53 0.00 4999.53
4999.50 4999.50 4999.50 0.00 4999.50
4999.50 4999.50 4999.50 0.00 4999.50
4999.50 4999.50 4999.50 0.00 4999.50
4995.18
4995.18
4995.18
4995.27
4997.45
4997.45
4995.79
4997.96
4997.96
4998.02
4998.02
4996.28
4996.71
4996.84
• Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not
considered a sewer.
• Bend loss - Bend K* V_fi ^ 2/(2*g)
• Lateral loss = V_fo ^ 2/(2*g)- Junction Loss K* V_fi ^ 2/(2*g).
• Friction loss is always Upstream EGL - Downstream EGL.
ST O1
rn��,» �e rFci
ST-01
100-YEAR
��
s
���
��
��
S�
�
t7 '-�
� � x
~y x Q
a �, �
�
INLET 1t�A
�
�Y
�'
�
�_._.<--�-._.�_._�---._.-�_.-.
. � 57MF1-1B 1[�LET-lA STMH-1C
.•'L• � P
�� 5����.
FES-lA
Rainfall Parameters
Rainfall Return Period: 100
Backwater Calculations:
INLET- l �1B
G
�
z
�
�
.
jNLEr_I� .E.�
� Dr- � �n
Tailwater Elevation (ft): 5001.00
Manhole Input Summary:
Given Flow Sub Basin Information
Total
Ground Local Drainage Overland Overland Gutter Gutter
Element Elevation Known Contribution Area Runoff Syr Length Slope Length Velocity
Name (ft) ��f � (cfs) (Ac.) Coefficient Coefficient �ft) (%) (ft) (fps)
FES-lA 4994.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-lA 5002.87 105.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-1B 5003.05 105.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET-lA 5002.32 105.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DI-lA 5002.32 2.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-1C 5003.03 104.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5002.49 336 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1BA
DI-1BA 5002.49 3.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-1D 5004.69 10235 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5004.23 10.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
lAB
DI-lAB 5002.43 10.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5004.05 5.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
lAA
DI-lAA 5004.05 5.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-lE 5005.53 89.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-1F 5006.67 89.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FES-IB 5000.84 89.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Manhole Output Summary:
Local Contribution Total Design Tlow
Overland GuYter Basin Local Manhole Peak
Element Intensity Coeff. Intensity
Name Time Time Tc �i��hr� Contrib Area (in/hr) Tc Flow
(min) (min) (min) (cfs) (min) (cfs)
Comment
FES-lA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Surface Water Present
STMH-1 A
STMH-1 B
INLET-lA
DI- i A
STMH-1 C
INLET-
1BA
DI-1 BA
STMH-1D
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
(Upstream)
105.56 Surface Water Present
(Downstream)
105.56
105.56
2.19
104.29
336
3.36
102.35
INLET- 0.00
lA6
DI-lAB 0.00
INLET- 0.00
1 AA
DI-lAA 0.00
STMH-lE 0.00
STMH-1F 0.00
FES-1B 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.16
0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.16 Surface Water Present
(Upstream)
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00
0.00
0.00
0.00
0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00
0.00
0.00
0.00
0.00
5.66
5.66
89.10
89.10
89. l0 Surface Water Present
(Upstream)
Sewer Input Summary:
Elevation Loss Coefficients Given Dimensions
Element Sewer pownstream Slope Upstream Mannings Bend Lateral Cross Rise Span
Length Invert o Invert
Name (ft) (ft) ��O� (ft) n Loss Loss Section (ft or in) (ft or in)
STMH-lA 60.95 4994.86 03 4995.04 0.013 0.03 0.00 ELLIPSE 48.00 in 76.00 in
STMH-IB 22.84 4995.04 0.3 4995.11 0.013 0.05 0.00 ELLIPSE 48.00 in 76.00 in
INLET-IA 24.65 4995.11 03 4995.18 0.013 0.05 0.00 ELLIPSE 43.00 in 68.00 in
DI-lA 1.00 4995.18 0.3 4995.18 0.013 0.25 0.00 ELLIPSE 48.00 in 76.00 in
STMH-1C 29.00 4995.18 03 4995.27 0.013 0.05 0.00 �LLIPSE 43.00 in 68.00 in
INLET-1BA 19.90 499735 0.5 4997.45 0.013 0.15 0.00 CIRCULAR 18.00 in 18.00 in
DI-IBA 1.00 4997.45 0.5 4997.45 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in
STMH-1 D 171.42 4995.28 0.3 4995.79 0.013 1.32 0.00 CTRCULAR 54.00 in 54.00 in
INLET-lAB 17.75 4997.87 0.5 4997.96 0.013 1.32 0.00 CIRCULAR 18.00 i�� 18.00 in
DI-IAB 1.00 4997.96 0.5 499796 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in
INLET-lAA 30.95 4997.87 0.5 4998.02 0.013 0.83 0.00 CIRCULAR 18.00 in 18.00 in
DI-lAA 1.00 �4998.02 0.5 4998.02 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in
STMH-lE 163.89 4995.79 0.3 4996.28 0.013 0.05 0.00 CIRCULAR 48.00 in 48.00 in
STMH-1F 143.18 4996.28 0.3 4996.71 0.013 0.49 0.00 CIRCULAR 48.00 in 48.00 in
FES-1B 45.12 4996.70 0.3 4996.84 0.013 1.32 0.00 CIRCULAR 48.00 in 48.00 in
Sewer Flow Summary:
Full Flow Capacity Critical Flow Normal Flow
Element Flow Velocity Depth Velocity Depth Velocity Froude Flow Flow Surcharged
Name (cfs) (fps) (in) (fps) (in) (fps) Number Condition (cfs) Length Comment
(ft)
STMH-lA 147.51 8.47 34.78 8.72 3736 8.00 0.87 Pressurized 105.56 6095
STMH-IB 147.51 8.47 34.78 8.72 37.36 8.00 0.87 Pressurized 105.56 22.84
INLET-lA 109.88 7.87 35.97 9.16 41.49 7.84 0.75 Pressurized 105.56 24.65
DI-lA 147.51 8.47 4.78 295 5.13 2.65 0.87 Pressurized 2.19 1.00
STMH-IC
INLET-1BA
DI-1BA
STMH-1D
INLET-1 AB
DI- I AB
INLET-1 AA
D[-1 AA
STMH-( E
STMH-i F
FES-1B
109.88
7.45
7.45
108.00
7.45
7.45
7.45
7.45
78.89
78.89
78.89
7.87
4.21
4.21
6.79
4.21
4.21
4.21
4.21
6.28
6.28
6.28
35.74
8.38
8.38
35.68
18.00
I 8.00
I 1.01
t 1.01
48.00
48.00
48.00
9.12
4.17
4.17
9.18
5.75
5.75
5.00
5.00
7.09
7.09
7.09
41.07
8.48
8.48
41.92
18.00
18.00
1 1.74
1 1.74
48.00
48.00
48.00
7.82
4.11
4.11
7.73
5.75
5.75
4.64
4.64
7.09
7.09
7.09
0.76
0.98
0.98
0.72
0.00
0.00
0.88
0.88
0.00
0.00
0.00
Pressurized 104.29
Pressurized 3.36
Pressurized 3.36
Pressurized 10235
Pressurized 10.16
Pressurized 10.16
Pressurized 5.66
Pressurized 5.66
Pressurized 89.10
Press�irized 89.10
Pressurized 89.10
29.00
19.90
1.00
171.42
17.75
1.00
3095
1.00
163.89
143.18
45.12
• A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
• If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
• If the sewer is pressurized, full flow represents the pressurized flow conditions.
Sewer Sizing Summary:
Existing Calculated Used
Element Peak Cross Area
Name ��f � Section �se Span Rise Span Rise Span �ft�2� Comment
STMH-lA 105.56 ELLIPSE 48.00 in 76.00 in 54.00 in 54.00 in 48.00 in 76.00 in ] �,42 Existing hcight is smallcr
than the suggested height.
STMH-1 B 105.56 ELLIPSE 48.00 in 76.00 in 54.00 in 54.00 in 48.00 in 76.00 in � 7,42 Existing height is smaller
than flie suggested height.
Existing height is smaller
INLET-lA 105.56 ELLIPSE 43.00 in 68.00 in 54.00 in 54.00 in 43.00 in 68.00 in 13.97 than the sug�estedheight.
Exceeds inax. Depth/Rise
DI-lA 2.19 ELLIPSE 48.00 in 76.00 in 18.00 in 18.00 in 48.00 in 76.00 in 17.42
Existing height is smaller
STMH-1C 104.29 CLLIPSE 43.00 in 68.00 in 54.00 in 54.00 in 43.00 in 68.00 in 13.97 than the suggested height.
Exceeds max. Deptl�/Rise
INLET-1BA 3.36 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-1BA 3.36 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
STMH-1D 102.35 CIRCULAR 54.00 in 54.00 in 54.00 in 54.00 in 54.00 in 54.00 in 15.90
INLET-lAB 10.16 CIRCULAR 18.00 in 18.00 in 21.00 in 21.00 in 18.00 in 18.00 in 1.77
DI-1 AB 10.16 CIRCULAR 18.00 in 18.00 in 21.00 in 21.00 in 18.00 in 18.00 in 1.77
Existing height is smaller
than the sug�ested height.
Existing width is smaller
than the suggested width.
Exceeds max. Deptli/Rise
Existing height is smaller
than the sug�ested height.
Existing width is smaller
than the suggested width.
Exceeds max. Deptl�/Rise
INLET-1 AA 5.66 C[RCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-lAA 5.66 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
Existing height is simaller
tl�an the suggested height.
STMH-lE 89.10 CIRCULAR 48.00 in 48.00 in 54.00 in 54.00 in 48.00 in 48.00 in 12.57 Existing width is smaller
than the suggested width.
I I I Y Y Y I I � Excecds inax. Depth/Rise
��������� Existing height is smaller
than the suggestcd height.
STMH-1F 89.10 CIRCULAR 48.00 in 48.00 in 54.00 in 54.00 in 48.00 in 48.00 in 12.57 Existing width is smaller
than the suggestcd width.
Exceeds inax. Deptl�/Rise
Existing hcight is smallcr
than the suggested height.
FES-lB 89.10 C[RCULAR 48.00 in 48.00 in 54.00 in 54.00 in 48.00 in 48.00 in 12.57 Existing width is smaller
I than tl�e suggested width.
Exceeds max. Depth/Rise
• Calculated diameter was determined by sewer hydraulic capaciry rounded up to the nearest commercially
available size.
• Sewer sizes should not decrease downstream.
• All hydraulics where calculated using the 'Used' parameters.
Grade Line Summary:
Tailwater Elevation (ft): SOOI .00
Invert Elev.
Downstream Manhole
Losses
Bend Lateral
Loss Loss
(ft) (ft)
0.00 0.00
0.03 0.00
0.04 0.00
0.00 0.00
0.04 0.00
0.01 0.00
0.01 0.00
0.85 0.00
0.68 0.00
0.13 0.00
0.13 0.00
0.04 0.00
0.04 0.00
0.38 0.00
1.03 0.00
HGL EGL
Downstream Upstream Downstream Friction Upstream
(ft) (ft) (ft) �ft�s (ft)
5001.00 5001.09 5001.57 0.09 5001.66
SOOl.12 5001.16 5001.69 0.04 5001.73
5001.20 5001.20 5001.81 0.27 5002.09
5002.09 5002.09 5002.09 0.00 5002.09
5001.27 5001.34 5002.13 0.08 5002.21
5002.16 5002.18 5002.22 0.02 5002.24
5002.20 5002.20 5002.25 0.00 5002.25
5002.42 5002.88 5003.06 0.46 5003.52
5003.69 5003.85 5004.20 0.17 500436
500398 500399 5004.49 0.01 5004.50
5003.49 5003.58 5003.65 0.09 5003.74
5003.62 5003.63 5003.78 0.00 5003.79
5002.92 5003.54 5003.70 0.63 5004.32
5003.93 5004.47 5004.71 0.55 5005.26
5005.51 5005.68 5006.29 0.17 5006.46
Element Downstream Upstream
Name (ft) (ft)
STMH- ] A
STMH-1B
INLET-1 A
DI-lA
3TMH-1 C
INLET-1 BA
DI-1BA
STMH-1 D
INLET-1 AB
D[-]AB
[NLET-1 AA
DI- I AA
STMH-lE
STMH-1 F
FES-1B
4994.86
4995.04
4995. ] I
4995.18
4995.18
4997.35
4997.45
4995.28
4997.87
499796
4997.87
4998.02
4995J9
4996.28
4996.70
4995.04
4995.1 1
4995.18
4995.18
4995.27
4997.45
4997.45
4995.79
4997.96
4997.96
4998.02
4998.02
4996.28
4996.71
4996.84
• Bend and Lateral losses only apply wllen there is an outgoing sewer. The system outfall, sewer #0, is not
considered a sewer.
• Bend loss = Bend K* V_fi ^ 2/(2*g)
• Lateral loss = V fo ^ 2/(2*g)- Junction Loss K* V_fi ^ 2/(2*g).
• Friction loss is always Upstream EGL - Downstream EGL.
ST-O 1
rn���» �z �F�t
ST-1A1
�
rn���„�e ��
ST-1 A2
'T���
Dis,ance lFti
ST-1B
Distance (Ft�
MHFD-Culvert, �ersion 4. 00 (May ZOZO)
Project: MONTAVA SUBDIVISION PHASE D
ID: ST-01
� "'�' � �..��
n � � �I
� ^ I� �
„, � L Lp
� __ '�_ '_�_ _ �_
� __�=` -- � .
_� _ - - =-- --- - --.
Design Discharge
�lar Culvert:
Barrel Diameter in Inches
Inlet Edge Type (Choose from pull-down list)
OR:
Culvert:
Barrel Height (Rise) in Feet
Barrel Width (Span) in Feet
Inlet Edge Type (Choose from pull-down list)
Number of Barrels
Inlet Elevation
Outlet Elevation OR Slope
Culvert Length
Manning's Roughness
Bend Loss Coefficient
Exit Loss Coeffcient
Tailwater SurFace Elevation
Max Allowable Channel Velocity
Culvert Cross Sectional Area Available
Culvert Normal Depth
Culvert Critical Depth
Froude Number
Entrance Loss Coefficient
Fridion Loss Coefficient
Sum of All Loss Coefficients
Inlet Control Headwater
Outlet Control Headwater
Design Headwater Elevation
Headwater/Diameter OR Headwater/Rise Ratio
Protection:
Flow/(Diameter^2.5)
Tailwater Surface Height
Tailwater/Diameter
Expansion Fador
Flow Area at Max Channel Velocity
Width of Equivalent Conduit for Multiple Barrels
Length of Riprap Protection
Width of Riprap Protedion at Downstream End
Adjusted Diameter for Supercritical Flow
Minimum Theoretical Riprap Size
Nominal Riprap Size
MHFD Riprap Type
Soil Type:
Choose One:
� Sandy
Q Non-Sandy
Q = 105.56 cfs
D = 60 inches
Grooved Edge Projecting
OR
H (Rise) ft
W (Span) = ft
# Barrels = 1
Elev IN = 4995.04 ft
Elev OUT = 4994.86 ft
L = 60.95 ft
n = 0.013
ly, = 0
k, = 1
Y� Eie�a�;o„ = 5001 ft
V - 5 ft/s
A = 19.63 ftz
Y„ = 3.21 ft
Y� = 2.93 ft
Fr = 0.84
ke = 0.20
kf = 0.22
ks = 1.42 ft
HW� = 4.24 ft
HWo = 6.60 ft
H W = 5001.64 ft
HW/D = 1.32
Q/D^2.5 = 1.89 fto s/s
Yt = 6.14 ft
Yt/D = 1.23
1/(2*tan(0)) = 6.70
A� = 21.11 {tz
Wea = - ft
LP = 15 ft
T- 8 ft
Da = - ft
dso min= 2 in
dso nominal= 6 in
Type = VL
�
.,
�f�a.
�,9 �,�,,�
�S�
i
i,,
i��,�v
�t'r.S�';1
Rainfall Parameters
Rainfall Return Period: 2
Backwater Calculations:
ST-02
�► ::
Tailwater Elevation (ft): 4999.50
Manhole Input Summary:
Given Flow Sub Basin Information
Total
Ground Local Drainage Overland Overland Gutter Gutter
Element Elevation Known Contribution Area Runoff Syr Length Slope Length Velocity
Name (ft) ��f � (cfs) (Ac.) Coefficient Coefficient �ft) (%) (ft) (fps)
FES-2A 4995.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET-2A 500133 14.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
D[-2A 5001.33 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-2A 5001.73 14.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5001.89 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2AA
DI-2AA 5001.89 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-2B 5001.79 13.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-2IA 5001.93 0.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5001.50 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2JA
DI-2JA 5001.50 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5001.50 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2.IB
DI-2JB 5001.50 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-2C 5002.55 13.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5002.14 0.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2BB
DI-2BB 5002.14 0.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5002.13 1.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2BA
DI-2BA 5002.13 1.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-2D 5003.88 11.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-2E 5004.97 8.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-2F 5005.43 6.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-2G 5006.01 6.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5005.58 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2EB
DI-2EB 5005.58 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-2H 5007.44 337 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH- 5007.44 1.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2FA
STMH- 5009.41 0.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2FB
INLET- 5009.59 0.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2FA
DI-2FA 5009.59 0.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5008.12 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2GA
DI-2GA 5008.12 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STM H-2I 5008.46
INLET-2B 5008.83
DI-SB 5008.83
INLET- 5005.58
2EA
DI-2EA 5005.58
INLET- 5005.53
2DA
DI-2DA 5005.53
INLET- 5004.21
2CA
DI-2CA 5004.21
[NLET- 5004.22
2CB
Dl-2CB 5004.22
1.75
1.75
1.75
2.41
2.41
2.28
2.28
3.08
3.08
0.48
0.48
Manhole Output Summary:
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Local Contribution Total Design Flow
Element Overland Gutter Basin �ntensity Local Coeff. Intensity Manhole Peak
Name Time Time Tc (in/hr) Contrib Area (in/hr) Tc Flow
(min) (min) (min) (cfs) (min) (cfs)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Comment
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
FES-2A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Surface Water Present
INLET-2A 0.00
DI-2A 0.00
STMH-2A 0.00
INLET- 0.00
2AA
DI-2AA 0.00
STMH-2B 0.00
STMH- 0.00
2IA
INLET- 0.00
2JA
DI-2JA 0.00
INLET- 0.00
2JB
DI-2JB 0.00
STMH-2C 0.00
INLET- 0.00
2BB
DI-2BB 0.00
INLET- 0.00
2BA
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
(Upstream)
14.50 Surface Water Present
(Downstreain)
0.42
14.21
0.40
0.40
13.87
0.79
0.57
0.57
0.24
0.24
13.28
0.88
0.88
1.47
DI-2BA 0.00
STMH-2D 0.00
STMH-2E 0.00
STMH-2F 0.00
STMH-2G 0.00
INLET- 0.00
2EB
DI-2EB 0.00
STMH-2H 0.00
STMH- 0.00
2FA
STMH- 0.00
2FB
INLET- 0.00
2FA
DI-2FA 0.00
INLET- 0.00
2GA
DI-2GA 0.00
STMH-2[ 0.00
INLET-2B 0.00
DI-SB 0.00
INLET- 0.00
2EA
DI-2EA 0.00
INLET- 0.00
2DA
DI-2DA 0.00
INLET- 0.00
2CA
DI-2CA 0.00
INLET- 0.00
2CB
DI-2CB 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 1.47
0.00 1 136
0.00 8.87
0.00 6.59
0.00 6.59
0.00 1.50
0.00 1.50
0.00 337
0.00 1.73
0.00 0.81
0.00 0.81
0.00 0.81
0.00 0.92
0.00 0.92
0.00 1 JS
0.00 1.75
0.00 1.75
0.00 2.41
0.00 2.41
0.00 2.28
0.00 2.28
0.00 3.08
0.00 3.08
0.00 0.48
0.00 0.48
Sewer Input Summary:
Elevation Loss Coefficients Given Dimensions
Element Sewer pownstream Slope Upstream Mannings Bend LaYeral Cross Rise Span
Name Length Invert o Invert
(ft) (ft) ��O� (ft) n Loss Loss Section (ft or in) (ft or in)
INLET-2A 62.76 4993.80 0.2 4993.93 0.013 0.03 0.00 ELLIPSE 53.00 in 83.00 in
DI-2A 1.00 4994.00 03 4994.00 0.013 0.25 0.00 �LLIPSE 53.00 in 83.00 in
STMH-2A 21.54 4993.94 0.2 4993.98 0.013 0.18 0.00 ELLIPSE 53.00 in 83.00 in
INLET-2AA 18.00 499639 0.5 4996.48 0.013 0.23 0.00 C[RCULAR 24.00 in 24.00 in
DI-2AA 1.00 4996.48 0.5 4996.48 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in
STMH-2B
STMH-2[A
INLET-2JA
DI-2JA
INLET-2JB
DI-2JB
STMH-2C
INLET-2BB
D[-2BB
1NLET-2BA
DI-2BA
STMH-2D
STMH-2E
STMH-2F
STMH-2G
INLET-2EB
DI-2EB
STMH-2H
STMH-2FA
STMH-2FB
INLET-2FA
DI-2FA
INLET-2GA
DI-2GA
STMH-2I
INLET-2B
DI-SB
INLET-2EA
DI-2EA
INLET-2DA
D[-2DA
INLET-2CA
DI-2CA
INLET-2CB
DI-2CB
55.41
56.89
19.15
1.00
19.15
1.00
58.41
I 5.02
1.00
23.00
1.00
79.09
126.06
82.85
106.13
23.00
1.00
248.96
90.00
244.00
44.13
1.00
29.50
1.00
122.50
48.08
1.00
15.00
1.00
48.48
1.00
46.13
1.00
54.1 ]
1.00
0.2
1.0
0.5
0.5
0.5
0.5
1.5
0.5
0.5
0.5
0.5
1.5
1.5
0.5
0.5
0.5
0.5
0.5
1.0
0.5
0.5
0.5
0.5
0.5
0.5
1.5
1.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
4994.09
4994.66
4994.75
4994.72
4994.75
4994.72
4994.96
4997.12
4997.12
4997.16
4997.16
4996.15
4998.54
4999.46
4999.98
5001.06
5001.06
5001.73
5002.63
5004.35
5004.57
5004.57
5003.28
5003.28
5002.84
5003.56
5003.56
5001.10
5001.06
4998.78
4998.78
499838
499838
4998.42
4998.42
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.0 I 3
0.013
0.57
0.05
0.83
0.25
0.83
0.25
1.32
1.32
0.25
1.32
0.25
0.05
0.05
0.05
0.05
0.63
0.25
0.05
1.32
0.05
0.85
0.25
1.32
0.25
0.05
0.90
0.25
1.32
0.25
1.32
0.25
1.14
0.25
132
0.25
4993.98
4994.09
4994.65
4994.72
4994.65
4994.72
4994.08
4997.04
4997.12
4997.05
4997.16
4994.96
4996.65
4999.05
4999.45
5000.95
5001.06
5000.49
5001.73
5003.13
5004.35
5004.57
5003.13
5003.28
5002.23
5002.84
5003.55
5001.03
5001.06
4998.54
499R.78
4998.15
499838
4998.15
4998.42
Sewer Flow Summary:
Full Flow Critical Flow Normal Flow
Capacity
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
ELLIPSE 53.00 in
C[RCULAR 30.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
ELLIPSE 43.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
C[RCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 42.00 in
CIRCULAR 36.00 in
CIRCULAR 30.00 in
CIRCULAR 30.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
C[RCULAR 18.00 in
CIRCULAR l 8.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
86.00 in
30.00 in
18.00 in
18.00 in
18.00 in
18.00 in
68.00 in
18.00 in
18.00 in
18.00 in
18.00 in
42.00 in
36.00 in
30.00 in
30.00 in
18.00 in
18.00 in
24.00 in
24.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
24.00 in
24.00 in
18.00 in
18.00 in
Element Flow Velocity Depth Velocity Depth Velocity Froude Flow Flow Surcharged
Name (cfs) (fps) (in) (fps) (in) (fps) Number Condition (cfs) Length CommenY
(ft)
INLET- 155.19 7.36 12.13 4.76 13.70 3.99 0.79 Pressurized 14.50 62.76
2A
DI-2A 190.07 9.01 2.03 1.91 2.31 1.58
STMH-2A 155.19 7.36 12.01 4.73 13.57 3.97
INLET- 16.04 5.11 2.60 2.18 2.61 2.16
2AA
DI-2AA 16.04 5.11 2.60 2.18 2.61 2.16
STMH-2B 160.62 7.45 ll.79 4.68 13.31 3.93
STMH- 41.13 8.38 3.45 2.52 2.88 3.28
2IA
INLET- �.45 4.21 336 2.50 337
2JA
DI-2JA 7.45 4.21 3.36 2.50 3.37
INLET- �.45 4.21 2J6 1.99 2.21
2JB
DI-2JB 7.45 4.21 2.16 1.99 2.21
STMH-2C 245.69 17.59 12.27 4.81 8.53
INLET- �.45 4.21 4J 9 2.82 4.18
2BB
DI-2BB 7.45 4.21 4.19 2.82 4.18
INLET- �.45 4.21 5.46 3.25 5.42
2BA
DI-2BA 7.45 4.21 5.46 3.25 5.42
STMH-2D 123.55 12.84 12.26 4.86 8.60
STMH-2E 8191 11.59 11.28 4.68 8.00
STMH-2F 29.08 5.92 ] 0.21 4.47 9.71
STMH-2G 29.08 5.92 10.21 4.47 9.71
INLET- �.45 4.21 5.51 3.27 5.48
2EB
DI-2EB 7.45 4.21 5.51 3.27 5.48
STMH-2H 16.04 5.11 7.70 3.87 7.47
STMH- 22 68 7.22 5.47 3.21 4.48
2FA
STMH- �.45 4.21 4.02 2.75 4.01
2FB
INLET- �.45 4.21 4.02 2.75 4.01
2FA
DI-2FA 7.45 4.21 4.02 2.75 4.01
[NLET- �.45 4.21 4.29 2.85 4.27
2GA
DI-2GA 7.45 4.21 4.29 2.85 4.27
STMH-2[ 7.45 4.21 5.97 3.42 5.94
INLET- 12.90 7.30 5.97 3.42 4.48
2B
DI-SB 12.90 730 5.97 3.42 4.48
0.77 Pressurized 0.42
0.79 Pressurized 14.21
0.99 Pressurized 0.40
0.99 Pressurized 0.40
0.79 Pressurized 13.87
1.43 Pressurized 0.79
2.49 0.99 Pressurized 0.57
2.49 0.99 Pressurized 0.57
1.93 0.95 Pressurized 0.24
1.93 0.95 Pressurized 0.24
8.11 2.04 Pressurized 13.28
2.83 1.01 Pressurized 0.88
2.83 I.01 Pressurized 0.88
3.28 1.01 Pressurized 1.47
3.28 1.01 Pressurized 1.47
8.01 1.99 Supercritical 11.36
Jump
7.58 1.95 Supercritical 8.87
4.79 1.10 Supercritical 6.59
4.79 1.10 Supercritical 6.59
330 1.01 Supercritical 1.50
3.30 I.01 Supercritical 1.50
4.04 1.06 Supercritical 3.37
4.26 1.47 Supercritical 1.73
2.76
2.76
2.76
2.87
2.87
3.44
5.10
5.10
1.00 Supercritical 0.81
1.00 Supercritical 0.81
1.00 Supercritical 0.81
1.01 Supercritical 0.92
1.01 S��percritical 0.92
1.0 ] Supercritical 1.75
1.75 Supercritical 1.75
1.75 Supercritical 1.75
I .00
21.54
18.00
1.00
55.41
56.89
19.15
I .00
19.15
1.00
58.41
15.02
1.00
23.00
1.00
71.54
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Velocity is Too
Low
Velocity is Too
Low
Velocity is Too
Low
INLET-
2EA
DI-2EA
INLET-
2DA
DI-2DA
INLET-
2CA
DI-2CA
INLET-
2CB
DI-2CB
7.45
7.45
7.45
7.45
16.04
16.04
7.45
7.45
4.21
4.21
4.21
4.21
5.11
5.11
4.21
4.21
7.05
7.05
6.85
6.85
735
7.35
3.08
3.08
3.7G
3.76
3.69
3.69
3.77
3.77
239
2.39
7.04
7.04
6.83
6.83
7.13
7.13
3.10
3.10
3.76
3.76
3.70
3.70
3.94
3.94
2.37
2.37
I.00 Supercritical 2.41
1.00 Supercritical 2.41
1.00 Supercritical 2.28
1.00 Supercritical 2.28
1.06 Supercritical 3.08
1.06 Supercritical 3.08
0.99 Subcritical 0.48
0.99 Subcritical 0.48
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
• A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
• If the sewer is not pressurized, full flow represents the inaximum gravity flow in the sewer.
• If the sewer is pressurized, full flow represents the pressurized flow conditions.
Sewer Sizing Summary:
Existing Calculated Used
Element Peak Cross Area
Name ��f � Section �se Span Rise Span Rise Span �ft�2� Comment
INLET-2A 14.50 ELLIPSE 53.00 in 83.00 in 30.00 in 30.00 in 53.00 in 83.00 in 21.09
DI-2A 0.42 ELLIPSE 53.00 in 83.00 in 18.00 in 18.00 in 53.00 in 83.00 in 21.09
STMH-2A 14.21 ELLIPSE 53.00 in 83.00 in 30.00 in 30.00 in 53.00 in 83.00 in 21.09
INLET-2AA 0.40 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
DI-2AA 0.40 CIRCULAR 24.00 ii� 24.00 in 18.00 in 18.00 i�� 24.00 in 24.00 in 3.14
STMH-2B 13.87 ELLIPSE 53.00 in 86.00 in 30.00 in 30.00 in 53.00 in 86.00 in 21.56
STMH-2IA 0.79 CIRCULAR 30.00 in 30.00 in 18.00 in 18.00 in 30.00 in 30.00 in 4.91
INLET-2JA 0.57 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-2JA 0.57 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
INLET-2JB 0.24 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
D[-2JB 0.24 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 ii� 18.00 in 18.00 in 1.77
STMH-2C 13.28 ELLIPSE 43.00 in 68.00 in 21.00 in 21.00 in 43.00 in 68.00 in 13.97
INLET-2BB 0.88 CIRCULAR 18.00 in 18.00 in 18.00 i�� 18.00 in 18.00 in 18.00 in 1.77
DI-2BB 0.88 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
INLET-2BA 1.47 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-2BA 1.47 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
STMH-2D 11.36 CIRCULAR 42.00 in 42.00 in 18.00 in 18.00 in 42.00 in 42.00 in 9.62
STMH-2E 8.87 CIRCULAR 36.00 in 36.00 in 18.00 in 18.00 in 36.00 in 36.00 in 7.07
STMH-2F 6.59 CIRCULAR 30.00 in 30.00 in 18.00 in 18.00 i�� 30.00 in 30.00 in 4.91
STMH-2G 6.59 C�IRCULAR 30.00 in 30.00 in 18.00 in 18.00 i�� 30.00 in 30.00 in 4.91
INLET-2EB 1.50 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
D[-2EB
STMH-2H
STMH-2FA
STMH-2FB
INLET-2FA
DI-2FA
INLET-2GA
DI-2GA
STMH-2[
INLET-2B
DI-SB
INLET-2EA
DI-2EA
INLET-2DA
DI-2DA
INLET-2CA
DI-2CA
INLET-2CB
DI-2CB
18.00 in 18.00 in
24.00 in 24.00 in
24.00 in 24.00 in
18.00 in 18.00 in
18.00 in 18.00 in
18.00 in 18.00 in
18.00 in 18.00 in
18.00 in 18.00 in
18.00 in 18.00 in
18.00 in 18.00 in
18.00 in 18.00 in
18.00 in 18.00 in
18.00 in 18.00 in
18.00 in 18.00 in
18.00 in 18.00 in
24.00 in 24.00 in
24.00 in 24.00 in
18.00 in 18.00 in
18.00 in 18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
I 8.00 in
18.00 in
18.00 in
I 8.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in 18.00 in
18.00 in 24.00 in
18.00 in 24.00 in
I 8.00 in 18.00 in
18.00 in 18.00 in
18.00 in 18.00 in
18.00 in 18.00 in
18.00 in 18.00 in
18.00 in 18.00 in
18.00 in 18.00 in
18.00 in 18.00 in
I 8.00 in 18.00 in
18.00 in 18.00 in
18.00 in 18.00 in
18.00 in 18.00 in
18.00 ii� 24.00 in
18.00 in 24.00 in
18.00 in l 8.00 in
I 8.00 in 18.00 in
18.00 in
24.00 in
24.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
24.00 in
24.00 in
18.00 in
18.00 in
1.77
3.14
3.14
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
3.14
3.14
1.77
1.77
• Calculated diameter was detennined by sewer hydraulic capacity rounded up to the nearest coinmercially
available size.
• Sewer sizes should not decrease downstream.
• All hydraulics where calculated using the 'Used' parameters.
Grade Line Summary:
Tailwater Elevation (ft): 4999.50
Invert Elev.
1.50
3.37
1.73
0.81
0.81
0.81
0.92
0.92
1.75
1.75
1.75
2.41
2.41
2.28
2.28
3.08
3.08
0.48
0.48
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
Element Downstream Upstream
Name (ft) (ft)
INLET-2A
DI-2A
STMH-2A
INLET-2AA
DI-2AA
STMH-2B
STMH-2IA
[N LET-2J A
DI-2JA
4993.80
4994.00
4993.94
4996.39
4996.48
4993.98
4994.09
4994.65
4994.72
4993.93
4994.00
4993 98
4996.48
4996.48
4994.09
4994.66
4994.75
4994.72
Downstream Manhole
Losses
Bend Lateral
Loss Loss
(ft) (ft)
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
HGL EGL
Downstream Upstream Downstream Friction Upstream
(ft) (ft) (ft) �ft�s (ft)
4999.50 4999.50 4999.51 0.00 4999.51
4999.51 4999.51 4999.51 0.00 4999.51
4999.50 4999.50 4999.51 0.00 4999.51
4999.51 4999.51 4999.51 0.00 4999.51
4999.51 4999.51 4999.51 0.00 4999.51
4999.51 4999.51 4999.51 0.00 4999.51
4999.51 4999.51 4999.51 0.00 4999.51
4999.52 4999.52 4999.52 0.00 4999.52
4999.52 4999.52 4999.52 0.00 4999.52
INLET-2JB
Dl-2JB
STMH-2C
INL�T-2BB
DI-2BB
INL�T-2BA
DI-2BA
STMH-2D
STMH-2E
STMH-2F
STMH-2G
INLET-2EB
DI-2EB
STMH-2H
STMH-2FA
STMH-2FB
IN LET-2 FA
DI-2FA
INLET-2GA
DI-2GA
STMH-2I
INLET-2B
DI-SB
[NLET-2EA
DI-2EA
[NLET-2DA
DI-2DA
INLET-2CA
DI-2CA
INLET-2CB
DI-2CB
4994.65
4994.72
4994.08
4997.04
4997.12
4997.05
4997.16
499496
4996.65
4999.05
4999.45
5000.95
5001.06
5000.49
5001.73
5003.13
500435
5004.57
5003.13
5003.28
5002.23
5002.84
5003.55
5001.03
SOO I .06
4998.54
4998.78
4998.15
4998.38
4998.15
4998.42
4994.75
4994.72
4994.96
4997.12
4997.12
4997.16
4997.16
4996.15
4998.54
4999.46
499998
5001.06
5001.06
5001.73
5002.63
500435
5004.57
5004.57
5003.28
5003.28
5002.84
5003.56
5003.56
5001.10
5001.06
4998.78
4998.78
4998.38
4998.38
4998.42
4998.42
0.00
0.00
0.02
0.01
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.01
0.00
0.00
0.00
0.01
0.00
0.00
0.01
0.00
0.04
0.01
0.03
0.01
0.02
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
4999.5 I
4999.51
4999.53
4999.54
4999.54
4999.54
4999.55
4999.53
4999.54
4999.85
5000.38
5001.40
5001.56
5001.1 I
5002.58
5003.46
5004.71
5004.93
5003.49
5003.67
5002.72
5003.35
5004.06
5001.6l
SOO I .79
4999.83
4999.84
4999.55
4999.56
4999.56
4999.56
4999.51
4999.51
4999.53
4999.54
4999.54
4999.55
4999.55
4999.54
4999.54
500031
5000.83
5001.52
5001.56
5002.37
5003.09
5004.68
5004.90
5004.93
5003.64
5003.67
5003.34
5004.06
5004.25
5001.69
5001.79
4999.83
4999.84
4999.55
4999.56
4999.56
4999.56
4999.52
4999.52
4999.54
4999.55
4999.55
4999.55
4999.56
4999.55
4999.56
5000.21
5000.62
5001.57
5001.69
5001.36
5002.61
5003.58
5004.81
5005.02
5003.62
5003.76
5002.91
5003.62
500432
5001.83
5001.91
4999.86
4999.88
4999.58
4999.60
4999.56
4999.56
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.26
0.41
0.52
0.11
0.00
1.24
0.63
I .22
0.22
0.00
0.15
0.00
0.61
0.62
0.00
0.07
0.00
0.02
0.00
0.0 I
0.00
0.00
0.00
4999.52
4999.52
4999.54
4999.55
4999.55
4999.56
4999.56
4999.56
4999.83
5000.62
5001.14
5001.69
5001.69
5002.60
5003.25
5004.80
5005.02
5005.03
5003.76
5003.77
5003.52
5004.24
500432
5001.91
500192
4999.88
4999.88
4999.59
4999.60
4999.56
4999.56
• Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not
considered a sewer.
• Bend loss = Bend K* V_fi ^ 2/(2*g)
• Lateral loss = V fo ^ 2/(2*g)- Junction Loss K* V_fi ^ 2/(2*g).
• Friction loss is always Upstream EGL - Downstream EGL.
ST 02
�7���
Distance IFq
Rainfall Parameters
Rainfall Return Period: 100
Backwater Calculations:
ST-02
100-YEAR
Tailwater Elevation (ft): 5001.00
Manhole Input Summary:
Given Flow
Element Ground Total Local
Name Elevation Known Contribution
(ft) Flow (cfs) (cfs)
FES-2A 4995.00 0.00 0.00
INLET-2A 500133 62.51 0.00
DI-2A 5001.33 1.79 0.00
STMH-2A 5001.73 61.23 0.00
INLET-2AA 5001.24 1.75 0.00
DI-2AA 5001.24 1.75 0.00
STMH-2B 5001.60 59.76 0.00
STMH-2IA 5001.93 3.40 0.00
[NLET-2JA 5001.50 2.47 0.00
DI-2JA 5001.50 2.47 0.00
INLET-2JB 5001.50 1.00 0.00
DI-2JB 5001.50 1.00 0.00
STMH-2C 5002.55 57.23 0.00
INLET-2BB 5002.14 3.54 0.00
DI-2BB 5002.14 3.54 0.00
INLET-2BA 5002.13 6.43 0.00
D[-2BA 5002.13 6.43 0.00
STMH-2D 5003.88 49.05 0.00
STMH-2E 5004.94 38.10 0.00
STMH-2F 5005.43 28.15 0.00
STMH-2G 5006.01 28.15 0.00
INLET-2EB 5005.58 6.45 0.00
D[-2EB 5005.58 6.45 0.00
STMH-2H 5007.42 14.08 0.00
STMH-2FA 5007.99 7.56 0.00
STMH-2FB 5009.41 3.55 0.00
INLET-2FA 5009.59 3.55 0.00
DI-2FA 5009.59 3.55 0.00
INLET-2GA 5008.12 4.01 0.00
DI-2GA 5008.12 4.01 0.00
STMH-21 5008.46 6.97 0.00
[NLET-2B 5008.83 6.97 0.00
DI-SB 5008.83 6.97 0.00
INLET-2EA 5005.58 10.53 0.00
DI-2EA 5005.58 10.53 0.00
INLET-2CA 5004.21 13.46 0.00
DI-2CA 5004.21 13.46 0.00
INLET-2CB 5004.22 2.08 0.00
Sub Basin Information
Runoff Syr Overland Overland Gutter Gutter
Coefficient Coefficient Length Slope Length Velocity
0
Drainage
Area
(Ac.)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
(ft) ( /o) (ft) (fps)
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
DI-2CB 5004.22 2.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Manhole Output Summary:
Local Contribution Total Design Flow
Overland Gutter Basin Local Manhole Peak
Element Time Time Tc Intensity Contrib Coeff. Intensity Tc Flow Comment
Name �min) (min) (min) ��n/hr) �cfs) Area (in/hr) �min) (cfs)
FES-2A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Surface Water Present
(Upstreain)
]NLET-2A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 62.51 Surface Water Present
(Downstream)
DI-2A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.79
STMH-2A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 61.23
INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.75
2AA
DI-2AA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.75
STMH-2B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 59.76
STMH- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.40
21A
INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.47
2JA
DI-2JA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.47
INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
2.IB
DI-2JB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
STMH-2C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 57.23
INL�T- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.54
2BB
DI-2BB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.54
INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.43
2BA
DI-2BA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.43
STMH-2D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 49.05
STMH-2E 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 38.10
STMH-2F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 28.15
STMH-2G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 28.15
INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.45
2EB
DI-2EB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.45
STMH-2H 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14.08
STMH- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.56
2FA
STMH- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.55
2FB
INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.55
2FA
DI-2FA
INL�T-
2GA
DI-2GA
STMH-2I
INLET-2B
DI-SB
INLET-
2EA
DI-2EA
INLET-
2CA
DI-2CA
INLET-
2CB
DI-2CB
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Sewer Input Summary:
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Elevation Loss Coefficients
Element Sewer pownstream Slope Upstream Mannings Bend Lateral
Name Length Invert o Invert
(ft) (ft) � ��� (ft) n Loss Loss
INLET-2A 62.76 4993.80 0.2 4993.93 0.013 0.03 0.00
DI-2A 1.00 4994.00 0.3 4994.00 0.013 0.25 0.00
STMH-2A 21.54 4993.94 0.2 4993.98 0.013 0.18 0.00
INLET-2AA 18.00 499639 0.5 4996.48 0.013 0.23 0.00
D]-2AA 1.00 4996.48 0.5 4996.48 0.013 0.25 0.00
STMH-2B 55.41 4993.98 0.2 4994.09 0.013 0.57 0.00
STMH-2IA 56.89 4994.09 1.0 4994.66 0.013 0.05 0.00
INLET-2JA 19.15 4994.65 0.5 4994.75 0.013 0.83 0.00
DI-2JA 1.00 4994.72 0.5 4994.72 0.013 0.25 0.00
INLET-2JB 19.15 4994.65 0.5 4994J5 0.013 0.83 0.00
DI-2JB ].00 4994.72 0.5 4994.72 0.013 0.25 0.00
STMH-2C 58.41 4994.08 1.5 4994.96 0.013 132 0.00
INLET-2BB 15.02 4997.04 0.5 4997.12 0.013 1.24 0.00
DI-2BB 1.00 4997.12 0.5 4997.12 0.013 0.25 0.00
INLET-2BA 23.00 4997.05 0.5 4997.16 0.013 1.32 0.00
DI-2BA 1.00 4997.16 0.5 4997.16 0.013 0.25 0.00
STMH-2D 79.09 4994.96 1.5 4996.15 0.013 0.05 0.00
STMH-2E 119.25 4996.65 I.5 4998.44 0.013 0.05 0.00
STMH-2F 89.66 4998.94 0.5 499939 0.013 0.05 0.00
STMH-2G 106.13 499939 0.5 4999.92 0.013 0.05 0.00
3.55
4.01
4.01
6.97
6.97
6.97
10.53
10.53
I 3.46
13.46
2.08
2.08
Given Dimensions
Cross Rise Span
Section (ft or in) (ft or in)
ELLIPSE 53.00 in 83.00 in
ELLIPSE 53.00 ii� 83.00 in
ELL[PSE 53.00 in 83.00 in
CIRCULAR 24.00 in 24.00 in
C[RCULAR 24.00 in 24.00 in
ELLIPSE 53.00 in 86.00 in
CIRCULAR 30.00 in 30.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 i�� 18.00 in
CIRCULAR 18.00 ii� 18.00 in
ELLIPSE 43.00 in 68.00 in
CIRCULAR 18.00 i�1 ] 8.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 42.00 in 42.00 in
CIRCULAR 36.00 in 36.00 in
CIRCULAR 30.00 in 30.00 in
C[RCULAR 30.00 in 30.00 in
INLET-2EB
DI-2EB
STMH-2H
STMH-2FA
STMH-2FB
INLET-2FA
Dl-2FA
INLET-2GA
DI-2GA
STMH-2I
INLET-2B
DI-SB
INLET-2EA
DI-2EA
INLET-2CA
DI-2CA
INLET-2CB
DI-2CB
15.00
1.00
24896
90.00
244.00
44.13
1.00
29.50
1.00
122.50
48.08
I .00
23.00
1.00
46.13
1.00
54.11
1.00
5000.92
5000.99
5000.42
5001.73
5003.13
5004.35
5004.57
5003.13
5003.28
5002.16
5002.78
5003.49
5000.92
5001.03
4998.15
499838
4998.15
4998.42
Sewer Flow Summary:
Element
Name
IN LET-2A
DI-2A
STMH-2A
INLET-2AA
DI-2AA
STMH-2B
STMH-2IA
INLET-2JA
DI-2JA
Ii�[LET-2JB
D�-2JB
STMH-2C
INLET-2BB
DI-2BB
INLET-2BA
DI-2BA
STMH-2D
STMH-2E
0.5
0.5
0.5
1.0
0.5
0.5
0.5
0.5
0.5
0.5
1.5
1.5
0.5
0.5
0.5
0.5
0.5
0.5
5000.99
5000.99
5001.66
5002.63
5004.35
5004.57
5004.57
5003.28
5003.28
5002.77
5003.50
5003.50
5001.03
5001.03
499838
499838
4998.42
4998.42
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
132
0.25
0.05
1.32
0.05
0.83
0.25
132
0.25
0.05
0.90
0.25
1.32
0.25
1.22
0.25
1.21
0.25
Full Flow Capacity Critical Flow Normal Flow
Flow
(cfs)
155.19
190.07
155.19
16.04
I 6.04
160.62
41.13
7.45
7.45
7.45
7.45
245.69
7.45
7.45
7.45
7.45
123.55
8191
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
C[RCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
18.00 in
18.00 in
24.00 in
24.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
I 8.00 in
18.00 in
24.00 in
24.00 in
18.00 in
] 8.00 in
18.00 in
18.00 in
24.00 in
24.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
24.00 in
24.00 in
18.00 in
l 8.00 in
Velocity Depth Velocity Depth Velocity Froude Flow Flow Surcharged
(fps) (in) (fps) (in) (fps) Number Condition (cfs) Length Comment
(ft)
7.36 25J2 7.15 29.21 6.04 0.78 Pressurized 62.51 62.76
9.01 4.21 2.76 4.56 2.46 0.86 Pressurized 1.79 1.00
7.36 25.44 7.11 28.87 6.00 0.78 Pressurized 61.23 21.54
S.11 5.50 3.22 5.35 335 1.05 Pressurized 1.75 18.00
5.11 5.50 3.22 5.35 3.35 1.05 Pressurized 1.75 I.00
7.45 24.96 7.02 28.19 5.96 0.79 Pressurized 59.76 55.41
8.38 7.26 3.71 5.83 5.07 1.53 Pressurized 3.40 56.89
4.21 7.14 3.78 7.14 3.79 1.00 Pressurized 2.47 1915
4.21 7.14 3.78 7.14 3.79 1.00 Pressurized 2.47 I.00
4.21 4.47 2.92 4.45 2.94 1.01 Pressurized 1.00 19.15
4.21 4.47 2.92 4.45 2.94 1.01 Pressurized 1.00 1.00
17.59 26.12 736 17.70 12.41 2.1 ] Pressurized 57.23 58.41
4.21 8.62 4.24 8.74 4.16 0.97 Pressurized 3.54 15.02
4.21 8.62 4.24 8.74 4.16 0.97 Pressurizcd 3.54 1.00
4.21 ll.77 5.25 1290 4.74 0.83 Pressurized 6.43 23.00
4.21 ll.77 5.25 12.90 4.74 0.83 Pressurized 6.43 1.00
12.84 26.25 7.75 18.40 12.10 1.97 Pressurized 49.05 79.09
11.59 24.I0 7.58 17.26 1138 1.90 Pressurized 38.10 119.25
STMH-2F 29.08
STMH-2G 29.08
INLET-2EB 7.45
DI-2EB 7.45
STMH-2H 16.04
STMH-2FA 22.68
STMH-2FB 7.45
INLET-2FA 7.45
DI-2FA 7.45
INLET-2GA 7.45
DI-2GA 7.45
STMH-2I 7.45
INL�T-2B 12.90
DI-SB 12.90
INLET-2EA 7.45
D]-2EA 7.45
INLET-2CA 16.04
DI-2CA 16.04
INLET-2CB 7.45
DI-2CB 7.45
5.92
5.92
4.21
4.21
5.11
7.22
4.21
4.21
4.2I
4.21
4.21
4.21
7.30
7.30
4.2 I
4.21
S.11
S.11
4.21
4.21
21.71
21.71
11.78
11.78
16.22
11.73
8.63
8.63
8.63
9.20
9.20
12.26
12.26
12.26
I 8.00
I 8.00
15.85
15.85
6.53
6.53
7.40
7.40
5.26
5.26
6.23
4.96
4.24
4.24
4.24
4.42
4.42
5.44
5.44
5.44
5.96
5.96
6.12
6.12
3.59
3.59
23.77
23.77
12.94
12.94
17.44
9.54
8.75
8.75
8.75
9.41
9.4 I
13.81
9.43
9.43
18.00
18.00
16.83
16.83
6.51
6.51
6.75
6.75
4.74
4.74
5.76
6.49
4.16
4.16
4.16
4.29
4.29
4.79
7.44
7.44
5.96
5.96
5.72
5.72
3.61
3.61
0.83 Pressurized 28.15
0.83 Pressurized 28.15
0.83 Pressurized 6.45
0.83 Pressurized 6.45
0.87 Pressurized 14.08
1.48 Pressurized 7.56
� 9� Subcritical 3 55
Surcharged
0.97 Subcritical 3.55
0.97 Subcritica] 3.55
0.96 Pressurized 4.01
0.96 Pressurized 4.01
0.79 Pressurized 6.97
1.66 Pressurized 6.97
1.66 Pressurized 6.97
0.00 Pressurized 10.53
0.00 Pressurized 10.53
0.89 Pressurized 13.46
0.89 Pressurized 13.46
1.01 Pressurized 2.08
1.01 Pressurizcd 2.08
89.66
106.13
15.00
1.00
248.96
90.00
24.58
0.00
0.00
29.50
1.00
122.50
48.08
1.00
23.00
I .00
46.13
i .00
54.1 1
1.00
• A Froude nuinber of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
• lf the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
• If the sewer is pressurized, full flow represents the pressurized flow conditions.
Sewer Sizing Summary:
Existing Calculated Used
Element Pea� Cross Area
Name ��f � Section �se Span Rise Span Rise Span �ft^2)
INLET-2A 62.51 ELLIPSE 53.00 in 83.00 in 48.00 in 48.00 in 53.00 in 83.00 in 21.09
DI-2A 1.79 ELLIPSE 53.00 in 83.00 in 18.00 in 18.00 in 53.00 in 83.00 in 21.09
STMH-2A 61.23 ELLIPSE 53.00 in 83.00 in 48.00 in 48.00 in 53.00 in 83.00 in 21.09
INLET-2AA 1.75 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 i�� 24.00 in 3.14
DI-2AA 1.75 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
STMH-2B 59.76 ELLIPSE 53.00 in 86.00 in 48.00 in 48.00 in 53.00 in 86.00 in 21.56
STMH-2IA 3.40 CIRCULAR 30.00 in 30.00 in 18.00 in 18.00 iv 30.00 in 30.00 in 4.91
INLET-2JA 2.47 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-2JA 2.47 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
INLET-2JB I.00 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
D[-2JB 1.00 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
Comment
STMH-2C 57.23 ELLIPSE 43.00 in 68.00 in 33.00 in 33.00 in 43.00 in 68.00 in 13.97
INLET-2BB 3.54 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-2BB 3.54 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
INLET-2BA 6.43 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-2BA 6.43 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
STMH-2D 49.05 CIRCULAR 42.00 in 42.00 in 30.00 in 30.00 in 42.00 in 42.00 in 9.62
STMH-2E 38.10 CIRCULAR 36.00 in 36.00 in 30.00 in 30.00 in 36.00 in 36.00 in 7.07
STMH-2F 28.15 CIRCULAR 30.00 in 30.00 in 30.00 in 30.00 in 30.00 in 30.00 in 4.91
STMH-2G 28.15 CIRCULAR 30.00 in 30.00 in 30.00 in 30.00 in 30.00 in 30.00 in 4.91
INLET-2EB 6.45 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-2EB 6.45 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
STMH-2H 14.08 CIRCULAR 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 3.14
STMH-2FA 7.56 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
STMH-2FB 3.55 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
INLET-2FA 3.55 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
D[-2FA 3.55 CIRCULAR 18.00 i�� 18.00 in 18.00 ii� 18.00 in 18.00 in 18.00 in 1.77
INLET-2GA 4.01 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-2GA 4.01 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 i�� l 8.00 in l.77
STMH-2I 6.97 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
INLET-2B 6.97 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-SB 6.97 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
INLET-2EA 10.53 CIRCULAR 18.00 in 18.00 in 21.00 in 21.00 in 18.00 in 18.00 in 1.77
DI-2EA ] 0.53 CIRCULAR 18.00 in ] 8.00 in 21.00 i�� 21.00 in 18.00 i�� 18.00 ii� 1.77
INLET-2CA 13.46 CIRCULAR 24.00 ii� 24.00 in 24.00 ii� 24.00 in 24.00 in 24.00 in 3.14
DI-2CA 13.46 CIRCULAR 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 3.14
INLET-2CB 2.08 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 i�� l 8.00 in l.77
DI-2CB 2.08 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
Existing height is smaller
than the suggested height.
�xisting width is smaller
than the suggested width.
Exceeds max. Depth/Rise
Existing height is smaller
than the suggested height.
Existing width is smaller
than the suggested width.
Exceeds max. Depth/Rise
• Calculated diameter was detennined by sewer hydraulic capacity rounded up to the nearest commercially
available size.
• Sewer sizes should not decrease downstream.
• All hydraulics where calculated using the 'Used' parameters.
Grade Line Summary:
Tailwater Elevation (ft): 5001.00
Invert Elev.
Downstream Manhole
Losses
Bend Lateral
Loss Loss
(ft) (ft)
0.00 0.00
0.00 0.00
0.02 0.00
0.00 0.00
0.00 0.00
0.07 0.00
0.00 0.00
0.03 0.00
0.01 0.00
0.00 0.00
0.00 0.00
034 0.00
0.08 0.00
0.02 0.00
0.27 0.00
0.05 0.00
0.02 0.00
0.02 0.00
0.03 0.00
0.03 0.00
0.27 0.00
0.05 0.00
0.02 0.00
0.12 0.00
0.00 0.00
0.05 0.00
0.02 0.00
0.11 0.00
0.02 0.00
0.01 0.00
0.22 0.00
0.06 0.00
0.73 0.00
0.14 0.00
035 0.00
0.07 0.00
0.03 0.00
0.01 0.00
HGL EGL
Downstream Upstream Downstream Friction Upstream
(ft) (ft) (ft) �f°.r�s (ft)
5001.00 5001.02 5001.14 0.02 SOOl.l6
5001.16 5001.16 5001.16 0.00 5001.16
5001.05 5001.06 5001.18 0.01 5001.19
5001 J 8 5001.18 5001.19 0.00 5001. I 9
5001.19 5001.19 5001.19 0.00 5001.19
5001.14 5001.15 5001.26 0.02 5001.27
5001.26 5001.27 5001.27 0.00 5001.27
5001.29 5001.30 5001.32 0.01 500133
500131 500131 500134 0.00 500134
5001.27 5001.28 5001.28 0.00 5001.28
5001.28 5001.28 5001.28 0.00 5001.28
5001.50 5001.50 5001.68 0.08 5001 J6
5001.77 5001.79 5001.83 0.02 5001.85
5001.80 5001.80 5001.87 0.00 5001.87
5001.82 5001.91 5002.03 0.09 5002.11
5001.96 500196 5002.16 0.00 5002.17
5001.52 5001.70 5001.92 0.19 5002.11
5001.72 5002.11 5002.18 039 5002.56
5002.14 5002.56 5002.65 0.42 5003.07
5002.58 5003.08 5003.09 0.50 5003.59
5003.66 5003.71 5003.86 0.06 5003.92
5003.77 5003.77 500397 0.00 5003.98
5003.29 5004.25 5003.61 0.96 5004.57
5004.59 5004.69 5004.68 0.10 5004.78
5004.72 5005.14 5004.79 0.57 500536
5005.25 500531 5005.41 0.16 5005.57
500539 500539 5005.59 0.00 5005.59
5004.81 5004.85 5004.89 0.04 5004.93
5004.87 5004.87 5004.95 0.00 5004.95
5004.34 5004.87 5004.58 0.54 5005.11
5005.09 5005.30 5005.33 0.21 5005.54
500536 500537 5005.60 0.00 5005.61
5003.81 5004.04 500436 0.23 5004.59
5004. ] 8 5004.19 5004.73 0.01 5004J4
5002.17 500233 5002.45 0.16 5002.62
5002.40 5002.41 5002.69 0.00 5002.69
5002.11 5002.13 5002.13 0.02 5002.15
5002.14 5002.14 5002.16 0.00 5002.16
Element Downstream Upstream
Name (ft) (ft)
INLET-2A
DI-2A
STMH-2A
INLET-2AA
DI-2AA
STMH-2B
STMH-2IA
INL�T-2JA
DI-2JA
INLET-2JB
D[-2JB
STMH-2C
INLET-2BB
DI-2BB
INLET-2BA
DI-2BA
STMH-2D
STMH-2E
STMH-2F
STMH-2G
INLET-2EB
DI-2EB
STMH-2H
STMH-2FA
STMH-2FB
INLET-2FA
DI-2FA
INLET-2GA
DI-2GA
STMH-2I
INLET-2B
DI-SB
INLET-2EA
DI-2EA
INLET-2CA
DI-2CA
INLET-2CB
DI-2CB
4993.80
4994.00
4993.94
499639
4996.48
4993.98
4994.09
4994.65
4994.72
4994.65
4994.72
4994.08
4997.04
4997.12
4997.05
4997.16
4994.96
4996.65
4998.94
499939
5000.92
5000.99
5000.42
5001.73
5003.13
500435
5004.57
5003.13
5003.28
5002.16
5002.78
5003.49
5000.92
5001.03
4998.15
4998.38
4998.15
4998.42
4993.93
4994.00
4993.98
4996.48
4996.48
4994.09
4994.66
4994.75
4994J2
4994.75
4994J2
4994.96
4997.I2
4997.12
4997.16
4997.16
4996.15
4998.44
499939
4999.92
5000.99
5000.99
5001.66
5002.63
500435
5004.57
5004.57
5003.28
5003.28
5002.77
5003.50
5003.50
5001.03
5001.03
4998.38
4998.38
4998.42
4998.42
• Bend and Lateral losses only apply wllen there is an outgoing sewer. The system outfall, sewer #0, is not
considered a sewer.
• Bend loss = Bend K* V_fi ^ 2/(2*g)
• Lateral loss = V fo ^ 2/(2*g)- Junction Loss K* V_fi ^ 2/(2*g).
• Friction loss is always Upstream EGL - Downstream EGL.
ST-�2
��.�
k
�
w
Distance IFU
ST-2A
7
�:I::. .
/��E'T: ,�
s';��,_,
�� 1
�- _— —'- ---- '-'- --- �-- -'- s"- -�
Distance IFtj
ST-2B 1
�
�
w
HGL
EGL
ic.:
��
nis[ance �Fti
ST-2B2
: ;�}-
:z,��
��'<L f` STi���.>.3
�i
� w n; � sr.o
sT ��� ,�
Di-[ance (Ft�
ST 2C 1
sf�i�_>�.
HCiL
EGL
Distanoe (Ft�i
ST-2C2
rn���„�e ��
ST-2E1
LT��r
�
Di:�anct ; Ft i
S 1'�L'�
�hT >�7i
Dis[ance (F[1
ST-2F
Dr,rancr (�
ST-2J 1
Distance IFti
ST-2J2
'J/j
Dis[ante (Fti
MHFD-Culvert, �ersion 4. 00 (May ZOZO)
Project: MONTAVA SUBDIVISION PHASE D
ID: ST-02
� "'�' � �..��
„ � �� i
� �- I� �
„, � L Lp
� __ '�_ '_�_ _ �_
� __�=` -- � .
_� _ - - =-- --- - --.
Design Discharge
�lar Culvert:
Barrel Diameter in Inches
Inlet Edge Type (Choose from pull-down list)
OR:
Culvert:
Barrel Height (Rise) in Feet
Barrel Width (Span) in Feet
Inlet Edge Type (Choose from pull-down list)
Number of Barrels
Inlet Elevation
Outlet Elevation OR Slope
Culvert Length
Manning's Roughness
Bend Loss Coefficient
Exit Loss Coeffcient
Tailwater SurFace Elevation
Max Allowable Channel Velocity
Culvert Cross Sectional Area Available
Culvert Normal Depth
Culvert Critical Depth
Froude Number
Entrance Loss Coefficient
Fridion Loss Coefficient
Sum of All Loss Coefficients
Inlet Control Headwater
Outlet Control Headwater
Design Headwater Elevation
Headwater/Diameter OR Headwater/Rise Ratio
Protection:
Flow/(Diameter^2.5)
Tailwater Surface Height
Tailwater/Diameter
Expansion Fador
Flow Area at Max Channel Velocity
Width of Equivalent Conduit for Multiple Barrels
Length of Riprap Protection
Width of Riprap Protedion at Downstream End
Adjusted Diameter for Supercritical Flow
Minimum Theoretical Riprap Size
Nominal Riprap Size
MHFD Riprap Type
Soil Type:
Choose One:
� Sandy
Q Non-Sandy
Q = 62.51 cfs
D = 66 inches
Grooved Edge Projecting
OR
H (Rise) ft
W (Span) = ft
# Barrels = 1
Elev IN = 4993.93 ft
Elev OUT = 4993.81 ft
L = 62.76 ft
n = 0.013
ly, = 0
k, = 1
Y� Eie�a�;o„ = 5001 ft
V - 5 ft/s
A = 23.76 ftz
Y„ = 2.22 ft
Y� = 2.16 ft
Fr = 0.95
ke = 0.20
kf = 0.20
ks = 1.40 ft
HW� = 3.00 ft
HWo = 6.11 ft
H W = 5000.04 ft
HW/D = 1.11
Q/D^2.5 = 0.88 fto s/s
Yt = 7.19 ft
Yt/D = 1.31
1/(2*tan(0)) = 6.70
A� = 12.50 {tz
Wea = - ft
LP = 17 ft
T- 9 ft
Da = - ft
dso min= 1 in
dso nominal= 6 in
Type = VL
ST-03
�► ::
Rainfall Parameters
Rainfall Return Period: 2
Backwater Calculations:
Tailwater Elevation (ft): 4996.50
Manhole Input Summary:
Given Flow Sub Basin Information
Total
Ground Local Drainage Overland Overland Gutter Gutter
Element Known Runoff Syr
Elevation Contribution Area Length Slope Length Velocity
Name (ft) ��f � (cfs) (Ac.) Coefficient Coefficient �ft) (%) (ft) (fps)
FES-3A 4992.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-3A 5000.94 35.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STH-3B 5001.06 35.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-3C 5001.98 31.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-3D 5002.33 21.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INL�T- 5001.95 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3YA
DI-3YA 5001.95 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5001.95 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3YB
DI-Y-3B 5001.95 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-3E 5001.92 20.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-3F 5001.89 5.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-3G 5001.01 5.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5001.24 1.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3FA
DI-3FA 5001.24 1.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-3H 5000.88 4.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-3I 5001.96 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-3J 5002.08 0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5001.68 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3GA
DI-3GA 5001.68 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5001.68 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3GB
D[-3GB 5001.68 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH- 5004.47 2.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3PA
INLET- 5004.44 2.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3PA
D[-3PA 5004.44 2.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5000.58 1.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3EB
DI-3EB 5000.58 1.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5000.58 0.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3EA
DI-3EA 5000.58 0.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH- 5001.74 1631 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3BA
INLET- 5001.45 0.78
3HB
D[-3HB 5001.45 0.78
INLET- 5001.45 3.11
3HA
DI-3HA 5001.45 3.11
STMH- 5001.85 12.11
3BB
STMH- 5003.20 12.11
3BC
STMH- 5002.69 9.90
3BD
STMH- 5002.66 9.90
3BE
INL�T- 5002.38 1.81
30A
DI-OA 5002.38 1.81
STMH- 5002.94 6.94
3BF
STMH- 500335 3.08
3BG
STMH- 5003.97 3.08
3BH
STMH- 5004.66 ] .76
3CA
STMH- 5005.76 1.76
3CB
STMH- 5005.42 1.76
3CC
STMH- 5005.99 1.76
3CD
INLET- 5006.24 1.41
3JA
DI-3JA 5006.24 1.41
INLET- 5006.20 0.42
3JB
DI-3JB 5006.20 0.42
STMH-3BI 5005.23 I .38
STMH-2BJ 5005.87 1.38
INLET- 5006.03 1.38
3BA
DI-3BA 5006.03 138
STMH- 5003.03 4.21
3QA
STMH- 5002.90 4.21
3QB
STMH- 5003.51 4.21
3QC
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
STMH- 5003.94 2.73
3QD
STMH- 5004.11 2.73
3QE
[NLET- 5003.70 0.71
3UA
DI-3UA 5003.70 0.71
INLET- 5003.70 2.10
3UB
DI-3UB 5003.70 2.10
INLET- 5004.10 1.86
3SA
DI-3SA 5004.10 1.86
INLET- 500238 1.34
30B
DI-30B 5002.38 1.34
INLET- 500335 2.91
3IA
DI-3IA 5003.35 291
STMH- 5003.45 11.28
3AA
FES-3XE1 5003.45 1.67
STMH- 5002.61 9.94
3AB
INLET- 5000.94 9.94
3AA
D[-3AA 5000.94 0.72
STMH- 5001.27 9.43
3AC
STMH- 5002.19 3.72
3KA
INLET- 5002.23 1.60
3KA
DI-3KA 5002.23 1.60
INLET- 5002.24 2.24
3MA
DI-3MA 5002.24 2.24
STMH- 5002.11 3.45
3LA
INLET- 5002.45 1.08
3LA
DI-3LA 5002.45 1.08
INLET- 5002.45 2.54
3NA
DI-3NA 5002.66 2.54
INL�T- 5000.94 2.44
3AB
INLET- SOOl.82 1.72
3AC
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
DI-3AC
DI-3AB
INLET-
3DA
DI-3DA
INLET-
3DB
DI-3DB
5001.82
5000.94
5000.46
5000.46
5000.68
5000.68
I .72
0.72
0.56
0.56
0.77
0.77
Manhole Output Summary:
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Local Contribution Total Design Flow
Overland Gutter Basin Local Manhole Peak
Element Time Time Tc Intensity Contrib Coeff. Intensity Tc Flow
Name �min) (min) (min) (in/hr) �cfs) Area (in/hr) �min) (cfs)
FES-3A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-3A
STH-3B
STMH-3C
STMH-3D
INLET-
3YA
DI-3YA
INLET-
3YB
DI-Y-3B
STMH-3E
STMH-3F
STMH-3G
INLET-
3FA
DI-3FA
STMH-3H
STMH-3I
STMH-3J
INLET-
3GA
DI-3GA
INLET-
3GB
DI-3GB
STMH-
3PA
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
35.08
35.08
31.65
21.17
0.15
0.15
0.48
0.48
20.69
5.30
5.30
1.16
1.16
4.61
3.00
0.43
0.12
0.12
0.31
0.31
2.60
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Comment
0.00
0.00
0.00
0.00
0.00
0.00
Surface Water Present
(Upstream)
Strrface Water Present
(Downsh•eam)
INLET-
3PA
DI-3PA
INLET-
3EB
DI-3EB
INLET-
3EA
DI-3 EA
STMH-
3BA
INLET-
3HB
DI-3HB
INLET-
3HA
DI-3HE1
STMH-
3BB
STMH-
3BC
STMH-
3BD
STMH-
3B�
INLET-
30A
DI-OA
STMH-
3BF
STMH-
3BG
STMH-
3BH
STMH-
3CA
STMH-
3CB
STMH-
3CC
STMH-
3CD
INLET-
3JA
DI-3JA
INLET-
3JB
DI-3JB
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 2.60
0.00 2.60
0.00 1.12
0.00 1.12
0.00 0.53
0.00 0.53
0.00 1631
0.00 0.78
0.00 0.78
0.00 3.1 1
0.00 3.11
0.00 12.1 1
0.00 12.1 1
0.00 9.90
0.00 9.90
0.00 1.81
0.00 I.SI
0.00 6.94
0.00 3.08
0.00 3.08
0.00 I.76
0.00 1.76
0.00 1.76
0.00 1.76
0.00 1.41
0.00 1.41
0.00 0.42
0.00 0.42
STMH- 0.00 0.00 0.00
3B1
STMH- 0.00 0.00 0.00
2BJ
INLET- 0.00 0.00 0.00
3BA
DI-3BA 0.00 0.00 0.00
STMH- 0.00 0.00 0.00
3QA
STMH- 0.00 0.00 0.00
3QB
STMH- 0.00 0.00 0.00
3QC
STMH- 0.00 0.00 0.00
3QD
STMH- 0.00 0.00 0.00
3QE
INLET- 0.00 0.00 0.00
3UA
D[-3UA 0.00 0.00 0.00
INLET- 0.00 0.00 0.00
3UB
DI-3UB 0.00 0.00 0.00
INLET- 0.00 0.00 0.00
3SA
DI-3SA 0.00 0.00 0.00
INLET- 0.00 0.00 0.00
30B
DI-30B 0.00 0.00 0.00
INLET- 0.00 0.00 0.00
3IA
DI-3IA 0.00 0.00 0.00
STMH- 0.00 0.00 0.00
3AA
FES-3XA 0.00 0.00 0.00
STMH- 0.00 0.00 0.00
3AB
INLET- 0.00 0.00 0.00
3AA
DI-3AA 0.00 0.00 0.00
STMH- 0.00 0.00 0.00
3AC
STMH- 0.00 0.00 0.00
3KA
INLET- 0.00 0.00 0.00
3KA
D[-3KA 0.00 0.00 0.00
INLET- 0.00 0.00 0.00
3MA
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 1.38
0.00 1.38
0.00 1.38
0.00 1.38
0.00 4.21
0.00 4.21
0.00 4.21
0.00 2.73
0.00 2.73
0.00 0.71
0.00 0.71
0.00 2.10
0.00 2.10
0.00 1.86
0.00 1.86
0.00 1.34
0.00 1.34
0.00 2.91
0.00 2.91
0.00 11.28
0.00 l .67
0.00 9.94
0.00 9.94
0.00 0.72
0.00 9.43
0.00 3.72
0.00 1.60
0.00 1.60
0.00 2.24
DI-3MA
STMH-
3LA
INLET-
3LA
DI-3LA
INLET-
3NA
DI-3NA
INLET-
3AB
INLET-
3AC
DI-3AC
DI-3AB
INLET-
3DA
DI-3DA
INLET-
3DB
DI-3DB
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
Sewer Input Summary:
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 2.24
0.00 3.45
0.00 1.08
0.00 1.08
0.00 2.54
0.00 2.54
0.00 2.44
0.00 1.72
0.00 I.72
0.00 0.72
0.00 0.56
0.00 0.56
0.00 0.77
0.00 0.77
Elevation Loss Coefficients Given Dimensions
Element Sewer pownstream Slope Upstream Mannings Bend Lateral Cross Rise Span
Length Invert o Invert
Name (ft) (ft) ��O� (ft) n Loss Loss Section (ft or in) (ft or in)
STMH-3A 74.43 4992.00 0.3 4992.22 0.012 0.03 0.00 ELLIPSE 58.00 in 91.00 in
STH-3B 67.41 4992.23 0.3 4992.43 0.012 1.32 0.00 ELLIPSE 58.00 in 91.00 in
STMH-3C 167.06 4992.43 0.3 4992.93 0.012 0.05 0.00 ELLIPSE 58.00 in 91.00 in
STMH-3D 212.88 499293 0.3 4993.57 0.012 0.05 0.00 ELLIPSE 53.00 in 83.00 in
INLET-3YA ] 3.00 4996.47 0.5 4996.53 0.013 132 0.00 CIRCULAR 18.00 in 18.00 in
DI-3YA 1.00 4996.53 0.5 4996.53 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in
INLET-3YB 23.00 4996.47 0.5 4996.58 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in
DI-Y-3B 23.00 4996.47 0.5 4996.58 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in
STMH-3E 48.65 4993.56 0.3 4993.71 0.012 0.05 0.00 ELLIPSE 53.00 in 83.00 in
STMH-3F 20.62 4993.71 0.3 4993.77 0.013 0.08 0.00 CIRCULAR 48.00 in 48.00 in
STMH-3G 99.00 4993.77 0.3 4994.07 0.013 0.07 0.00 CIRCULAR 48.00 in 48.00 in
INLET-3FA 56.00 4995.12 0.5 4995.40 0.013 I.32 0.00 CIRCULAR 30.00 in 30.00 in
DI-3FA 1.00 4995.40 0.5 4995.40 0.013 0.25 0.00 CIRCULAR 30.00 in 30.00 in
STMH-3H 43.64 4994.07 0.3 4994.20 0.013 0.05 0.00 CIRCULAR 42.00 in 42.00 in
STMH-3[ 198.58 4994.20 0.3 4994.80 0.013 0.05 0.00 CIRCULAR 24.00 in 24.00 in
STMH-3J 19.75 4994.80 0.3 4994.86 0.013 0.05 0.00 CIRCULAR 18.00 in 18.00 in
INLET-3GA 13.69 4994.85 0.5 4994.92 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in
D[-3GA
INLET-3GB
DI-3GB
STMH-3PA
INLET-3PA
DI-3PA
INLET-3 EB
DI-3EB
INLET-3EA
DI-3EA
STMH-3BA
INLET-3HB
DI-3HB
INLET-3HA
DI-3HA
STMH-3 BB
STMH-3BC
STMH-3BD
STMH-3BE
INLET-30A
DI-OA
STMH-3BF
STMH-3BG
STMH-3BH
STMH-3CA
STMH-3CB
STMH-3CC
STMH-3CD
INLET-3JA
DI-3JA
INLET-3JB
DI-3JB
STMH-3BI
STMH-2BJ
INLET-3BA
DI-3BA
STMH-3QA
STMH-3QB
STMH-3QC
STMH-3QD
STMH-3QE
INLET-3UA
DI-3UA
1.00
22.31
1.00
134.06
29.99
1.00
27.05
1.00
8.95
i .00
146.46
8.00
I .00
28.00
1.00
39.75
223.78
65.23
18.23
28.00
1.00
68.03
22.28
10930
53.92
19834
30.38
119.31
39.10
1.00
36.31
1.00
17431
82.81
44.3 7
1.00
16.08
27.48
69.19
42.40
30.34
14.00
I .00
4994.92
4994.86
4994.94
4996.35
4999.03
4999.61
4994.20
4994.66
4994.2 i
4994.25
4993.71
4996.48
4996.52
4996.48
4996.62
4994.16
4994.27
4994.94
4995.27
4995.36
4995.63
4995.36
4995.70
4995.81
4997.86
499839
4999.98
5000. I 3
5000.73
5000.93
5000.73
500091
499736
4998.23
4998.64
4998.86
4995.70
499636
4997.14
4997.83
4998.25
4998.55
4998.62
0.5
0.5
0.5
2.0
2.0
2.0
0.5
0.5
0.5
0.5
0.3
0.5
0.5
0.5
0.5
0.3
0.3
0.5
0.5
1.0
I.0
0.5
0.5
0.5
I.0
0.8
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
1.0
l.0
1.0
I.0
1.0
0.5
0.5
4994.92
4994.97
4994.94
4999.03
4999.63
4999.63
499434
4994.66
4994.25
4994.25
4994.15
4996.52
4996.52
4996.62
4996.62
4994.28
499494
4995.27
4995.36
4995.64
4995.64
4995.70
4995.81
4996.36
4998.40
4999.98
5000.13
5000.73
5000.93
5000.93
5000.91
5000.91
4998.23
4998.64
4998.86
4998.86
4995.86
4996.63
4997.83
4998.25
4998.55
4998.62
4998.62
0.013
0.0 I 3
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.0 I 3
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.0 I 3
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.25
1.32
0.25
1.32
0.11
0.25
I .32
132
I .32
0.25
1.32
1.32
0.25
I .32
0.25
0.05
0.05
0.05
0.05
1.32
0.25
0.05
0.05
0.05
I .32
0.05
0.59
0.22
I .32
0.25
I .32
0.25
0.05
0.05
1.32
0.25
1.32
0.05
0.05
0.05
0.05
1.32
0.25
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 54.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 54.00 in
CIRCULAR 48.00 in
CIRCULAR 48.00 in
CIRCULAR 36.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 36.00 in
CIRCULAR 36.00 in
CIRCULAR 36.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 36.00 in
CIRCULAR 30.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
18.00 in
18.00 in
24.00 in
24.00 in
18.00 in
18.00 in
24.00 in
24.00 in
24.00 in
24.00 in
54.00 in
24.00 in
24.00 in
24.00 in
24.00 in
54.00 in
48.00 in
48.00 in
36.00 in
24.00 in
24.00 in
36.00 in
36.00 i��
36.00 in
18.00 in
18.00 in
18.00 in
I 8.00 in
18.00 in
18.00 in
18.00 in
18.00 in
24.00 in
24.00 in
24.00 in
24.00 in
36.00 in
30.00 in
24.00 in
24.00 in
24.00 in
18.00 in
I 8.00 in
INLET-3UB
DI-3UB
INLET-3SA
DI-3SA
INLET-30B
DI-30B
INLET-31A
D[-3IA
STMH-3AA
FES-3XA
STMH-3AB
INLET-3AA
DI-3AA
STMH-3AC
STM H-3 KA
INLET-3KA
DI-3KA
INLET-3MA
DI-3MA
STMH-3LA
INLET-3LA
DI-3LA
INLET-3NA
DI-3NA
[NLET-3AB
INLET-3AC
DI-3AC
DI-3AB
INLET-3DA
DI-3DA
INLET-3DB
DI-3DB
14.00
1.00
22.98
1.00
8.00
8.00
50.00
1.00
361.00
34.03
110.00
70.50
I .00
10.00
122.53
4238
1.00
4238
I .00
84.47
42.38
1.00
4238
i .00
10.00
26.17
26.17
I .00
24.00
1.00
23.00
1.00
0.5
0.5
0.5
0.5
1.0
I.0
0.5
0.5
0.3
0.5
0.3
0.3
0.3
0.3
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
4998.62
4998.62
4998.44
4998.44
4995.44
4995.44
4997.02
4997.02
4994.01
4995.97
4994.34
4994.55
4994.55
4994.58
4995.69
4996.41
4996.41
4996.41
4996.41
4995.50
4996.21
4996.21
4996.21
4996.21
4994.63
4994.76
4994.76
4994.63
4995.38
4995.38
499537
4995.37
0.013
0.0 I 3
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.0 I 3
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.0 I 3
I .32
0.25
1.32
0.25
1.32
0.25
I .32
0.25
1.32
I .32
0.05
0.05
0.25
0.05
1.32
0.85
0.25
0.85
0.25
1.32
0.85
0.25
0.85
0.25
0.05
0.05
0.25
0.25
I .32
0.25
I .32
0.25
4998.55
4998.62
4998.33
4998.44
4995.36
4995.36
4996.77
4997.02
4992.93
4995.80
4994.01
4994.34
4994.55
4994.5 5
4995.08
4996.20
4996.41
4996.20
4996.41
4995.08
4996.00
4996.21
4996.00
4996.2 l
4994.5 8
4994.63
4994.63
4994.63
4995.26
4995.38
4995.26
4995 3 7
Sewer Flow Summary:
Full Flow Critical Flow Normal Flow
Capacity
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 54.00 in
CIRCULAR 18.00 in
CIRCULAR 48.00 in
CIRCULAR 48.00 in
CIRCULAR 48.00 in
CIRCULAR 48.00 in
CIRCULAR 30.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 30.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
Element Flow Velocity Depth Velocity Depth Velocity Froude Flow ��o�, Surcharged
Name (cfs) (fps) (in) (fps) (in) (fps) Number Condition (cfs) Length
(ft)
STMH-3A 262.35 10.38 18.58 5.95 17.94 6.25 1.07 Supercritical 35.08 0.00
STH-3B 262.35 10.38 18.58 5.95 1794 6.25 1.07 Supercritical 35.08 0.00
STMH-3C 262.35 10.38 17.63 5.78 17.04 6.07 1.07 Supercritical 31.65 0.00
24.00 in
24.00 in
18.00 in
18.00 in
24.00 in
24.00 in
24.00 in
24.00 in
54.00 in
18.00 in
48.00 in
48.00 in
48.00 in
48.00 in
30.00 in
24.00 in
24.00 in
24.00 in
24.00 in
30.00 in
24.00 in
24.00 in
24.00 in
24.00 in
24.00 in
24.00 in
24.00 in
24.00 in
24.00 in
24.00 in
24.00 in
24.00 in
Comment
STMH-3D 205.91 9.76 14.72 5.27 1437 5.45
INLET- �,45 4.21 1.71 1.76 1.77 1.67
3YA
DI-3YA 7.45 4.21 1.71 1.76 1.77 1.67
INLET- �.45 4.21 3.08 2.39 3.10 2.37
3YB
DI-Y-3B 7.45 4.21 3.08 239 3.10 237
STMH-3E 205.91 9.76 14.55 5.23 14.21 5.41
STMH-3F 78.89 6.28 7.99 3.85 8.43 3.57
STMH-3G 78.89 6.28 7.99 3.85 8.43 3.57
INLET- 29.08 5.92 4.19 2.78 4.09 2.89
3FA
DI-3FA 29.08 5.92 4.19 2.78 4.09 2.89
STMH-3H 55.25 5.74 7.72 3.80 8.20 3.48
STMH-3I 12.42 3.95 7.25 3.75 8.03 3.26
STMH-3J 5.77 3.26 2.91 232 3.33 1.91
INLET- �.45 4.21 1.52 1.67 1.59 1.56
3GA
DI-3GA 7.45 4.21 1.52 1.67 1.59 1.56
INLET- �.45 4.21 2.46 2.13 2.50 2.08
3GB
DI-3GB 16.04 5.11 2.28 2.04 231 2.00
STMH- 32.08 10.21 6.74 3.60 4.62 6.14
3PA
[NLET- 14.90 8.�43 7.33 3.84 5.09 6.33
3PA
D[-3PA 14.90 8.43 733 3.84 5.09 633
[NLET- 16.04 5.11 4.38 2.86 4.29 2.94
3EB
DI-3EB 16.04 5.11 4.38 2.86 4.29 2.94
INLET- � 6.04 5.1 1 2.99 235 2.99 235
3EA
DI-3EA 16.04 S.11 2.99 2.35 2.99 2.35
STMH- � 08.00 6.79 13.74 5.12 14.18 4.89
3BA
INLET- � 6.04 5.11 3.64 2.60 3.60 2.64
3HB
DI-3HB 16.04 5.11 3.64 2.60 3.60 2.64
INLET- �6.04 5.11 739 3J9 7.16 3.95
3HA
DI-3HA 16.04 5.11 7.39 3.79 � 716 3.95
STMH- 108.00 6.79 11.80 4.72 12.2I 4.49
3BB
1.05 Supercrirical 21.17 0.00
0.93 Subcritical 0.15 0.00 Velocity is Too
Low
0.93 Subcritical 0.15 0.00 Velocity is Too
Low
0.99 Subcritical 0.48
0.99 Subcritical 0.48
I.OS Supercritical 20.69
0.90 Subcritical 5.30
0.90 Subcritical 5.30
I.OS Supercritical 1.16
I.OS Supercritical 1.16
0.89 Subcritical 4.61
� 82 Subcritical 3.00
Surcharged
0.77 Pressurized 0.43
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
145.25
0.92 Pressurized 0.12
0.92 Pressurized 0.12
0.97 Pressurized 0.31
0.97 Subcritica] 03l
2.09 Supercritical 2.60
2.02 Supercritical 2.60
2.02 Supercritical 2.60
1.04 Pressurized 1.12
1.04 Supercritical 1.12
1.00 Pressurized 0.53
1.00 Pressurized 0.53
0.94 Subcritical 1631
1.02 Supercritical 0.78
1.02 Supercritical 0.78
1.06 Supercrirical 3.11
1.06 Supercritical 3.11
0.93 Subcritical 12.11
19.75 Velocity is Too
Low
13.69 Velocity is Too
Low
1.00 Velocity is Too
Low
22.31
0.00
0.00
0.00
0.00
27.05
0.00
8.95
1.00
0.00
0.00
0.00
0.00
0.00
0.00
STMH- �� g� 6.28 12.19 4.82 12.71 4.55
3BC
STMH- 101.84 8.10 I1.00 4.56 10.11 5.14
3BD
STMH- 47.29 6.69 11.94 4.83 11.18 5.29
3BE
INLET- 22 68 7.22 5.59 3.25 4.58 4.32
30A
DI-OA 22.68 7.22 5.59 3.25 4.58 432
STMH- 47.29 6.69 9.94 4.37 9.32 4.78
3BF
STMH- 47.29 6.69 6.56 3.50 6.23 3.77
3BG
STMH- 47.29 6.69 6.56 3.50 6.23 3.77
3BH
STMH- 10.53 5.96 5.99 3.42 4.98 4.42
3CA
STMH- 9.42 5.33 5.99 3.42 5.27 4.08
3CB
STMH- �.45 4.21 5.99 3.42 5.95 3.45
3CC
STMH- �.45 4.21 5.99 3.42 5.95 3.45
3CD
[NLET- �.45 4.21 5.34 3.21 531 3.24
3JA
DI-3JA 7.45 4.21 534 3.21 531 3.24
INLET- �.45 4.21 2.87 231 2.90 2.28
3JB
DI-3JB 7.45 4.21 2.87 231 2.90 2.28
STMH- � 6.04 5.11 4.87 3.02 4.76 3.12
3BI
STMH- � 6.04 5.11 4.87 3.02 4J6 3.12
2BJ
INLET- � 6.04 5.11 4.87 3.02 4.76 3.12
3BA
DI-3BA 16.04 5.11 4.87 3.02 4.76 3.12
STMH- 66.88 9.46 7.69 3.81 6.12 5.28
3QA
STMH- 41.13 8.38 8.10 3.94 6.48 5.39
3QB
STMH- 22 68 7.22 8.64 4.13 7.00 5.52
3QC
STMH- 22 68 7.22 6.91 3.65 5.62 4.87
3QD
STMH- 22 68 7.22 6.91 3.65 5.62 4.87
3QE
INLET- �.45 4.21 3J6 2.66 3J5 2.66
3UA
DI-3UA 7.45 4.21 3.76 2.66 3.75 2.66
0.92 Subcritical 12.11
1.18 Supercritical 9.90
1.14 Supercritical 9.90
1.48 Supercritical 1.81
1.48 Supercritical 1.81
1.13 Supercritical 6.94
l.11 Supercritical 3.08
1.11 Supercritical 3.08
1.43 Supercritical 1.76
1.28 Supercritical 1.76
1.01 Supercritical 1.76
1.01 Supercritical 1.76
1.01 Supercritical 1.41
1.01 Supercritical 1.41
0.98 Subcritical 0.42
0.98 Subcritical 0.42
1.05 Supercrirical 1.38
1.05 Supercritical 1.38
1.05 Supercrirical 1.38
I.OS Supercritical 1.38
1.56 Supercritical 4.21
1.54 Supercritical 4.21
1.50 Supercrirical 4.21
1.49 Supercritical 2.73
1.49 Supercritical 2.73
1.00 Supercritical 0.71
1.00 Supercritical 0.71
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
INLET- 16.04 5.11 6.04 3.39 5.86 3.53
3UB
D[-3UB 16.04 5.11 6.04 339 5.86 3.53
INLET- �.45 4.21 6.16 3.48 6.13 3.50
3SA
D[-3SA 7.45 4.21 6.16 3.48 6.13 3.50
INLET- 22 68 7.22 4.80 3.00 3.96 3.95
30B
DI-30B 22.68 7.22 4.80 3.00 3.96 3.95
INLET- � 6.04 5.1 1 7.14 3.71 6.92 3.88
3IA
DI-3IA 16.04 5.11 7.14 3.71 6.92 3.88
STMH- 108.00 6.79 1137 4.63 11.79 4.40
3AA
FES-3XA 7.45 4.21 5.83 3.37 5.79 3.40
STMH- �g g9 6.28 I 1.02 4.57 1 I.S I 4.29
3AB
INLET- �g g9 6.28 11.02 4.57 1].51 4.29
3AA
DI-3AA 78.89 6.28 2.91 230 3.24 1.96
STMH- �g g9 6.28 10.73 4.50 1 I.21 4.23
3AC
STMH- 29.08 5.92 7.60 3.80 7.25 4.07
3KA
INLET- � 6.04 5.1 1 5.25 3.15 5.12 3.26
3KA
DI-3KA 16.04 5.11 5.25 3.15 5.12 3.26
INLET- 1G.04 S.11 6.24 3.45 6.06 3.60
3MA
DI-3MA 16.04 5.11 6.24 3.45 6.06 3.60
STMH- 29.08 5.92 7.31 3.73 6.98 3.98
3LA
INLET- 1G.04 5.11 4.30 2.83 4.22 2.91
3LA
DI-3LA 16.04 5.11 430 2.83 4.22 2.9]
INLET- 16.04 5.11 6.66 3.57 6.46 3.73
3NA
DI-3NA 16.04 5.11 6.66 3.57 6.46 3.73
INLET- 16.04 S.11 6.52 3.53 633 3.69
3AB
INLET- 16.0�4 5.11 5.45 3.21 5.31 3.33
3AC
DI-3AC 1G.04 5.11 5.45 3.21 5.31 3.33
DI-3AB 16.04 5.11 3.50 2.54 3.46 2.58
INLET- � 6.04 5.1 1 3.08 238 3.07 239
3DA
DI-3DA 16.04 5.11 3.08 2.38 3.07 2.39
1.06 Supercritical 2.10
1.06 Supercritical 2.10
I.01 Supercritical 1.86
1.01 Supercrirical 1.86
1.46 Supercritical 1.34
1.46 Supercritical 1.34
1.06 Supercritical 2.91
1.06 Supercritical 2.91
0.93 Subcritical 11.28
I.01 Supercritical 1.67
0.92 Subcritical 9.94
0.92 Subcritical 9.94
0.81 Subcritical 0.72
0.92 Subcritical 9.43
1.10 Supercrirical 3.72
1.05 Supercritical 1.60
I.OS Supercritical 1.60
1.06 Supercritical 2.24
1.06 Supercritical 2.24
1.10 Supercritical 3.45
1.04 Supercritical 1.08
] .04 Supercrirical 1.08
1.06 Supercritical 2.54
1.06 Supercrirical 2.54
1.06 Pressurized 2.44
1.05 Supercritical 1 �2
Jump
1.05 Supercritical 1 72
Jump
1.02 Pressurized 0.72
1.01 Supercritical 0.56
1.01 Supercritical 0.56
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 Velocity is Too
Low
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
10.00
4.00
4.28
1.00
0.00
0.00
INLET- 16.04 5.11 3.62 2.59 3.58 2.63 1.02 Supercritical 0.77 0.00
3DB
D[-3DB 16.04 5.11 3.62 2.59 3.58 2.63 1.02 Supercritical 0.77 0.00
• A Froude nuinber of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
• If the sewer is not pressurized, full flow represents the maximum graviry flow in the sewer.
• If the sewer is pressurized, full flow represents the pressurized flow conditions.
Sewer Sizing Summary:
Existing Calculated Used
Element Peak Cross Area
Name ��f � Section Rise Span Rise Span Rise Span �ft�2� Comment
STMH-3A 35.08 ELLIPSE 58.00 in 91.00 in 36.00 in 36.00 in 58.00 in 91.00 in 25.29
STH-3B 35.08 ELLIPSE 58.00 in 91.00 in 36.00 in 36.00 in 58.00 in 91.00 in 25.29
STMH-3C 31.65 ELLIPSE 58.00 in 91.00 in 36.00 in 36.00 in 58.00 in 91.00 iu 25.29
STMH-3D 21.17 ELLIPSE 53.00 in 83.00 in 30.00 in 30.00 in 53.00 in 83.00 in 21.09
INLET-3YA 0.15 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
D[-3YA 0.15 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
INLET-3YB 0.48 CIRCULAR ] 8.00 in 18.00 in l 8.00 in 18.00 in ] 8.00 in 18.00 in 1.77
DI-Y-3B 0.48 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
STMH-3E 20.69 ELL[PSE 53.00 in 83.00 in 30.00 in 30.00 in 53.00 in 83.00 in 21.09
STMH-3F 5.30 CIRCULAR 48.00 in 48.00 in 18.00 in 18.00 in 48.00 in 48.00 in 12.57
STMH-3G 5.30 CIRCULAR 48.00 in 48.00 in 18.00 in 18.00 in 48.00 in 48.00 in 12.57
INLET-3FA 1.16 CIRCULAR 30.00 in 30.00 in 18.00 in 18.00 in 30.00 in 30.00 in 4.91
DI-3FA 1.16 CIRCULAR 30.00 in 30.00 in 18.00 in 18.00 in 30.00 in 30.00 in 4.91
STMH-3H 4.61 CIRCULAR 42.00 in 42.00 in 18.00 in 18.00 in 42.00 in 42.00 in 9.62
STMH-31 3.00 C[RCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
STMH-3J 0.43 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
INLET-3GA 0.12 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-3GA 0.12 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 iu 1.77
INLET-3GB 0.31 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-3GB 0.31 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
STMH-3PA 2.60 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
INLET-3PA 2.60 CIRCULAR ] 8.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-3PA 2.60 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
INLET-3EB 1.12 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
DI-3EB 1.12 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
INLET-3EA 0.53 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
DI-3�A 0.53 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
STMH-3BA 16.31 CIRCULAR 54.00 in 54.00 in 27.00 in 27.00 in 54.00 in 54.00 in 15.90
INLET-3HB 0.78 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
DI-3HB
1NLET-3HA
DI-3HA
STMH-3BB
STMH-3BC
STMH-3BD
STMH-3BE
INLET-30A
DI-OA
STMH-3 BF
STMH-3BG
STMH-3BH
STMH-3CA
STMH-3CB
STMH-3CC
STMH-3CD
INLET-3JA
DI-3JA
INL�T-3JB
DI-3JB
STMH-3BI
STMH-2BJ
INLET-3BA
DI-3BA
STMH-3QA
STMH-3QB
STMH-3QC
STMH-3QD
STMH-3QE
INLET-3UA
D[-3UA
INLET-3UB
DI-3UB
INLET-3SA
DI-3 SA
INLET-30B
DI-30B
INLET-3IA
DI-3IA
STMH-3AA
FES-3XA
STMH-3AB
INLET-3AA
0.78
3.11
3.11
12.11
12.11
9.90
9.90
1.81
1.81
6.94
3.08
3.08
1.76
1.76
1.76
1.76
1.41
1.41
0.42
0.42
1.38
1.38
1.38
1.38
4.2 I
4.2 I
4.21
2.73
2.73
0.71
0.7I
2.10
2.10
1.86
1.86
I .34
1.34
2.9 ]
29l
1 1.28
1.67
9.94
9.94
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
C[RCULAR
CIRCULAR
C[RCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
C[RCULAR
C[RCULAR
C[RCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
C[RCULAR
CIRCULAR
C[RCULAR
CIRCULAR
CIRCULAR
24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in
24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in
24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in
54.00 in 54.00 in 24.00 in 24.00 in 54.00 in 54.00 in
48.00 in 48.00 in 24.00 in 24.00 in 48.00 in 48.00 in
48.00 in 48.00 in 21.00 in 21.00 in 48.00 in 48.00 in
36.00 in 36.00 in 21.00 in 21.00 in 36.00 in 36.00 in
24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in
24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in
36.00 in 36.00 in 18.00 in 18.00 in 36.00 in 36.00 in
36.00 in 36.00 in 18.00 in 18.00 in 36.00 in 36.00 in
36.00 in 36.00 in 18.00 in 18.00 in 36.00 in 36.00 in
18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in
18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 iu
18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in
18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in
18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in
] 8.00 in 18.00 in 18.00 in 18.00 in ] 8.00 in 18.00 in
18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in
18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in
24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in
24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in
24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in
24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in
36.00 in 36.00 in 18.00 in 18.00 in 36.00 in 36.00 in
30.00 in 30.00 in 18.00 in 18.00 in 30.00 in 30.00 in
24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in
24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in
24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in
18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in
18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in
24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in
24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in
18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in
18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in
24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in
24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in
24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in
24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in
54.00 in 54.00 in 24.00 in 24.00 in 54.00 in 54.00 in
18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in
48.00 in 48.00 in 24.00 in 24.00 in 48.00 in 48.00 in
48.00 in 48.00 in 24.00 in 24.00 in 48.00 in 48.00 in
3.14
3.14
3.14
15.90
12.57
12.57
7.07
3.14
3.14
7.07
7.07
7.07
1.77
1.77
1.77
1.77
I .77
1.77
1.77
1.77
3.14
3.14
3.14
3.14
7.07
4.91
3.14
3.14
3.14
1.77
1.77
3.14
3.14
1.77
1.77
3.14
3.14
3.14
3.14
15 90
1.77
12.57
12.57
D[-3AA
STMH-3AC
STMH-3KA
INLET-3KA
DI-3KA
INLET-3MA
DI-3MA
STMH-3LA
INLET-3LA
DI-3LA
INLET-3NA
DI-3NA
INLET-3AB
INLET-3AC
DI-3AC
DI-3AB
1NLET-3DA
DI-3 DA
INLET-3DB
DI-3DB
48.00 in 48.00 in 18.00 in 18.00 in
48.00 in 48.00 in 24.00 in 24.00 in
30.00 in 30.00 in 18.00 in 18.00 in
24.00 in 24.00 in 18.00 in 18.00 in
24.00 in 24.00 in 18.00 in 18.00 in
24.00 in 24.00 in 18.00 in 18.00 in
24.00 in 24.00 in 18.00 in 18.00 in
30.00 in 30.00 in 18.00 in 18.00 in
24.00 in 24.00 in 18.00 in 18.00 in
24.00 in 24.00 in 18.00 in 18.00 in
24.00 in 24.00 in 18.00 in 18.00 in
24.00 in 24.00 in 18.00 in 18.00 in
24.00 in 24.00 in 18.00 in 18.00 in
24.00 in 24.00 in 18.00 in 18.00 in
24.00 in 24.00 in 18.00 in 18.00 in
24.00 in 24.00 in 18.00 in 18.00 in
24.00 in 24.00 in 18.00 in 18.00 in
24.00 in 24.00 in 18.00 in 18.00 in
24.00 in 24.00 in 18.00 in 18.00 in
24.00 in 24.00 in 18.00 in 18.00 in
48.00 in 48.00 in
48.00 in 48.00 in
30.00 in 30.00 in
24.00 in 24.00 in
24.00 in 24.00 in
24.00 in 24.00 in
24.00 in 24.00 in
30.00 in 30.00 in
24.00 in 24.00 in
24.00 in 24.00 in
24.00 in 24.00 in
24.00 in 24.00 in
24.00 in 24.00 in
24.00 in 24.00 iu
24.00 in 24.00 in
24.00 in 24.00 in
24.00 in 24.00 in
24.00 in 24.00 in
24.00 in 24.00 in
24.00 in 24.00 in
12.57
12.57
4.91
3.14
3.14
3.14
3.14
4.9 I
3.14
3.14
3.14
3.14
3.14
3.14
3.14
3.14
3.14
3.14
3.14
3.14
• Calculated diameter was deterinined by sewer hydraulic capacity rounded up to the nearest commercially
available size.
• Sewer sizes should not decrease downstream.
• All hydraulics where calculated using the 'Used' parameters.
Grade Line Summary:
Tailwater Elevation (ft): 4996.50
lnvert Elev.
0.72
9.43
3.72
1.60
1.60
2.24
2.24
3.45
1.08
i .08
2.54
2.54
2.44
1.72
1.72
0.72
0.56
0.56
0.77
0.77
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
C[RCULAR
CIRCULAR
C[RCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
Element DownsYream Upstream
Name (ft) (ft)
STMH-3A
STH-3B
STMH-3C
STMH-3D
INLET-3YA
DI-3YA
INLET-3YB
DI-Y-3 B
4992.00
4992.23
4992.43
4992.93
4996.47
4996.53
4996.47
4996.47
4992.22
4992.43
4992.93
4993.57
4996.53
4996.53
4996.58
4996.58
�Downstream Manhole
Losses
Bend Lateral
Loss Loss
(ft) (ft)
0.00 0.00
0.04 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
HGL EGL
Downstream Upstream Downstream Friction Upstream
(ft) (ft) (ft) Loss �ft)
(ft)
4996.50 4996.50 4996.53 0.00 4996.54
4996.54 4996.54 4996.58 0.00 4996.58
4996.55 4996.55 4996.58 0.01 4996.60
4996.57 4996.57 4996.60 0.01 4996.61
4996.61 4996.68 4996.66 0.07 4996.72
4996.69 4996.69 4996.72 0.00 4996.73
4996.72 4996.84 4996.81 0.12 4996.93
4996.91 4996.91 4996.93 0.03 499695
STMH-3E
STMH-3F
STMH-3G
INLET-3FA
DI-3FA
STMH-3H
STMH-31
STMH-3J
IN L ET-3 GA
Dt-3GA
INLET-3GB
DI-3GB
STMH-3PA
INLET-3PA
DI-3PA
INLET-3EB
D[-3EB
[NLET-3EA
DI-3 EA
STMH-3BA
INLET-3HB
DI-3HB
INLET-3HA
D[-3HA
STMH-3BB
STMH-3BC
STMH-3BD
STMH-3B�
INLET-30A
DI-OA
STMH-3BF
STMH-3BG
STMH-3BH
STMH-3CA
STMH-3CB
STMH-3CC
STMH-3CD
INLET-3JA
DI-3JA
1NLET-3JB
DI-3JB
STMH-3BI
STMH-2BJ
4993.56
4993.71
4993.77
4995.12
4995.40
4994.07
4994.20
4994.80
4994.85
4994.92
4994.86
4994.94
4996.35
4999.03
4999.61
4994.20
4994.66
4994.21
4994.25
4993.71
4996.48
4996.52
4996.48
4996.62
4994.16
4994.27
4994.94
4995.27
4995.36
4995.63
499536
4995.70
4995.81
4997.86
4998.3 9
4999.98
5000.13
5000.73
5000.93
5000.73
5000.91
4997.3 6
4998.23
4993.71
4993.77
4994.07
4995.40
4995.40
4994.20
4994.80
4994.86
4994.92
4994.92
4994.97
4994.94
4999.03
4999.63
4999.63
499434
4994.66
4994.25
4994.25
4994.15
4996.52
4996.52
4996.62
4996.62
4994.28
4994.94
4995.27
4995.36
4995.64
4995.64
4995.70
4995.81
4996.3 6
4998.40
4999.98
5000.13
5000.73
5000.93
5000.93
5000.91
5000.91
4998.23
4998.64
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.01
0.00
0.00
0.00
0.00
0.02
0.00
0.00
0.02
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.02
0.00
0.01
0.00
O.O l
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
4996.58
4996.61
4996.61
4996.62
4996.62
4996.61
4996.61
4996.66
4996.66
4996.66
4996.66
4996.66
4996.73
4999.60
5000.25
4996.62
4996.62
4996.62
4996.62
4996.60
4996.78
4996.85
4997.08
4997.29
4996.63
4996.64
4996.69
4996.69
4996.86
4996.86
4996.79
4996.91
4996.91
4998.28
4998.90
5000.54
5000.63
500136
5001.41
5001.41
5001.41
4997.75
4998.66
4996.58
4996.61
4996.61
4996.62
4996.62
4996.61
4996.65
4996.66
4996.66
4996.66
4996.66
4996.66
4999.59
5000.24
5000.58
4996.62
4996.62
4996.62
4996.62
4996.61
4996.82
4996.85
4997.24
4997.29
4996.63
4996.66
4996.69
4996.69
4996.86
4996.86
4996.79
4996.91
4996.91
4998.90
5000.48
5000.63
5001.23
500137
5001.41
5001.41
5001.41
4998.64
4999.05
4996.61
4996.62
4996.62
4996.62
4996.62
4996.62
4996.63
4996.66
4996.66
4996.66
4996.66
4996.66
4997.32
5000.08
5000.66
4996.62
4996.63
4996.62
4996.62
4996.64
4996.89
4996.93
499732
4997.46
4996.66
4996.67
4996.75
4996.83
4996.86
4996.87
4996.86
4996.93
4996.94
4998.58
4999.09
5000.67
5000.81
5001.42
5001.54
5001.41
5001.42
4997.91
4998.78
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0.00
0.00
0.00
0.00
0.00
2.47
0.39
0.00
0.00
0.00
0.00
0.00
0.02
0.04
0.00
0.14
0.00
0.00
0.07
0.04
0.03
0.00
0.00
0.07
0.01
0.16
0.50
1.57
0.14
0.60
0.11
0.00
0.01
0.00
0.87
0.41
4996.62
4996.62
4996.62
4996.62
4996.62
4996.62
4996.66
4996.66
4996.66
4996.66
4996.66
4996.66
4999.79
5000.47
5000.66
4996.62
4996.63
4996.62
4996.62
4996.66
499693
4996.93
4997.46
4997.47
4996.67
4996.75
4996.79
4996.86
4996.87
4996.87
4996.93
4996.94
4997.10
4999.08
5000.66
5000.81
5001.41
5001.54
5001.54
5001.42
5001.42
4998.78
4999.19
INLET-3BA
DI-3BA
STMH-3QA
STMH-3QB
STMH-3QC
STMH-3QD
STMH-3QE
INLET-3UA
D[-3UA
INLET-3UB
DI-3 UB
INLET-3SA
DI-3 SA
INLET-30B
DI-30B
[NLET-3 [A
DI-3[A
STMH-3AA
FES-3XA
STMH-3AB
INLET-3AA
DI-3AA
STMH-3AC
STMH-3KA
1NLET-3KA
D[-3KA
INLET-
3MA
DI-3MA
STMH-3LA
INLET-3LA
DI-3LA
INLET-3NA
D[-3NA
INLET-3AB
INLET-3AC
DI-3AC
DI-3AB
INLET-3DA
DI-3DA
INLET-3DB
DI-3DB
4998.64
4998.86
4995.70
4996.36
4997.14
4997.83
4998.25
4998.55
4998.62
4998.55
4998.62
4998.33
4998.44
4995.36
4995.36
4996.77
4997.02
4992.93
4995.80
4994.01
4994.34
4994.55
4994.55
4995.08
4996.20
4996.41
4996.20
4996.41
4995.08
4996.00
4996.21
4996.00
4996.21
4994.58
4994.63
4994.63
4994.63
4995.26
499538
4995.26
4995.37
4998.86
4998.86
4995.86
4996.63
4997.83
4998.25
4998.55
4998.62
4998.62
4998.62
4998.62
4998.44
4998.44
4995.44
4995.44
4997.02
4997.02
4994.01
4995.97
4994.34
4994.55
4994.55
4994.58
4995.69
4996.41
4996.41
4996.41
4996.41
4995.50
4996.21
4996.21
4996.21
4996.21
4994.63
4994.76
4994.76
4994.63
4995.38
499538
4995.37
4995.37
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.02
0.00
0.00
0.00
0.02
0.00
0.01
0.02
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.01
0.00
0.01
0.00
0.00
O.O l
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
4999.08
499930
4996.90
4996.90
4997.72
4998.76
4998.83
499933
499933
4999.28
4999.28
4998.84
4999.00
4996.86
4996.86
499735
4997.66
4996.60
4996.62
4996.61
4996.61
4996.65
4996.62
4996.64
4996.65
4996.88
4996.70
4996.97
4996.64
4996.66
4996.67
4996.65
4996.81
4996.64
4996.65
4996.65
4996.65
4996.58
4996.58
4996.58
4996.58
4999.27
499930
4996.90
4997.30
4998.55
4998.83
4999.13
499933
499933
4999.28
4999.28
4998.95
4999.00
4996.86
4996.86
4997.61
4997.66
4996.60
4996.62
4996.61
4996.61
4996.65
4996.62
4996.64
4996.85
4996.88
4996.93
4996.97
4996.64
4996.66
4996.67
4996.76
4996.81
4996.64
4996.65
4996.65
4996.65
4996.58
4996.58
4996.58
4996.58
4999.19
4999.41
4996.94
4997.35
4998.19
4998.82
4999.08
499934
499934
499934
4999.36
4999.03
4999.15
4996.86
4996.86
4997.58
4997.83
4996.61
4996.67
4996.63
4996.64
4996.65
4996.65
4996.66
4996.79
4997.00
4996.90
4997.12
4996.66
4996.68
4996.73
4996.75
4996.97
4996.65
4996.65
4996.65
4996.65
4996.58
4996.58
4996.58
4996.58
0.22
0.00
0.02
0.20
0.62
0.22
0.25
0.00
0.00
0.02
0.00
0.11
0.00
0.00
0.00
0.25
0.00
0.02
0.04
0.01
0.01
0.00
0.00
0.05
0.21
0.00
0.21
0.00
0.02
0.04
0.00
0.21
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
4999.41
4999.41
4996.96
4997.55
4998.82
4999.03
499933
499934
499934
4999.36
4999.37
4999.14
4999.15
4996.86
4996.86
4997.83
4997.84
4996.63
4996.70
4996.64
4996.65
4996.65
4996.65
4996.72
4997.00
4997.01
4997.1 1
4997.12
4996.68
4996.73
4996.73
4996.96
4996.97
4996.65
4996.65
4996.66
4996.65
4996.58
4996.58
4996.58
4996.58
• Bend and Lateral losses only apply wllen there is an outgoing sewer. The system outfall, sewer #0, is not
considered a sewer.
• Bend loss = Bend K* V_fi ^ 2/(2*g)
• Lateral loss = V fo ^ 2/(2*g)- Junction Loss K* V_fi ^ 2/(2*g).
• Friction loss is always Upstream EGL - Downstream EGL.
ST-03
w
w
Ai;[ance IFi�
ST 3Dl
Dis[ance 1Ft'�
ST-3D2
Di�[ance IF[j
ST-3E l
.�,, .,e rT'�I�G 74
.... ST�� STn'�t�.�Jr-
,STq,��d.3� �@
_ -- .-�e:. —>. _. _. _-_. ---..
Dis[ance IFt�
1.
s��a� STM����rT.'e�
.STi6f/ . F�.7C
3` 13�.
HGL
...._...... EGL
---. aas :
ST-3E2
'i.l 06
w 56
�=9- `6
�
�.,_ ... _,; _"�"__" ____�._ ____"":�. _'_'___'__
N.
.S'r��y,
_so, � �sT�� c
.5���/.3� ;@
Jo4J 96
.'.GJ ... ..... ._...
�
.:>:.e � 'S�TfJ. if1
��� 7
�
_.., ;a
� co --__ . Y
/n,
s� s.�� s�,yE� � sr�'ia.�y��r,�pe
i
STil�r 7�
y_3j, 3p
HGL
......,.._. EGL
.--. ..... _... ... . c:,SSf� �5:'v�
rn:�,,,,t ir� i
ST-3F
.rTn�Fi..T�.
!GS
SJn,rff 1fJ
------------------------------------------
i;�,�,r I!e
Sr� ,sT'�Fr..i�;
��:ij, �3F
HGL
............ EGL
-:-... .._.. .`:560 6":�0 ':6�
Dis�ance !F[�
ST 3Gl
,�o
�
�
�
f--- s��� r
rr,�1F� J� �
., c
.,�<<.�
� �,
�936�F'�_vvv-' __'v`u.u_vvvu:_.'__'.__'__.
V-
:;�; : c
..,,. ,SI;Ljf�,39 Srf� ;13
� S::E
.... 9-_n .._
STI� ST�/i.Jf�
S F�
S' S�A,jf/`;�li,3�. J�:
f,y�i?n
S JMH. � .
�
_,,,. ..... _,. _ . ,._ e-e_. ..
Di;�ancr IFt�
ST 3G2
ST�f
,5•�L� /,3��
SP, �f.
—r Sr`M/ _ ��h'3 7<'
f; F
S�'�H., J�� � N
,S'Tti��� 7�.
Dis�ance fFtl
ST �H.3I
sp'y�t.`;/
.sr�`�/ ,`��„
HGL
EGL
S�1lH��� .i(��i
HGL
EGL
ST-3Hl
`�����_��,�
�
�
�
�
STMjf_
STtiJt, 3j 3g�
S f;�f f 30
�_ ST�i; -"sC,
7�'�fl`?q - B
.._ _... .._.. .-... ... _ _.
Di:ia„re fF[� _... __.
ST-3H2
.:,; ," I ! �sf �'�'' �n
,s�,y� � ,
S _ sre. � <
��'�rr�.�q �
Dis[ance fF[i. ...
HGL
EGL
�-�t�,.:, ��
ST^7ii.,;e
s pMH.;,, �
HCiL
............ EGL
:sse,� F;,:;
ST-3J1
��;�,,,.z ��
ST-3J2
I Fr. �,e
Di'[ance fFti
w
F 99-:�
� � �..r ..............
:996^<
-.._ .Sl'/I.
.STti���.T� ��
Di ��ancr l�
ST-3L
���.,,
,��.
:999 9!
19036!
[+�.
�'9i':�
� �ur .......+........____'
=9iE J`
.9c:'�
�99i:�
.a�_ '�ii.;
S'p�l� H
�.�c. s=
sry�i ��.
ST-3K
ST���i-J.V:;
S�M�'T ;,t�f�'J,� �.
I �� � 9
,V � E !:'�h.R
S�,�I�� ?j,
�
S' •
S7�„';� ��<IT.;��fl.,j�C
�
HGL
.........._ EGL
_... ._.. _.,. .,_. ._ _ :s_..
Di'[vtct :F
ST-3M
�
�
w
E,,,
M.q
�
w
�o-
�`
�NL�r�
''�%t
:��::, � S�'�H..
S� Sjf� !j ��
d1�� 1
�s» s�
oi,r.,nce r�
ST-3N
� �����'.?��3
r r,yCpTSjMFI.,j �.
7,yff. ; t,{ a
7� /3
.S'T���t.3 9: {
nis[ancz l�
------ HGL
EGL
sss;. =r;
ST-30l
�
=1 �
�ET3v
�3g1, 9
Di-�ance fF�t
ST-302
_�9:u SIM�f��h'O
.S����� 3
:.e;.:. .s A� .. S�t�h.JQ`' ST�j`� �eH ��
p . � ��.,1:
I q�f/, iD
.��,,, �, , S'��-� STtiE,,,�
''^��r.� �`�
' � ----- HGL
............ EGL
=�-::Si
... .,_ _ _.., ___. ___. L._ ..
..- � Dis[ance I� .� _ ,.-.
ST-3P
rn;�:�„�t iF�i
ST-3S
rn„�„�z rF�i
ST 3U l
wi
�
�..s �:
w
� 99' `i
�_ __ ____ ______________________________�----.......__,....._.._....._---•-____-_ ------=
.99_ 69
,u�; :. J'T.y��
ST�� /. � � ;F
.s�,y� :
�A9_':o Sf �Sr�f'fj �(�
n�y33
nisiance ��
ST 3U2
5'T Mf�'��B
__ ;ae
Distancz fft1
,
,s�,,;�Z r_3
� s, y� J(1�1�� Ue
•
;__.��' ST`�f�'iPc
� S�IAq ���f-3
S � � i.?M� �81,` r�F ��i
HGL
............ EGL
ST 3Y l
�
�.�
�� fi
:�_:
+sso
-------_ -----=- -------- ------_ --_-_=_
.................................... -------• _---• .,__..
_..-
r<<�r���
sTti���.�� Srff.��
5�:4,y J�.
s�M�� �n
_.... `6": ::.:�
n�s��„�e rr��
ST 3Y2
HGL
EGL
F7: ? y13
Distance (Ft'�
ST-03
100-YEAR
Rainfall Parameters
Rainfall Return Period: 100
Backwater Calculations:
Tailwater Elevation (ft): 4998.69
Manhole Input Summary:
Given Flow Sub Basin Information
Total
Ground Local Drainage Overland Overland Gutter Gutter
Element Elevation Known Contribution Area Runoff Syr Length Slope Length Velocity
Name (ft) ��f � (cfs) (Ac.) Coefficient Coefficient �ft) (%) (ft) (fps)
FES-3A 4992.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-3A 5000.94 151.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STH-3B 5001.06 151.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-3C 5001.98 137.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-3D 5002.33 91.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5001.95 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3UA
Dl-3UA 5001.95 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1NLET-3UB 5001.95 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DI-3UB 5001.95 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-3E 5001.92 89.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-3F 5001.89 22.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-3G 5001.01 22.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET-3FA 5001.24 5.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DI-3FA 5001.24 5.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-3H 5000.88 17.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-3I 5001.96 11.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-3J 5002.08 1.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5001.68 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3GA
DI-3GA 5001.68 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET-3GB 5001.68 1.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DI-3GB 5001.68 1.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-3PA 5004.47 9.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
fNLET-3PA 5004.44 9.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DI-3PA 5004.44 9.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET-3EB 5000.58 4.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DI-3EB 5000.58 4.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET-3EA 5000.58 2.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DI-3EA 5000.58 2.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-3BA 5001.74 70.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET-3HB 5001.45 3.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DI-3HB 5001.45 3.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5001.45 13.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3HA
DI-3HA 5001.45 13.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-3BB 5002.97 52.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-3BC 5003.20 52.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-3BD 5002.69
STMH-3BE 5002.62
STMH-3BF 5003.97
STMH-3CA 5004.55
STMH-3CB 5005.42
STME{-3CC 5005.99
TNLCT-3JA 5006.24
DI-3JA 5006.24
INLET-3JB 5006.20
DI-3JB 5006.20
STMH-3BI 5005.23
STMH-2BJ 5005.87
INLET-3BA 5006.03
DI-3BA 5006.03
INLET- 500231
30A
Dl-OA 5002.31
INLET-30B 5002.31
DI-30B 5002.31
INL�T-3IA 500335
DI-3IA 500335
STMH-3AA 5003.54
STMH-3AB 5002.67
INLET- 5000.94
3AA
DI-3AA 5000.94
STMH-3AC 5001.27
STMH-3KA 5002.19
INLET- 5002.23
3KA
DI-3KA 5002.23
INLET- 5002.24
3MA
DI-3MA 5002.24
STMH-3LA 5002.11
fNLET-3LA 5002.45
DI-3LA 5002.45
INLET- 5002.45
3NA
DI-3NA 5002.45
INLET-3AB 5000.94
INLET-3AC 5001.82
DI-3AC 5001.82
DI-3AB 5000.94
INLET- 5000.46
3DA
42.57
42.57
13.42
7.69
7.69
7.69
6.14
6.14
1.84
1.84
6.02
6.02
6.02
6.02
19.23
19.23
5.85
5.85
12.70
12.70
48.77
48.77
48.77
10.90
40.87
16.21
6.98
6.98
9.76
9.76
15.01
4.7 ]
4.71
11.04
11.04
9.66
7.50
7.50
2.89
2.42
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Dl-3DA 5000.46 2.42
INLET-3DB 5000.68 3.17
DI-3DB 5000.68 3.17
Manhole Output Summary:
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 0.00
0.00 0.00
0.00 0.00
Local Conh•ibution Total Design Flow
Overland Gutter Basin Local Manhole Peak
Element Time Time Tc Intensity Contrib Coeff. Intensity Tc Flow Comment
Name � � � � � � (in/hr) �cfs) Area (in/hr) �min) (cfs)
min min min
FES-3A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Surface Water Present
(Upstrcain)
STMH-3A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 151.48 Surface Water Present
(Dowustream)
STH-3B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 151.48
STMH-3C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 137.30
STMH-3D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 91.82
INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60
3UA
DI-3UA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60
INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10
3UB
Dl-3UB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10
STMH-3E 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 89.57
STMH-3F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 22.07
STMH-3G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 22.07
INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.05
3FA
DI-3 FA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.05
STMH-3H 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 17.23
STMH-3T 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.25
STMH-3J 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.86
INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50
3GA
DI-3GA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50
INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.36
3GB
Dl-3GB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.36
STMH- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.76
3PA
INLET- p.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.76
3PA
DI-3PA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.76
INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.89
3EB
DI-3EB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.89 Surface Water Present
(Downstream)
INLET- 0.00
3EA
DI-3EA 0.00
STMH- 0.00
3BA
INLET- 0.00
3HB
DI-3HB 0.00
INLET- 0.00
3HA
DI-3HA 0.00
STMH- 0.00
3BB
STMH- p.00
3BC
STMH- 0.00
3BD
STMH- 0.00
3BE
STMH- 0.00
3BF
STMH- 0.00
3CA
STMH- 0.00
3CB
STMH- 0.00
3CC
fNLET- 0.00
3JA
D]-3JA 0.00
INLET- 0.00
3JB
Dl-3JB 0.00
STMH-3BI 0.00
STMH-2BJ 0.00
INLET- 0.00
3BA
DI-3BA 0.00
INLET- 0.00
30A
DI-OA 0.00
INLET- 0.00
30B
DI-30B 0.00
INLET- 0.00
3IA
D]-31A 0.00
STMH- 0.00
3AA
STMH- 0.00
3AB
INLET- 0.00
3AA
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
2.19
2.19
70.73
3.35
3.35
13.58
13.58
52.41
52.41
42.57
42.57
13.42
7.69
7.69
7.69
6.14
6.14
1.84
1.84
6.02
6.02
6.02
6.02
19.23
19.23
5.85
5.85
12.70
12.70
48.77
48.77
48.77
DI-3AA
STMH-
3AC
STMH-
3KA
INLET-
3KA
D]-3KA
INLET-
3MA
DI-3MA
STMH-
3LA
INLE T-
3LA
DI-3LA
INLET-
3NA
D[-3NA
INLET-
3AB
INLET-
3AC
DI-3AC
DI-3AB
INLET-
3DA
DI-3DA
INLET-
3DB
DI-3DB
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
Sewer Input Summary:
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
10.90 Surface Water Present
(Downstream)
40.87
16.21
6.98
6.98
9.76
9.76
15.01
4.71
4.71
1 1.04
11.04
9.66
7.50
7.50
Z 89 Surface Water Present
(Downstream)
2.42
2.42
3.17
3.17
Elevation Loss Coefficients Given Dimensions
Element Sewer pownstream S�ape Upstream Mannings Bend Lateral Cross Rise Span
Length Invert o Invert
Name (ft) (ft) ��O� (ft) n Loss Loss Section (ft or in) (ft or in)
STMH-3A 74.43 4992.00 0.3 4992.22 0.013 0.03 0.00 ELLIPSE 58.00 in 91.00 in
STH-3B 67.41 4992.23 0.3 4992.43 0.013 1.32 0.00 ELLIPSE 58.00 in 91.00 in
STMH-3C I67.06 4992.43 0.3 4992.93 0.013 0.05 0.00 ELLIPSE 58.00 in 91.00 in
STMH-3D 212.88 4992.93 0.3 4993.57 0.013 0.05 0.00 CIRCULAR 66.00 in 66.00 in
INLET-3UA 13.00 4997.22 0.5 4997.28 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in
DI-3UA I.00 4997.28 0.5 4997.28 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in
INLET-3UB 23.00 4997.22 0.5 4997.33 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in
DI-3UB 1.00 4997.33 0.5 4997.33 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in
STMH-3E
STMH-3F
STMH-3G
INLET-3FA
DI-3FA
STMH-3H
STMH-3I
STMH-3J
INLET-3GA
DI-3GA
INLET-3GB
DI-3GB
STMH-3PA
INLET-3PA
DI-3PA
INLET-3 EB
DI-3EB
INLET-3EA
DI-3EA
STMH-3BA
INLET-3HB
DI-3HB
INLET-3HA
DI-3HA
STMH-3BB
STMH-3BC
STMH-3BD
STMH-3BE
STMH-3BF
STMH-3CA
STMH-3CB
STMH-3CC
INLET-3JA
DI-3JA
INLET-3JB
DI-3JB
STMH-3BI
STMH-2BJ
INLET-36A
D]-3BA
INLET-30A
DI-OA
INLET-30B
48.65
20.62
99.00
56.00
1.00
43.64
I 98.58
19.75
13.69
1.00
22.31
I .00
134.06
29.99
1.00
27.05
1.00
8.95
1.00
146.46
8.00
1.00
28.00
i .00
181.78
81.76
65.23
18.23
I 99.62
53.92
228.73
11931
39.10
1.00
36.31
1.00
17431
82.81
4437
1.00
28.00
I .00
8.00
4993.56
4993.71
4993.77
4994.07
4995.40
4994.07
4994.20
4994.80
4994.85
4994.92
4994.86
4994.97
4996.35
4999.03
4999.6I
4994.20
499434
4994.21
4994.25
4993.71
4996.48
4996.52
4996.48
4996.62
4994.15
4994.69
4994.94
4995.27
4995.36
4997.86
4998.40
5000.13
5000.82
5001.02
5000.82
5001.00
4997.36
4998.23
4998.64
4998.86
499536
4995.50
4995.36
0.3
0.3
0.3
0.5
0.5
0.3
0.3
0.3
0.5
0.5
0.5
0.5
2.0
2.0
2.0
0.5
0.5
0.5
0.5
0.3
0.5
0.5
0.5
0.5
0.3
0.3
0.5
0.5
0.5
1.0
0.8
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
4993.71
4993.77
4994.07
4994.35
4995.40
4994.20
4994.80
4994.86
4994.92
4994.92
4994.97
4994.97
4999.03
4999.63
4999.63
499434
499434
4994.25
4994.25
4994.15
4996.52
4996.52
4996.62
4996.62
4994.70
4994.94
4995.27
4995.36
4996.36
4998.40
5000.23
5000.73
5001.02
5001.02
5001.00
5001.00
4998.23
4998.64
4998.86
4998.86
4995.50
4995.50
4995.40
0.012
0.0 I 3
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.0 I 3
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.0 I 3
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.05
0.08
0.07
1.32
0.25
0.05
0.05
0.05
I .32
0.25
1.32
0.25
1.32
0.11
0.25
I .32
1.32
1.32
0.25
1.32
1.32
0.25
] .32
0.25
0.05
0.05
0.05
0.05
0.05
1.32
0.59
0.22
1.32
0.25
1.32
0.25
0.05
0.05
I .32
0.25
I .32
0.25
1.32
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
CIRCULAR 66.00 in 66.00 in
CIRCULAR 48.00 in 48.00 in
CIRCULAR 48.00 in 48.00 in
CIRCULAR 30.00 in 30.00 in
CIRCULAR 30.00 in 30.00 in
CIRCULAR 42.00 in 42.00 in
CIRCULAR 24.00 in 24.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 24.00 in 24.00 in
CIRCULAR 24.00 in 24.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 24.00 in 24.00 in
CIRCULAR 24.00 in 24.00 in
CIRCULAR 24.00 in 24.00 in
CIRCULAR 24.00 in 24.00 in
CIRCULAR 54.00 in 54.00 in
CIRCULAR 24.00 in 24.00 in
CIRCULAR 24.00 in 24.00 in
CIRCULAR 24.00 in 24.00 i��
CIRCULAR 24.00 in 24.00 in
CIRCULAR 48.00 in 48.00 in
CIRCULAR 48.00 in 48.00 in
CIRCULAR 48.00 in 48.00 in
CIRCULAR 36.00 in 36.00 in
CIRCULAR 36.00 in 36.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 24.00 in 24.00 in
CIRCULAR 24.00 in 24.00 in
CIRCULAR 24.00 in 24.00 in
CIRCULAR 24.00 in 24.00 in
CIRCULAR 30.00 in 30.00 in
CIRCULAR 30.00 in 30.00 in
CIRCULAR 24.00 in 24.00 in
DI-30B 1.00
INLET-3IA 50.00
DI-3IA 1.00
STMH-3AA 344.63
STMH-3AB 121.06
INLET-3AA 75.80
DI-3AA 1.00
STMH-3AC 10.00
STMH-3KA 122.53
INLET-3KA 42.38
DI-3KA 1.00
INLET-3MA 42.38
DI-3MA I.00
STMH-3LA 84.47
INLET-3LA 4238
DI-3LA 1.00
INLET-3NA 4238
DI-3NA 1.00
INLET-3AB 10.00
INLET-3AC 26.17
DI-3AC 26.17
DI-3AB 1.00
INLET-3DA 24.00
DI-3DA 1.00
[NLET-3DB 23.00
DI-3DB 1.00
4995.40
4996.77
4997.02
499293
4993.98
4994.32
4994.55
4994.5 5
4994.5 8
4995.70
4995.91
4995.70
499591
4994.5 8
4995.5 I
4995.72
4995.50
4995.71
4994.58
4994.63
4994.63
4994.63
4995.26
4995 3 8
4995.26
499537
Sewer Flow Summary:
0.5
0.5
0.5
0.3
0.3
0.3
0.3
0.3
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
4995.40
4997.02
4997.02
4993.96
4994.34
4994.55
4994.55
4994.58
4995.19
4995.91
4995.91
4995.91
4995.91
4995.00
4995.72
4995.72
4995.71
4995.71
4994.63
4994.76
4994.76
4994.63
499538
4995.38
4995.37
4995.37
0.013
0.0 I 3
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.0 I 3
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.25
1.32
0.25
1.32
0.05
0.05
0.25
0.05
I .32
0.85
0.25
0.85
0.25
I .32
0.85
0.25
0.85
0.25
0.05
0.05
0.25
0.25
] .32
0.25
1.32
0.25
Full Flow Capacity Critical Flow Normal Flow
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 54.00 in
CIRCULAR 54.00 in
CIRCULAR 48.00 in
CIRCULAR 48.00 in
CIRCULAR 48.00 in
CIRCULAR 30.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 30.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
24.00 in
24.00 in
24.00 in
54.00 in
54.00 in
48.00 in
48.00 in
48.00 in
30.00 in
24.00 in
24.00 in
24.00 in
24.00 in
30.00 in
24.00 in
24.00 in
24.00 in
24.00 in
24.00 in
24.00 in
24.00 in
24.00 in
24.00 in
24.00 in
24.00 in
24.00 in
Element Flow Velocity Depth Velocity Depth Velocity Froude Flow Flow �Surcharged
Name (cfs) (fps) (in) (fps) (in) (fps) Number Condition (cfs) LengYh Comment
(ft)
STMH-3A
STH-3B
STMH-3C
STMH-3D
INLET-3UA
DI-3 UA
INLET-3UB
DI-3 UB
STMH-3E
STMH-3F
26235
26235
26235
199J9
7.45
7.45
7.45
7.45
199J9
78.89
1038
1038
1038
8.41
4.21
4.21
4.21
4.21
8.41
6.28
39.70
39.70
37.71
31.71
3.45
3.45
6.56
6.56
31.30
16.62
9.23
9.23
8.93
8.13
2.54
2.54
3.60
3.60
8.07
5.72
3938
3938
37.14
31.42
3.45
3.45
6.54
6.54
30.97
1736
933
9.33
9.1 1
8.23
2.53
2.53
3.62
3.62
8.18
5.38
1.02
1.02
1.03
1.02
0.99
0.99
1.01
1.01
1.02
0.92
Pressurized 151.48 74.43
Pressurized 151.48 67.41
Pressurized 13730 167.06
Pressurized 91.82 212.88
Pressurized 0.60 13.00
Pressurized 0.60 1.00
Pressurized 2.10 23.00
Pressurized 2.10 1.00
Pressurized 89.57 48.65
Pressurized 22.07 20.62
STMH-3G
INLET-3FA
DI-3FA
STMH-3H
STMH-3I
STMH-3J
INLET-3GA
DI-3GA
INLET-3GB
DI-3GB
STMH-3PA
INLET-3PA
DI-3PA
INLET-3EB
D[-3EB
INLET-3EA
D[-3 EA
STMH-3BA
INLET-3HB
DI-3HB
INLET-3HA
DI-3HA
STMH-3BB
STMH-3BC
STMH-3BD
STMH-3BE
STMH-3BF
STMH-3CA
STMH-3CB
STMH-3CC
[NLET-3JA
DI-3JA
INLET-3JB
DI-3JB
STMH-3BI
STMH-2BJ
INLET-3BA
DI-3BA
INLET-30A
DLOA
INLET-30B
DI-30B
INLET-3IA
78.89
29.08
29.08
55.25
12.42
5.77
7.45
7.45
7.45
16.04
32.08
14.90
14.90
I 6.04
16.04
16.04
16.04
108.00
16.04
16.04
16.04
16.04
78.89
78.89
IOI.84
47.29
47.29
10.53
9.42
7.45
7.45
7.45
7.45
7.45
16.04
16.04
16.04
16.04
29.08
29.08
16.04
16.04
I 6.04
6.28
5.92
5.92
5.74
3.95
3.26
4.21
4.21
4.21
S.l 1
10.21
8.43
8.43
5.11
5.1 I
S.l l
5.11
6.79
5.11
5.11
5.11
5.11
6.28
6.28
8.10
6.69
6.69
5.96
5.33
4.21
4.21
4.21
4.21
4.2I
5.11
5.11
5.11
S.11
5.92
5.92
5.11
5.11
5.11
16.62
8.89
8.89
15.20
14.44
6.16
3.14
3.14
5.24
4.83
13.41
14.46
14.46
9.34
934
6.17
6.17
29.43
7.68
7.68
15.92
15.92
26.09
26.09
23.40
25.50
13.98
12.89
12.89
18.00
11.49
1 1.49
6.13
6.13
10.41
10.41
10.41
10.41
17.84
17.84
10.26
10.26
15.38
5.72
4.14
4.14
5.48
5.70
3.48
2.42
2.42
3.18
3.01
5.41
6.41
6.41
4.32
432
3.43
3.43
7.98
3.87
3.87
6.14
6.14
7.51
7.51
7.00
7.95
5.29
5.68
5.68
4.35
5.16
5.16
3.47
3.47
4.61
4.61
4.61
4.61
632
6.32
4.57
4.57
5.97
1736
8.46
8.46
16.11
17.89
7.03
3.16
3.16
5.21
4.72
9.08
10.63
10.63
9.09
9.09
5.99
5.99
31.87
7.44
7.44
16.95
16.95
28.59
28.59
21.64
26.71
13.12
11.42
12.36
18.00
12.45
12.45
6.10
6.10
10.19
10.19
10.19
10.19
17.81
17.81
10.03
10.03
16.12
538
4.44
4.44
5.07
4.48
2.91
2.40
2.40
3.21
3.11
8.96
8.99
8.99
4.48
4.48
3.57
3.57
7.24
4.04
4.04
5.73
5.73
6.72
6.72
7.74
7.57
5.76
6.51
5.94
4.35
4.71
4.71
3.49
3.49
4.74
4.74
4.74
4.74
6.33
633
4.70
4.70
5.66
0.92
1.10
1.10
0.90
0.66
0.78
0.99
0.99
1.01
1.OS
2.11
1.85
1.85
1.05
1.OS
1.06
1.06
0.86
1.06
1.06
0.88
0.88
0.84
0.84
1.16
0.91
1.13
1.27
1.09
0.00
0.85
0.85
1.01
1.O1
1.04
1.04
1.04
1.04
1.00
1.00
1.04
1.04
0.91
Pressurized 22.07
Pressurized 5.05
Pressurized 5.05
Pressurized 17.23
Pressurized 11.25
Pressurized 1.86
Pressurized 0.50
Pressurized 0.50
Pressurized 136
Pressurized 136
Pressurized 9J6
Pressurized 9.76
Pressurized 9.76
Pressurized 4.89
Pressurized 4.89
Pressurized 2.19
Pressurized 2.19
Pressurized 70.73
Pressurized 335
Pressurized 3.35
Pressurized 13.58
Pressurized 13.58
Pressurized 52.41
Pressurized 52.41
Pressurized 42.57
Pressurized 42.57
Pressurized 13.42
Pressurized 7.69
Pressurized 7.69
Pressurized 7.69
Pressurized 6.14
Pressurized 6.14
Pressurized 1.84
Pressurized 1.84
Pressurized 6.02
Pressurized 6.02
Pressurized 6.02
Pressurized 6.02
Pressurized 19.23
Pressurized 19.23
Pressurized 5.85
Pressurized 5.85
Pressurized 12.70
99.00
56.00
1.00
43.64
198.58
19.75
I 3.69
1.00
2231
1.00
134.06
29.99
1.00
27.05
1.00
8.95
1.00
146.46
8.00
1.00
28.00
1.00
181.78
81 J6
65.23
I 8.23
199.62
53.92
228.73
119.31
39.10
1.00
3631
1.00
174.31
82.81
44.3 7
1.00
28.00
1.00
8.00
1.00
50.00
D[-3IA
STMH-3AA
STMH-3AB
INLET-3AA
DI-3AA
STMH-3AC
STMH-3KA
INLET-3KA
DI-3KA
INLET-3MA
DI-3MA
STMH-3LA
INLET-3LA
DI-3LA
INLET-3NA
DI-3NA
1NLET-3AB
[NLET-3AC
DI-3AC
DI-3AB
INLET-3DA
DI-3DA
INLET-3DB
D[-3DB
16.04
108.00
108.00
78.89
78.89
78.89
29.08
16.04
] 6.04
16.04
16.04
29.08
I 6.04
I 6.04
16.04
16.04
16.04
16.04
16.04
16.04
16.04
16.04
16.04
16.04
S.l l
6.79
6.79
6.28
6.28
6.28
5.92
S.11
5.11
5.1 I
5.11
5.92
5.11
5.11
5.1 I
S.l l
5.11
5.l l
5.11
5.11
5.11
5.11
5.11
S.11
1538
24.23
24.23
25.12
11.55
22.90
1632
11.25
11.25
13.41
13.41
15.68
9.16
9.16
1430
1430
1333
11.68
11.68
7.11
6.49
6.49
7.46
7.46
5.97
7.05
7.05
7.33
4.68
6.91
5.94
4.83
4.83
5.41
5.41
5.78
4.27
4.27
5.66
5.66
5.39
4.94
4.94
3.71
3.53
3.53
3.81
3.81
16.12
25.45
25.45
27.30
12.05
24.51
16.01
11.07
11.07
13.52
13.52
15.28
8.91
8.91
14.63
14.63
13.43
11.54
11.54
6.90
6.30
6.30
7.23
7.23
5.66
6.62
6.62
6.61
4.41
6.33
6.08
493
4.93
535
5.35
5.97
4.44
4.44
5.50
5.50
5.34
5.02
5.02
3.87
3.68
3.68
397
3.97
0.91
0.91
0.91
0.85
0.92
0.88
1.04
1.03
1.03
0.98
0.98
1.05
1.05
1.05
0.96
0.96
0.99
1.02
1.02
1.06
1.06
1.06
1.06
1.06
Pressurized 12.70
Pressurized 48.77
Pressurized 48.77
Pressurized 48.77
Pressurized 10.90
Pressurized 40.87
Pressurized 16.21
Pressurized 6.98
Pressurized 6.98
Pressurized 9.76
Pressurized 9J6
Pressurized I5.01
Pressurized 4.71
Pressurized 4.71
Pressurized 11.04
Pressurized 11.04
Pressurized 9.66
Pressurized 7.50
Pressurized 7.50
Pressurized 2.89
Pressurized 2.42
Pressurized 2.42
Pressurized 3. ] 7
Pressiirized 3.17
1.00
344.63
121.06
75.80
1.00
I 0.00
122.53
4238
1.00
4238
1.00
84.47
42.3 8
1.00
4238
1.00
10.00
26.17
26.17
1.00
24.00
1.00
23.00
1.00
• A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
• If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
• If the sewer is pressurized, full flow represents the pressurized flow conditions.
Sewer Sizing Summary:
Existing Calculated Used
Element Pea� Cross Area
Name ��f � Section Rise Span Rise Span Rise Span �ft�2� Comment
STMH-3A 151.48 ELLIPSE 58.00 in 91.00 in 60.00 in 60.00 in 58.00 in 91.00 in 25.29 Existing height is smaller
than the suggested height.
STH-3B 151.48 ELLIPSE 58.00 in 91.00 in 60.00 in 60.00 in 58.00 in 91.00 in 25.29 Existing height is smaller
than the suggested lleight.
STMH-3C 137.30 ELLIPSE 58.00 in 91.00 in 60.00 in 60.00 in 58.00 in 91.00 in 25.29 Existing height is smaller
tllan the suggested height.
STMH-3D 91.82 CIRCULAR 66.00 in 66.00 in 54.00 in 54.00 in 66.00 in 66.00 in 23J6
INLET-3UA 0.60 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-3UA 0.60 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
INLET-3UB 2.10 CIRCULAR 18.00 in 18.00 in 18.00 ii� 18.00 in 18.00 in 18.00 in 1.77
DI-3UB 2.10 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
STMH-3E 89.57 CIRCULAR 66.00 in 66.00 in 54.00 in 54.00 in 66.00 in 66.00 in 23.76
STMH-3F 22.07 CIRCULAR 48.00 in 48.00 in 30.00 in 30.00 in 48.00 in 48.00 in 12.57
STMH-3G
INLET-3FA
DI-3FA
STMH-3H
STMH-31
STMH-3J
INLET-3GA
DI-3GA
INLET-3GB
D[-3GB
STMH-3PA
22.07 CIRCULAR 48.00 in 48.00 in 30.00 in 30.00 in 48.00 in 48.00 in 12.57
5.05 CIRCULAR 30.00 in 30.00 in 18.00 in 18.00 in 30.00 in 30.00 in 4.91
5.05 CIRCULAR 30.00 in 30.00 in 18.00 in 18.00 in 30.00 in 30.00 in 4.91
17.23 CIRCULAR 42.00 in 42.00 in 30.00 in 30.00 in 42.00 in 42.00 in 9.62
1 1.25 C�IRCULAR 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 3.14
1.86 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
0.50 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
0.50 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
1.36 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
1.36 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
9.76 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
INLET-3PA 9.76 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-3PA 9.76 CIRCULAR 18.00 in 18.00 in 18.00 i�� 18.00 in 18.00 in 18.00 in 1.77
INLET-3EB 4.89 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
DI-3EB 4.89 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
INLET-3EA 2.19 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
DI-3EA 2.19 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
STMH-3BA 70.73 CIRCULAR 54.00 in 54.00 in 48.00 in 48.00 in 54.00 in 54.00 in 1590
INLET-3HB 3.35 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
DI-3HB 3.35 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
INLET-3HA 13.58 CIRCULAR 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 3.14
DI-3HA 13.58 CIRCULAR 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 3.14
STMH-3BB 52.41 CIRCULAR 48.00 in 48.00 in 42.00 in 42.00 in 48.00 in 48.00 in 12.57
STMH-3BC 52.41 CIRCULAR 48.00 in 48.00 in 42.00 in 42.00 in 48.00 in 48.00 in 12.57
STMH-3BD 42.57 CIRCULAR 48.00 in 48.00 in 36.00 in 36.00 in 48.00 in 48.00 in 12.57
STMH-3BE 42.57 CIRCULAR 36.00 in 36.00 in 36.00 in 36.00 in 36.00 in 36.00 in 7.07
STMH-3BF 13.42 CIRCULAR 36.00 in 36.00 in 24.00 ii� 24.00 in 36.00 in 36.00 in 7.07
STMH-3CA 7.69 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
STMH-3CB 7.69 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
STMH-3CC 7.69 CIRCULAR 18.00 in 18.00 in 21.00 in 21.00 in 18.00 in 18.00 in 1.77
[NLET-3JA 6.14 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-3JA 6.14 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
INLET-3JB 1.84 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-3JB 1.84 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
STMH-3BI 6.02 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
Existin� height is smaller
than the suggested height.
Existing width is smaller
than the suggested width.
Exceeds max. Depth/Rise
STMH-2BJ 6.02 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
INLET-3BA 6.02 CIRCULAR 24.00 in 24.00 in 18.00 ii� 18.00 in 24.00 in 24.00 in 3.14
DI-3BA 6.02 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
INL�T-30A 19.23 CIRCULAR 30.00 in 30.00 in 27.00 in 27.00 in 30.00 in 30.00 in 4.91
DI-OA 19.23 CIRCULAR 30.00 in 30.00 in 27.00 in 27.00 in 30.00 in 30.00 in 4.91
INLET-30B 5.85 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
D[-30B 5.85 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
INLET-3[A 12.70 CIRCULAR 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 3.14
DI-31A 12.70 CIRCULAR 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 3.14
STMH-3AA 48.77 C�IRCULAR 54.00 in 54.00 in 42.00 in 42.00 in 54.00 in 54.00 in 15.90
STMH-3AB 48.77 CIRCULAR 54.00 in 54.00 in 42.00 in 42.00 in 54.00 in 54.00 in 15.90
INLET-3AA 48.77 CIRGULAR 48.00 in 48.00 in 42.00 in 42.00 in 48.00 in 48.00 in 12.57
DI-3AA 10.90 CIRCULAR 48.00 in 48.00 in 24.00 in 24.00 in 48.00 in 48.00 in 12.57
STMH-3AC 40.87 CIRCULAR 48.00 in 48.00 in 42.00 in 42.00 in 48.00 in 48.00 in 12.57
STMH-3KA 16.21 CIRCULAR 30.00 in 30.00 in 27.00 in 27.00 in 30.00 in 30.00 in 4.91
INLET-3KA 6.98 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
DI-3KA 6.98 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3J4
INLET-3MA 9.76 CIRCULAR 24.00 in 24.00 in 2l .00 i�� 21.00 in 24.00 in 24.00 in 3.14
DI-3MA 9.76 CIRCULAR 24.00 in 24.00 in 21.00 in 21.00 in 24.00 in 24.00 in 3.14
STMH-3LA 15.01 CIRCULAR 30.00 in 30.00 in 24.00 in 24.00 in 30.00 in 30.00 in 4.91
iNLET-3LA
DI-3LA
INLET-3NA
DI-3NA
[NLET-3AB
INLET-3AC
DI-3AC
DI-3AB
INLET-3 DA
DI-3DA
INLET-3DB
4.71 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
4.71 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
11.04 CIRCULAR 24.00 in 24.00 in 21.00 in 21.00 in 24.00 in 24.00 i�� 3.14
11.04 CIRCULAR 24.00 in 24.00 in 21.00 in 21.00 in 24.00 in 24.00 in 3.14
9.66 C�IRCULAR 24.00 in 24.00 in 21.00 in 21.00 in 24.00 in 24.00 in 3.14
7.50 CIRCULAR 24.00 in 24.00 in 21.00 in 21.00 in 24.00 in 24.00 in 3.14
7.50 CIRGULAR 24.00 in 24.00 in 21.00 in 21.00 in 24.00 in 24.00 in 3.14
2.89 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
2.42 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
2.42 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 314
3.17 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
D[-3DB 3.17 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14
• Calculated diaineter was detennined by sewer hydraulic capaciry rounded up to the nearest commercially
available size.
• Sewer sizes should not decrease downstream.
• All hydraulics where calculated using the 'Used' parameters.
Grade Line Summary:
Tailwater Elevation (ft): 4998.69
Invert Elev.
Downstream Manhole
Losses
Bend Lateral
Loss Loss
(ft) (ft)
0.00 0.00
0.74 0.00
0.02 0.00
O.OI 0.00
0.00 0.00
0.00 0.00
0.03 0.00
0.01 0.00
0.01 0.00
0.00 0.00
0.00 0.00
0.02 0.00
0.00 0.00
0.00 0.00
0.01 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.01 0.00
0.00 0.00
0.20 0.00
0.05 0.00
0.12 0.00
0.05 0.00
0.05 0.00
0.01 0.00
0.00 0.00
0.41 0.00
0.02 0.00
0.00 0.00
0.38 0.00
0.07 0.00
0.01 0.00
0.01 0.00
0.01 0.00
0.03 0.00
0.00 0.00
0.39 0.00
0.17 0.00
HGL EGL
Downstream Upstream Downstream Friction Upstream
(ft) (ft) (ft) �t°.t�s (ft)
4998.69 4998.76 4999.25 0.07 499932
4999.50 4999.57 5000.06 0.07 5000.12
4999.69 4999.83 5000.15 0.14 5000.28
5000.06 5000.20 5000.30 0.13 5000.43
5000.43 5000.43 5000.43 0.00 5000.43
5000.43 5000.43 5000.43 0.00 5000.43
5000.44 5000.45 5000.46 0.01 5000.47
5000.45 5000.45 5000.47 0.00 5000.48
5000.22 5000.25 5000.44 0.03 5000.47
5000.43 5000.43 5000.48 0.00 5000.48
5000.44 5000.46 5000.48 0.02 5000.51
5000.51 5000.52 5000.53 0.01 5000.54
5000.52 5000.52 5000.54 0.00 5000.54
5000.46 5000.47 5000.51 0.01 5000.52
5000.48 5000.97 5000.68 0.49 5001.17
5001.16 5001.16 5001.17 0.01 5001.18
5001.18 5001.18 5001.18 0.00 5001.18
5001.18 5001.18 5001.18 0.00 5001.18
5001.18 5001.19 5001.19 0.00 5001.19
5001.19 5001.19 5001.20 0.00 5001.20
5001.22 5001.47 5001.37 0.25 5001.62
5001.52 5001.78 5001.99 0.26 5002.25
5001.90 5001.90 5002.37 0.01 5002.38
5000.54 5000.55 5000.57 0.01 5000.59
5000.60 5000.60 5000.64 0.00 5000.64
5000.53 5000.53 5000.53 0.00 5000.53
5000.53 5000.53 5000.54 0.00 5000.54
5000.66 5000.84 500096 0.19 5001.15
5001.16 5001.16 5001.18 0.00 5001.18
5001.16 5001.16 5001.18 0.00 5001.18
5001.24 5001.35 5001.53 0.10 5001.64
5001.42 5001.42 5001.71 0.00 5001.71
5000.90 5001.14 5001.17 0.24 5001.41
5001.15 5001.26 5001.42 0.11 5001.53
500136 5001.42 5001.54 0.06 5001.59
5001.44 5001.52 5002.01 0.07 5002.08
5002.03 5002.11 5002.08 0.08 5002.16
5002.50 5002.78 5002.79 0.29 5003.08
5002.96 5004.18 5003.25 1.22 5004.47
Element Downstream Upstream
Name (ft) (ft)
STMH-3A
STH-3 B
STMH-3C
STMH-3D
INLET-3UA
DI-3UA
INLET-3UB
DI-3UB
STMH-3E
STMH-3F
STMH-3G
INLET-3FA
DI-3FA
STMH-3H
STMH-3I
STMH-3J
INLET-3GA
DI-3GA
INLET-3GB
DI-3GB
STMH-3PA
INLET-3PA
DI-3PA
INLET-3EB
DI-3 EB
INLET-3EA
DI-3EA
STMH-3BA
INLET-3HB
DI-3HB
INLET-3HA
DI-3HA
STMH-3BB
STMH-3BC
STMH-3BD
STMH-3BE
STMH-3BF
STMH-3CA
STMH-3CB
4992.00
4992.23
4992.43
4992.93
4997.22
4997.28
4997.22
4997.33
4993.56
4993.71
4993.77
4994.07
4995.40
4994.07
4994.20
4994.80
4994.85
4994.92
4994.86
4994.97
4996.35
4999.03
4999.61
4994.20
4994.34
4994.21
4994.25
4993.71
4996.48
4996.52
4996.48
4996.62
4994.15
4994.69
4994.94
4995.27
4995.3G
4997.86
4998.40
4992.22
4992.43
4992.93
4993.57
4997.28
4997.28
4997.3 3
4997.33
4993.71
4993.77
4994.07
499435
4995.40
4994.20
4994.80
4994.86
4994.92
4994.92
4994.97
4994.97
4999.03
4999.63
4999.63
4994.34
4994.34
4994.25
4994.25
4994.15
4996.52
4996.52
4996.62
4996.62
4994.70
499494
4995.27
4995.36
4996.3 G
4998.40
5000.23
STMH-3CC
INLET-3JA
DI-3JA
INL�T-3JB
DI-3JB
STMH-3BI
STMH-2BJ
INLET-3BA
DI-3BA
INLET-30A
DI-OA
INLET-30B
DI-30B
INLET-3IA
DI-3IA
STMH-3AA
STMH-3AB
INLET-3AA
DI-3AA
STMH-3AC
STMH-3KA
INLET-3KA
DI-3KA
INLET-
3MA
DI-3MA
STMH-3LA
[NLET-3LA
DI-3 LA
INLET-3NA
DI-3NA
INLET-3AB
INLET-3AC
DI-3AC
D►-3AB
INLET-3DA
DI-3DA
1NLET-3DB
DI-3DB
5000.13
5000.82
5001.02
5000.82
5001.00
4997.3 6
4998.23
4998.64
4998.86
4995.36
4995.50
4995.36
4995.40
4996.77
4997.02
4992.93
4993.98
4994.32
4994.55
4994.55
4994.58
4995.70
4995.91
4995.70
4995.91
4994.58
4995.51
4995.72
4995.50
4995.71
4994.58
4994.63
4994.63
4994.63
4995.26
4995.38
4995.26
4995.37
5000.73
5001.02
5001.02
5001.00
5001.00
4998.23
4998.64
4998.86
4998.86
4995.50
4995.50
4995.40
4995.40
4997.02
4997.02
4993.96
499434
4994.55
4994.55
4994.58
4995.19
4995.91
4995.91
4995.91
4995.91
4995.00
4995.72
4995.72
4995.71
4995.71
4994.63
4994.76
4994.76
4994.63
4995.38
4995.38
4995.37
4995.37
0.06
0.25
0.05
0.02
0.00
0.00
0.00
0.08
0.01
0.31
0.06
0.07
0.01
0.33
0.06
0.19
0.01
0.01
0.00
0.01
0.22
0.07
0.02
0.13
0.04
0.19
0.03
0.01
0.16
0.05
0.01
0.00
0.02
0.00
0.01
0.00
0.02
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
5004.24
5005.23
5005.41
5005.18
5005.19
5002.11
5002.24
500237
5002.42
5002.16
5002.28
5002.10
5002.12
5001.61
5001.83
5000.33
5000.55
5000.64
5000.95
5000.80
5001.03
5001.38
5001.44
5001.37
5001.48
5001.02
5001.27
5001.30
5001.29
5001.44
5000.83
5000.91
500096
5000.99
5000.13
5000.13
5000.13
5000.14
5004.88
500536
5005.41
5005.19
5005.19
5002.23
5002.29
5002.40
5002.42
5002.22
5002.28
5002.10
5002.12
5001.77
5001.83
5000.54
5000.62
5000.72
5000.95
5000.81
5001.22
5001.42
5001.44
5001.45
5001.49
5001.13
5001.29
5001.30
5001.39
5001.45
5000.85
5000.94
5000.99
5000.99
5000.13
5000.13
5000.13
5000.14
5004.54
5005.42
5005.60
5005.19
5005.21
5002.17
5002.29
5002.43
5002.47
5002.40
5002.52
5002.15
5002.17
5001.86
5002.08
5000.48
5000.70
5000.87
5000.96
5000.96
5001.20
5001.46
5001.52
5001.52
5001.63
5001.16
5001.31
5001.33
5001.49
5001.63
5000.98
5001.00
5001.05
5001.00
5000.14
5000.14
5000.15
5000.15
0.64
O.13
0.00
0.01
0.00
0.12
0.06
0.03
0.00
0.06
0.00
0.01
0.00
0.16
0.00
0.21
0.07
0.09
0.00
0.01
0.19
0.04
0.00
0.08
0.00
0.11
0.02
0.00
0.10
0.00
0.02
0.03
0.03
0.00
0.00
0.00
0.00
0.00
5005.17
5005.55
5005.60
5005.20
5005.21
5002.29
500235
5002.46
5002.47
5002.46
5002.52
5002.16
5002.17
5002.02
5002.09
5000.69
5000.77
5000.96
5000.96
5000.97
5001.39
5001.50
5001.52
5001.60
5001.64
5001.28
5001.32
5001.33
5001.59
5001.64
5001.00
5001.03
5001.08
5001.00
5000.14
5000.14
5000.15
5000.15
• Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not
considered a sewer.
• Bend loss = Bend K* V_fi ^ 2/(2*g)
• Lateral loss = V fo ^ 2/(2*g)- Juncrion Loss K* V_fi ^ 2/(2*g).
• Friction loss is always Upstream EGL - Downstream EGL.
ST-3A
��r.
3
'��f?3q �
Dis[ance fFt�
ST-3D1
Di;tance (Ft�
ST-3D2
�
�
�
��6
4ti
syS:
'�
S'Sl
n����„�z rF�i
ST-3E1
���A
rn.,�.,,,�e iF�i
ST-3E2
Distance (�
ST-3E2
�:,,,
�-lJ
Di;tance !�
ST-3F
3F�
Di;[ante (�
ST-3H 1
(;),jf, l
Di � cance ( Ft �
ST-3H2
��F�t:�Jt�
Di;�arce (Ft)
ST-3I
�:
�
�
�
Di;cance fFti
ST-3J1
`r.,�,�
LE I:3jq
Di�[ance IF[i
ST-3J2
Di;[ance (FI �
ST-3K
�
�
�
� 9S'
L�
�
�
�
�r'�A
Dis[anct (�
ST-3L
Discance (Ft�
ST-3M
7
�:��-
�
'��:.;�n
Dis[ance(F[�
ST-3N
D�s�ance (Ftj
ST-301
�ET3
'JR� U�1
Di;tance (Ft i
ST-302
��,����
Di:tancr tFQ
ST-3P
Dis[ance /Ft �
ST-3U 1
, �,
,
rn;���„•e r�
ST-3U2
�f� .
Gg
Distance (Fti
MHFD-Culvert, �ersion 4. 00 (May ZOZO)
Project: MONTAVA SUBDIVISION PHASE D
ID: ST-03
� "'�' � �..��
„ � �� i
� �- I� �
„, � L Lp
� __ '�_ '_�_ _ �_
� __�=` -- � .
_� _ - - =-- --- - --.
Design Discharge
�lar Culvert:
Barrel Diameter in Inches
Inlet Edge Type (Choose from pull-down list)
OR:
Culvert:
Barrel Height (Rise) in Feet
Barrel Width (Span) in Feet
Inlet Edge Type (Choose from pull-down list)
Number of Barrels
Inlet Elevation
Outlet Elevation OR Slope
Culvert Length
Manning's Roughness
Bend Loss Coefficient
Exit Loss Coeffcient
Tailwater SurFace Elevation
Max Allowable Channel Velocity
Culvert Cross Sectional Area Available
Culvert Normal Depth
Culvert Critical Depth
Froude Number
Entrance Loss Coefficient
Fridion Loss Coefficient
Sum of All Loss Coefficients
Inlet Control Headwater
Outlet Control Headwater
Design Headwater Elevation
Headwater/Diameter OR Headwater/Rise Ratio
Protection:
Flow/(Diameter^2.5)
Tailwater Surface Height
Tailwater/Diameter
Expansion Fador
Flow Area at Max Channel Velocity
Width of Equivalent Conduit for Multiple Barrels
Length of Riprap Protection
Width of Riprap Protedion at Downstream End
Adjusted Diameter for Supercritical Flow
Minimum Theoretical Riprap Size
Nominal Riprap Size
MHFD Riprap Type
Soil Type:
Choose One:
� Sandy
Q Non-Sandy
Q = 151.48 cfs
D = 72 inches
Grooved Edge Projecting
OR
H (Rise) ft
W (Span) = ft
# Barrels = 1
Elev IN = 4992Z2 ft
Elev OUT = 4992 ft
L = 74.43 ft
n = 0.013
ly, = 0
k, = 1
Y� Eie�a�;o„ = 4998.69 ft
V - 5 ft/s
A = 28.27 ftz
Y„ = 2.22 ft
Y� = 2.16 ft
Fr = 0.95
ke = 0.20
kf = 0.21
ks = 1.41 ft
HW� = 3.00 ft
HWo = 6.11 ft
HW = 4998.33 ft
HW/D = 1.02
Q/D^2.5 = 1.72 fto s/s
Yt = 6.69 ft
Yt/D = 1.11
1/(2*tan(0)) = 6.70
A� = 30.30 {tz
Wea = - ft
LP = 17 ft
T- 9 ft
Da = - ft
dso min= 2 in
dso nominal= 6 in
Type = VL
ST-04
100-YEAR
Rainfall Parameters
rts a:1
Rainfall Return Period: 2
Backwater Calculations:
Tailwater Elevation (ft): 4994.91
Manhole Input Summary:
Given Flow Sub Basin Information
Total
Ground Local Drainage Overland Overland Gutter Gutter
Element Elevation Known Contribution Area Runoff Syr Length Slope Length Velocity
Name (ft) ��f � (cfs) (Ac.) Coefficient Coefficient �ft) (%) (ft) (fps)
FES-4A 4991.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-4A 5000.25 20.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH- 4999.34 7.6G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4AA
STMH- 4999.23 7.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4AB
INLET- 4998.90 1.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4FB
DI-4FB 4998.90 1.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 4998.90 2.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4FA
DI-4FA 4998.90 2.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-4B 4999.86 10.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-4C 500 L 10 9.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-4D 5001.14 9.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-4E SOOl38 9.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-4F 5001.07 9.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-4G 5000.78 9.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5000.37 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4CB
DI-4CB 5000.37 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-4H 5001.15 8.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-4I 5001.76 4.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-4J 5001.89 4.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-4K 500234 4.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5002.83 1.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4EA
DI-4EA 5002.83 1.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET-4A 5002.64 2.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
D[-4A 5002.64 295 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5001.60 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4GB
DI-4GB 5001.60 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5001.60 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4GA
DI-4GA 5001.60 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5000.74 2.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4DA
DI-4DA 5000.74 2.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5000.74 2.45
4DB
DI-4DB 5000.74 2.45
INLET- 5000.37 0.62
4CA
DI-4CA 500037 0.62
INLET- 4999.25 0.14
4BA
DI-4BA 4999.25 0.14
INLET- 4999.51 0.11
4BB
DI-4BB 4999.28 0.11
Manhole Output Summary:
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Local Contribution Total Design Flow
Overland Gutter Basin Local Manhole Peak
Element Intensity Coeff. Intensity
Name Time Time� Tc (in/hr) Contrib Area (in/hr) Tc Flow Comment
(min) (min) (min) (cfs) (min) (cfs)
FES-4A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Surface Water Present
(Upst��eam)
STMH-4A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.99 Surface Water Present
(Downst��eam)
STMH- 0.00
4AA
STMH- 0.00
4AB
INLET- 0.00
4FB
DI-4FB 0.00
INLET- 0.00
4FA
DI-4FA 0.00
STMH-4B 0.00
STMH-4C 0.00
STMH-4D 0.00
STMH-4E 0.00
STMH-4F 0.00
STMH-4G 0.00
INLET- 0.00
4CB
DI-4CB 0.00
STMH-4H 0.00
STMH-4I 0.00
STMH-4J 0.00
STMH-4K 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.66
0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.66
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1.15
1.15
2.20
2.20
10.04
9.86
9.86
9.86
9.86
9.86
0.65
0.65
8.89
4.50
4.50
4.07
INLET-
4EA
DI-4EA
INLET-4A
DI-4A
INLET-
4GB
DI-4GB
INLET-
4GA
DI-4GA
INLET-
4DA
DI-4DA
INLET-
4DB
DI-4DB
INLET-
4CA
DI-4CA
INLET-
4BA
DI-4BA
INLET-
4BB
DI-4BB
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1.17
1.17
295
2.95
0.29
0.29
0.26
0.26
2.26
2.26
2.45
2.45
0.62
0.62
0.14
0.14
0.11
0.11
Sewer Input Summary:
Elevation Loss Coefficients
Element Sewer pownstream Slope Upstream Mannings Bend Lateral
Length Invert o Invert
Name (ft) (ft) � �°� (ft) n Loss Loss
STMH-4A 70.20 4991.09 0.5 4991.44 0.013 0.03 0.00
STMH-4AA 277.26 4991.44 0.5 4992.83 0.013 0.05 0.00
STMH-4AB 50.00 4992.83 0.5 4993.08 0.013 0.07 0.00
INLET-4FB 9.85 4993.58 0.5 4993.63 0.013 1.32 0.00
DI-4FB 1.00 4993.63 0.5 4993.63 0.013 0.25 0.00
INLET-4FA 28.15 4993.58 0.5 4993.72 0.013 1.32 0.00
DI-4FA 1.00 �1993.72 0.5 4993.72 0.013 0.25 0.00
STMH-4B 80.41 4991.44 0.4 4991.76 0.013 1.32 0.00
STMH-4C 226.79 4991 J6 0.4 4992.67 0.013 0.05 0.00
STMH-4D 226.79 4992.66 0.4 4993.57 0.013 0.05 0.00
STMH-4E 63.41 4993.57 03 4993.76 0.013 132 0.00
STMH-4F 26.11 4993.76 0.3 4993.84 0.013 0.16 0.00
Given Dimensions
Cross Rise Span
Section (it or in) (ft or in)
CIRCULAR 54.00 in 54.00 in
C[RCULAR 30.00 in 30.00 in
CIRCULAR 30.00 in 30.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 24.00 in 24.00 in
CIRCULAR 24.00 in 24.00 in
CIRCULAR 48.00 in 48.00 in
CIRCULAR 42.00 in 42.00 in
CIRCULAR 42.00 in 42.00 in
CIRCULAR 42.00 in 42.00 in
CIRCULAR 42.00 in 42.00 in
STMH-4G 64J2
INLET-4CB 14.50
DI-4CB 1.00
STMH-4H 273.91
STMH-4I 1 I 6.02
STMH-4J 54.91
STMH-4K 57.59
INLET-4EA 37.20
D[-4EA 1.00
INLET-4A 54.63
DI-4A 1.00
INLET-4GB 28.00
DI-4GB 1.00
INLET-4GA 8.00
DI-4GA I.00
INLET-4DA 14.50
DI-4DA 1.00
INLET-4DB 57.50
DI-4DB 1.00
INLET-4CA 57.50
DI-4CA 1.00
INLET-4BA 24.00
D[-4BA 1.00
INLET-4BB 24.40
DI-4BB 1.00
4993.84
4995.58
4995.65
4994.03
4995.85
4996.20
4996.47
4996J6
4996.95
4996.77
4997.04
4996.47
4996.61
4996.47
4996.51
4995.95
4996.02
4995.95
4996.24
4995.58
4995.87
4994.26
499438
4991.77
4991.89
Sewer Flow Summary:
0.3
0.5
0.5
03
03
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
4994.03
4995.65
4995.G5
4994.85
4996.20
4996.47
4996.76
4996.95
4996.95
4997.04
4997.04
4996.61
4996.61
4996.51
4996.51
4996.02
4996.02
4996.24
4996.24
4995.87
4995.87
4994.38
499438
4991.89
4991.89
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.16
I .32
0.25
0.05
0.05
1.32
0.05
0.85
0.25
0.75
0.25
1.32
0.25
1.32
0.25
1.32
0.25
1.32
0.25
1.32
0.25
1.32
0.25
0.83
0.25
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
CIRCULAR 42.00 in 42.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 36.00 in 36.00 in
CIRCULAR 24.00 in 24.00 in
CIRCULAR 24.00 in 24.00 in
CIRCULAR 24.00 in 24.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
C[RCULAR 24.00 in 24.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 18.00 in 18.00 in
CIRCULAR 36.00 in 36.00 in
C[RCULAR 18.00 in 18.00 in
Full Flow Critical Flow Normal Flow
Capacity
Element Flow Velocity Depth Velocity Depth Velocity Froude Flow Flow Surcharged
Name (cfs) (fps) (in) (fps) (in) (fps) Number Condition (cfs) Length
(ft)
STMH-4A 139.43 8.77 15.64 5.49 14.16 6.31 1.21 Supercritical 20.99 0.00
s4� 29.08 5.92 I I.03 4.68 10.51 5.00 �,� p SupJulcnritical � 66 208.44
P
STMH- 29.08 5.92 I].03 4.68 10.51 5.00 1.10 Supercritical 7.66 0.00
4AB
INLET- �.45 4.21 4.81 3.03 4.78 3.06 1.01 Supercritical 1.15 0.00
4FB
DI-4FB 7.45 4.21 4.81 3.03 4.78 3.06 1.01 Supercritical 1.15 0.00
INLET- 16.04 5.11 6.18 3.43 6.00 3.58 1.06 Supercritical 2.20 0.00
4FA
DI-4FA ] 6.04 5.1 1 6. ] 8 3.43 6.00 3.58 1.06 Supercritical 2.20 0.00
Comment
STMH-4B 91.09
STMH-4C 63.80
STMH-4D 63.80
STMH-4E 55.25
STMH-4F 55.25
STMH-4G 55.25
INLET- �.45
4CB
DI-4CB 7.45
STMH-4H 36.63
STMH-4I 12.42
STMH-4J 16.04
STMH-4K 16.04
INLET- �.45
4EA
DI-4EA 7.45
INLET- � � 04
4A
DI-4A 7.45
INLET- �.45
4GB
DI-4GB 7.45
INLET- �.45
4GA
DI-4GA 7.45
INLET- �,45
4DA
DI-4DA 7.45
INLET- �.45
4DB
DI-4DB 7.45
1NLET- �.45
4CA
Dl-4CA 7.45
INLET- �.45
4BA
DI-4BA 7.45
INLET- 47.29
4BB
DI-4BB 7.45
7.25 11.08 4.58 ] 0.76 4.77
6.63 1 1.40 4.67 1 1.16 4.81
G.63 11.40 4.67 ll.16 4.81
5.74 ll.40 4.67 12.01 4.34
5.74 11.40 4.67 12.01 4.34
5.74 11.40 4.67 12.01 4.34
4.21 3.59 2.59 3.59 2.59
4.21 3.59 2.59 3.59 2.59
5.18 11.29 4.68 12.08 4.27
3.95 8.95 4.22 9.99 3.64
5.11 8.95 4.22 8.70 4.38
5.11 8.49 4.09 8.24 4.26
4.21 4.85 3.05 4.82 3.07
4.21 4.85 3.05 4.82 3.07
5.11 7.19 3.73 6.97 3.89
4.21 7.83 4.00 7.87 3.97
4.21 238 2.09 2.43 2.04
4.21 238 2.09 2.43 2.04
4.21 2.25 2.04 2.30 1.97
1.06 Supercritical 10.04
1.04 Supercritical 9.86
1.04 Supercritical 9.86
0.90 Subcritical 9.86
0.90 Subcritical 9.86
0.90 Subcritical 9.86
1.00 Subcritical 0.65
1.00 Subcritical 0.65
0.88 Subcritical 8.89
0.81 Subcritical 4.50
1.06 Supercritical 4.50
1.06 Supercritical 4.07
1.01 Supercritical 1.17
I.O1 Supercritical 1.17
1.06 Supercritical 295
0.99 Subcritical 2.95
0.96 Subcritical 0.29
0.96 Subcritical 0.29
0.96 Subcritical 0.26
4.21 2.25 2.04 2.30 1.97 0.96 Subcritical 0.26
4.21
4.21
4.21
4.21
4.21
4.21
4.21
6.82 3.68 6.80 3.70
6.82 3.68 6.80 3.70
7.11 3.77 7.11 3.78
7.11 3.77 7.11 3.78
3.50 2.56 3.51 2.55
3.50 2.56 3.51 2.55
1.65 1.73 1.71 1.64
I.00 Supercritical 2.26
1.00 Supercritical 2.26
1.00 Supercritical 2.45
1.00 Supercritical 2.45
1.00 Subcritical 0.62
1.00 Subcritical 0.62
093 Subcritical 0.14
4.21
6.69
4.21
1.65 1.73 1.71 1.64 0.93 Subcritical 0.14
1.22 1.48 1.28 1.38
1.46 1.63 1.53 1.52
0.91 Pressurized 0.11
0.91 Pressurized 0.11
0.00 �
0.00 �
0.00 �
0.00 �-
0.00 I-
�-
0.00
0.00
0.00
0.00 I
0.00 �
0.00 �
0.00 �
0.00 �
0.00 �
0.00
0.00
0.00 �
0.00
0.00 Velocity is Too
Low
0.00 Velocity is Too
Low
0.00 I
0.00
0.00
0.00
0.00
0.00
0.00 Velocity is Too
Low
0.00 Velocity is Too
Low
24.40 Velocity is Too
Low
1.00 Velocity is Too
Low
• A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
• lf the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
• If the sewer is pressurized, full flow represents the pressurized flow conditions.
Sewer Sizing Summary:
Element
Name
STMH-4A
STMH-4AA
STMH-4AB
[NLET-4FB
DI-4FB
INLET-4FA
DI-4FA
STMH-4B
STMH-4C
STMH-4D
STMH-4E
STMH-4F
STMH-4G
INLET-4CB
DI-4CB
STMH-4H
STMH-4I
STMH-4J
STMH-4K
INLET-4EA
DI-4EA
INLET-4A
DI-4A
INLET-4GB
DI-4GB
INLET-4GA
DI-4GA
INLET-4DA
DI-4DA
INLET-4DB
DI-4DB
INLET-4CA
DI-4CA
INLET-4BA
DI-4BA
INLET-4BB
Peak
Flow
(cfs)
20.99
7.66
7.66
1.15
1.15
2.20
2.20
10.04
9.86
9.86
9.86
9.86
9.86
0.65
0.65
8.89
4.50
4.50
4.07
1.17
1.17
2.95
2.95
0.29
0.29
0.26
0.26
2.26
2.26
2.45
2.45
0.62
0.62
0.14
0.14
0.11
Cross
Section
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRGULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRCULAR
CIRGULAR
Existing Calculated Used
Rise Span Rise Span Rise Span �ft 2� Comment
54.00 in 54.00 in 27.00 in
30.00 in 30.00 in 2l .00 in
30.00 in 30.00 in 21.00 in
18.00 in 18.00 in 18.00 in
18.00 in 18.00 in 18.00 in
24.00 in 24.00 in 18.00 in
24.00 in 24.00 in 18.00 in
48.00 in 48.00 in 24.00 in
42.00 in 42.00 in 21.00 in
42.00 in 42.00 in 21.00 in
42.00 in 42.00 in 24.00 in
42.00 in 42.00 in 24.00 i��
42.00 in 42.00 in 24.00 in
18.00 in 18.00 in 18.00 in
18.00 in 18.00 in 18.00 in
36.00 in 36.00 in 24.00 in
24.00 in 24.00 in 18.00 in
24.00 in 24.00 in 18.00 in
24.00 ii� 24.00 in 18.00 in
18.00 in 18.00 in 18.00 in
18.00 in 18.00 in 18.00 in
24.00 in 24.00 in � 18.00 in
18.00 in 18.00 in 18.00 in
18.00 in 18.00 in 18.00 in
I 8.00 in 18.00 in ] 8.00 in
18.00 in 18.00 in 18.00 in
18.00 in 18.00 in 18.00 i��
18.00 in 18.00 in 18.00 in
18.00 in 18.00 in 18.00 in
18.00 in 18.00 in 18.00 in
18.00 in 18.00 in 18.00 in
18.00 in 18.00 in I 8.00 in
18.00 in 18.00 in 18.00 in
18.00 in 18.00 in 18.00 in
18.00 in 18.00 in 18.00 in
36.00 in 36.00 in 18.00 in
27.00 in 54.00 in 54.00 in
21.00 in 30.00 in 30.00 in
21.00 in 30.00 in 30.00 in
18.00 in 18.00 in l 8.00 in
18.00 in 18.00 in 18.00 in
I 8.00 in 24.00 in 24.00 in
18.00 in 24.00 in 24.00 in
24.00 in 48.00 in 48.00 in
21.00 in 42.00 in 42.00 in
21.00 in 42.00 in 42.00 in
24.00 in 42.00 in 42.00 in
24.00 in 42.00 in 42.00 in
24.00 in 42.00 in 42.00 in
18.00 in 18.00 in 18.00 in
18.00 in 18.00 in 18.00 in
24.00 in 36.00 in 36.00 in
18.00 in 24.00 in 24.00 in
18.00 in 24.00 in 24.00 in
18.00 i�� 24.00 in 24.00 in
18.00 in 18.00 in 18.00 in
I 8.00 in 18.00 in 18.00 in
18.00 in 24.00 in 24.00 in
18.00 in 18.00 in 18.00 in
18.00 in 18.00 in 18.00 in
18.00 in 18.00 in 18.00 in
18.00 in 18.00 in 18.00 in
18.00 in 18.00 in 18.00 in
I 8.00 in 18.00 in 18.00 in
18.00 in 18.00 in 18.00 in
18.00 in 18.00 in 18.00 in
18.00 in 18.00 in 18.00 in
18.00 in 18.00 in 18.00 in
18.00 in 18.00 in 18.00 in
18.00 in 18.00 in l 8.00 in
18.00 in 18.00 in 18.00 in
18.00 in 36.00 in 36.00 in
15.90
4.91
4.91
1.77
1.77
3.14
3.14
12.57
9.62
9.62
9.62
9.62
9.62
1.77
1.77
7.07
3.14
3.14
3.14
1.77
1.77
3.14
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
7.07
D[-4BB 0.11 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 ii� 18.00 in 18.00 ii� 1.77
• Galculated diameter was deterinined by sewer hydraulic capacity rounded up to the nearest commercially
available size.
• Sewer sizes should not decrease downstream.
• All hydraulics where calculated using the 'Used' parameters.
Grade Line Summary:
Tailwater Elevation (ft): 4994.91
Invert Elev.
Downstream Manhole
Losses
Bend Lateral
Loss Loss
(ft) (ft)
0.00 0.00
0.00 0.00
0.00 0.00
0.01 0.00
0.00 0.00
0.01 0.00
0.00 0.00
0.01 0.00
0.00 0.00
0.00 0.00
0.02 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.04 0.00
0.00 0.00
0.01 0.00
0.00 0.00
0.01 0.00
0.01 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
HGL EGL
Downstream Upstream Downstream Friction Upstream
(ft) (ft) (ft) Loss (ft)
(ft)
4994.91 4994.91 499494 0.01 499495
4994.91 499498 4994.95 0.07 4995.02
499498 4994.98 4995.03 0.01 4995.04
4995.04 4995.04 4995.05 0.00 4995.05
4995.04 4995.04 4995.05 0.00 4995.05
4995.04 4995.04 4995.05 0.00 4995.05
4995.04 4995.04 4995.05 0.00 4995.05
499495 4994.95 4994.96 0.00 4994.96
4994.95 499495 4994.97 0.02 4994.99
4994.95 4994.95 4994.99 0.09 4995.07
499498 4995.00 4995.10 0.07 4995.16
4995.00 4995.02 4995.17 0.04 4995.20
4995.02 4995.08 4995.21 0.13 4995.34
4995.88 4995.95 4995.98 0.07 4996.05
4995.98 4995.98 4996.05 0.00 4996.06
4995.10 4995.82 499534 0.80 4996.13
4996.60 4997.10 4996.87 0.39 4997.27
4997.17 4997.22 499731 0.18 4997.49
499734 4997.47 4997.49 0.23 4997.73
4997.72 4997.72 4997.73 0.01 4997.74
4997J2 4997.72 4997.75 0.00 4997.75
4997.67 4997.67 4997.74 0.12 4997.86
4997.69 4997.70 4997.94 0.01 4997.94
4997.49 4997.49 4997.49 0.00 4997.49
4997.49 4997.49 4997.49 0.00 4997.49
4997.49 4997.49 4997.49 0.00 4997.49
4997.49 4997.49 4997.49 0.00 4997.49
Element Downstream Upstream
Name (ft) (ft)
STMH-4A
STMH-4AA
STMH-4AB
INLET-4FB
DI-4FB
INLET-4FA
DI-4FA
STMH-4B
STMH-4C
STMH-4D
STMH-4E
STMH-4F
STMH-4G
INL�T-4CB
DI-4CB
STMH-4H
STMH-41
STMH-4J
STMH-4K
INLET-4EA
DI-4EA
INLET-4A
DI-4A
INLET-4GB
DI-4GB
INLET-4GA
DI-4GA
499 I .09
499 I .44
4992.83
4993.58
4993.63
4993.58
4993.72
4991.44
4991 J6
4992.66
4993.57
4993.76
4993.84
4995.58
4995.65
4994.03
4995.85
4996.20
4996.47
4996.76
4996.95
4996.77
4997.04
4996.47
4996.6I
4996.47
4996.5 I
4991.44
4992.83
4993.08
4993.63
4993.63
4993.72
4993.72
4991.76
4992.67
4993.57
4993.76
4993.84
4994.03
4995.65
4995.65
4994.85
4996.20
4996.47
4996.76
4996.95
499695
4997.04
4997.04
4996.61
4996.61
4996.51
4996.51
INLET-4DA 4995.95
DI-4DA 4996.02
INLET-4DB 4995.95
DI-4DB 4996.24
INLET-4CA 4995.58
DI-4CA 4995.87
INLET-4BA 4994.26
D[-4BA 499438
[NLET-4BB 4991.77
DI-4BB 4991.89
4996.02
4996.02
4996.24
4996.24
4995.87
4995.87
499438
499438
4991.89
4991.89
0.03
0.01
0.04
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
4996.5 I
4996.65
4996.54
4996.89
4995.87
4996.19
4994.96
499496
4994.96
4994.96
4996.59
4996.65
4996.83
4996.89
4996.16
4996.19
499496
4994.96
499496
4994.96
4996.73
4996.81
4996.77
4997.06
499598
4996.26
4994.96
4994.97
4994.96
4994.96
0.07
0.00
0.29
0.00
0.29
0.00
0.00
0.00
0.00
0.00
4996.80
4996.81
4997.05
4997.06
4996.26
4996.27
4994.97
4994.97
4994.96
499496
• Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not
considered a sewer.
• Bend loss - Bend K* V_fi ^ 2/(2*g)
• Lateral loss = V_fo ^ 2/(2*g)- Junction Loss K* V_fi ^ 2/(2*g).
• Friction loss is always Upstream EGL - Downstream EGL.
ST-04
6Ty�
Dis[aiice (Ftl
ST-4B 1
Distance (Fti
ST-4B2
�
w
Dis�ancr !�
ST 4C 1
_;�h
�
�
� •sss
w
i��; �c
ST ���f"�U
.n�.!e
S r'�Fl.�r�,
.,>. S'7�.���t aq r,���l'�13
'- rs�
�.�-: S!E) :Ei._C :�SO �:E�9 J06W =S�.Fn
Dib�ance (FQ
5•�� Sln1F�-4�,
Llj�,�l. .�p
1�,L�T�c�
--- HGL
EGL
ST 4C2
::::_�
:�., h
�99E s�
4L
C
�Jh
la' ` ___ ___'._.... ....................
�5�- ;5
S'' 1jF� J
C'
s� s�'''k�e
�'���-�
.STtitf f`�!J
5'T,, ��(yF,SI ^9y'yC
1
� `�p
.. .c,
�.., ... ...... ._.. _-.. _... . _ .
Dri�nce (F11 ...._ _..' __
ST 4D 1
HCiL
EGL
VLrr4�,
n����„�z rFri
ST 4D2
�
�
Disui�.ct (F!t
ST-4E
i
E
_�<, ;:
spMf ��t
s�•
S�`'tiIE1.q�It'qF' �f �C
� �����'¢IJ
� ���1��
�FrQF�
5._T� �r^�y_�� "��k
y a�
� ST
'_' _ 5?��J.q � �.913
------ HGL
............ EGL
,:es s_
... .::5 ._... :Sc_ ..... E:o. ""b.9 .... 'C-6' _'E6.. ....
rn��,,,�z rFci
ST 4F l
;;r
:;��.
�
w
_��,
�
�
�'9i.`
�
�
ni;,�iicr I Fi �
ST-4F2
CF�7_��&
n��-�,��e rF,�
ST 4G 1
�
�..
w
J99:
:99i
l99'_
:u5o
�
_.;�,�
Fi
,sy, -
,sv; s
s;i ;
ni;i�nc2 I�
ST 4G2
��,��<;
��,r
4r&
J
Di-[anCe (Fti
ST-04
100-YEAR
I `
v, y
'Y
�'s �It i-;r
a�, ..
���"
Rainfall Parameters
Rainfall Return Period: 100
Backwater Calculations:
��
`�
y, 1
r��s a:�
` ��i.s_•i �''�
�
�
��
�
�
4�
�
ti
u��
Tailwater Elevation (ft): 4994.91
Manhole Input Summary:
Given Flow Sub Basin Information
Total
Ground Local Drainage Overland Overland Gutter Gutter
Element Elevation Known Contribution Area Runoff Syr Length Slope Length Velocity
Name (ft) ��f � (cfs) (Ac.) Coefficient Coefficient �ft) (%) (ft) (fps)
FES-4A 4991.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-4A 5000.25 88.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH- 4999.34 30.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4AA
STMH- 4999.23 30.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4AB
INLET- 4998.90 4.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4FB
DI-4FB 4998.90 4.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 4998.90 27.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4FA
DI-4FA 4998.90 27.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-4B 4999.86 62.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-4C 5001.06 43.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-4D 5001.14 42.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-4E SOOl38 42.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-4F 5001.07 4296 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-4G 5000.78 42.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5000.37 2.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4CB
DI-4CB 5000.37 2.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-4H 5001.15 38.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-4I 5001.76 19.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-4J 5001.89 19.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
STMH-4K 500234 17.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5002.64 5.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4EA
DI-4EA 5002.64 5.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET-4A 5002.64 12.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
D[-4A 5002.64 12.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5001.60 1.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4GB
DI-4GB 5001.60 1.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5001.60 1.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4GA
DI-4GA 5001.60 1.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5000.74 9.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4DA
DI-4DA 5000.74 9.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 5000.74 10.71
4DB
DI-4DB 5000.74 10.71
INLET- 5000.37 2.70
4CA
DI-4CA 5000.37 2.70
INLET- 5000.68 0.40
4HB
DI-4HB 5000.68 0.40
INLET- 5000.46 0.50
4HA
DI-4HA 5000.46 0.50
INLET- 4999.25 338
4BA
DI-4BA 4999.25 3.38
INLET- 4999.51 22.07
4BB
DI-4BB 4999.51 22.07
Manhole Output Summary:
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Local Contribution Total Design Flow
Overland Cutter Basin Local Manhole Peak
Element Time Time Tc [ntensity Contrib Coeff. Intensity Tc Flow Comment
Name �min) (min) (min) �1°�hr� (cfs) Area (in/hr) �min) (cfs)
FES-4A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Surface Water Present
(Upstream)
STMH-4A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 gg.p'7 Surface Water Present
(Downstream)
STMH- 0.00
4AA
STMH- 0.00
4AB
INLET- 0.00
4FB
DI-4FB 0.00
INLET- 0.00
4FA
DI-4FA 0.00
STMH-4B 0.00
STMH-4C 0.00
STMN-4D 0.00
STMH-4E 0.00
STMH-4F 0.00
STMH-4G 0.00
INLET- 0.00
4CB
0.00 0.00 0.00 0.00 0.00 0.00 0.00 30.98
0.00 0.00 0.00 0.00 0.00 0.00 0.00 30.98
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 4.56
0.00 4.56
0.00 27.70
0.00 27.70
0.00 62.86
0.00 43.60
0.00 42.96
0.00 42.96
0.00 42.96
0.00 42.96
0.00 2.84
DI-4CB
STMH-4H
STMH-4I
STMH-4J
STMH-4K
INLET-
4EA
DI-4EA
INLET-4A
DI-4A
INLET-
4GB
DI-4GB
INLET-
4GA
D[-4GA
INLET-
4DA
DI-4DA
INLET-
4DB
DI-4DB
INLET-
4CA
DI-4CA
INLET-
4HB
DI-4HB
INLET-
4HA
DI-4HA
INLET-
4BA
DI-4BA
INLET-
4BB
DI-4BB
o.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
2.84
38.72
19.55
19.55
17.77
5.10
5.10
12.86
12.86
1.19
1.19
1.09
1.09
9.89
9.89
10.7 l
10.71
2.70
2.70
0.40
0.40
0.50
0.50
3.38
338
22.07
22.07
Sewer Input Summary:
Elevation Loss Coeffcients
Element Sewer pownstream Slope Upstream Mannings Bend Lateral
Name Length Invert „ Invert
(ft) (ft) � �O� (ft) n Loss Loss
STMH-4A 70.20 4991.09 0.5 4991.44 0.013 0.03 0.00
STMH-4AA 277.26 4991.44 0.5 4992.83 0.013 0.05 0.00
Given Dimensions
Cross Rise Span
Section (ft or in) (ft or in)
CIRCULAR 54.00 in 54.00 in
CIRCULAR 30.00 in 30.00 in
STMH-4AB
1NLET-4FB
DI-4FB
INLET-4FA
DI-4FA
STMH-4B
STMH-4C
STMH-4D
STMH-4E
STMH-4F
STMH-4G
INLET-4CB
DI-4CB
STMH-4H
STMH-41
STMH-4J
STMH-4K
INLET-4EA
DI-4EA
INLET-4A
DI-4A
INLET-4GB
D[-4GB
INLET-4GA
DI-4GA
INLET-4DA
DI-4DA
1NLET-4DB
DI-4DB
INLET-4CA
DI-4CA
INLET-4HB
DI-4HB
]NLET-4HA
DI-4HA
INLET-4BA
DI-4BA
INLET-4BB
D[-4BB
50.00
9.85
1.00
28.15
1.00
80.41
3 76.64
76.95
63.41
26.1 1
64.72
14.50
1.00
273.91
I ] 6.02
54.91
57.59
54.63
1.00
54.63
1.00
28.00
1.00
8.00
1.00
14.50
1.00
57.50
1.00
57.50
1.00
23.00
1.00
24.00
1.00
24.00
1.00
24.40
1.00
4992.83
4993.58
4993.63
4993.08
4993.72
4991.44
4991.76
4993.27
4993.58
4993.76
4993.85
4995.58
4995.65
4994.04
4995.86
4996.21
4996.48
4996.78
4997.05
4996.77
4997.04
4996.47
4996.61
4996.47
4996.51
499595
4996.02
4995.95
4996.24
4995.58
4995.87
4995.27
499538
4995.26
499538
4994.26
4994.38
4992.77
4992.89
0.5
0.5
0.5
0.5
0.5
0.4
0.4
0.4
03
03
0.3
0.5
0.5
0.3
0.3
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
4993.08
4993.63
4993.G3
4993.22
4993.72
4991.7G
4993.27
4993.58
4993.77
4993.84
4994.04
4995.65
4995.65
4994.86
4996.21
4996.48
4996.77
4997.05
4997.05
4997.04
4997.04
4996.61
4996.61
4996.51
4996.51
4996.02
4996.02
4996.24
4996.24
4995.87
4995.87
499538
499538
499538
4995.38
4994.38
4994.38
4992.89
4992.89
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.0 I 3
0.013
0.013
0.013
0.013
0.013
0.07
I .32
0.25
1.32
0.25
1.32
0.05
0.05
132
0.16
0.16
1.32
0.25
0.05
0.05
1.32
0.05
0.85
0.25
0.75
0.25
1.32
0.25
1.32
0.25
1.32
0.25
1.32
0.25
1.32
0.25
I .32
0.25
132
0.25
1.32
0.25
0.83
0.25
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
CIRCULAR 30.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 30.00 in
CIRCULAR 24.00 in
CIRCULAR 48.00 in
CIRCULAR 42.00 in
CIRCULAR 42.00 in
CIRCULAR 42.00 in
C[RCULAR 42.00 in
CIRCULAR 42.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 36.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 24.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 24.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
C[RCULAR 18.00 in
CIRCULAR l 8.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 18.00 in
CIRCULAR 36.00 in
CIRCULAR 18.00 in
30.00 in
18.00 in
18.00 in
30.00 in
24.00 in
48.00 in
42.00 in
42.00 in
42.00 in
42.00 in
42.00 in
18.00 in
18.00 in
36.00 in
24.00 in
24.00 in
24.00 in
18.00 in
18.00 in
24.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
18.00 in
36.00 in
18.00 in
Sewer Flow Summary:
Full Flow Capacity Critical Flow Normal Flow
Element Flow Velocity Depth Velocity Depth Velocity Froude Flow Flow Surcharged
Name (cfs) (fps) (in) (fps) (in) (fps) Number Condition (cfs) Length Comment
(ft)
STMH-4A 139.43 8.77 33.01 8.65 31.14 9.27 ].12 Supercritical 88.07 0.00
STMN-4AA 29.08 5.92 30.00 6.31 30.00 6.31 0.00 Pressurized 30.98 277.26
STMH-4AB 29.08 5.92 30.00 6.31 30.00 6.31 0.00 Pressurized 30.98 50.00
INLET-4FB 7.45 4.21 9.84 4.62 10.18 4.43 0.94 Pressurized 4.56 9.85
DI-4FB 7.45 4.21 9.84 4.62 10.18 4.43 0.94 Pressurized 4.56 1.00
INLET-4FA 29.08 5.92 21.53 7.35 23.40 6.74 0.84 Pressurized 27.70 28.15
DI-4FA 16.04 5.11 24.00 8.82 24.00 8.82 0.00 Pressurized 27.70 1.00
STMH-4B 91.09 7.25 28.69 8.02 2931 7.82 0.96 Pressurized 62.86 80.41
STMH-4C 63.80 6.63 24.69 7.41 25.48 7.14 0.94 Subcritical 43.60 330.74
Surcharged
STMH-4D 63.80 6.63 24.50 7.37 25.24 7.12 0.94 Subcritical 42.96 0.00
STMH-4E 55.25 5.74 24.50 7.37 27.84 6.35 0.78 Pressurized 42.96 63.41
STMH-4F 55.25 SJ4 24.50 737 27.84 6.35 0.78 Pressurized 42.96 26.11
STMH-4G 55.25 5.74 24.50 7.37 27.84 6.35 0.78 Pressurized 42.96 64.72
INLET-4CB 7.45 4.21 7.68 3.95 7.71 3.93 0.99 Pressurized 2.84 14.50
DI-4CB 7.�45 �1.21 7.68 3.95 7.71 3.93 0.99 Pressurized 2.84 1.00
STMH-4H 36.63 5.18 36.00 5.48 36.00 5.48 0.00 Pressurized 38.72 273.91
STMH-41 12.42 3.95 24.00 6.22 24.00 6.22 0.00 Pressurized 19.55 116.02
STMH-4J 16.04 5.11 24.00 6.22 24.00 6.22 0.00 Pressurized 19.55 5491
STMH-4K 16.04 5.11 24.00 5.66 24.00 5.66 0.00 Pressurized 17.77 57.59
INLET-4EA 7.45 4.21 I0.43 4.80 10.94 4.54 091 Pressw•ized 5.10 54.63
DI-4EA 7.45 4.21 10.43 4.80 10.94 4.54 0.91 Pressurized 5.10 1.00
INLET-4A 16.04 5.11 15.48 6.00 16.26 5.67 0.91 Pressurized 12.86 54.63
DI-4A 7.45 4.21 18.00 7.28 18.00 7.28 0.00 Pressurized 12.86 1.00
INLET-4GB 7.45 4.21 4.89 3.06 4.87 3.09 1.01 Pressurized 1.19 28.00
DI-4GB 7.45 4.21 4.89 3.06 4.87 3.09 l.Ol Pressurized 1.19 1.00
INLET-4GA 7.45 4.21 4.68 2.99 4.65 3.01 1.01 Pressurized 1.09 8.00
D[-4GA 7.45 4.21 4.68 2.99 4.65 3.01 1.01 Pressurized 1.09 1.00
INLET-4DA 7.45 4.21 18.00 5.60 18.00 5.60 0.00 Pressurized 9.89 14.50
DI-4DA 7.45 4.21 18.00 5.60 18.00 5.60 0.00 Pressurized 9.89 1.00
INLET-4DB 7.45 4.21 18.00 6.06 18.00 6.06 0.00 Pressurized 10.71 57.50
DI-4DB 7.45 4.21 18.00 6.06 18.00 6.06 0.00 Pressurized 10.71 1.00
INLET-4CA 7.45 4.21 7.48 3.89 7.50 3.88 1.00 Pressurized 2.70 57.50
DI-4CA 7.45 4.21 7.48 3.89 7.50 3.88 L00 Pressurized 2.70 1.00
fNLET-4HB 7.45 4.21 2.80 2.28 2.83 2.24 0.98 Pressurized 0.40 23.00
DI-4HB 7.45 4.21 2.80 2.28 2.83 2.24 0.98 Pressw•ized 0.40 1.00
INLET-4HA 7.45 4.21 3.14 2.42 3.16 2.40 0.99 Pressurized 0.50 24.00
DI-4HA 7.45 4.21 3.14 2.42 3.16 2.40 0.99 Pressurized 0.50 1.00
INLET-4BA 7.45 4.21 8.41 4.17 8.51 4.11 0.98 Pressurized 338 24.00
DI-4BA 7.45 4.21 8.41 4.17 8.51 4.11 0.98 Pressurized 3.38 1.00
INLET-4BB 47.29 6.69 18.13 6.19 17.29 6.57 1.09 Pressw•ized 22.07 24.40
DI-4BB 7.45 4.21 18.00 12.49 18.00 12.49 0.00 Pressurized 22.07 1.00
• A Froude number of 0 indicates that pressured flow occurs (adverse slope or tmdersized pipe).
• If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
• If the sewer is pressurized, full flow represents the pressurized flow conditions.
Sewer Sizing Summary:
Existing Calculated Used
Element Peak Cross Area
Name Fcf ) Section Rise Span Rise Span Rise Span �ft^2)
STMH-4A 88.07 CIRCULAR 54.00 in 54.00 in 48.00 in 48.00 in 54.00 in 54.00 in 15.90
STMH-4AA 30.98 CIRCULAR 30.00 in 30.00 in 33.00 ii� 33.00 in 30.00 in 30.00 in 4.91
�-��-����-��
STMH-4AB 30.98 CIRCULAR 30.00 in 30.00 in 33.00 in 33.00 in 30.00 in 30.00 in 4.91
INLET-4FB 4.56 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-4FB 4.56 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
INLET-4FA 27.70 CIRCULAR 30.00 in 30.00 in 30.00 in 30.00 in 30.00 in 30.00 in 4.91
DI-4FA 27.70 CIRCULAR 24.00 in 24.00 in 30.00 in 30.00 in 24.00 in 24.00 in 3.14
STMH-4B 62.86 CIRCULAR 48.00 in 48.00 in 42.00 in 42.00 in 48.00 in 48.00 in 12.57
STMH-4C 43.60 CIRCULAR 42.00 in 42.00 in 42.00 in 42.00 in 42.00 in 42.00 in 9.62
STMH-4D 42.96 CIRCULAR 42.00 in 42.00 in 42.00 in 42.00 in 42.00 in 42.00 in 9.62
STMH-4E 42.96 CIRCULAR 42.00 in 42.00 in 42.00 ii� 42.00 in 42.00 in 42.00 in 9.62
STMH-4F 42.96 CIRCULAR 42.00 in 42.00 in 42.00 in 42.00 in 42.00 in 42.00 in 9.62
STMH-4G 42.96 CIRCULAR 42.00 in 42.00 in 42.00 in 42.00 in 42.00 in 42.00 in 9.62
INLET-4CB 2.84 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-4CB 2.84 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
Comment
Existing height is sinaller
than the suggested height.
Existing width is smaller
than the suggested width.
Exceeds max. Depth/Rise
Existing height is smaller
than die suggested height.
Existing width is smaller
than the suggested widtl�.
Exceeds max. DepYh/Rise
Existing height is smaller
than the suggested height.
Existing width is sinaller
than the suggested width.
Exceeds max. Depth/Rise
Existing height is smaller
than the suggested height.
STMH-4H 38.72 CIRCULAR 36.00 in 36.00 in 42.00 in 42.00 in 36.00 in 36.00 in 7.07 Existing width is smaller
than the suggested width.
Exceeds max. Deptl�/Rise
Existing height is smaller
STMH-4I 19.55 CIRCULAR 24.00 in 24.00 in 30.00 in 30.00 in 24.00 in 24.00 in 3.14 than the suggested height.
Existing width is smaller
�
������
STMH-4J 19.55 CIRCULAR 24.00 in 24.00 in 27.00 in 27.00 in 24.00 in 24.00 in 3.14
STMH-4K 17.77 CIRCULAR 24.00 in 24.00 in 27.00 in 27.00 in 24.00 in 24.00 in 3.14
INLET-4EA 5.10 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-4EA 5.10 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
INLET-4A 12.86 CIRCULAR 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 3.14
DI-4A 12.86 CIRCULAR 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 1.77
INLET-4GB 1.19 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-4GB 1.19 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
INLET-4GA 1.09 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-4GA 1.09 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
INLET-4DA 9.89 CIRCULAR 18.00 in 18.00 in 21.00 in 21.00 in 18.00 in 18.00 in 1.77
DI-4DA 9.89 CIRCULAR 18.00 in 18.00 in 21.00 in 21.00 in 18.00 in 18.00 in 1.77
I I
�- �
����-��
INLET-4DB ] 0.71 CIRCULAR 18.00 in 18.00 in 21.00 in 21.00 ii� 18.00 in 18.00 in 1.77
DI-4DB 10.71 CIRCULAR 18.00 in 18.00 in 21.00 in 21.00 in 18.00 in 18.00 in 1.77
INLET-4CA 2.70 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-4CA 2.70 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
INLET-4HB 0.40 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-4HB 0.40 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
[NLET-4HA 0.50 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
DI-4HA 0.50 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
INLET-4BA 3.38 CIRCULAR 18.00 in 18.00 in 18.00 ii� 18.00 in 18.00 in 18.00 in 1.77
DI-4BA 3.38 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77
than the suggested width.
Exceeds max. Depth/Rise
Existing height is smaller
than the suggested height.
Existing width is smaller
than the suggested width.
Exceeds max. Dept1�/Rise
Existing hcight is sinaller
than the suggested height.
Existing width is smaller
than the suggested width.
Exceeds max. Depth/Rise
Existing height is sinaller
than the suggested height.
Existing width is smaller
than the suggested width.
Exceeds max. Depth/Rise
Existing height is smaller
than the suggested height.
Existing widtl� is sinaller
than the suggested width.
Exceeds max. Deptl�/Rise
Existing hcight is sinaller
than the suggested height.
Existing width is smaller
than the suggested width.
Exceeds max. Depth/Rise
Existing height is smaller
than die suggested height.
Existing width is smaller
than the suggested width.
Exceeds max. Depth/Rise
Existing height is smaller
than thc suggested height.
Existing width is smaller
than the suggested width.
Exceeds max. Depth/Rise
INLET-4BB 22.07 CIRCULAR 36.00 in 36.00 in 30.00 ii� 30.00 in 36.00 in 36.00 in 7.07
DI-4BB 22.07 CIRCULAR 18.00 in 18.00 in 30.00 in 30.00 in 18.00 in 18.00 in 1.77
Existing height is smaller
than the suggested height.
Existing width is smaller
than the suggested width.
Exceeds max. DepYh/Rise
• Calculated diameter was detennined by sewer hydraulic capacity rounded up to the nearest commercially
available size.
• Sewer sizes should not decrease downstream.
• All bydraulics where calculated using the 'Used' parameters.
Grade Line Summary:
Tailwater Elevation (ft): 499491
Invert Elev.
Downstream Manhole
Losses
Bend Lateral
Loss Loss
(ft) (ft)
0.00 0.00
0.03 0.00
0.04 0.00
0.14 0.00
0.03 0.00
0.65 0.00
0.30 0.00
0.51 0.00
0.02 0.00
0.02 0.00
0.41 0.00
0.05 0.00
0.05 0.00
0.05 0.00
0.01 0.00
0.02 0.00
0.03 0.00
0.79 0.00
0.02 0.00
0.11 0.00
0.03 0.00
0.20 0.00
0.21 0.00
0.01 0.00
HGL EGL
Downstream Upstream Downstream Friction Upstream
(fY) (ft) (it) �ft�s (ft)
4994.91 4994.91 4995.49 0.11 4995.61
4995.02 4996.59 4995.64 1.57 4997.21
4996.63 499692 4997.25 0.28 4997.54
4997.57 4997.59 4997.67 0.02 4997.69
4997.61 4997.62 4997.72 0.00 4997.72
4997.69 4997.82 4998.19 0.13 499832
4998.12 4998.14 4999.33 0.01 4999.35
4995.73 4995.88 4996.12 0.15 4996.27
4995.97 4996.66 4996.29 0.70 4996.99
4996.69 4996.79 4997.00 0.12 4997.12
4997.22 499734 4997.53 0.1 ] 4997.65
499739 4997.43 4997.70 0.05 4997.74
4997.48 4997.60 4997.79 0.12 4997.91
4997.92 499793 4997.96 0.01 4997.97
499794 4997.95 4997.98 0.00 4997.99
4997.63 4998.54 4998.09 0.92 4999.01
4998.57 4999.44 4999.17 0.86 5000.04
5000.23 5000.64 5000.83 0.41 5001.24
5000.77 5001.12 5001.26 035 5001.62
5001.60 5001.73 5001.73 0.13 5001.85
SOOI.76 5001.76 5001.89 0.00 5001.89
5001.55 5001.73 5001.81 0.18 5001.99
5001.93 5001.95 5002.75 0.01 5002.77
5001.24 5001.24 5001.25 0.00 5001.25
Element Downstream Upstream
Name (fY) (ft)
STMH-4A
STMH-4AA
STMH-4AB
INLET-4FB
DI-4FB
INLET-4FA
DI-4FA
STMH-4B
STMH-4C
STMH-4D
STMH-4E
STMH-4F
STMH-4G
INLET-4CB
DI-4CB
STMH-4H
STMH-4I
STMH-4J
STMH-4K
[NLET-4EA
DI-4EA
INLET-4A
DI-4A
INLET-4GB
4991.09
4991.44
4992.83
4993.58
4993.63
4993.08
4993J2
4991.44
4991.76
4993.27
4993.58
4993.76
4993.85
4995.58
4995.65
4994.04
4995.86
4996.21
4996.48
4996J8
4997.05
4996.77
4997.04
4996.47
4991.44
4992.83
4993.08
4993.63
4993.63
4993.22
4993.72
4991.76
4993.27
4993.58
4993.77
4993.84
4994.04
4995.65
4995.65
4994.86
4996.21
4996.48
4996.77
4997.05
4997.05
4997.04
4997.04
4996.61
D[-4GB
INLET-4GA
DI-4GA
INL�T-4DA
DI-4DA
INL�T-4DB
DI-4DB
INLET-4CA
DI-4CA
IN LET-4HB
DI-4HB
INLET-4HA
DI-4HA
INLET-4BA
DI-4BA
[NLET-4BB
DI-4BB
4996.61
4996.47
4996.51
499595
4996.02
4995.95
4996.24
4995.58
4995.87
4995.27
4995.38
4995.26
4995.38
4994.26
499438
4992.77
4992.89
4996.61
4996.51
4996.51
4996.02
4996.02
4996.24
4996.24
4995.87
4995.87
499538
4995.38
4995.38
4995.38
4994.38
499438
4992.89
4992.89
0.00
0.01
0.00
0.64
0.12
0.75
0.14
0.05
0.01
0.00
0.00
0.00
0.00
0.07
0.01
0.13
0.61
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
5001.25
5001.24
5001.24
4999.19
4999.43
4999.30
5000.03
499792
4997.97
4996.99
4996.99
4996.99
4996.99
4996.29
499633
4996.25
4996.88
5001.25
5001.24
5001.24
4999.31
4999.44
4999.89
5000.04
4997.96
4997.97
4996.99
4996.99
4996.99
4996.99
4996.3 I
499633
4996.27
4996.92
5001.25
5001.25
5001.25
4999.67
4999.92
4999.87
5000.60
4997.96
4998.01
499699
499699
4996.99
4996.99
4996.35
499639
4996.40
499930
0.00
0.00
0.00
0.13
0.01
0.59
0.01
0.04
0.00
0.00
0.00
0.00
0.00
0.02
0.00
0.03
0.04
5001.25
5001.25
5001.25
4999.80
4999.93
5000.46
5000.61
4998.00
4998.01
499699
4996.99
4996.99
4996.99
4996.37
499639
4996.42
499934
• Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not
considered a sewer.
• Bend loss - Bend K* V_fi ^ 2/(2*g)
• Lateral loss = V_fo ^ 2/(2*g)- Junction Loss K* V_fi ^ 2/(2*g).
• Friction loss is always Upstream EGL - Downstream EGL.
ST-04
��r4�
Di;uncr IFc�
ST-4B 1
Di;[ance (Fti
ST-4B2
7
��_.
Di;�ance 1F��
ST-4C 1
�,�:a
Dis�aiice (Ft�
ST-4C2
,LF.T�`�
Dl;�ance f�
ST-4D 1
Dis�ancr (F�t
ST-4D2
T� p
n� ��„�tiF��
ST-4E
�;��,�
i)i-[anc0 (Fti
ST-4F 1
rn;���,�z_i�
ST-4F2
Df;cance IFti
,'`r.n
ST-4G 1
�
7
` .,
4ti
J59�'
�
�
TiIDl:Illl'C' ��
ST-4G2
�9g' ;
G�
='J9! q
Li
_A_"
�q93 :
�999 9
v�r�,
i..�.! 4C1
n��c�„�z rFc i
ST-4H 1
Dis�ance (Fi�
ST-4H2
7
F
c .5.�
V-
�
�
�,:�,��
FT4�`�
Di;[ance (Ft i
MHFD-Culvert, �ersion 4. 00 (May ZOZO)
Project: MONTAVA SUBDIVISION PHASE D
ID: ST-04
� �,. �-:_�
� / T
� �� �1\ r
� L L�
- r X.•, --�___"_-_-___' �_11
� _
_'_ _' _ I 1 � �
_'��-'--- - - - - --
Design Discharge
�lar Culvert:
Barrel Diameter in Inches
Inlet Edge Type (Choose from pull-down list)
OR:
Culvert:
Barrel Height (Rise) in Feet
Barrel Width (Span) in Feet
Inlet Edge Type (Choose from pull-down list)
Number of Barrels
Inlet Elevation
Outlet Elevation OR Slope
Culvert Length
Manning's Roughness
Bend Loss Coefficient
Exit Loss Coeffcient
Tailwater SurFace Elevation
Max Allowable Channel Velocity
Culvert Cross Sectional Area Available
Culvert Normal Depth
Culvert Critical Depth
Froude Number
Entrance Loss Coefficient
Fridion Loss Coefficient
Sum of All Loss Coefficients
Inlet Control Headwater
Outlet Control Headwater
Design Headwater Elevation
Headwater/Diameter OR Headwater/Rise Ratio
Protection:
Flow/(Diameter^2.5)
Tailwater Surface Height
Tailwater/Diameter
Expansion Fador
Flow Area at Max Channel Velocity
Width of Equivalent Conduit for Multiple Barrels
Length of Riprap Protection
Width of Riprap Protedion at Downstream End
Adjusted Diameter for Supercritical Flow
Minimum Theoretical Riprap Size
Nominal Riprap Size
MHFD Riprap Type
Soil Type:
Choose One:
� Sandy
Q Non-Sandy
Q = 88.07 cfs
D = 54 inches
Grooved Edge Projecting
OR
H (Rise) ft
W (Span) = ft
# Barrels = 1
Elev IN = 4991.44 ft
Elev OUT = 4991.09 ft
L = 70.2 ft
n = 0.013
ly, = 0
k, = 1
Y� Eie�a�;o„ = 4994.91 ft
V - 5 ft/s
A = 15.90 ftz
Y„ = 2.22 ft
Y� = 2.16 ft
Fr = 0.95
ke = 0.20
kf = 0.29
ks = 1.49 ft
HW� = 3.00 ft
HWo = 6.11 ft
HW = 4997.55 ft
HW/D = 1.36
Q/D^2.5 = 2.05 fto s/s
Yt = 3.82 ft
Yt/D = 0.85
1/(2*tan(0)) = 6.70
A� = 17.61 {tz
Wea = - ft
LP = 17 ft
T- 8 ft
Da = - ft
dso min= 3 in
dso nominal= 6 in
Type = VL
Crossing - Crossing 1, Design Discharge - 108.0 cfs
Culvei-t - Culvert 1, Culvert Discharge - 108.0 cfs
5005
5004
5003
5002
�
� 5001
�
0
�
c�
>
w 5000
4999
4998
4997
4996
�----------------------
-40 -20 0 20 40
60 80
Station (ft)
100 120 140 160
HY-8 Culvert Analysis Report
C��as���� Discha��� D�ta
Discharge Selection Method: Specify Minimum, Design, and Maximum Flow
Minimum Flow: 0.00 cfs
Design Flow: 108.00 cfs
Maximum Flow: 500.00 cfs
Table 1- Summary of Culvert Flows at Crossing: Crossing 1
Headwater Total Culvert 1 Roadway Iterations
Elevation (ft) Discharge Discharge Discharge
(cfs) (cfs) (cfs)
4997.00 0.00 0.00 0.00 1
4999.95 50.00 50.00 0.00 1
5001.86 108.00 108.00 0.00 1
5003.52 150.00 150.00 0.00 1
5005.10 200.00 � 180.96 18.94 � 15 �
5005.23 250.00 183.27 66.61 7
5005.33 300.00 � 185.00 114.94 � 6 �
5005.44 350.00 174.51 175.39 5
5005.54 400.00 163.14 236.82 5
5005.62 450.00 151.02 298.97 5
5005.71 500.00 138.09 361.87 4
5005.00 179.15 179.15 0.00 Overtonpin�
Culvert Data: Culvert 1
Table 1- Culvert Summary Table: Culvert 1
Total Culve Head Inle Outl Fl Nor Criti Out Tailw Outl Tailw
Disch rt water t et ow mal cal let ater et ater
arge Disch Elevat Cont Cont Ty Dep Dep De Dept Velo Veloc
(cfs) arge ion rol rol pe th th pth h(ft) city ity
(cfs) (ft) Dep Dep (ft) (ft) (ft) (ft/s (ft/s)
th th )
0.00 0.00
cfs cfs
50.00 50.00
cfs cfs
108.0 108.0
0 cfs 0 cfs
4997.0 0.00 0.00 0-
0 0 NF
4999.9 2.95 1.35 1-
5 8 S2
n
5001.8 4.86 3.51 5-
6 3 S2
n
0.00 0.00 0.0
0
1.65 2.05 1.6
8
2.56 3.06 2.6
2
0.00 0.00 0.00
1.51 9.26 2.21
2.50 11.2 2.88
2
150.0 150.0 5003.5 6.52 5.85 5- 3.21 3.59 3.2 3.11
0 cfs 0 cfs 2 5 S2 6
n
200.0 180.9 5005.1 8.10 7.28 5- 3.86 3.89 3.8 3.79
0 cfs 6 cfs 0 5 S2 6
p
250.0 183.2 5005.2 8.23 7.62 6- 3.93 3.91 4.5 4.43
0 cfs 7 cfs 3 6 FFt 0
300.0 185.0 5005.3 8.33 8.31 4- 4.00 3.93 4.5 5.05
0 cfs 0 cfs 3 8 FFf 0
350.0 174.5 5005.4 7.74 8.43 4- 3.69 3.84 4.5 5.64
0 cfs 1 cfs 4 9 FFf 0
400.0 163.1 5005.5 7.15 8.53 4- 3.45 3.73 4.5 6.21
0 cfs 4 cfs 4 6 FFf 0
450.0 151.0 5005.6 6.57 8.62 4- 3.23 3.60 4.5 6.78
0 cfs 2 cfs 2 4 FFf 0
500.0 138.0 5005.7 6.00 8.71 4- 3.02 3.46 4.5 7.33
0 cfs 9 cfs 1 0 FFf 0
Culvert �arrel Data
Culvert Barrel Type Straight Culvert
Inlet Elevation (invert): 4997.00 ft,
Outlet Elevation (invert): 4996.00 ft
Culvert Length: 127.38 ft,
Culvert Slope: 0.0079
Site Data � C�al�r�rt 1
Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 4997.00 ft
Outlet Station: 127.38 ft
Outlet Elevation: 4996.00 ft
Number of Barrels: 1
�ulv��t Data Sa�rv�r�ary A C�Ivert 1
Barrel Shape: Circular
Barrel Diameter: 4.50 ft
Barrel Material: Concrete
12.1 3.21
6
12.4 3.52
7
11.5 3.76
6
11.6 3.96
3
10.9 4.14
7
10.2 4.29
6
9.50 4.43
E:�:��'�'�
Embedment: 0.00 in
Barrel Manning's n: 0.0130
Culvert Type: Straight
Inlet Configuration: Square Edge with Headwall
Inlet Depression: None
iailv��t�r �at� for Crossin�: Cr�sso�g �
Table 2- Downstream Channel Rating Curve (Crossing: Crossing 1)
Flow (cfs) Water Velocity Depth (ft) Shear (ps�
Surface (ft/s)
Elev (ft)
0.00 4996.00 0.00 0.00 0.00
50.00 4997.51 1.51 2.21 0.19
108.00 4998.50 2.50 2.88 0.31
150.00 4999.11 3.11 3.21 0.39
200.00 4999.79 3.79 3.52 0.47 �
Z50.00 5000.43 4.43 3.76 0.55
300.00 5001.05 5.05 3.96 0.63 *
350.00 5001.64 5.64 4.14 0.70
400.00 5002.21 6.21 4.29 0.78
450.00 5002.78 6.78 4.43 0.85
500.00 5003.33 7.33 4.55 0.91
Tailwater ChGo�n�l Data � Crossung 1
Tailwater Channel Option: Rectangular Channel
Bottom Width: 15.00 ft
Channel Slope: 0.0020
Channel Manning's n: 0.0350
Channel Invert Elevation: 4996.00 ft
I�o�do��y ���� fi�r ��°�s�ir��a ���ssi�� �
Roadway Profile Shape: Constant Roadway Elevation
Crest Length: 200.00 ft
Crest Elevation: 5005.00 ft
Roadway Surface: Paved
Froude
Number
0.00
0.32
0.32
0.32
0.3 2
0.31
0.31
0.31
0.30
0.30
0.30
a
�
Roadway Top Width: 60.00 ft
MHFD-Culvert, �ersion 4. 00 (May ZOZO)
Project: MONTAVA SUBDIVISION PHASE D
ID: ST-04
� �,. �-:_�
� / T
� �� �1\ r
� L L�
- r X.•, --�___"_-_-___' �_11
� _
_'_ _' _ I 1 � �
_'��-'--- - - - - --
Design Discharge
�lar Culvert:
Barrel Diameter in Inches
Inlet Edge Type (Choose from pull-down list)
OR:
Culvert:
Barrel Height (Rise) in Feet
Barrel Width (Span) in Feet
Inlet Edge Type (Choose from pull-down list)
Number of Barrels
Inlet Elevation
Outlet Elevation OR Slope
Culvert Length
Manning's Roughness
Bend Loss Coefficient
Exit Loss Coeffcient
Tailwater SurFace Elevation
Max Allowable Channel Velocity
Culvert Cross Sectional Area Available
Culvert Normal Depth
Culvert Critical Depth
Froude Number
Entrance Loss Coefficient
Fridion Loss Coefficient
Sum of All Loss Coefficients
Inlet Control Headwater
Outlet Control Headwater
Design Headwater Elevation
Headwater/Diameter OR Headwater/Rise Ratio
Protection:
Flow/(Diameter^2.5)
Tailwater Surface Height
Tailwater/Diameter
Expansion Fador
Flow Area at Max Channel Velocity
Width of Equivalent Conduit for Multiple Barrels
Length of Riprap Protection
Width of Riprap Protedion at Downstream End
Adjusted Diameter for Supercritical Flow
Minimum Theoretical Riprap Size
Nominal Riprap Size
MHFD Riprap Type
Soil Type:
Choose One:
� Sandy
Q Non-Sandy
Q = 108 cfs
D = 54 inches
Grooved Edge Projecting
OR
H (Rise) ft
W (Span) = ft
# Barrels = 1
Elev IN = 4997 ft
Elev OUT = 4996 ft
L = 127.3 ft
n = 0.013
ly, = 0
k, = 1
Yc, eie�ano� = ft
V - 5 ft/s
A = 15.90 ftz
Y„ = 2.22 ft
Y� = 2.16 ft
Fr = 0.95
ke = 0.20
kf = 0.53
ks = 1.73 ft
HW� = 3.00 ft
HWo = 6.11 ft
H W = 5003.11 ft
HW/D = 1.36
Q/D^2.5 = 2.51 fto s/s
Yt = 1.80 ft
Yt/D = 0.40
1/(2*tan(0)) = 5.04
A� = 21.60 {tz
Wea = - ft
LP = 17 ft
T- 8 ft
Da = - ft
dso min= 9 in
dso nominal= 12 in
Type = M
ST-07
100-YEAR
�
r�
r
�
�
�r
�
Di�7B
�
�
�
�
�
b�
� nl-�A
�
��
. .
�
� .
FES-7A
Rainfall Parameters
Rainfall Return Period: l00
Backwater Calculations:
Tailwater Elevation (ft): 4993.52
Manhole Input Summary:
Given Flow Sub Basin Information
Total
Ground Local Drainage Overland Overland Gutter Gutter
Element Elevation Known Contribution Area Runoff Syr Length Slope Length Velocity
Name (ft) ��f � (cfs) (Ac.) Coefficient Coefficient �ft) (%) (ft) (fps)
FES-7A 4994.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 4998.74 43.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7A
[NLET-7B 4998.74 41.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DI-7B 4998.74 2.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FES-7B 4991.87 39.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DI-7A 4998.74 2.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Manhole Output Summary:
Local Contribution Total Design Flow
Overland Gutter Basin Local Manhole Peak
Element Time Time Tc Intensity Contrib Coeff. Intensity Tc Flow
Name �min) (min) (min) �in/hr) �cfs) Area (in/hr) �min) (cfs)
FES-7A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 43.60
7A
INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 41.51
7B
DI-7B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.19
FES-7B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 39.32
DI-7A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.09
Sewer Input Summary:
Elevation Loss Coefficients
Element Sewer pownsYream Slope Upstream Mannings Bend Lateral
Length Invert o Invert
Name �.t� �ft� (/o) ��� n Losa Loss
INLET-7A 57.07 4991.43 03 4991.60 0.013 0.03 0.00
[NLET-7B 38.00 4991.60 0.3 4991.71 0.013 0.05 0.00
DI-7B 1.00 4991.71 03 4991 J 1 0.013 0.25 0.00
F�S-7B 51.39 4991.72 0.3 4991.87 0.013 0.05 0.00
DI-7A 1.00 4991.60 0.3 4991.60 0.013 0.25 0.00
Comment
Surface Water Present
(Upstream)
�
Given Dimensions
Cross Rise Span
8ection (ft or in) (it or in)
CIRCULAR 36.00 in 36.00 in
CIRCULAR 36.00 in 36.00 in
CIRCULAR 36.00 in 36.00 in
CIRCULAR 36.00 in 36.00 in
CIRCULAR 36.00 in 36.00 in
Sewer Flow Summary:
Full Flow Capacity Critical Flow Normal Flow
Element Flow Velocity Depth Velocity Depth Velocity Froude Flow Flow Surcharged
Name (cfs) (fps) (in) (fps) (in) (fps) Number Condition (cfs) LengYh Comment
(ft)
INLET-7A 36.63 5.18 36.00 6.17 36.00 6.17 0.00 Pressiirized 43.60 57.07
INLET-7B 36.63 5.18 36.00 5.87 36.00 5.87 0.00 Pressurized 41.51 38.00
DI-7B 36.63 5.18 5.51 3.20 597 2.85 0.85 Pressurized 2.19 1.00
FES-7B 36.63 5.18 36.00 5.56 36.00 5.56 0.00 Pressurized 39.32 51.39
DI-7A 36.63 5.18 5.38 3.16 5.84 2.81 0.85 Pressurized 2.09 1.00
• A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
• If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
• If the sewer is pressurized, full flow represents the pressurized flow conditions.
Sewer Sizing Summary:
Existing Calculated Used
Element Peak Cross Area
Name ��f � Section �se Span Rise Span Rise Span �ft�2� Comment
Existing height is sinaller
than tl�e su�gestcd height.
INLET-7A 43.60 CIRCULAR 36.00 in 36.00 in 42.00 in 42.00 in 36.00 in 36.00 in 7.07 Existing widtl� is smaller
than the suggested width.
Exceeds max. Depth/Rise
Existing height is smaller
than the suggested height.
INLET-7B 41.S1 CIRCULAR 36.00 in 36.00 in 42.00 in 42.00 in 36.00 in 36.00 in 7.07 Existing width is smaller
than the suggested width.
Exceeds max. Depth/Rise
D[-7B 2.19 CIRCULAR 36.00 in 36.00 in 18.00 in 18.00 in 36.00 in 36.00 in 7.07
FES-7B 3932 CIRCULAR 36.00 in 36.00 in 42.00 in 42.00 in 36.00 in 36.00 in 7.07
DI-7A 2.09 CIRCULAR 36.00 in 36.00 in 18.00 in 18.00 in 36.00 in 36.00 in 7.07
Existing height is smaller
than the suggested height.
Existing width is smaller
than the suggested width.
Exceeds max. Depth/Rise
• Calculated diameter was determined by sewer hydraulic capaciry rounded up to the nearest commercially
available size.
• Sewer sizes should not decrease downstream.
• All hydraulics where calculated using the'Used' parameters.
Grade Line Summary:
Tailwater Elevation (ft): 4993.52
Invert Elev.
Element Downstream Upstream
Name (ft) (ft)
INLET-7A 4991.43
[NLET-7B 4991.60
DI-7B 4991.71
FES-7B 4991.72
DI-7A 4991.60
4991.60
4991.71
4991.71
4991.87
4991.60
Downstream Manhole
Losses
Bend Lateral
Loss Loss
(ft) (ft)
0.00 0.00
0.03 0.00
0.00 0.00
0.02 0.00
0.00 0.00
HGL
EGL
Downstream Upstream Downstream Friction Upstream
(ft) (ft) (ft) �f°.r�s (ft)
4994.43 4994.67 4995.02 0.24 4995.26
4994.75 4994.90 4995.29 0.15 4995.44
4995.43 4995.43 4995.44 0.00 4995.44
4994.98 4995.16 4995.46 0.18 4995.64
4995.26 4995.26 4995.26 0.00 4995.26
• Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not
considered a sewer.
• Bend loss - Bend K* V_fi ^ 2/(2*g)
• Lateral loss = V fo ^ 2/(2*g)- Junction Loss K* V_fi ^ 2/(2*g).
• Friction loss is always Upstream EGL - Downstream EGL.
ST-a%
�
�
a99!
i-
F
= 99J
lti
Dic�ance iFu
MHFD-Culvert, �ersion 4. 00 (May ZOZO)
Project: MONTAVA SUBDIVISION PHASE D
ID: ST-07
� �,. �-:_�
� / T
� �� �1\ r
� L L�
- r X.•, --�___"_-_-___' �_11
� _
_'_ _' _ I 1 � �
_'��-'--- - - - - --
Design Discharge
�lar Culvert:
Barrel Diameter in Inches
Inlet Edge Type (Choose from pull-down list)
OR:
Culvert:
Barrel Height (Rise) in Feet
Barrel Width (Span) in Feet
Inlet Edge Type (Choose from pull-down list)
Number of Barrels
Inlet Elevation
Outlet Elevation OR Slope
Culvert Length
Manning's Roughness
Bend Loss Coefficient
Exit Loss Coeffcient
Tailwater SurFace Elevation
Max Allowable Channel Velocity
Culvert Cross Sectional Area Available
Culvert Normal Depth
Culvert Critical Depth
Froude Number
Entrance Loss Coefficient
Fridion Loss Coefficient
Sum of All Loss Coefficients
Inlet Control Headwater
Outlet Control Headwater
Design Headwater Elevation
Headwater/Diameter OR Headwater/Rise Ratio
Protection:
Flow/(Diameter^2.5)
Tailwater Surface Height
Tailwater/Diameter
Expansion Fador
Flow Area at Max Channel Velocity
Width of Equivalent Conduit for Multiple Barrels
Length of Riprap Protection
Width of Riprap Protedion at Downstream End
Adjusted Diameter for Supercritical Flow
Minimum Theoretical Riprap Size
Nominal Riprap Size
MHFD Riprap Type
Soil Type:
Choose One:
� Sandy
Q Non-Sandy
Q = 43.6 cfs
D = 36 inches
Grooved Edge Projecting
OR
H (Rise) ft
W (Span) = ft
# Barrels = 1
Elev IN = 4991.87 ft
Elev OUT = 4991.41 ft
L = 146.46 ft
n = 0.013
ly, = 0
k, = 1
Y� Eie�a�;o„ = 4994.5 ft
V - 5 ft/s
A = 7.07 ftz
Y„ = 2.22 ft
Y� = 2.16 ft
Fr = 0.95
ke = 0.20
kf = 1.05
ks = 2.25 ft
HW� = 3.00 ft
HWo = 6.11 ft
H W = 4997.98 ft
HW/D = 2.04 HW/D > 1.5!
Q/D^2.5 = 2.80 fto s/s
Yt = 3.09 ft
Yt/D = 1.03
1/(2*tan(0)) = 6.70
A� = 8.72 {tz
Wea = - ft
LP = 17 ft
T- 6 ft
Da = - ft
dso min= 2 in
dso nominal= 6 in
Type = VL
APPENDIX H
DRAINAGE SWALE ANALYSIS
Channel Report
Hydraflow Express Extension for Autodesk0 Civil 3D0 by Autodesk, Inc.
SWALE A-A
User-defined Highlighted
Invert Elev (ft) = 1.00 Depth (ft)
Slope (%) = 0.20 Q (cfs)
N-Value = 0.035 Area (sqft)
Velocity (ft/s)
Calculations Wetted Perim (ft)
Compute by: Known Q Crit Depth, Yc (ft)
Known Q(cfs) = 250.00 Top Width (ft)
EGL (ft)
(Sta, EI, n)-(Sta, EI, n)...
( 0.00, 7.91)-(27.10, 1.14, 0.035)-(34.10, 1.00, 0.035)-(41.10, 1.14, 0.035)-(76.42, 8.99, 0.035)
Monday, Jul 15 2024
= 3.16
= 250.00
= 82.03
= 3.05
= 40.38
= 1.89
= 39.68
= 3.30
Elev (ft) Section Depth (ft)
9.00 8.00
8.00 7.00
7.00 6.00
6.00 5.00
5.00 4.00
Q
4.00 3.00
3.00 2.00
2.00 1.00
1.00 0.00
0.00 1 00
-10
0 10 20 30
40
Sta (ft)
50 60 70 80
90
Channel Report
Hydraflow Express Extension for Autodesk0 Civil 3D0 by Autodesk, Inc.
SWALE B-B
User-defined
Invert Elev (ft) = 1.00
Slope (%) = 0.20
N-Value = 0.035
Calculations
Compute by: Known Q
Known Q (cfs) = 50.00
(Sta, EI, n)-(Sta, EI, n)...
( 0.00, 7.00)-(24.02, 1.00, 0.035)-(27.03, 1.00, 0.035)-(68.05, 11.20, 0.035)
Highlighted
Depth (ft)
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
Monday, Jul 15 2024
= 2.09
= 50.00
= 23.80
= 2.10
= 20.29
= 1.26
= 19.78
= 2.16
Elev (ft) Section
13.00
11.00
• ��
7.00
5.00
3.00
1.00
-1.00
Depth (ft)
12.00
10.00
: ��
. ��
4.00
2.00
� ��
_� nn
-5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 vv
Sta (ft)
APPEN DIX I
DETENTION & ROUTING
ANALYSIS
EPA STORM WATER MANAGEMENT MODEL - VERSION 5.2 (Build 5.2.4)
------------------------------------------------------------
****************
Analysis Options
****************
Flow Units ...............
Process Models:
Rainfall/Runoff ........
RDII ...................
Snowmelt ...............
Groundwater ............
Flow Routing ...........
Ponding Allowed ........
Water Quality ..........
Infiltration Method ......
Flow Routing Method ......
Surcharge Method .........
Starting Date ............
Ending Date ..............
Antecedent Dry Days ......
Report Time Step .........
Wet Time Step ............
Dry Time Step ............
Routing Time Step ........
Variable Time Step .......
Maximum Trials ...........
Number of Threads ........
Head Tolerance ...........
CFS
YES
NO
NO
NO
YES
YES
NO
MODIFIED_HORTON
DYNWAVE
EXTRAN
06/19/2024 05:30:00
06/25/2024 23:00:00
0.0
00:01:00
00:01:00
00:01:00
20.00 sec
YES
8
1
0.005000 ft
**************************
Runoff Quantity Continuity
**************************
Total Precipitation ......
Evaporation Loss .........
Infiltration Loss ........
Surface Runoff ...........
Final Storage ............
Continuity Error (%) .....
Volume
acre-feet
60.795
0.000
25.852
34.669
0.280
-0.011
Depth
inches
3.669
0.000
1.560
2.092
0.017
**************************
Flow Routing Continuity
**************************
Dry Weather Inflow .......
Wet Weather Inflow .......
Groundwater Inflow .......
RDII Inflow ..............
External Inflow ..........
External Outflow .........
Flooding Loss ............
Evaporation Loss .........
Exfiltration Loss ........
Initial Stored Volume ....
Final Stored Volume ......
Continuity Error (%) .....
.
. o..
. ��.
. c..
0 000
. ...
. ,
0 0.0
. o00
a oao
. .
. o.�
***************************
Time-Step Critical Elements
***************************
Link STORM-1B (73.46%)
Link POND-427-OUTFALLI (25.06%)
Link POND-427-SWALE-B-INFALL (1.47%)
********************************
Highest Flow Instability Indexes
********************************
All links are stable.
*********************************
Most Frequent Nonconverging Nodes
*********************************
Convergence obtained at all time steps.
*************************
Routing Time Step Summary
*************************
Minimum Time Step . 0.50 sec
Average Time Step . 4.56 sec
.
. .
. ...
.�
. ..c
0 000
. .c.
. •
;, .
0 000
. .co
. o.o
a a.•
Maximum Time Step
% of Time in Steady State
Average Iterations per Step
% of Steps Not Converging
Time Step Frequencies
20.000 - 9.564 sec
9.564 - 4.573 sec
4.573 - 2.187 sec
2.187 - 1.046 sec
1.046 - 0.500 sec
***************************
Subcatchment Runoff Summary
***************************
. o.
0 00
..
0 00
16.26 %
12.28 %
25.68 %
42.50 %
3.28 %
------------------------------------------------------------------------------------------------------------------------------
Total Total Total Total Impery Pery Total Total Peak Runoff
Precip Runon Evap Infil Runoff Runoff Runoff Runoff Runoff Coeff
Subcatchment in in in in in in in 10^6 gal CFS
------------------------------------------------------------------------------------------------------------------------------
STORM-1
STORM-2
STORM-3
STORM-4
OFFSITE-1
FUTURE-2
FUTURE-4
FUTURE-5
STORM-5
F-1-BASIN
F-2-BASIN
G-14-BASIN
G-13-BASIN
FUTURE-3
FUTURE-1
3.67
3.67
3.67
3.67
3.67
3.67
3.67
3.67
3.67
3.67
3.67
3.67
3.67
3.67
3.67
o ..
. ..
0 00
. ..
0 0.
. co
. .o
o c.
a o.
o .a
. ..
o ..
o cc
. o0
0 00
. o0
. .c
0 00
. ..
. o0
o ..
0 00
. .c
. aa
a ..
. ..
. o0
c o0
o ..
. ..
0.66
0.29
0.29
0.25
2.61
0.28
0.30
0.31
0.22
0.00
0.00
0.16
0.16
1.11
0.68
2.15
2.84
2.83
2.92
0.73
2.82
2.82
2.81
2.95
3.63
3.63
3.30
3.30
1.66
2.06
0.84
0.51
0.52
0.47
0.32
0.54
0.52
0.52
0.46
0.00
0.00
0.19
0.19
0.88
0.90
2.99
3.35
3.35
3.39
1.05
3.36
3.34
3.33
3.42
3.63
3.63
3.48
3.48
2.55
2.97
1.73
0.93
2.14
1.19
2.95
0.30
0.41
0.68
0.11
0.05
0.05
0.02
0.02
0.20
0.51
105.56
64.20
151.48
88.07
74.84
24.10
27.32
44.72
9.24
5.07
4.88
2.19
2.09
9.62
32.49
0.815
0.913
0.912
0.923
0.286
0.915
0.909
0.908
0.931
0.990
0.990
0.949
0.949
0.694
0.808
******************
Node Depth Summary
******************
Average Maximum Maximum Time of Max Reported
Depth Depth HGL Occurrence Max Depth
Node Type Feet Feet Feet days hr:min Feet
---------------------------------------------------------------------------------
POND-D-OUTFALL
STORM-3-OUTFALL
STORM-4-OUTFALL
POND-427-INFALL
FUTURE-2-OUTFALL
FES-2
INLET-4
INLET-3
SWALEPOND-2-OUTFALL
POND-427-OUTFALL
FES-3
FES-4
FUTURE-3-OUTFALL
INLET-1
INLET-2
FES-1
SITE-OUTFALL
POND-D
POND-427
SWALEPOND-1
SWALEPOND-2
*******************
Node Inflow Summary
*******************
JUNCTION
7UNCTION
JUNCTION
7UNCTION
JUNCTION
JUNCTION
JUNCTION
7UNCTION
JUNCTION
7UNCTION
JUNCTION
7UNCTION
JUNCTION
7UNCTION
JUNCTION
7UNCTION
OUTFALL
STORAGE
STORAGE
STORAGE
STORAGE
0.26
0.62
0.96
2.12
0.62
0.90
0.79
0.70
0.72
1.21
1.25
1.41
1.77
0.35
0.43
0.38
0.73
0.39
3.47
2.93
1.71
0.68
4.26
4.54
4.69
2.16
2.58
2.43
2.31
1.24
2.01
1.97
2.47
3.79
1.31
1.46
1.29
1.10
1.77
6.23
7.04
5.00
4996.87
4996.26
4995.54
4993.69
4994.03
4993.99
4994.01
4994.02
4995.73
4988.93
4988.66
4988.47
4993.23
4996.59
4996.52
4996.29
4986.10
5001.52
4993.23
5002.04
5002.00
.
0
.
0
.
0
.
0
.
.
.
.
.
.
.
.
.
.
.
02:05
00:54
00:54
01:19
01:00
01:02
01:01
01:01
07:09
05:42
05:44
05:45
05:33
00:39
00:39
01:00
05:45
02:32
05:34
01:48
01:44
0.68
4.26
4.54
4.69
2.16
2.58
2.43
2.31
1.24
2.01
1.97
2.47
3.79
1.26
1.38
1.29
1.10
1.77
6.23
7.04
5.00
-------------------------------------------------------------------------------------------------
Maximum Maximum Lateral Total Flow
Lateral Total Time of Max Inflow Inflow Balance
Inflow Inflow Occurrence Volume Volume Error
Node Type CFS CFS days hr:min 10^6 gal 10^6 gal Percent
-------------------------------------------------------------------------------------------------
POND-D-OUTFALL
STORM-3-OUTFALL
STORM-4-OUTFALL
POND-427-INFALL
FUTURE-2-OUTFALL
FES-2
7UNCTION 0.00 5.00
JUNCTION 151.48 153.31
7UNCTION 88.07 117.04
JUNCTION 0.00 98.45
JUNCTION 27.32 27.78
JUNCTION 0.00 19.69
0 02:32 0
0 00:40 2.14
0 00:40 1.19
0 00:58 0
0 00:40 0.409
0 00:43 0
2.65 0.000
4.9 -0.427
6.08 -0.779
6.19 0.000
3.43 -0.240
3.48 -0.311
INLET-4
INLET-3
SWALEPOND-2-OUTFALL
POND-427-OUTFALL
FES-3
FES-4
FUTURE-3-OUTFALL
INLET-1
INLET-2
FES-1
SITE-OUTFALL
POND-D
POND-427
SWALEPOND-1
SWALEPOND-2
JUNCTION
7UNCTION
JUNCTION
7UNCTION
JUNCTION
7UNCTION
JUNCTION
7UNCTION
JUNCTION
JUNCTION
OUTFALL
STORAGE
STORAGE
STORAGE
STORAGE
**********************
Node Surcharge Summary
**********************
.
o•
. ..
. o0
. ..
o co
..
0
.
0 00
. o.
.•
. o0
� •.
.. .o
19.89
19.12
3.03
8.01
8.01
8.01
50.22
7.48
12.75
16.59
8.01
169.77
114.68
94.65
116.14
.
0
.
0
.
0
.
0
.
0
c
0
0
0
.
.. �
.. �
. �
0
. •
.
.. �.
00 �o
.. •
o.
c �
.c �o
c .•
c. �
ca ••
0.0208
0.0198
0
0
0
0
0.684
0.0503
0.0483
0
0
2.66
0
0.613
3.46
Surcharging occurs when water rises above the top of the highest conduit.
---------------------------------------------------------------------
Max. Height Min. Depth
Hours Above Crown Below Rim
Node Type Surcharged Feet Feet
---------------------------------------------------------------------
POND-427-OUTFALL JUNCTION 39.01 0.506 2.554
*********************
Node Flooding Summary
*********************
Flooding refers to all water that overflows a node, whether it ponds or not.
--------------------------------------------------------------------------
Total Maximum
Maximum Time of Max Flood Ponded
Hours Rate Occurrence Volume Depth
Node Flooded CFS days hr:min 10^6 gal Feet
--------------------------------------------------------------------------
SWALEPOND-2 3.19 50.21 0 01:50 1.048 0.000
3.48
3.46
3.03
10.2
10.2
10.2
4.62
2.7
2.75
2.78
10.2
2.66
10.7
3.31
3.74
. ..
0 oc.
.
c o00
. ...
0 0.
. �:
c o00
. ..
o .
. ..c
o .o.
c oo:
a o c
0 00•
**********************
Storage Volume Summary
**********************
------------------------------------------------------------------------------------------------
Average Avg Evap Exfil Maximum Max Time of Max Maximum
Volume Pcnt Pcnt Pcnt Volume Pcnt Occurrence Outflow
Storage Unit 1000 ft Full Loss Loss 1000 ft Full days hr:min CFS
------------------------------------------------------------------------------------------------
POND-D 67.722 16.8 0.0 0.0 314.803 78.1 0 02:32 5.00
POND-427 213.962 23.1 0.0 0.0 471.195 50.9 0 05:34 21.89
SWALEPOND-1 53.101 27.6 0.0 0.0 154.163 80.1 0 01:48 26.36
SWALEPOND-2 55.237 29.4 0.0 0.0 187.846 100.0 0 01:44 65.38
***********************
Outfall Loading Summary
***********************
-----------------------------------------------------------
Flow Avg Max Total
Freq Flow Flow Volume
Outfall Node Pcnt CFS CFS 10^6 gal
-----------------------------------------------------------
SITE-OUTFALL 99.85 4.89 8.01 10.238
-----------------------------------------------------------
System 99.85 4.89 8.01 10.238
********************
Link Flow Summary
********************
-----------------------------------------------------------------------------
Maximum Time of Max Maximum Max/ Max/
�Flow� Occurrence �Veloc� Full Full
Link Type CFS days hr:min ft/sec Flow Depth
-----------------------------------------------------------------------------
SWALE-B1 CONDUIT 3.01 0 04:58 0.27 0.04 0.30
STORM-2A CONDUIT 18.23 0 00:43 4.14 0.60 0.75
STORM-2B CONDUIT 18.97 0 00:43 4.25 0.60 0.79
STORM-2C CONDUIT 19.69 0 00:43 4.66 0.67 0.83
SWALE-62 CONDUIT
POND-427-SWALE-B-INFALL CONDUIT
POND-427-SWALE-A-INFALL CONDUIT
SWALE-A3 CONDUIT
SWALE-A2 CONDUIT
POND-427-OUTFALLI CONDUIT
POND-427-OUTFALL2 CONDUIT
POND-427-OUTFALL3 CONDUIT
STORM-1A CONDUIT
STORM-1B CONDUIT
STORM-1C CONDUIT
SWALE-A1 CONDUIT
SWALEPOND CONDUIT
POND-D-OUTFALL ORIFICE
POND-427-OUTFALL ORIFICE
SWALE-POND-OUTFALL ORIFICE
***************************
Flow Classification Summary
***************************
13.66
46.92
76.64
98.45
59.20
8.01
8.01
8.01
5.00
7.87
16.59
7.47
65.38
5.00
8.01
3.03
c
.
.
0
.
0
.
0
.
0
.
a
.
01:15
0 00:42
0 01:08
00:58
01:00
05:29
05:35
05:45
02:32
00:39
00:39
01:07
00:46
02:32
05:29
01:47
0.48
11.80
10.84
0.89
0.45
4.54
0.54
4.93
5.20
5.08
9.03
0.21
6.75
0.11
0.47
1.13
0.27
0.31
1.08
0.02
1.52
0.40
0.92
0.94
0.07
0.45
0.47
1.00
1.00
0.54
0.63
1.00
0.28
0.87
0.58
0.92
0.43
0.55
1.00
-------------------------------------------------------------------------------------
Adjusted ---------- Fraction of Time in Flow Class ----------
/Actual Up Down Sub Sup Up Down Norm Inlet
Conduit Length Dry Dry Dry Crit Crit Crit Crit Ltd Ctrl
-------------------------------------------------------------------------------------
SWALE-61
STORM-2A
STORM-2B
STORM-2C
SWALE-B2
POND-427-SWALE-B-INFALL
POND-427-SWALE-A-INFALL
SWALE-A3
SWALE-A2
POND-427-OUTFALLI
POND-427-OUTFALL2
POND-427-OUTFALL3
STORM-1A
STORM-16
STORM-1C
SWALE-A1
.o 0 oc o o, o o, o0 0 oc o o, o a, o 0 0.
.. c ., o oc . oo .c . ., o oc . oo . . . ..
.a o.a o.o a.a oa o.. o 0o a.a ..: o.a
.a , a. . .. a .o ., o a. , oc a .o a . , a.
., o ao 0 oc , oc .c o a, o oc , oc c o a.
.o . .. . .c o o, o •• , o. . .o o .c o • , o.
00 0 0o c o0 o cc o . o.� o 00 0.c o 0 0 00
.. , o. . .o . .. .c , o. . .o . .. o .: , o.
o, o 00 0 00 , co .o o.o 0 00 , oo ., o co
oc o .. . ., c .c co . .. . ., c .c . . . ..
00 , oo c.o o co 00 , oo c.o o co . , o0
.. . .. . .. , a. .. . .. . .. , a. . .. . ..
co 0 oc o 00 0 00 0�.. o 00 0 00 0•o , o0
.. . .. . .c . .. .. . .. . .c . .. . . ..
00 0.o 0 00 0 oc o0 0.o 0 00 0 00 . o0 0.o
c. , oc c.c , c. .. , oc o.c , c. .. , oc
�'� � ii i ii i ii i ii iG i ii i ii i ii i�G i ii
*************************
Conduit Surcharge Summary
*************************
----------------------------------------------------------------------------
Hours Hours
--------- Hours Full -------- Above Full Capacity
Conduit Both Ends Upstream Dnstream Normal Flow Limited
----------------------------------------------------------------------------
POND-427-SWALE-B-INFALL 26.33 26.33 47.93 0.01 0.01
POND-427-SWALE-A-INFALL 32.20 32.20 47.93 0.52 0.48
POND-427-OUTFALLI 38.97 38.97 43.55 27.63 27.63
POND-427-OUTFALL3 0.01 41.91 0.01 47.57 0.01
SWALEPOND 13.71 13.71 30.29 0.01 0.01
Analysis begun on: Mon Jul 15 16:33:59 2024
Analysis ended on: Mon Jul 15 16:33:59 2024
Total elapsed time: < 1 sec
O
�W/
6L
L
.�
�
v
N
0
N
�
�
T
�
�
c
0
�
U
C
� 0 �
� � � � �
�I�N�CO
O�oON�
II II II II II
��-.
� .�-.
� � �
�...
}' ^ � .`�.� .�
"C � � �, �
� �. cn .�... •>—
� � �`�U>
'= Q U � O Q
2�C'1Q>I�
0 0
Q- o � o
��oo o c�
��oo r �r�
cn��� c�i o�
c
} ii ii ii ii ii Y ii
Q
�
� L �
'� v-
� �
a � � � � � �
i� � �� N � U U
>,
� �� N p��`.
Q N J Q p � 0��
a��� � �U�
O� � � � � V •L � 0
a ��m�° n U�UY
�
�
..�
�
�
� o
� N
0
a
�
J
J
a
�
0
�
Z
O
a
0 0 0 0
�n o �n o
� � O O
0
�
�
�
� �
�
�
J
0
0
N
O
�
�
O
�
�
0
�
�
0
N
�
0
0
r
D �I
� o
� N
Q
Q�
�
0 0 0 o p
�n o �n o �
� � o 0 0
�
�
� �
0
�
O �
N �
0
POND D
HEA (FT) Q (CFS)
0 0.00
0.05 5.77
0.10 16.35
0.15 30.11
0.20 46.47
0.25 65.10
0.30 85.78
0.35 108.35
0.40 132.69
0.45 158.71
0.50 186.32
0.55 215.46
0.60 246.08
0.65 278.12
0.70 311.55
0.75 346.32
0.80 382.41
0.85 419.79
0.90 458.43
0.95 498.31
1.00 539.40
POND D SPILLWAY RATING CURVE
1.1
1 •
•
LL 0.9 •
� •
w 0.8 •
� �
} OJ •
a •
� 0.6 •
J �
N 0.5 •
w �
0 0.4 •
m •
Q 03 •
o �
w 0.2 •
x �
0.1 •
�:�
o �>
0.00 100.00 200.00 300.00 400.00 500.00 600.00
DISCHARGE (CFS)
STAGE-STORAGE SIZING FOR DETENTION BASINS
Project: MONTAVA PHASE D
Basin ID: POND D
n�, s� s�� z sae s� z
��
Dam . SideSWpez
/,� �" flow Dm" .����-��
1 Fluw�� � �
��
wi � !_�— w� �� �w �
� _-r"_�� �'�,�s'�'�i
�
_� --' s� s� z
'� L <--- - -- - -- ---� s:t�sw�z , i s�xs�e:
<------r � y .. �
Design Information (Input): Check Basin Sha e
W idth of Basin Bottom, W= ft Right Triangle OR...
Length of Basin Bottom, L=�ft Isosceles Triangle OR...
Dam Side-slope (H:V), 7� ft/ft Rectangle OR...
Circle / Ellipse OR...
Irregular X (Use Overide values in cells G32:G52)
Staqe-Storaqe Relationship:
MINOR MAJOR
Storage Requirementfrom Sheet'Modified FAA': � .lacre-ft.
Storage Requirement from Sheet'Hydrograph': - � acre-ft.
Storage Requirementfrom Sheet'Full-Spectrum': I � lacre-ft.
Labels Water Side Basin Basin Surface Surface Volume Surface Volume TargetVolumes
for WQCV, Minor, Surface Slope Width at Length at Area at Area at Below Area at Below for WQCV, Minor,
& Major Storage Elevation (H:V) Stage Stage Stage Stage Stage Stage Stage & Major Storage
Stages ft ft/ft ft ft ftZ ftZ User ft3 acres acre-ft Volumes
Qn ut) (InpuU Below EI. out ut out ut (out ut) Overide (out ut) (outpuU (out ut) (for oal seek)
499875 (in ut) � 172,456 0 3.959 0.000
4999.00 4.00 0.00 � 0.00 � 173,026 43,185 3.972 �0.991
5000.00 4.00 0.00 0.00 180,032 219,714 4.133 5.044
5001.00 4.00 0.00 0.00 187,141 403,301 4296 9.259
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A
I #N/A
#N/A� I #N/A
#N/A I I #N/A
___ ,. ..�.—.._--
#N/A j � #N/A
#N/A I I #N/A
#N/A � #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A � #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A I #N/A
,-
#N/A � � #N/A
#N/A � I #N/A
I #N/A I I #N/A
#N/A I, I #N/A
Pond D.xlsm, Basin 7/15/2024, 4:57 PM
RESTRICTOR PLATE SIZING FOR CIRCULAR VERTICAL ORIFICES
Project: MONTAVA PHASE D
Basin ID: POND D
Sizinq the Restrictor Plate for Circular Vertical Orifices or Piqes (Inqut)
Water Surface Elevation at Design Depth
PipeNertical Orifice Entrance Invert Elevation
Required Peak Flow through Orifice at Design Depth
PipeNertical Orifice Diameter (inches)
Orifice Coefficient
Full-flow Caqacitv (Calculated)
Full-flow area
Half Central Angle in Radians
Full-flow capacity
Calculation of Orifice Flow Condition
Half Central Angle (0<Theta<3.1416)
Flow area
Top width of Orifce (inches)
Height from Invert of Orifice to Bottom of Plate (feet)
Elevation of Bottom of Plate
Resultant Peak Flow Through Orifice at Design Depth
Width of Equivalent Rectangular Vertical Orifice
Centroid Elevation of Equivalent Rectangular Vertical Orifice
#1 Vertical #2 Vertical
Orifice Orifice
Elev: WS= 5,001.00 feet
Elev: Invert = 4,998J5 feet
Q = 5.00 cfs
Dia = 18.0 inches
Co = 0.65
Af =1 177 sq ft
Theta = I 3.14 rad
Qf=l_ 11.3 cfs
Percent of Design Flow =� 226 %
Theta =J 1.40 � �red
Ao=J 0.69 sqft
To =l 17J3 inches
Yo=j 0.62 feet
Elev Plate Bottom Edge =I 4,999.37 feet
Qo=l � 5D � cfs
Equivalent Width =� 1.11 � feet
Equiv. Centroid EI. _� 4,999.06 � �feet
Pond D.xlsm, Restrictor Plate 7/15/2024, 4:58 PM
�
O
Nd
L�L
�L
�
�
v
N
0
N
�
�
�
T
�
�
0
�
U
C
O O O
O O O
��f")��M
O N � N N
II II II II II
.-.
��
� ��
�
�� ���
"C � � �, �
� �. cn .�... •>—
� � �`�U>
'= Q U � O Q
2�C'1Q>I�
a
� o 0
� �- o � o
� �000 o�o
a c�N�d�-' ci oN
� �
�� �� �� �� �� Y ��
ti
N
d'
� L ��
Z �-
'd .� �
O � ��� � .-.
"-'�N U�(� �
a � � �..� � � V
� � � Q Q 0 � � �
O J N O � p��
W °�-�- p�� �U Q-�
� a cn � � � c� .� � �
Z HUml�cn U�UY
�
�
..�
�
�
� o
� N
0
Q
�
J
J
a
N
ti
N
�
0
Z
O
a
�
�
w
�
Z
0 0 0 0
�n o �n o
� � O O
0
�
� ^
� �
`i
u�i +--'
M �
C
�
I � J
� � � � N
I � I I � N
I �li N
il i i IN
� � � N
I � i IN
`% o
� N
Q
Q�
�
0 0 0 0 0
�n o �n o �
� � o 0 0
0
0
M
0
�
N
0
0
N
0
�
�
o�
o��
0
�
.�
�
0
INTERIM POND 427
HEAD (FT) Q (CFS)
o.00 o.00
0.05 7.99
0.10 22.63
0.15 41.64
0.20 64.22
0.25 89.90
0.30 118.38
0.35 149.43
0.40 182.89
0.45 218.60
0.50 256.47
0.55 296.39
0.60 338.29
0.65 382.09
0.70 427.74
0.75 475.19
0.80 524.38
0.85 575.27
0.90 627.83
0.95 682.01
1.00 737.80
Z.Zo
1.00
�
="- 0.90
�
�
� o.so
U
> o.�o
a
� 0.60
J
d 0.50
�
> 0.40
0
Q o.30
0
a o.zo �
w ��
= o.so �1
<�,
o.00
o.00
INTERIM POND 427 SPILLWAY RATING CURVE
•
•
�
�
� -
soo.00 zoo.00
•
300.00 400.00 500.00 600.00 700.00 800.00
DISCHARGE (CFS)
I •
STAGE-STORAGE SIZING FOR DETENTION BASINS
Project: MONTAVA PHASE D
Basin ID: INTERIM POND 427
n�, s� s�� z sae s� z
��
Dam . SideSWpez
/,� �" flow Dm" .����-��
1 Fluw�� � �
��
wi � !_�— w� �� �w �
� _-r"_�� �'�,�s'�'�i
�
_� --' s� s� z
'� L <--- - -- - -- ---� s:t�sw�z , i s�xs�e:
<------r � y .. �
Design Information (Input): Check Basin Sha e
W idth of Basin Bottom, W= ft Right Triangle OR...
Length of Basin Bottom, L=�ft Isosceles Triangle OR...
Dam Side-slope (H:V), 7� ft/ft Rectangle OR...
Circle / Ellipse OR...
Irregular X (Use Overide values in cells G32:G52)
Staqe-Storaqe Relationship:
MINOR MAJOR
Storage Requirementfrom Sheet'Modified FAA': � .lacre-ft.
Storage Requirement from Sheet'Hydrograph': - � acre-ft.
Storage Requirementfrom Sheet'Full-Spectrum': I � lacre-ft.
Labels Water Side Basin Basin Surface Surface Volume Surface Volume TargetVolumes
for WQCV, Minor, Surface Slope Width at Length at Area at Area at Below Area at Below for WQCV, Minor,
& Major Storage Elevation (H:V) Stage Stage Stage Stage Stage Stage Stage & Major Storage
Stages ft ft/ft ft ft ftZ ftZ User ft3 acres acre-ft Volumes
Qn ut) (InpuU Below EI. out ut out ut) (out ut) Overide (out ut) (oulput) (out ut) (for oal seek)
4987.00 (in ut) � 173 0 0.004 0.000
4988.00 4.00 0.00 � 0.00 � 8,162 4,168 0.187 0.096
4989.00 4.00 0.00 0.00 35,772 26,135 0.821 0.600
4990.00 4.00 O.O�I 75,228 81,635 1727 1.874
4991.00 4.00 0.00 0 00 � 107,043 172,770 � 2.457 � 3.966
—_._ ,.. _._. ...:... ...
4992.00 4.00 0.00 � 0.00 � 133,704 293,144 � 3.069 6.730
4993.00 4.00 0.00 0.00 151,585 435,788 3.480 10.004
4994.00 4.00 0.00 0.00 160,821 591,991 3.692 13.590
4995.00 4.00 0.00 0.00 167,206 756,005 .. 3.839 �� 17.355
...�.. ...._-- �
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A I #N/A
I
#N/A #N/A
#N/A � #N/A
#N/A I #N/A
#N/A I � #N/A
_.-- - -._ ._--- �
#N/A #N/A
#N/A I� - #N/A
#N/A I #N/A
#N/A I � #N/A
...-- - -._ ._-- �
#N/A #N/A
#N/A I� - #N/A
#N/A I i #N/A
#N/A I �I #N/A
�#N/A I #N/A
#N/A � � #N/A
#N/A � #N/A
#N/A � � #N/A
�#N/A I #N/A
#N/A � � #N/A
#N/A � #N/A
#N/A � � #N/A
�#N/A I #N/A
#N/A � � #N/A
#N/A � #N/A
#N/A � � #N/A
�#N/A I #N/A
#N/A � � #N/A
#N/A � #N/A
#N/A I I #N/A
�#N/A . I #N/A
- � #N/A I � #N/A
INTERIM POND 427.x1sm, Basin 7/15/2024, 5:08 PM
STAGE-DISCHARGE SIZING OF THE WATER QUALITY CAPTURE VOLUME (WQCV) OUTLET
Project: MONTAVA PHASE D
easin ID: INTERIM POND 427
W�CV Desiqn Volume Ilnoutl:
Catchment Imperviousness, I, = 79.5 percent
Catchment Area. A = 19.16
Depth at WQCV outlet above lowest perforation, H= 13 feet 5
Vertical distance between rows, h= 6.00 inches
Number of rows. NL = 5.00
Orifice discharge coefficient, Co= 0.65
Slope of Basin Trickle Channel. S= 0.005 ft / ft
Time to Drain the Pond = 40 hours
Watershed Desiqn Information Ilnputl:
Percent Soil Type A =� /
Percent Soil Type B= 1 %
Percent Soil Type C/D = 99 %
Outlet Desiqn Information fOutputl:
Diameter of holes. D= 1.916 inches
Number of holes per row. N= 1
OR
Height of slot, H =�inches
W itlih of slot, W= inches
W ater Quality Capture Volume, W QCV = 0.369 watershed inches
WaterQualityCaptureVolume(WQCV)= 0.589acre-feet
Design Volume (W�CV / 12'Area `11) Vol = 0.707 acre-feet
Outlet area per row. Ao = 2.88 square inches
Total opening area at each row based on user-input above, Ao = 2.88 square inches
Total opening area at each row based on user-input above, Ao = OA20 square feet
. � u O O o
O o 0
O o 0
O O O
�L.—.—
� o 0 0 0
o O o
O O O
O O O
� PerfoTated
� o � Plate
0 Ezamples
0 0 0 —
ol' °I 4.�
O
INTERIM POND 427.x1sm, W QCV 7/15/2024, 5:09 PM
RESTRICTOR PLATE SIZING FOR CIRCULAR VERTICAL ORIFICES
Project: MONTAVA PHASE D
Basin ID: DETENTION POND D
Sizinq the Restrictor Plate for Circular Vertical Orifices or Piqes (Inqut)
Water Surface Elevation at Design Depth
PipeNertical Orifice Entrance Invert Elevation
Required Peak Flow through Orifice at Design Depth
PipeNertical Orifice Diameter (inches)
Orifice Coefficient
Full-flow Caqacitv (Calculated)
Full-flow area
Half Central Angle in Radians
Full-flow capacity
Calculation of Orifice Flow Condition
Half Central Angle (0<Theta<3.1416)
Flow area
Top width of Orifce (inches)
Height from Invert of Orifice to Bottom of Plate (feet)
Elevation of Bottom of Plate
Resultant Peak Flow Through Orifice at Design Depth
Width of Equivalent Rectangular Vertical Orifice
Centroid Elevation of Equivalent Rectangular Vertical Orifice
#1 Vertical #2 Vertical
Orifice Orifice
Elev: WS= 4,990.25 feet
Elev: Invert = 4,987.00 feet
Q = 8.00 cfs
Dia = 18.0 inches
Co = 0.65
Af =1 177 sq ft
Theta = I 3.14 rad
Qf = l 14.6 cfs
Percent of Design Flow =� 182 %
Theta =J� 1.59 � �red
Ao=J 0.91 sqft
To= 18.00 inches
Yo = 0.77 feet
Elev Plate Bottom Edge = 4,987.77 feet
Qo = . 8D cfs
Equivalent Width =� 1.18 � feet
Equiv. Centroid EI. _� 4,987.39 � �feet
INTERIM POND 427.x1sm, Restrictor Plate 7/15/2024, 5:24 PM
INTERIM SWALE POND
HEAD (FT) Q (CFS)
o.00 o.00
0.05 3.48
0.10 9.88
0.15 18.23
0.20 28.17
0.25 39.53
0.30 52.16
0.35 65.99
0.40 80.93
0.45 96.95
0.50 113.99
0.55 132.01
0.60 150.99
0.65 170.90
0.70 191.72
0.75 213.43
0.80 236.01
0.85 259.45
0.90 283.74
0.95 308.86
1.00 334.80
i.10
Z.00
�
� 0.90
�
w 0.80
�
U
> o.�o
a
� 0.60
J
N 0.50
w
> 0.40
O
Q 0.30
0
a o.zo
W
_
o.io _.
o.00
o.00
INTERIM SWALE POND SPILLWAY RATING CURVE
�
�
�
ioo.00 zoo.00
300.00 400.00 500.00 600.00 700.00 800.00
DISCHARGE (CFS)
•
•
• -
•
Weir Report
Hydraflow Express Extension for Autodesk0 Civil 3D0 by Autodesk, Inc.
INTERIM SWALE POND SPILLWAY
Trapezoidal Weir
Crest = Sharp
Bottom Length (ft) = 100.00
Total Depth (ft) = 1.00
Side Slope (z:1) = 4.00
Calculations
Weir Coeff. Cw = 3.10
Compute by: Known Q
Known Q (cfs) = 108.00
Depth (ft)
2.00
1.50
1.00
0.50
� ��
-0.50
Highlighted
Depth (ft)
Q (cfs)
Area (sqft)
Velocity (ft/s)
Top Width (ft)
INTERIM SWALE POND SPILLWAY
Monday, Jul 15 2024
= 0.50
= 108.00
= 51.00
= 2.12
= 104.00
�
Depth (ft)
2.00
1.50
1.00
0.50
� ��
-0.50
0 10 20 30 40 50 60 70 80 90 100 110 120 130
Weir W.S. Length (ft)
STAGE-STORAGE SIZING FOR DETENTION BASINS
Project: Montava Phase E
Basin ID: Pond A
n�, s� s�� z sae s� z
��
Dam . SideSWpez
/,� �" flow Dm" .����-��
1 Fluw�� � �
��
wi � !_�— w� �� �w �
� _-r"_�� �'�,�s'�'�i
�
_� --' s� s� z
'� L <--- - -- - -- ---� s:t�sw�z , i s�xs�e:
<------r � y .. �
Design Information (Input): Check Basin Sha e
W idth of Basin Bottom, W= ft Right Triangle OR...
Length of Basin Bottom, L=�ft Isosceles Triangle OR...
Dam Side-slope (H:V), 7� ft/ft Rectangle OR...
Circle / Ellipse OR...
Irregular X (Use Overide values in cells G32:G52)
Staqe-Storaqe Relationship:
MINOR MAJOR
Storage Requirementfrom Sheet'Modified FAA': � .lacre-ft.
Storage Requirement from Sheet'Hydrograph': - � acre-ft.
Storage Requirementfrom Sheet'Full-Spectrum': I � lacre-ft.
Labels Water Side Basin Basin Surface Surface Volume Surface Volume TargetVolumes
for WQCV, Minor, Surface Slope Width at Length at Area at Area at Below Area at Below for WQCV, Minor,
& Major Storage Elevation (H:V) Stage Stage Stage Stage Stage Stage Stage & Major Storage
Stages ft ft/ft ft ft ftZ ftZ User ft3 acres acre-ft Volumes
Qn ut) (InpuU Below EI. out ut out ut) (out ut) Overide (out ut) (outpui�.) (out ut) (for oal seek)
4995.00 (in ut) � 701 0 0.016 0.000
4996.00 4.00 0.00 � 0.00 � 11,628 6,165 0267 � 0.142
4997.00 4.00 0.00 0.00 25,213 24,585 0.579 � 0.564
4998.00 4.00 O.O�I 44,472 59,428 1 A21 1.364
4999.00 4.00 0.00 000 � 58,802 111,065 .. 1.350 � 2.550
—_._ ,.. _._. ...:... .__ .'..
5000.00 4.00 0.00 � 0.00 71,619 176,275 1.644 �I 4.047
5001.00 4.00 0.00 0.00 84,530 254,350 1.941 � 5.839
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A I #N/A
I
#N/A #N/A
#N/A � #N/A
#N/A I #N/A
#N/A I � #N/A
_.-- - -._ ._--- �
#N/A #N/A
#N/A I� - #N/A
#N/A I #N/A
#N/A I � #N/A
...-- - -._ ._-- �
#N/A #N/A
#N/A I� - #N/A
#N/A I i #N/A
#N/A I �I #N/A
�#N/A I #N/A
#N/A � � #N/A
#N/A � #N/A
#N/A � � #N/A
�#N/A I #N/A
#N/A � � #N/A
#N/A � #N/A
#N/A � � #N/A
�#N/A I #N/A
#N/A � � #N/A
#N/A � #N/A
#N/A � � #N/A
�#N/A I #N/A
#N/A � � #N/A
#N/A � #N/A
#N/A I I #N/A
�#N/A . I #N/A
- � #N/A I � #N/A
INTERIM SWALE POND .xlsm, Basin 7/15/2024, 525 PM
STAGE-DISCHARGE SIZING OF THE WATER QUALITY CAPTURE VOLUME (WQCV) OUTLET
Project: MONTAVA PHASE D
easin ID: INTERIM POND 427
W�CV Desiqn Volume Ilnoutl:
Catchment Imperviousness, I, = 24.9 percent
Catchment Area. A = 29.34
Depth at WQCV outlet above lowest perforation, H= 13 feet 5
Vertical distance between rows, h= 4.00 inches
Number of rows. NL = 4.00
Orifice discharge coefficient, Co= 0.65
Slope of Basin Trickle Channel. S= 0.005 ft / ft
Time to Drain the Pond = 40 hours
Watershed Desiqn Information Ilnputl:
Percent Soil Type A =� /
Percent Soil Type B= 1 %
Percent Soil Type C/D = 99 %
Outlet Desiqn Information fOutputl:
Diameter of holes. D= 1.327 inches
Number of holes per row. N= 1
OR
Height of slot, H =�inches
W itlih of slot, W= inches
W ater Quality Capture Volume, W QCV = 0.169 watershed inches
WaterQualityCaptureVolume(WQCV)= 0.414acre-feet
Design Volume (W�CV / 12'Area `11) Vol = 0.496 acre-feet
Outlet area per row. Ao = 1.38 square inches
Total opening area at each row based on user-input above, Ao = 1.38 square inches
Total opening area at each row based on user-input above, Ao = 0.010 square feet
. � u O O o
O o 0
O o 0
O O O
�L.—.—
� o 0 0 0
o O o
O O O
O O O
� PerfoTated
� o � Plate
0 Ezamples
0 0 0 —
ol' °I 4.�
O
INTERIM SW ALE POND .xlsm, W QCV 7/15/2024, 525 PM
RESTRICTOR PLATE SIZING FOR CIRCULAR VERTICAL ORIFICES
Project: MONTAVA PHASE D
Basin ID: DETENTION POND D
Sizinq the Restrictor Plate for Circular Vertical Orifices or Piqes (Inqut)
Water Surface Elevation at Design Depth
PipeNertical Orifice Entrance Invert Elevation
Required Peak Flow through Orifice at Design Depth
PipeNertical Orifice Diameter (inches)
Orifice Coefficient
Full-flow Caqacitv (Calculated)
Full-flow area
Half Central Angle in Radians
Full-flow capacity
Calculation of Orifice Flow Condition
Half Central Angle (0<Theta<3.1416)
Flow area
Top width of Orifce (inches)
Height from Invert of Orifice to Bottom of Plate (feet)
Elevation of Bottom of Plate
Resultant Peak Flow Through Orifice at Design Depth
Width of Equivalent Rectangular Vertical Orifice
Centroid Elevation of Equivalent Rectangular Vertical Orifice
#1 Vertical #2 Vertical
Orifice Orifice
Elev: WS= 5,000.00 feet
Elev: Invert = 4,995.00 feet
Q = 3.50 cfs
Dia = 18.0 inches
Co = 0.65
Af =1 177 sq ft
Theta = I 3.14 rad
Qf = l 19.0 cfs
Percent of Design Flow =� 543 %
Theta =J� 1.00 � �red
Ao=J 0.31 sqft
To=l 15.14 inches
Yo=j 0.34 feet
Elev Plate Bottom Edge =I 4,995.34 feet
Qo =l 3S cfs
Equivalent Width =� 0.91 � feet
Equiv. Centroid EI. _� 4,995.17 � �feet
INTERIM SWALE POND .xlsm, Restrictor Plate 7/15/2024, 5:26 PM
APPENDIX J
EXCERPTS FROM PREVIOUS
DRAINAGE REPORT
�
�
�
�
�
�
a
�
Q
�
��
�
�
I
Z
0
U
�
�
�
0
�
�I
�
�
a
�
/
�
�
(�
/
�
H
m
_
X
w
/
�
z
�
/
�
�
w �-
z �
� �
� �
m Q
�
�
m �
�
o I
; x
a �
�
�
� U
� �
g m
�
� �
a �'
�
� °'
N �
� a
�
� �
� �
O �
N �
�
�
O �/
� w
� w
� �
� g
U =
� �
�
� (�
�
� �
� o
� �
a� Q
� o
�j J
o�
z
�- �
O �
� �
SCHEMATIC LEGEND
SUB-CATCHMENT
ODETENTION ELEMENT
DESIGN POINT/DESIGN FLOW
� CONVEYANCE ELEMENT
OUTFALL ELEMENT
❑ DIVERSION ELEMENT
BAS I N
B
1 .2 50
AREA IN IMPERVIOUSNESS (%)
ACRES
BASIN BOUNDARY � � � � �
IRRIGATION DITCH
CONVEYANCE PATH
NOTES:
1. STORM ROUTING IS BASED ON MONTAVA FULL BUILD-OUT
WITH EXISTING OFF-SITE CONDITIONS.
2. STORM ROUTING WAS DEVELOPED FROM EXISTING
CONDITIONS SWMM MODELING PROVIDED BY ICON
ENGINEERING, INC.
3. EXISTING TOPOGRAPHY SHOWN IS BASED ON SURVEY TST
INFRASTRUCTURE, INC. IN MAY 2018 WITH SUPPLEMENTAL
USGS 1-METER RESOLUTION 2014 FLOOD LIDAR
TOPOGRAPHY. ELEVATIONS ARE REFERENCED TO THE NORTH
AMERICAN VERTICAL DATUM OF 1988 (NAVD88), U.S.
SURVEY FEET.
4. SEE SHEET D2 FOR SWMM SUMMARY TABLES.
500 250 0 500 1000
SCALE: 1 "=500'
ALL DIMENSIONS SHOWN ARE U.S. SURVEY FEET
. � � �L ,, . , . �. �
.� �. �._ . .,::
� �., �
. � _ ,: _ ,. _.. , � - , � � Ii,y � •.rr
, ,. _. , ^
. r
�
� � � � t�
;,
� � � �
I I I �--� 1� ~ � _� -• � " ,�, . _ v, , J'� �,� r,/r 4l �, \L„'�' � ' ��
ti ��
-� � � SB38 � � �� . ; ,ti
q ,�
, , SOD
� � '�1 W C_L�_��/ ` i ,� , �� � \ ~ �' �'t..._ � j I�,� � "-�.v y �..,.,� „` --' fir ��i� J.�. �r, ,..���'��; �� �"`�v�",�r�r,x �� I��. t
� _ ��� � FARM � :�1 �'� -� � �
,1��� _ � � � .�. 291 5 _ "�- � ; � � v �' �.� ,.�' r. r r' d �,r• �; :� , ��� � �',, w �. ,,, � ", y� �ti, � . -� ��
/
, .,�` �4,, �\ ,` . �� � � Q �• � v.v��y ��v, d! ���� ,Jf r''N ,�^�"n� �'�+'1 q "' �..4 ti,,, � i,,✓h� y. V
_ � �� -. �`� , , �!, �° `-�. SOD FARM � �Z� , �,� � '�, �,,,, .l, r`�r`` � r�r r �``�,�„� "'� t ti � '� . �q
, `-^ � ' � ,� r �; � .�- ��^�� � `��. � r�
\ �fa: z �` _ ..� INCIDENTAL �;'� 'a`� ,I , ,�,�� �, .���.� �. �,��.� 1�,..��.� �� � �,� .� ,��� �..
� �� � �� � ., ;. �` RETENTION ����� � ��o: ,,,���.�,�� �f ,� ,�,,• s` `�-� 3 '��� � '���'��,.`"n � �ew
�
]�7 ;�,�;'r a�.��_ � 4 , � � � SB37 �� ��'�� ,� f .���r'� ,��'� a 4 6 �:� "��z,.,, `^�� �-���� �7 �.._ 435
/ � /�Q � ; ' '� �-v t,-� � � � '� � ��
-L/ I� �i ' '; `'F � U � ` y ' � ; -," � � "� rf JJ �` r `✓ r � �' ' S�.H.� �. �"'°"� � I � �. } n,b5l�;�
� � d z �' � y �`'� d � � �' .u� '� �+ d�
� - -� - �� �� _- �, `� . � • ,�... � ,� � � , ,F � �� ��� �
� � '' ��\ • . � �C� i � ,\ i ` y ,� ' ) �� �% � ~ ^ �.�� � � $`.,� � ` j. yx• �' e , „ �� `' j , �Sr�;��`*'
` � 34 6 23
� - � •f - � - � . � y - - � �� �� r -. , y�5j � "�..�n.-�--.,- i�.� .-"" _ .. , -.• t ---.-p . . --- . z; . ,. _ . =t _-� . � � - -- �- �' i
,�
4 ' 7 �.
V /
��.�1\ �\4�Y� � �� _� I1' �� ti, \I � '� � � � 1 �� .I,� ��...� �y ••rt1 . �, 1 II � A '� � ... ..� . .. . . � �7 - - - - - �
�_. .. ✓
� �
� �.:
�� ,� � � � � �.. ��:- ..��� ' .. : ' 1 � ,. � . � . �. � M � - . M
. ...,- :. .. . .. �
..��� � f . .f
� I I I ' � ' ��_ - � • � „�s� ��-�, :;;i a�.,:� � -_ �� N0. 8 SIDE SPILL � �..,,,.a,, i �~ � � ,�„ � � � :_
f ^ - i� � � �� �. � r..:! � -ti �,.r � c•;.�� � �:
.`';��_ � '�����!��+�'�.��� ,;�"�': ;���-��' �"��;`�`y`r:r �t �,�{'. �. TO SOD FARM POND � ,��-, �ry� � �"F-'� �,o,,,�„�,.
./� ` ��� �F ., H��, e. .�'a . �„�T�� � , , i' - � ��k � � . I �L. }��� � a. ��+y.c- -
,� . � ,.�•'� n �-- �� t� e ; .,t�� . ,,4c�,w.- �` rf' "`-��.
�;��.'.•�','. .- � ,►� ��" =;���Lra���_�N �..� � ..��` ._ _ ..�\_ RICHARDS LAKE RD. (CR 52) - -;ti;,�;� ,, ��� ��*�=�i.�r � r•; ,;• ,
� s� - 43
4��• --u�...�..a__ ....��'--� ' -- ---- � _ _ - _ __" _ - - - - - - -
�� _ __ _
� __�,_u.---- ---� _ 3
� - - - - - - -� •�= �
- 't r • - � �.� r `.- . _ -..- _ _ _-_-.- -
' - _� �-
� __-
+ ■ - .a _ . .. -- - ' _ ` _ - - - -- = ��-_;__ t i-
-
I��,�-- ... � i � _` � � [ ;�--�a�q : , 841 �- ; - -- - _ � - - - �-�--�, . �- - - �r , �_ �-- � ' � -a - �
_ 4 237 _
s�r �7 p w 33��ee:: . ul . � � W '��
� �• ���I I .I�.�� '� � 1�'�,I�/��� � 1� ���.� ,�'��..'-���I��.�. r s-��I���I�J � i , � � 4 - I� , -, � , � . � � --
� 9 ..,� � . � , � � �
. .._ � � �� r '�� i - !� Y - � ` • �� � ---�v_.
��• . `-.� ! 1' v' ^Ifi N •1� „1'� ! C!! �E " �•`.4 f1 P t _ i� � �1 834 I' -Si' � -� II �r �`�f�� ij �� I �
'„�, �
� t ' ' .- �i •. 15
. ; � ,�,�, ,� :� �. f,--�-� � rA� - � ,� :- _...�i� 'r•�j '��'+` - �.',�+ " � -- �� z ' ' B �- POND B 434 � j � "',� I , � ,, �
� � �'� ' ^ r a C`��c r: � . -
. , . '
� , , � r. .'■ .�!
� � � - ,�r ;�! • ��.. _, -all� ��� --�,w��r.�l �✓ ,�,"��4L.� �.�lr �lVle � i,'I �� ,��, " , J ,, � _. _ I � �-- .. �t ' � .` �
� --� , � .. ,�l" u_;� ��r��j��s� '�� ' I'f ; ( `+'-1 � ~�.11i�._r ��A';.a�' � • J ,!.y 'r�' if �F I�, G` 1 - 16.6 50 � � � I� i �� �` r' " ' rj , + , � _ _ '
�. ` i� ;' J„1�'�- `t. � �a ����t ���. �i, ��. � �il '��'^ V+..�._ ,�.�� '�A� 1 -- � - I _ �`�1`�y�. . . � i I!I _ - � Y. 11 , �'�
i i •
. _
�
_ I
�_ � ,-- .' -4i ,' . - `= . , - � : � - - � _ � i = � - - . � � Mt� �
., � .�
. - ` T - - - - -
{" •.� _}� � � � � � �. ����,'1� i1 s �b �� n .���, � ..T -�. - ` : �.�=a � ;' � . • . _ . > _ .- _ . . _ _ _ - _ ___ - - _- � � �I�.-. , ' . -. ♦ �I I . 1
�
_ � �
^
, �� , . j� . � - - *. 27 6 50 �- , � .� � . - - -
. � � JI �
'� � q� � I ...,%"x�-.�{�'y'ir j``.�, � '� �r�',�• �-�.L ;lr'�. ti t' � � �1� � � k - �r.l
''�� � LF tl�' i , ,. �, . � ..a�.. _ ,�_..�' � �?� *` ' ' . -� \ ..., �--r� ,. ;
� i L3� N.i.;lf..� .�.�i II�`� �� �����i...' �'i »� q '� t�ri.��'. , � .jr,� . \ �� c�°'� 1 � "'� . � - \\I
�d+, � � _ ' i - � ' � .+� . �.�►. . ►�.�.� i : ��. - . . �.. . . ` � � , � � �
�sr� - �`j's�:�' .;� �..n ��~�,�. � �� ,r z:; ��,�,_�••�_�- � ��.�'�� •� .��-�' r� I �-��" � `� ,i� ���� \ I 1 t � � � . �, �`� - � � 1
� � ,�-• f .�� _ ,� � �rr� �. _� 1 � _ '"°�, 'i
I-` p' ' F � "I i�T... � +7},* �� w-.� .
. . �'� i�,A „F' �':. -� j� .,• ,��' �,.r. 1�--..�•. �i.�=y� -�..,*r.J�... � ' �-�5. �� -. r� , �% ti; ..\ �L����\� _ ��. '�` v.,�,+�,..,.-e-.,..5-.� `_ �: �'�, ` � I ,. ��� l � �
w :r r :.r.. ._. � 58.2 1 O ��,,� . ; * �, � �
� � : j ,, .,�.a,_ .�� « � ,�;�•,r- - -'� � � � _Y :'�_� ,: , .��_ _ �� , ��, �, �, � � �� � _ �; �t �, , � H - -- _ � - • - '
.
. ._ -
�r. ' '. : . . ,,,
� �-
, ._
..� � � . .. � � � 4 ',�..`]C, s: . F�►\ ' L.� �. _.�.! --� ��-'�u.'' .�i►"?!�_' 1'L, I �i _. � 4 `� \\ ✓+.nAe �N� I �II� `-- - u• t\ .1
. �+ � � � , "� P+
� , � ���'� � �4��.. ;�.�� MAPLE HILL � . �.,�.,�:_,; ���r ��.� � ��,
,- POND C ` 4 2. � � 45.6 10 �\ � .
,� • �' �a� � .. „� �� ,. . � � _ � . , _ � �-;, ,i � `;,; . , e - . - - '
.. � i� r
_ '
�. � � , w.^ `�
l � � r � ' • � � ��� � 's�11 ' ��,p�� ,1_ "9 r4ra i j^ , o , .
. , r � � I � � + ..^ ,L ; .. .. ,.,, . 1/�/� ., '� . " ' � L I �' �
r�
�, w _
t^ !1 i� � �_' � ' s � � ° -� ' ! *�
li� � �' � •� �� .a�d.�� �L.._IYSUBDIVISION '" -v , � ♦, T.r� I���. I` . I� .. :% ��� �U ' ��'. •'_�'.. VL '' v � � .. III T �'...1 . � � �' .. . � � •
I _ � � � I F ,i � .
, . � _ � i ' �_M� � i . �i � '' .,,r,- \ . �� � i �• ' �
� � �lL. I
� �, �.1; � ' � F .; ���'��IP� I� � I � T d ' ��' � ti = _ - - _' � , 4 � � f ,► - •;
,., �
_
- _�
� ``
� .3�.,, �� � � ��i��►��'� •��_�.'_ t *�� �.�'C� . _ � ..= �� _ ..- 442 �I� '``� •
, , .�1 . � v. .. .�. . � _ i � . �`p �� _ �rT-,�
�_ ..
. . - - - �, �
:
' _ - : , � .,_ _ . . .t . � � . . - , ., _ ,ti , ' f .
'' ' 82 0 50 � �� I�
,
. /�
� � _ _ . j r r .�,r _ � A /' �1� ..�'' � -` N II � �4 �_ �.�' ''! "�'� s �
�- I'� �(`� (� r� �. � ~`� �.1 � � / / - � ,j� ��' � � �'
� � ti � � '��•� �: �EJ6.��� H�.���k,f �r���!_�� �Li�� 833.� �1 �' ,% `� \ \� �- �I `' "il,-•�- < `� �.` � J� i i, rl'� - � �
,�w, f ��` ��.,.. _ • , ,�,•,.., �� � '�_ �. � _ �il�+ �_�.°-,' r. Li7
t n � i'�. _ T'j• .�, r'_: '� �. � � � �_ - 1' �� �,, '�.� r- '
r �� �r- ' (� � ,, I, . �. _ ' q 'ti - - � �,I r � �\ � , ('7
� " ' T i'r. ;� _ �i 'I � �.� .. . - � w. -_ �_ �.�4, h �i � I� � i � • '�
�+ � -� � -- � �
� � .1 � . � � j � \�. ' ` f �n 'r�, � � : I . � '
��I�,� �`� .;S-. � - � �� � •�. � ���� L -ti / �'°� "' �� � ;� � _ � � � � ����*h}�'n , ----- - _ .
,, , .
� �� -
`� � �� � � �" �� �' � � ��'� � `� ,�.-, -.,�, - __ h �� i� �� � �� � ' _ ��,, , = � _ . -
:
_ � , �;
: ; ; _.t�F-= �F - , : J , � _ � � � � �� ,, _ . . ' . . - I
� - F_ � • , � , �� � i
• - _ �SB33 , `� � , .�. _ � , J 1 ,
! � , • �r . r �.:, � .,-�:,- ,� ,. - � N 0. 8 S I D E � � .� �- ti v � , � � -� , � �i -� �- _ .. .
�.����� � �'� � � �'�� '��'���°•- �'�j'� ���; � . � _; �� J'� ��� - � ; `, � � , �:, � � _�A �;��� 20.5 50 . ' � POND A _ - � � ,`-` �'�,��"' �:.. _ . . '��` , �,`', �
' • ; ,- ,. . �.,.. SPILL TO ; - -�` -� `` �. ��, � �`�. ,, ,,`',�� • �� , J �y��. -.,
� !� �. �. � s�.;.:r,. .��"�Z"'.�1��'�, `��:;x�� :�-{ . � � I PS MONTAVA 1 � `�' _�t � �� � ���, � ` �� - �,'_ �� � I
�i � ;:,;� �°, ,�-��{-•_ ��--._��-. �4:-9:'�. �Qf� ' t; , ,�,--� �, •s- � , , � , . .a` �� ;� �� � � (/� �' x �'.;� \\�, � '� �, Q � '� I',� - - ' � ' �
.
< e � '' '�j S �.
� ��.#� i �r- , ,� , � �i i� l� a? L � ._ , , � -
�- ..g�. ,,�K�.•.,� � �-. �- ; f' �r-.- , 1 '�.`, , = (� , ! ` � , � II �/ _.+�. 't
� � , ' ` �.;� ;,; �� �( _�-...��ar,-. �r��F��� ;,��,�a=r': ',T�' , - � � , y� \ .\ ` �:.. � I J2 , <,. '`� � . _ ANHEUSER - - � u , ;
• ��� .: •. a��a�f"� `(' l� �- ., r= F f'i-�'- f�' •;�-i :•.) . � ' / � �� t� �`,�� :,� A z I ` ' ' � • - }� j�� •
- � , -r ��r •rl�`.. i�, ��i ��� . �MS� ��7��_ �y: _ _- -"°"' � _;�'.- ���V� . � �� 22.2 �J� � ���� �:'! .� `� �� �-� �+ � �i4. �_ �i��' �
i .,, „ -i F. r��al' r'9r�� :� � I ��: �'• \ \� - � B �""� . i t _ '�� ..
':� • . � _ UJC
'� i+ � . -
r► �r '�r- . � � . � - �'. _ � . _ w .t� �
,y . „P`'�'
�
�
� / � - .
ti - _
� • .
• . - --
�
� � �r� �� �,� „�, � .,.�.-��- :� ;�• ,', � �r�r�* f r� � _� - _ � __ � . _
�
. `�� �_ ..•� �
� - � �
i�� -•.- �' *• � � ' - -- A - - _ -_ - . ��' � . _ _ , - _ - _ - = � �
� , . ,� . . _ t
, :.-. - �`r � � 1 1 ._ � . Q �.�' �. � � = ` , �
!_. •� I ±: �� �r i � �r�. �;t ��r�,�..�� F ,w r: �� r , �r , I � , 47.3 60 ' , i, � / r-n r ��-, , --, , �'� � �"439 :;� ___ , � pr * ^r'
_ _ __ _ . -- .
. . _
� . � � r� �� g ..
_
�i- ��' . ^I .. � ,is'I ��.:i�� � I ' � , . I I � I � �� � "('�{'�"1 �� �� �' � �� r � i � `� --�- - - ,� � �. V � � � \ ��.\ ��:.�i' - ' !, tt �
, * iI� .-,M ,.-- �. ... . ,._._ __ _ .-._.� - - � - � -- w
; ,
,
� . .ti,� - - ., - -..�. . , . , . .� .�, . `. . :- . . � , ... �/ ; . �`. . - - , �� + ■I
[--� !' � • �
�j � i ,�-i� .i. t: �--_-'.-�-'� � _ � �� '�N � .e_ �.. • �-� _� � _ ' � � -: / /� Jl 1 � � b,- - .. . . . � �� �
r. _ �
- L - - ---_ ...
- - � -
_ _ _ ��__ ; : _ ` - ,. 833 �� __ _- -- -�c- _: �/ 3 � e ,� . .:� -� . . . ,.. . �
�� � , �,
. � ��t � -- -� -� = ��_�_ .� _ •,�� �ea� . , � - _ - ; - :� - _ - e-- =i - - ,; • /t :
,�Tp � � _�_ _ _s� __ - - - --- - ,� -_,� .t_ ___ ,l _ \ �! I " 7 7 ti z ` � /f .- � � - j . L ,7. �� �� � i c � t� 29
� . _ _
�-� ' �
. IJ- M. �+ . . �= __�.; ---� _,--..- . .. ,„I n . \. \^ \ . 4 ,- ��a� ._>�: � , _ . _ 1 �,v., '� � �'4 ti' .�. , ,� ,.-�--. .� -' ,., . � I � �,_X:i'� ' 'I - `'� . I
� �. �;� �NOTE: BASINS SB24, OS-1 , A1, A2, AND E, ;.� , �� _-_- - --- - ``-� - ~� ' �, -�- � , �� ■ - �, , N
, �P ; � . i ' ����, � .. � =� ,,_ _ '�_" 1 , . �. � '` " " �\ .� ,/ x,\� , CHANNEL N0. 1 _ . '. �
� �: .-- DISCHARGE TO THE N0. 8 DITCH. PONDS A1, � . ~' � � ,;-. _ ��
_ � POND D � _ � � �� I��' . �. `�. � -�-�.�- � � - � -
, � OS � � � A2 AND E, AND ATTENUATE ON-SITE i I -,�� ; ` � -- ` `31 - - '•'� �-,� , -� ��,,,„.� M-� l - - '•� � . � .
L'" `., � - -
�. , _ , . - , J3 - - . . �
� 45.0 20 ,z DEVELOPED 100 YEAR RELEASE RATES TO �,-. - _ _ '� az�. :� �\�\ ��, /F � i ��- � /�. �. �,w ,�; r � -� I �2 _ �� ,
, , ' `y ' PRE-DEVELOPED 2-YEAR RELEASE RATES. '�'r , / � ./j � - �, ' ' ' i ` �
-_-. _ ,
;�n � r ..�. 1 F �, _� .- _ ��\ ��:`�--L`�''�. _.,.,�, 44.5 50 ` 34.8 2 I ' I '`.�. �,��I��i
_
�
� , ��,..,C �� 100-YEAR FLOWS FROM BASIN OS-1 WERE , / a� , ; j �\\. �� 4 �; \� , . � .. ' i
. 'u �= MODELED AS PASS THROUGH. .: ' • ' `. � . I�� _. ' ' ,f `�� '°` t..z � ; � ��, _ �� I I � ..., _ _ _.. : - :�' � ;
� � . I - � � � 46.9 60 ; � SB3� ��
���� � r� , ' ' J � I � Y„r ' (
.
1 T • „ , f\ ' C �
� � � � , � � 1 ' � \' ' ., � � � `� 3 , ��� � . I 33.5 49 _ _ _ - - ' �
� �. �� � �IIY �r 1,1.�n., �.�1Ri� � � � � � � � CHANNEL N0. 2 _ � .!�` ; � � . �
�� � � : � � � � ?
- .
,;
. ��%
' v �y� `� � \' � i ' �J � � , � I / �; -� ' C/� ` ...,r...._.r.-- .____._ _._._
"1Ti� ' � � � �� , �
.
/ I , �
� �� �d;� , _ ` `., 83.9 25 � � `�� � �� `l, - - .\•� � / "i� - \ � � o K � 4 Y`` '�}°. _�� /' �, k , .... _-• . �._..., _... � .�--• I� ' ` �
_ � �
�t �'�� F \i',;, _ � _ �.�-_� �' - . � � � ��� .J �' \ l�r � :�� . � � � � .._. .__ ��^ ` ;� i��a��
� / \� h'� _ _ LM+�'�V� 1 � ' � li
i� a - �, _ �,, . . � � ( � _ � � -� N � � � �- 22.8 60 - � '� � - - -- -� ,� - � � �lM� �;�,
��� 3 � , � ., ', Po � F�, ; , s; ��, SB29 I I; .
; , �
� . , , ,b
' '��i , ,�- � .,. ' � _ _; , � � ,�, _ _ . . ``�:... �� , �` '�/ ,, till� � i��-� � - , �". ;�^`-
..,... ��- � JJJ �' _� 269 29 p
'�. 7 I \' _ "��' . �i° ' _ _- .�• � �.� I '.r ' �`Ar �4� . i
� � . " � _ -___ '
�'' J� � r �:� � . � � ' ' 42�. � .. __._ . J ` ' 21
V `� � � POND E � � � �� � � ��� i � ,. _ �� y ♦: _7.,� � "����' ��
,
. �.
, .
,+�• � _ � .
`� - ..� . : ; I =. � � .. � � �� -' 3 � �
� ' � ' ' . �; ,,�. a �- -+�_ �' � %' _ � :
�� ��
,.� a��� �� v . �� '. ' ,� � /;' ���, ��I . �<' ';
, � � 4 � �.
_ . r
� �.� �� �:- .�;l�.� _� , � �.' II I , �.-� L ({ r. LL ; 'H� �
� �.; A ���so .. .:�' - - . ' � � • � i *:' �� ��
� . .. � - - 831 � � \ �� ,- -�� ,' ' �
- -
_ �/
" � } �� � � ;. ;;� ,• ;1 ,�5:.�1`:. ��� . �� � � , ,� �..-�ti', ��i,; ,: ,, _ \. ..., '` � \� . - '"'"� i\� - ��3: . , �. J��' �,. .
.
.
�•
��_�; •2� . a i � � �\ ��i
rtST�. . ,.r ,r'.���'il�•i. , ��!t'rr��f��� / r � - � �, . .�� � \ � � - r�.:' � . -�- ' .-� _ `.�' ��i '.,r�'��r.��
h ti: a.P. ,�� � � - . _ . �i il '� � , i I, 1 ��i- '� l `�`� -� �; � ``
: � �;- „_.-• � �p �1�. ..�s w_ - _ i � `� � JJ `I 1 - � �1!, I ,' �% ti ; �: `,4 �' � i ' / �� ,�� ., . ,,
�
�,�.. ..b ..� ;.YF , ��,�► • - - - A � . ll i ���_, _�_ ; P �1 , �`��� ��> � � � . so.o 60 � � � 429 �- � �, �����A
. � p`�, �,;,. �. i4`Yls�'���:. `.1 H2 -�T� �1 �._�L � � ���.. /i- ��,(. � ,� /..':��� � ,•.� ��`, . :���'n - O . . � � 'l:
.
�
� I� :� ; �i► �; . , .1hIYr-�?d.'r�* � � �r _ � � �' � /�. .:. .� �� / �..\ \\ � ' � . �i.l ���
o �.►' � � /" ` �� � , � , � „ �t„
� i�v�- � '..�. . SB`�4 . jr�. 13.3 80 - . '' � e ' � ` �; �' ;` � � . �ii.
�I� ,� ::3� , . / � -
; I
_
_, . , , ) �
✓ `•' ,,,, ,.,� : �. .�, - - ;, - , , N � � % 7 r �..;
, . ,.
- � • r�r r .�». . .�.(. � �� � G 1 r �
,'
t� .� �r. g . 33.7 45 . ��N��►� 1 , -- � - \ ��
, � � � 1� •,r --1 � � �i M �; �., y� �q��� ���') ■ �� '�����
►M. �� 1! '� T r ���� ..�.�,�. ��� � I � � � � `:s;�l� �a r,� - �� �, i �� ���, I�
.
� i oM � . `
t � i�
�,t i - �y,...,.e,� a# :ti ` �i - \ � 1 , .. 1
POND A2
"�: € a_ � �`l�' . , ,- .i �, � � �'� � 80.4 80 sa�� / ' - ' III,
���_ �'�. F �... : �;i _� ; f�;' t G2 . � r� CHANNEL N0. 3 J g ' �
. r � ,� /
�►'�. .� , ' 4 -- -- ;: � � _'. _. ` - _ ; ` _ _ ��� � ; ' � ' � , .�.- �I; - 30 � . °� Ql;r' � ��.��
'-� � STORYBOOK . i� ,.�,' � r _ ,\\ _ \ ,,, ,
r_.- . � _ - _ t 10.0 80 �,� ___ . � � �� �� j ' � ���� � � � �d �r �
- � . ��- � �.� �� ��;; �I
.. _ > .
� ,r .. 424 N. - _ -� � , � .�y_.r, '_ ._. � � ,� ��k - a �� � I���� � ..;U � a _ 3p � �� _��
�:�=z- ,� SUBDIVISION _, , , �.� , ; �� : � ��
� �, � ,....,.,�.�... ;�y�--� ; � �:u. .-� ; � MOUNTAIN VISTA DR. CR 50 � :�; : �� � � �� , ,
��� . • . . • t R_ - --- Np - -J � � � L 42 - 26 _ 43 � . . _
.
: - � � -
.•_ ---'' . . - " ' � - � - -- -- - - -- T . ..__ __- - - ��� � ,.-_ -- - - - - _ � - � ._., --
PO A1 16 � � $ �-
- ,:- _ -. � .� � � � � �_ = I � � -- - - - - - - - - � - _ - - - - - "�':_ _� -- _
__� .
r 822 `
.>,� R....... _ � .,__�_�.,_� :z. - - , - ',- - -- - - - -- ___
;� .► ` � � ► • �• � , _ - - � .z.._ . --�_. � -- - - --- - --- - -�� ---- -1 - - � - - -- . -- - - � - - - - - - -- _ - -- � - - - �. .� - - -�, , � - . . _, _. �. �. � . �ry ,:'t�- - : � . _: .= -�. � i � .. .. I ..
..
. _� . �
\ _ . _ _ - �. -.. . - .
�, . „
�" „ �
.� :�, , A1 . _ � \ , �
%� • � �� _ � � � �;,.,,�.r' � � ����, i'
� � 1
- � - � � ll I
. �. � ^ � i
�. �. �
�1 �
R� - , . • �
"�' ���.
� �i �� �'�
_ , , � ,�+� �,
-� , � ,�,� .
1 �� ! � �•
'_ .� i
� �`�- I, � v �r: I
z..
�
,� w•t� � �',
/j�,a l���e� �,,;, ��
L.�•�•� ���� �
;.�: . ; �,,, .
l � �s`�;�� , f:�: .
200 � � � , � � �
. . �- 33.6 5 ��' �\ , _ �
� �., �� �
EXISTING FLOW IN N0. 8 DITCH �
W I N N 0. 8 D ITC H '"P .%' �. ���
'49 CFS �i � � \ \� �
��
,/ ' � \�
,_� � �` \ \
\ �; ' �.. ,�.�
_ r..� \\� � �� �\
r � \�` �� ''� � �� �
� , - - _ ;�� � �, ��� ��.\, ��� -
\ ���
�; ___ �SG N11UDl� SCE��I��. .
�� _ _ _ j
�.��� �.� " r � � - ` ;; �
� i - 4-� j ,f r � � . , � � 4L
, � � ` � � � ,� � � � �,.
t�i r
L .� � ._ �
: ,t �. � � �- � - � � � � ��� '
���. � � ; � ��� � - � �`� � � fE - ° -1
�
�. - - "t� L �+'u .� - _ s _m a�=�. a � le-� r � - ■ -�-; -- , � �, � w� � _
� . . �
: � . ; „ `� � � � -_ _ �- ,>
��
j .z,�,,� �, � � "t,, �" �y \���� � � � _._ , � _ -- - _ � - -.- -- s S -
fi •`'1 r4 �1..� n� ` ��� \\1�=- � � �= i, - J--^�-J �r �'� _ . � �-
� "�. '�� � `! � �\'��-� a ��/� =� � � -j �_�-�!' � v, 426 �
�-i �,' � • "' r � � �.. � OVERFLOW
� �� � �`� �� � i j �
'�{''v°� P ��R'�,' �'�` i �'"n\' .. � "✓ �',.,- � �,-• , � �,�}• �� • �..-�� �
?����� � �, � �. � ,� �~��,,1,r � � �,�; /
� \ � '�-ti,�n4 �..,� 1�.4`� �. �n„ �- �,� �, '"" lj
� -, � �,, � ..�' ..�,- O �'£`�° �� . /
�. � �
� �,. , �
a . ". ..
�� � L - ��..,� �,�. I ;, � 60.8 10 � 9�
,
�� � � �� ,.. _ /� -
�.-_
. & V�-CA �
�
;' ��'-��� c AL _ , � �` � ' ; � � G�
' ��^ o � '� �.� _
;`�, e �y,'Y�'� �o�'`"' f�� ' e'"''„A'� '� _ -
V . . oo�. � \ [' ..,1 �s
9 y �' �� S�
�:�, ` � � ,�
� � � ��
a�g � �� � �� � �,��
^ ��\ � � �
�� ��
l /
� n � /
�
�� �� � � � � - � � , ��3
TRAIL HEAD
SUBDIVISION
� r.n:
i �� ,� . - �� �' ��
j.r` � `ti� , "., \, ° ��i
� N ,�,, \,
� - " / �� � �I I
.f y P 'v � ��.'. � I
I � � .n� , � � � � ���� � , �� �
i �;/s� � � � ���'`� �-, �r
� � ��
' W
� I �
I �
�� �.�, ' ,�,.. � I
i �� �- � �^�� �
f, �
�''' ,
� f ,� N ���� � � i ,
� I ` �� ��� � -.�.� � � � ,�
�
� -
�
� I �r
�
, , I
_, \
i' � r'�r � ':,.0 86.6 80 , o,���,� � m ^� I�z.;; i
M� �,�
�� � w � ,, _:: r le �
�r.�;� :s�� ,. g �
� � ' � . �,.. � ���,: �
. .�,;�,,,.,,�,-..�... �--.
:._ ,_,�, .r�. �l i,; „
i a��_ _ �' •�'��:�� � I� �
t `� . ' . � i`: �:
� , �
I .
� � ;:.;.
l rn' I �
.�
�� . / �. ��.
: � 1 _�� _.� N ' � � ' � � . � �i�;�_,� �
i :� � - �, � �, �,�
r---- w-- -- �I
� .,�;°3�
, �
��� �, - � .. ,. , i. � �
- ��I J - __ _ � II
� I, .- - �- -- - - � � '
_ P ' �� ,i _ ���
425 � � � ;� a �
�� ,= � 30.2 2 � � �
_ 426 � � , � I�
y f I
. � 9 _ .- _ - - - _ -
.:7i"=1r�
' - _ 07 =- - _ _ = -=_ " _' L&W CANAL _.�.' �, �
: _:,,. �
� ���i . • ' �_: � � ��:. . _ �,. ��ss;:-o��all:c��yitl,�r-�i���'���.��`'":`- . . 1
•
;�I(� ��., , .. . e� �i�C�`�.-►� �• 4 �. � -Py •tJ,u
� � 9�.7 �� � ��_��� n.i-i � �r��� � G: . �h,_�,��: _ � �=��it .
� `�" r;. r:%' �''` DISCHARGE TO L8cW �`'_
�' �l ,: _ �„��
'���'- �`, w a ����� (EXISTING 100YR=565 CFS) y _,{
� ■ ✓, _ �..,"__ _-___. _" . `-T'__'_���._;= . � a . _ ' .�. `�����
I OVERFLOW DISCHARGE TO �
�_ h , � f„�; ��, � � COOPER SLOUGH
�t'�'1 �:r � � � l� � �� (EXISTING 100YR=734 CFS)
r! � � !� �.� � � � �
,y ��; 1\ )� .� BOX CULVERT OR SIPHON
°�� ��\`���i, �- CONNECTION TO POND 425 � 1
��� .�V,, �, . � , l I_
/' "�� -� ` `"
�' POND C OVERFLOW (DUE
TO EXISTING UTILITIES)
� I
I
POND C OVERFLOW
DISCHARGE TO L&W DUE
TO BOTTOM OF POND
ELEVATION BEING BELOW
POND C OUTFALL
ELEVATION TO POND 425.
`�WATERGLEN
0 SUBDIVISION
� --
I1�,,��, �1111�
� 1/ � �����I
� ,��1 �
������ � � �11���
�� �
Q
i
Q
�
Z
�
�
z�^ `^
� �
N
� w �
� Z Q
Q � �
� z
w �
0
� �
zz o
0
0~C � � �
Q" Y°
Z U
f O a z
U w �
� Q
Z �
w z
a �
X Q
a �
�
J
0
U �
w o
� �
r-I
� m
�
N O
� m
Z
Q
�
w
�
Q
z
Q
�
0
I..L
w
�
(�
Q
`
�
� � � � � �
� � � � �
� � � � � �
z
� � � � �
�����
Qi CO OJ lf� N lf�
� �����
� o 0 0 o c�
�
z
w o �
�j � 0
� � z
� � � �
O � � �
�
�n Z Z � Q �
� � o o �
� - � � m
o � � m �
\ o � � N cn
w o 0
a� K o o � �
� � � � � �
� m���Z
- (n � � � N
z � N � � �
O
U
�
vl
O
�
0
O
Z
�
G
2
�
z
�
°
�
0
J
>
�
vir�z
���w
z�o�
�wJ�
��a�
� � o '1' v�
� �
Q d J W
i � w zwQ�c�
W � C� vaww z
� J W 0 Q w o
� Y z � J ~o�z�
z = J W � Q�
� � � O v ¢ w� J �
� 0� m Y (n z�o� z
� � � z � � w � S Q
J � H ~ �
� � i� i� � Z � (aj �
N � m m � � � �
� � � w�a��
� � � � � wo�� z
� � � � U =�o� o
Z cn � z�`�'Qc�i�
� � � � � w O a �
� -�-� � - = w " z w
O C� ��w d
� am�
a� � � w o
� Q ��ow
z�
� (n U
� U o=zo
.� w � U �
� ���z
Sheet Number:
�
�
�
�
a�
�
a
�
�
�
I
�
�
�
�
�
z
0
U
I
�
c
�--�
�
O
�
�
L
�
�--�
�
c�
L
�
�
�
�
/
�
�
m
_
x
w
/
�
Z
g
�
/
c
a�
�
W �-
Z �
� a�
� �
m �
� �
� �
m �n
�
o I
; x
a �
�
�
� �
g m
�
� �
Q �'
�
rn °'
N �
� a
�
� �
� �
O �
N �
�
�ri �
o /
�
� W
�C w
C �
� g
U =
p U
�
a�
a �
�
�
a� z
� o
� �
a� Q
� U
0
�j J
Q c�
o z
�- �
o �
� o
_
„
BASIN SUMMARY
BASIN ID AREA (AC) % IMP Q2 (CFS) Q100 (CFS)
A1 12.1 80 11 70
A2 13.3 80 12 78
B 16.6 50 10 62
C1 27.6 50 17 107
C2 82.0 50 38 246
D 47.3 60 26 172
E 83.9 25 25 159
F 46.9 60 25 166
G1 80.4 80 36 249
G2 10.0 80 9 59
H 45.6 10 10 53
11 58.2 10 8 49
12 34.8 2 2 11
J 1 20.5 SO 9 58
J2 22.2 50 18 101
J3 44.5 50 25 158
K1 22.8 60 11 73
K2 60.0 60 27 180
L 110.5 60 55 361
M 42.0 2 2 14
N 86.6 80 61 400
O 60.8 10 12 65
P 30.2 2 2 12
OS-1 45.0 20 11 71
24 33.7 45 44 280
29 268.8 29 192 1000
30 33.5 49 44 231
37 34.6 23 22 148
38 290.7 5 42 469
200 33.6 5 S 46
-
CONVEYANCE ELEMENT SUMMARY
SWMM (�100 (CFS)
ELEMENT
21 385
24 7
25 512
26 239
26.1 6
26.2 9
2� Z�OO
28 45
29 413
30 27
31 353
31.1 338
31.2 276
31.3 271
34 1043
35 468
72 224
73 139
74 125
74.1 396
75 391
77 1000
229 513
231 1310
237 310
242 493
426 760
426_OVERFLOW 167
Rating Curve for Trapezoidal Channel at 0.2% with 4:1 Side Slopes (n=0.035)
130
120
110
100
90
80
v 70
s
�
� 60
50
40
30
20
10
0
0
250
500
750
-Bottom Width (ft)
1000 1250
Flow (cfs)
Top Width (ft) -Velocity (ft/s)
OPEN CHANNEL RATING
-
DESIGN POINT SUMMARY
SWMM ELEMENT Q100 (CFS)
16 15
21 385
31 355
31.1 338
31.2 277
427 319
427.1 6
427.2 9
431 1312
434 7
437 333
439 1043
442 53
725 513
729 415
730 28
822 249
829 513
831 224
833 138
834 1781
841 396
891 418
1500
�
4.5
4
3.5
3
�
�
2.5 �
v
0
>
2
1.5
1
0.5
0
1750
u
POND SUMMARY
SWMM ELEMENT Q100 IN (CFS) Q100 OUT (CFS) VOLUME (AC-FT)
425 883 819 47
426 1322 760 307
429 1000 390 13.6
430 231 29 5.5
435 468 415 30
436 1562 1548 25
438 732 0 88
426 OVERFLOW 167 138 59
POND A 1807 1042 123
POND A1 76 12 2.8
POND A2 78 3.5 3.0
POND B 62 7.2 2.3
POND C 107 7.1 4.6
POND D 172 8.6 9.0
POND E 174 91 3.2
POND F 166 6.4 11.4
DIVERSION SUMMARY
SWMM Q100 INFLOW Q100 DIVERTED 4100
ELEMENT (CFS) (CFS) REMAINING
(cFs)
833.1 408 279 125
842 1000 617 384
OUTFALL SUMMARY
SWMM
ELEMENT Q100 (CFS)
904 138
907 385
909 729
CULVERT SIZE BY DESIGN POINT
SWMM gARRELS-SIZE Q100 (CFS) HEADWATER DEPTH
ELEMENT (FT)
21 2-8x4 385 4.4
31 2-7x4 355 4.6
31.1 2-8x4 338 4.1
31.2 4-48" D 277 4.1
427 2-6x4 319 4.7
427.1 1-18"D 6 1.6
427.2 1-18"D 9 2.6
431 1-15x10 & 1-5x12 1312 7.6
434 1-18"D 7 1.9
437 3-6x3 333 4.2
822 3-48" D 249 4.6
831 3-48"D 224 4.3
833 2-48"D 138 4.1
834 4-10X5 1781 7.3
841 2-5X5 396 6.2
904 1-60" D 138 13.0
SCHEMATIC LEGEND
O
�
❑
SUB-CATCHMENT
DETENTION ELEMENT
DESIGN POINT/DESIGN FLOW
CONVEYANCE ELEMENT
OUTFALL ELEMENT
DIVERSION ELEMENT
NOTES:
1. STORM ROUTING IS BASED ON MONTAVA FULL
BUILD-OUT WITH EXISTING OFF-SITE
CONDITIONS.
2. STORM ROUTING WAS DEVELOPED FROM
EXISTING CONDITIONS SWMM MODELING
PROVIDED BY ICON ENGINEERING, INC.
Q
�
Q
�
z
0
�
z�^ `^
� �
N
� w �
w
� Z O
Q c� a
� z °C
w o
� �
zz o
0
0~C � � �
Q " Y°
C Z U
G � a z
u LL; �
� Q
z �
w z
a �
x �
Q Q
� �
J
0
U �
w �
� �
�
� m
rn �
N O
� m
z
Q
J
�
L1J
�
Q
z
Q
�
0
�
W
�
�
Q
�
a�
� �����
� � � � � �
z
� � � � �
�����
Qi CO OJ lf� N lf�
�--� O � O N O
� \ \ \ \ \
� O O O O N
�
Z
w Q
w Q �
� � o
� � z
� � � �
o � � �
�
cn Z Z � Q �
� � o o �
� - � � m
� w w m c�i�
� o � � N
w o 0
N � � � � �
� � � � � �
� m �i �i c~n z
- (n � � � N
� � N �') � �
z
Z
O
�
�
�
Cn
Z
O
U
O
�
O
z
U
�
Q
�
2
�
C�
Z
�
�
O
�
�
�
O
J
W
�
W
�
�r�z
c���w
z�o�
�wJ�
��a�
� � o '1' v�
� �
Q d J W
�. � L-�--I Z W Q� U
W � (.� vaww z
� J W O Q w o
� Y z � J ~o�z�
Z = �`'�oQ�
O � � 0 U Q�'�J�
� 0� m Y (n z�o� z
� � � Z � �wo= a
J � H ~ �
� � � � � z���
� � m m � �oo
� � � w����
� � � � � �zo� z
� � wo
� � � � U =�o� o
Z cn � z�`�'Qc�i�
� a� � � owoa �
� -�-� � - = w `� z w
o � ��w-�
� am�
.� � zw�o
o � ���w
� (n U
z�
� U � = Z O
.� wQ��
� ���z
Sheet Number: