Loading...
HomeMy WebLinkAboutReports - Drainage - 07/17/2024■ �' � ,� � i� � �� �M �' �� � � �' � . ,� ��= �� ,. . . �: o�..� �`� � . ,�� �Y ` � � Montava Subdivision Phase D Project Development Plan (PDP) Final Drainage Report For - . . � N G . '.. �, � � . . ���,r���l��' � �� l _ �,�,gi��,���'�'�� , _ {_� '�;r N ��-�NGINCERS � r, ,- �,.-r. �- , ,� �� 1 s F., ��'� .. 11 11A'!� )J ��y., ' [�4 � ?�li.r dt 3 — Mr. Wes Lamarque City of Fort Collins Development Review Engineer 700 Wood Street Fort Collins, CO 80521 Re: Montava Subdivision Phase D Final Design Drainage Report Project No. 1230.0005.00 July 17, 2024 748 Whalers Way suite 200 Fort Collins, CO 80525 970.226.0557 main 970.226.0204 fax ideas@tstinc.com www.tstinc.com Dear Mr. Lamarque: TST, Inc. Consulting Engineers (TST) is pleased to submit this Final Design Drainage Report for the Montava Subdivision Phase D project to the City of Fort Collins (City) for review and approval. The purpose of this drainage report is to evaluate the drainage conditions of the above-referenced proposed Montava Subdivision Phase D project site. The Fort Collins Stormwater Criteria Manual (referred to as FCSCM). Please review the attached report and provide any questions or comments at your earliest convenience. We appreciate the opportunity to be of continued service to the city and look forward to receiving your comments and moving forward on this important project. Sincerely, TST, INC. CONSULTING ENGINEERS Bryston Anthony M. Gartner, E.I. :�T!' TST, INC. CONSULTING ENGINEERS Derek A. Patterson, P.E. �.. I hereby attest that this report for the preliminary drainage design for the Montava Subdivision Phase D was prepared by me or under my direct supervision, in accordance with the provisions of the Fort Collins Stormwater Criteria Manual. I understand that the City of Fort Collins does not and will not assume liability for drainage facilities designed by others. Derek A. Patterson Registered Professional Engineer State of Colorado No. 48898 ■ Table of Contents Final Drainage Report Montava Subdivision Phase D 1.0 - GENERAL LOCATION AND DESCRIPTION .........................................................1 1.1 Project Location and Description ................................................................... 1 1.2 Description of Property ................................................................................... 2 2.0 - DRAINAGE BASINS AND SUB-BASINS ..............................................................4 2.1 Major Basin Description .................................................................................. 4 2.2 Existing Conditions ......................................................................................... 4 2.3 Proposed Conditions ...................................................................................... 4 3.0 - DRAINAGE DESIGN CRITERIA ............................................................................ 9 3.1 Hydrological and Hydraulic Criteria ............................................................... 9 4.0 - CONCLUSIONS ....................................................................................................11 5.0 - REFERENCES ......................................................................................................13 6.0 - APPENDICES .......................................................................................................14 List of Figures 1.1 Vicinity Map .....................................................................................................................2 Page i T'7T. INC. CONSULTING ENGINEERS Montava Subdivision Phase D Final Drainage Report 1.0 - General Location and Description The purpose of this Final Drainage Report is to present the drainage design for the Montava Subdivision Phase D(Hereinafter referred to as the "Phase D") project site to the City of Fort Collins (hereinafter referred to as the "City") for review and approval. The design objectives for this drainage report are to present: ❖ Hydrologic analysis of the proposed improvements and surrounding off-site areas to determine the location and magnitude of the site's storm runoff. ❖ Hydrologic data used to design storm runoff collection and conveyance facilities. ':' Hydraulic analysis of proposed on-site and existing downstream storm infrastructure to ensure sufficient conveyance of stormwater runoff to the proposed detention areas. ':' Detention analysis and design of the proposed stormwater detention areas. ':' Best Management Practices (BMPs) are used to prevent erosion and sedimentation before, during, and after construction of the stormwater infrastructure. ':' Overall storm drainage plan that meets previously approved drainage plans and the FCSCM. The drainage system was designed using the Fort Collins Stormwater Criteria Manual (collectively referred to as FCSCM). 1.1 Project Location and Description The Phase D project site is located in Section 32, Township 8 North, Range 68 West of the 6tn Principal Meridian, within the City of Fort Collins, Larimer County, Colorado. The proposed site is bounded on the north by farmland, future Montava Subdivision phases, and Richards Lake Road. On the east by farmland, N. Giddings Road, and future Montava Subdivision phases. On the south by farmland, future Montava Subdivision phases, and Mountain Vista Drive. On the west by farmland, the Number 8 Outlet Ditch, Future Montava Subdivision phases, Maple Hill subdivision, and Storybook Subdivision. A vicinity map illustrating the project location is provided in Figure 1.1. Page 1 T'7T. INC. CONSULTING ENGINEERS Montava Subdivision Phase D 1.2 Description of Property Final Drainage Report The Phase D project site contains approximately 58 acres and consists of Single-Family development and Open Space. Phase D is currently zoned as Mixed Density Neighborhood. According to Flood Insurance Rate Map (FIRM) #08069C0982F eff. 12/19/2006 prepared by the Federal Emergency Management Agency (FEMA), Phase D is located in unshaded Zone X. Zone X indicates areas determined to be outside of 500-year or 0.2% annual chance floodplain, meaning it is not designated as a special flood hazard zone. Copies of the FEMA maps that apply to Phase D are included in Appendix C. The types of soils found on the Montava Subdivision Phase D site consist of: ':• Aquepts, loamy (5). ':' Caruso clay loam (22) — 0 to 1 percent slopes. ':• Fort Collins loam (35) — 0 to 3 percent slopes. ':' Fort Collins loam (36) — 3 to 5 percent slopes. ':• Satanta loam (95) — 1 to 3 percent slopes. ':' Satanta Variant clay loam (98) — 0 to 3 percent slopes. ':' Stoneham loam (101) — 1 to 3 percent slopes. Page 2 TST, INC. CONSULTING ENGINEERS Figure 1.1: �cinityMap Montava Subdivision Phase D The characteristics of the soil found on the project site include: ':' Slow to very slow infiltration rate when thoroughly wet. ':' Slow to very slow rate of water transmission. Final Drainage Report ❖ Majority of the site has a wind erodibility rating of 5 and 6(8 being the least susceptible) These soils consist of the following hydrologic soil groups as defined in the United States Department of Agriculture (USDA), Web Soil Survey: ':' Group B — 1.00% •:' Group C — 37.00%. ':' Group D — 62.00%. The USDA web soil survey report is included in Appendix D. The following reports were utilized in the drainage analysis and design of Phase D. ':• Montava Master Drainage Study Fort Collins, Colorado, prepared by Martin/Martin, Inc., dated January 23, 2019. Hydrologic and hydraulic information was referenced from this report to analyze off-site areas and conveyance links downstream from Phase D and site. Refer to Appendix J for referenced / applicable documentation from this report. Page 3 TST, INC. CONSULTING ENGINEERS Montava Subdivision Phase D Final Drainage Report 2.0 - Drainage Basins and Sub-Basins 2.1 Major Basin Description According to the FCSCM, Phase D is located within the Upper Cooper Slough Basin. The Upper Cooper Slough Basin stormwater generally flows from north to south which is ultimately being captured by the Larimer and Weld Canal. According to the Montava Master Drainage Study, Phase D is primarily located in Basin C2, Basin D, Basin F, and Basin G1, which drain from the northwest to the southeast and eventually end up in the Larimer and Weld Canal. 2.2 Existing Conditions The Phase D site is located in an undeveloped plot of land west of the Anheuser Busch property. The current land is undeveloped and used for agricultural purposes. The land currently consists of native grasses, bare ground, and crops. Phase D sheet flows southeast into an inadvertent detention area which overtops Mountain Vista Drive and eventually into the Larimer and Weld Canal through various existing drainage infrastructure. The existing site does not have any existing ponds or drainage facilities. The site has an inadvertent detention area near Giddings Road and Mountain Vista Drive. The receiving historical major drainage way for Phase D is the Larimer and Weld Canal. 2.3 Proposed Conditions The proposed Phase D development has been designed to maintain historic drainage patterns and reduce the runoff rate down to the 2-year historic. In addition, this site has been designed to mee the intent of the 1986 AB Agreement. Phase D is located in four basins, outlined in the Montava Master Drainage Plan, see Appendix J for master drainage map. Phase D is located in Basin C2, Basin D, Basin F, and Basin G1. The portion of Phase D located in Basin C2 will flow south into an Interim Swale Pond. The portion of Phase D located in Basin D will flow west into Pond D. The portion of Phase D located in Basin F will flow south into Interim Pond 427. The portion of Phase D located in Basin G1 will flow south into Interim Pond 427. Interim Swale Pond and Interim Pond 427 are being constructed to help phase Montava drainage and will be removed with later phases. When both ponds are removed the portion of Phase D in Basin F will be detained in Pond F, constructed with Phase E. The remaining flows that were captured by Interim Swale Pond and Interim Pond 427 will be routed east along Mountain Vista Drive and south into Pond 426 and Pond 425 which ultimately outfall into the L&W Canal. The following basins were delineated for the Montava Subdivision Phase D site plan, using the Montava Master Drainage Basins (MP): MP Basin C2 is made up of a street that connects the site to N. Giddings Road, which is Page 4 T'7T. INC. CONSULTING ENGINEERS Montava Subdivision Phase D Final Drainage Report approximately 1.15 acres with a composite imperviousness of approximately 81.25%. MP Basin C2 was subdivided into 2 subbasins, C2-1 — C2-2, that have their own drainage patterns. The subbasins sheet flow into curb and gutter and discharges directly into the Interim Swale Pond. Neither of the basins are being treated in an LID but are accounted for in the LID calculations. MP Basin D is made up of mixed density single family lots, streets, and open space, which is approximately 12.80 acres with a composite imperviousness of approximately 77.01%. MP Basin D was subdivided into 18 subbasins, D-1 — D-18, that have their own drainage patterns. The subbasins runoff starts from the single-family development and drains into street or alleys and into storm lines via curb inlets or area inlets and into Pond D. Water quality will be treated in LID #1(full infiltration underground infiltration) located in the west portion of site and LID#2 (full infiltration underground infiltration) in the center of the basin. The water quality that is treated in LID#1 and LID#2 fully infiltrate and does not end up in Pond D. Every storm greater than the minor event will bypass both LIDs and go directly into the Pond D. MP Basin F is made of mixed density single family lots, streets, future apartments, and open space, which is approximately 24.86 acres with a composite imperviousness of approximately 78.98%. MP Basin F was subdivided into 33 subbasins, F-1 — F-33, that have their own drainage patterns. The subbasins runoff starts in the single-family lots and sheet flows into the street or alleys and into proposed storm lines via curb inlets or area inlets that discharge into the interim swale that borders the southwest portion of the site. The subbasins drains into Interim Pond 427, in the master drainage plan this portion of Phase D will be detained in Pond F. In the future Pond F will be constructed with Phase E and these subbasins will be directed into Pond F. Basin F will be treated in one rain garden and three underground infiltration chambers. LID#3 (rain garden) is located in the northwest portion of the site, LID#4 (underground infiltration) located in the center portion of the site, and LID#5 (underground infiltration) located in the center portion of the site. LID#6 (underground infiltration) is located in the southern portion of the site. The water quality that is treated in LID#3, LID#4, LID#5, and LID#6 drains to Interim Pond 427 but will end up in Pond F, when constructed. Every storm greater than the minor event will bypass all the LIDs and go directly into the Interim Pond 427 and in the future will drain into Pond F, when constructed. MP Basin G is made of mixed density single family lots, streets, future apartments, and open spaces, which is approximately 13.45 acres with a composite imperviousness of approximately 80.58%. MP Basin G was subdivided into 18 subbasins, G1-1 — G1-18, that have their own drainage patterns. The subdivision runoff starts in the single-family lots and sheet flows into the streets or alleys and into proposed storm line via curb inlet or area inlets that discharges into the interim swale that borders the southwest portion of the site and into Interim Pond 427. In the Master Drainage Plan, Interim Pond 427 will be turned into a conveyance channel to Pond 426. None of the basins are being treated in an LID but are accounted for in the LID calculations. Future Basin are approximately 24.73 acres with a composite imperviousness of approximately 68.40%. Future Basins were subdivided into 5 subbasins, Future-1 — Future-5, that have their Page 5 TST, INC. CONSULTING ENGINEERS Montava Subdivision Phase D Final Drainage Report own drainage patterns. Basin Future-1 and Future-3 will have future street, proposed single- family lots, and a proposed drainage channel. Basin Future-2, Future-4, and Future-5 will have future streets, future single-family lots. All Future basins will have to have their own LID treatment and was not included with the LID calculations. In the interim conditions Future-1 — Future-3 will be detained and in the Interim Swale Pond. Future-4 and Future-5 drain into the Interim Pond 427. Basin School is approximately 18.26 acres with a composite imperviousness is approximately 55.72%. Basin School is for the future school site and future amenities. Basin School drains from the northwest of the basin to the southeast portion of the site where it is collected by a proposed storm sewer of Phase D and routed to Pond D. Basin School will have to provide their own LID treatment and was not included with the LID calculations. Pond D Basin is approximately 7.49 acres with a composite imperviousness of 8.54%. Pond D Basin consists of proposed amenities and the entirety of Pond D. All runoff generated within Pond D Basin will sheet flow into the Pond. Pond D Basin is not treated by a LID but is accounted for in the LID calculations. Pond 427 Basin is approximately 10.23 acres with a composite imperviousness of 3.05%. Pond 427 Basin consists of an interim drainage channel and an interim Pond. All runoff in this basin will sheet flow directly into the drainage channel or the pond. Interim Pond 427 Basin is not treated by a LID but is accounted for in the LID calculations. Off-Site Basins Offsite 1- Offsite 1 Basin is approximately 103.58 acres and will not have any improvements within it. Offsite 1 contains all the undeveloped land that is north of Phase D between Giddings Road, The Number 8 Ditch, and Richards Lake Road. All calculations that involve Offsite 1 will be done with the interim undeveloped condition. In the future when this basin is developed each separate phase will have a drainage report and ponds that will more closely match the master drainage plan. The proposed condition will capture all the runoff from the north into the Interim Swale Pond and Interim Pond 427. Runoff from this basin will be captured and detained in the interim swale pond, where it will be released into a swale running along the west side of Giddings' Road and ultimately into Pond 427. Offsite 2- Offsite 2 Basin is approximately 75.61 acres and will not have any improvements within it. Offsite 2 contains all the undeveloped land that is south of Phase D between Interim Pond 427, Number 8 Ditch and Mountain Vista Drive. No calculations were made using runoff from Offsite 2. Offsite 2 follows existing drainage patterns where runoff from the basin sheet flows south into a spot near Mountain Vista Drive (inadvertent detention) and overtops the road in large storm events. In the future when this basin is developed each phase will have a drainage report and ponds that will attenuate the runoff as described in the master drainage report. Page 6 TST, INC. CONSULTING ENGINEERS Montava Subdivision Phase D Final Drainage Report In the future Phase D will only be receiving runoff from the school site. All other basins will be following the master drainage plan and will have their own drainage reports that shows conformance with the master drainage plan. 2.4 Low Impact Development (LID) Per City of Fort Collins criteria, Low Impact Development (LID) features are proposed to treat 50% of the newly developed Single-Family, and 75% of the newly developed Multi-family within Phase D. The remaining water quality will be treated utilizing traditional methods (i.e. EDB). Five LID systems are being proposed for Phase D, Rain Garden and Underground detention. Four LIDs are proposed to be Underground detention and one LID proposed to be rain garden. The percentage of newly developed areas treated by these systems is included in Appendix B. To achieve the 50°/o treatment for the entire site the LID that we designed are treating 100% of the area that is draining to them. The five LIDs proposed within the site are treating 0.89 acres extra of newly impervious added and will be banked for future phases. The LIDs proposed also includes the future apartment sites, using 75% of the newly added imperviousness. See Appendix B for the LID exhibit showing the areas that are draining to the LID, remainder of site that is accounted for within the LID calculations, and future filings that will have to provided LID when developed. The proposed LID systems, water quality, and detention facilities will be located in tracts owned and maintained by the Montava Metropolitan District. 2.5 MDCIA "Four Step Process" Step 1— Employ Runoff Reduction Practices Montava Phase D provides LID treatment for 50% of the single-family development and 75% of the multifamily development, through various systems (Raingardens, Wet Ponds, and future Underground detention chambers). The LID systems have been placed throughout the site to minimize directly connected impervious areas. Step 2— Implement BMPs That Provide a WQCV with Slow Release The remaining Single-Family and Multi-family development throughout the site not being treated by the LID described is being treated through traditional water quality control volume extended drainage basins designed to release the water quality event within a minimum of 40 hours. Step 3 — Stabilize Streams Portions of Phase D will be spilling into a temporary swale that will connect Pond D with Interim Pond 427. Phase D will be spilling into a couple of ponds that will reduce the sediment load to the downstream open irrigation channel. Page 7 TST, INC. CONSULTING ENGINEERS Montava Subdivision Phase D Step 4— Implement Site Specific and Other Source Control BMPs Final Drainage Report 1. The following practices suggested by City of Fort Collins Criteria will be implemented throughout the design and construction process: 2. Being a single-family development, trash receptacles will be dispersed throughout the neighborhood and likely be enclosed containers that minimize concentrated and polluted runoff from entering the storm sewer system or receiving drainageways prior to being treated. 3. Phase D of Montava Subdivision does not include a dog park, but any future dog parks shall be located in areas away from detention basins and educational opportunities to reinforce pick-up practices for dog owners shall be employed. 4. Phase D of Montava Subdivision does include any community gardens. Community gardens shall be located in areas that are outside of the detention basins to prevent chemical and sediment loading. 5. Construction Best Management Practices (BMPs) will be employed to located material storage away from drainage facilities. 2.6 Variance Requests No drainage variances are being requested at this time. Page 8 TST, INC. CONSULTING ENGINEERS Montava Subdivision Phase D Final Drainage Report 3.0 - Drainage Design Criteria The drainage design presented in this report has been developed in accordance with the guidelines established by the FCSCM dated December 2018. A SWMM Model was utilized for detention sizing and basic storm water routing, while the Rational Method was utilized for sizing streets, swales, inlets, storm sewer, and other storm infrastructure. Storm system infrastructure including pipes, culverts, inlets, and drainage swales will be sized to convey at a minimum the 2-year storm event. In areas of concern, storm system infrastructure will sized to handle the 100-year and any additional bypass flow from upstream infrastructure. 3.1 Hydrological and Hydraulic Criteria Design Rainfall & Runoff Calculation Method The hydrology of the project site for developed conditions will be evaluated based on the 2-, 10- and 100-year storm frequencies as dictated within the FCSCM manual. The Rational Method was used to determine peak runoff rates for each developed basin. Peak storm runoff values will be used to size on-site drainage facilities including storm culverts, sewers, inlets and channels for the initial and major design storms as specified in the FCSCM criteria and standards. Within the criteria and standards, the initial design storm was established as the 2- year minor storm event and the 100-year storm as the major event. Inlet Design All inlets within the project area will be designed to collect and convey the 2-year developed runoff. In areas where flooding is a concern, inlets were upsized to convey as much of the 100- year developed runoff as possible. As stated in FCSCM, Inlet Functions, Types and Appropriate Applications, the standard inlets for use on City of Loveland streets are: Refer to Appendix F for all inlets calculations. Storm Sewer and Culvert Design As stated in the FCSCM, the Manning's roughness coefficient (n) for all storm sewer pipe capacity calculations shall be 0.013 regardless of pipe material. The storm sewers and culverts in the project area will be designed in accordance with the Page 9 TST, INC. CONSULTING ENGINEERS Montava Subdivision Phase D Final Drainage Report criteria and standards of the FCSCM using a minimum pipe diameter of 15 inches. Where applicable, storm sewers will be sized to convey the 100-year developed runoff to the existing detention ponds. Peak runoff for storm sewer design was calculated using the Rational Method per the FCSCM. All storm sewers will be sized using the Urban Drainage program, UD-Sewer 2009 Version 1.4.0. All culverts will be sized using the Federal Highway Administration (FHA) Program, HY-8 Version 7.30. For storm and culvert capacity calculations refer to Appendix G. Street Capacity The criteria and standards set forth in the FCSCM will be used to check street capacity for both the minor (2-year) and major (100-year) storm events. The FCSCM requires that stormwater overtopping curbs should not occur during the minor storms and the flow spread must meet the following guidelines for each street designation: ':' Local, Alley — flow may spread to crown of road. ':• Collector (without median) - flow spread must leave a minimum of 6 feet (6') wide clear travel lane on each side of the centerline. ❖ Arterial (with median) — flow spread must leave a minimum of 12 feet (12') wide travel lane in both directions of travel. Additionally, the following allowable street flow depths were used for the drainage design: ':' Local, Alley — Minor Storm 0.50-ft depth at gutter, Major Storm 0.50-ft depth at crown and 1.0-ft at gutter (most restrictive will apply) ':' Collector - Minor Storm 0.50-ft depth at gutter, Major Storm 0.50-ft depth at crown and 1.0-ft at gutter (most restrictive will apply) ':• Arterial (without median) - Minor Storm 0.50-ft depth at gutter, Major Storm 0.50-ft depth at crown and 1.0-ft at gutter (most restrictive will apply) •:' Arterial (with median) - Minor Storm 0.50-ft depth at gutter, Major Storm not to exceed bottom of gutter at median and 1.0-ft at gutter (most restrictive will apply) Refer to Appendix F for street capacity calculations. Swale Design As defined in Chapter 9 of the Fort Collins Stormwater Criteria Manual, open channels are utilized to preserve, enhance, and restore stream corridors, used in the design of constructed channels and swales by use of natural concepts. Per the FCSCM criteria and standards, all open channels must be designed to carry the major (100-year) storm runoff. For swales with greater than 100 cfs, one-foot of freeboard will be provided. For swales with less than or equal to 100 cfs, the depth of the channel must be able to Page 10 TST, INC. CONSULTING ENGINEERS Montava Subdivision Phase D convey an additional 33% of the 100-year storm flow. Final Drainage Report Drainage swales were designed to be grass-lined, triangular channels with 4:1 side-slopes. Erosion potential in the swales will be analyzed to determine if additional protective measures are needed within the project area based on Froude number calculations. Refer to Appendix H for swale calculations. Detention Discharge and Storage Calculation Montava Phase D drains to three separate Detention / Water Quality ponds. Pond D, Interim Swale Pond, and Interim Pond 427. All ponds were designed by a SWMM model that is being submitted with this report. Interim Swale Pond and Interim Pond 427 are at least two feet higher than groundwater and Pond D is lower than groundwater with a clay barrier, see "Subsurface Exploration Report Montava Development — Tract E— Detention Pond Evaluation of Groundwater and Subsurface Conditions," submitted concurrently with this report. Pond D is located in Pond D Basin and captures the runoff from Basin D, School Basin, and Pond D Basin. This pond discharges into a swale that runs on the southwest border of the and into Interim Pond 427. An emergency spillway will be designed with this pond to spill south down the embankment over Timberline Road and into a proposed interim channel/ future storm line. An Interim Swale Pond is being proposed in the large swale that is north of the site. This pond was designed to handle future basins and offsite basins and will help with reducing offsite flows coming through Phase D. This interim pond will discharge south into a proposed swale that flows to Interim Pond 427. An emergency spillway will be designed with this pond to spill south into a swale that outfalls into Interim Pond 427. An emergency spillway will be designed with this pond to spill south down the embankment overtopping Mountain Vista Drive and follow existing drainage patterns. Interim Pond 427 will outfall to the east of Giddings Road and then south under Mountain Vista Drive into an agricultural field and eventually into the L&W Canal. See map provided in Appendix E for runoff flow path. Erosion and Sediment Control Montava Phase D has been designed to be in compliance with the City of Fort Collins Erosion Control Criteria and all Erosion Control Materials will be provided with the Final Drainage Report. Erosion and sedimentation occurring on-site during construction will be controlled by the use of temporary Best Management Practices (BMPs — i.e., silt fence, gravel inlet filters, vehicle tracking control pads, and straw wattle barriers). A separate Stormwater Management Plan has been provided with the PDR Submittal. Page 11 TST, INC. CONSULTING ENGINEERS Montava Subdivision Phase D Final Drainage Report 4.0 - Conclusions This Final Drainage Report has been prepared in accordance with the City of Fort Collins Stormwater Criteria Manual for a Project Development Plan (PDP) submittal. The PDP plans have also been prepared to be in compliance with the city's current drainage criteria. Phase D has been designed to safely and effectively capture, convey, and attenuate stormwater runoff in accordance with the Fort Collins Stormwater Criteria Manual (FCSCM) and Montava Master Drainage Study. The project will treat 50% of newly imperviousness single-family development and 75% of newly imperviousness multi-family development to a LID system. The remaining imperviousness area will be treated by the traditional water quality and detention ponds. The proposed drainage infrastructure will attenuate the flow prior to entering the downstream properties/ infrastructure. All stormwater from Phase D will be discharged to the southeast corner of the Mountain Vista Drive and Giddings Road. This plan respects historic drainage patterns while significantly reducing runoff rates from the 100-year developed to the 2-year historic rate. This substantial reduction will ensure there are no adverse impacts on the downstream infrastructure and will help alleviate and reduce the current impacts on existing systems, particularly those under the BNSF railway and the culvert that drains into the Larimer & Weld Canal. Therefore, all downstream infrastructure will function as it has historically and no analysis is required. Additionally, areas of future development adjacent to the project area will have to been analyzed to ensure that adequate facilities will accommodate future development. Page 12 TST, INC. CONSULTING ENGINEERS Montava Subdivision Phase D Final Drainage Report 5.0 - References 1. Fort Collins Stormwater Criteria Manual, as adopted by the city of Fort Collins, as referenced in Section 26-500 of the Code of the City of Fort Collins, December 2018. 2. City of Fort Collins Cooper Slough Alfernatives Analysis Update, prepared by Fort Collins Department of Utilities, prepared by ICON Engineering Inc., October 2017 3. Montava Planned Unit Development Master Drainage Study, by Martin/Martin Inc., dated January 23, 2019 Page 13 TST, INC. CONSULTING ENGINEERS Montava Subdivision Phase D Final Drainage Report 6.0 - Appendices The following appendices are attached to and made part of this final drainage design report: APPENDIX A HYDROLOGIC ANALYSIS APPENDIX B LOW IMPACT DEVELOPMENT (LID) CALCULATIONS APPENDIX C FEMA FLOOD INSURANCE RATE MAP APPENDIX D APPENDIX E APPENDIX F APPENDIX G APPENDIX H APPENDIX I APPENDIX J USDA HYDROLOGIC SOIL GROUP MAP DRAINAGE PLANS STREET CAPACITY & STORM INLET ANALYSIS STORM SEWER & CULVERT DESIGN DRAINAGE SWALE DESIGN DETENTION & ROUTING ANALYSIS EXCERPTS FROM PREVIOUS DRAIANGE REPORTS Page 14 TST, INC. CONSULTING ENGINEERS APPENDIX A HYDOLOGIC ANALYSIS MONTAVA SUBDIVISION PHASE D Final Drainage Report City of Fort Collins IDF Curves Duration 2-yr 10-yr 100-yr 5 2.85 4.87 9.95 6 2.67 4.56 9.31 7 2.52 4.31 8.80 8 2.40 4.10 8.38 9 2.30 3.93 8.03 10 221 3.78 7.72 11 2.13 3.63 7.42 12 2.05 3.50 7.16 13 1.98 3.39 6.92 14 1.92 3.29 6.71 15 1.87 3.19 6.52 16 1.81 3.08 6.30 17 1.75 2.99 6.10 18 1.70 2.90 5.92 19 1.65 2.82 5.75 20 1.61 2.74 5.60 21 1.56 2.67 5.46 22 1.53 2.61 5.32 23 1.49 2.55 5.20 24 1.46 2.49 5.09 25 1.43 2.44 4.98 26 1.40 2.39 4.87 27 1.37 2.34 4.78 28 1.34 2.29 4.69 29 1.32 225 4.60 30 1.30 2.21 4.52 31 1.27 2.16 4.42 32 1.24 2.12 4.33 33 1.22 2.08 4.24 34 1.19 2.04 4.16 35 1.17 2.00 4.08 36 1.15 1.96 4.01 37 1.16 1.93 3.93 38 1.11 1.89 3.87 39 1.09 1.86 3.80 40 1.07 1.83 3.74 41 1.05 1.80 3.68 42 1.04 1.77 3.62 43 1.02 1.74 3.56 44 1.01 1.72 3.51 45 0.99 1.69 3.46 46 0.98 1.67 3.41 47 0.96 1.64 3.36 48 0.95 1.62 3.31 49 0.94 1.60 3.27 50 0.92 1.58 323 51 0.91 1.56 3.18 52 0.90 1.54 3.14 53 0.89 1.52 3.10 54 0.88 1.50 3.07 55 0.87 1.48 3.03 56 0.86 1.47 2.99 57 0.85 1.45 2.96 58 0.84 1.43 2.92 59 0.83 1.42 2.89 60 0.82 1.40 2.86 65 0.78 1.32 2.71 70 0.73 1.25 2.59 75 0.70 1.19 2.48 80 0.66 1.14 2.38 85 0.64 1.09 2.29 90 0.61 1.05 221 95 0.58 1.01 2.13 100 0.56 0.97 2.06 105 0.54 0.94 2.00 110 0.52 0.91 1.94 115 0.51 0.88 1.88 120 0.49 0.86 1.84 From the City of Fort Collins Storm Drainage Design Criteria and Construction Standards ST =•.}:p«�.. .. MONTAVA SUBDIVISION PHASE D Final Drainage Report City of Fort Collins IDF Curves 12.00 10.00 � 8.00 r c � 'H 6.00 c d c m c 4.00 .� � 2.00 0.00 Storm Duration (min) ST =•.}:p«�.. .. 0 10 20 30 40 50 60 70 MONTAVA SUBDIVISON PHASE D City of Fort Collins Rational Method Runoff Coefficients Runoff Coefficient Im ervious % High Density 0.85 90 Lawn, Clayey, <2% Slope 0.20 2 Lawn, Clayey, >7% Slope 0.35 2 Lawn, Clayey, 2-7°/o Slope 0.25 2 Lawn, Sandy, <2% Slope 0.10 2 Lawn, Sandy, >7% Slope 0.20 2 Lawn, Sandy, 2-7% Slope 0.15 2 Low Denisty 0.55 50 Medium Density 0.65 70 Open Lands, Transition 0.20 20 Roofs 0.95 90 Streets: Gravel 0.50 40 Streets: Paved 0.95 100 Streets: Permeable Pavers 0.50 40 Urban Estate 0.30 30 From Table 3-3 of the City of Fort Collins, Stormwater Criteria Manual Final Drainage Report TST ;; �': � ', MONTAVA SUBDIVISION PHASE D Final Drainage Report � .. . .. . . �������� . .. .. , ,. . "��' � �� �0 ����� �� ���� �� ���0 ��� � •' ������� � � � �� ��. � � � ���� �� "�'" ��0����� �'� ��� �� � � � • �� � �� �0 � � �� �0 � ��� �� �: �: �� �� � � � � 0 � � �� �0 � �: ��� �� �: �: �: �� � �� �0 �����0����� �. � � ��• �� � � � �• � �� � � 0 �����0����� ���� �� �� �0 ���0 ��� �� �.� .� �.� ����0 �����0����� �' �' ��� �� ��. � � �• � � �� �0 �����0����� � � ���� �:� �:� �:� � � �� �0 � � �� �0 � � : ��� �� �� �� �� �0 �����0����� �: ��� �� �• � � �� �� �0 �����0����� � � ��� �� ��. �: �: �� � �� �0 �����0����� � � � ���� �:: �•. �:: � � � �� �0 �����0����� � � � ��• � �� �• � � � �• �� � �� �0 � � �� �0 � � � ��� � �� :� �. �: �: �� �� �� �0 �����0����� � � � � � � �� � � �• � �� �0 ��� � � ������� � � ���� � � � � • � �� �0 � • � � ����� � � �� �0 � ��� �� � �� � • • � • �� �� � �� �0 � � �� �0 � " ��� �� �� ���. � • � • � • �� � � �� �0 ��� � � ������� �� � ��. �� ��. �: �: �: � � �� �0 ��� � � ������� � � ��. � �� � � �• �� � �� �0 �����0����� � ., ��� �� � � � � • �� � �� �0 �����0����� � ��� �� � � � • ���0 �����0����� ���� ���0 ST MONTAVA SUBDIVISION PHASE D Final Drainage Report �����0����� �����0����� �: � � � � �� � �• ����0 �����0����� � � � � � �. � �� ��•. � � � � • �� � �� �0 ����������� � ���� �: �: �:. � �� � �' �0 ����������� � � �• �� � � � �• �� � �' �0 ����������� � � �• �� � �: �: �: �� ��� � � �0 �� "'�•� '' �������� � �• �� � � �• �� � �� �0 ����������� �- � � � � � �• �� � �� �0 ����������� � � � �• �� �: �: �: �� �� � �. �0 ����������� � � �• �� �.�. �:- �: �:- �� ��� � � �0 �� ''��������� ��� �• �� � �: �: �� �� � �� �0 ����������� � �- � � � � � �• ��� � �' �0 ����������� � � � �� � � � �• � � �� �0 �����0����� � � �• �� �. �. �. � ����������� � �• �� � � �• �� � �� �0 ����������� � ��� �� � •� � •� � •� �� �� �� �0 � � �� �� � � � � �� �: �: �: �� � �� �0 � � �� �� � : ���� :.���. �:. �:. �:. �� � � �' �0 � � �� �� � � ���� �: �: �: �� � � �' �0 ����������� � ���� � � � � • � � �� �0 ����������� � � ��� �� ��. � �� � �. ���0 � "� �� � � ���� � � � � •. � � �' �0 ����������� � �: ���� �: �: �: � � � �. �0 ��� � � ������� � � � �� � � � �• ���0 � � �� �� ��. � �� �� �: �• �: �� � �� �0 ��� � � ������� � � ��. �� � � � �:: � �� �0 �� ����� ST MONTAVA SUBDIVISION PHASE D Final Drainage Report ����������� ���� �� � � � �•� ���0 ���� ���� � � � � � � � :: � � � �0 � � �� �� � ' ���� �:. �:. �:. �� � �� �0 � � �� �� � ���� �: �:• �:• �� � �� �0 '���� � ��� �� ����. �: �• �: �� � � �� �0 ���� �.• � � � �� : ��. �. � �. �• � � �� �0 ���� ���� � � � � • • ���0 � � �� �� : � �• � � �� �� �� ��� � • � • � • �� � � �� �0 � � �� �� � �� ���� � :: � •: � :: �� ���0 � � �� �� � � ���� :���. �:: �•: �:: �� � � �. �0 ��� � � ������� � � � � �� � � � �•� ���0 � � �� �� � � � � �� � ' � � ' � � ���0 � � �� �� � ���� �: �: �: �� � �� �0 � � �� �� � ���� � :• � •• � :• �� � �� �0 ��� � � ������� � � ��: �� �: �: �: � � �� �0 ��� � � ������� � � ��• �� �: �: �: � � �� �0 � � �� �� �� � �� �� ����� �• �• �• �� � � �� �0 � � �� �� : ��. � ��' �� ����� �• �• �• �� � � �� �0 �� �� � . � . � . ST MONTAVA SUBDIVISION PHASE D Final Drainage Report � � �� �� � : ���� � : � • � : �� ���0 � � �� �� � ���� �: �: �: ���0 �� ���� �� � � �„ �� �. �. �. �' ���� ���0 � � �,� �� �. �. �. � � ���� ���0 �� • � � ����� ����������� ���� ���0 ����������� ���� � � � � • � � �� �0 ����������� ���� �.� �.� �.� � ���0 �����0����� ����������� ���� � � � � • � � �� �0 �� � � � � � � � � ST MONTAVA SUBDIVISION PHASED Pinal Drainage Report Basin Time of Concentration Frequency Adj. Overland Flow Average Overlantl Trevel Time Channelized Channel Channel Channelized Time Time of Concentration Basin Runoff Coefficents Length, D Overland Slope 7ov Flow Length Slope Velocity Tt Tc = Tov +Tt (min) Cs (ft) (%) (min) (ft) (%) (Pos) (min) D-1 0.81 25 2 2 879 0.5 1.4 10 12 D-2 0.74 48 2 4 870 0.5 1.4 10 14 D3 0.76 68 2 4 130 0.5 1.4 2 6 D-4 0.85 20 2 2 180 0.5 1.4 2 5 D-5 0.82 20 2 2 176 0.5 1.4 2 5 D-6 0.73 71 2 5 341 0.5 1.4 4 9 D-7 0.73 60 2 4 783 0-5 14 9 13 D-8 0.60 60 2 6 356 0.5 1.4 4 10 D-9 073 61 2 4 178 0-5 1.4 2 6 D-10 0.80 59 2 3 566 0.5 1.4 7 10 D-11 0.87 20 2 2 375 0.5 1.4 4 6 D-12 0.78 68 2 4 458 0.5 1.4 5 9 D-13 0.81 54 2 3 433 0.5 1.4 5 8 D-14 0.88 60 2 3 75 0.5 1.4 1 5 D-15 0.76 64 2 4 94 0.5 1.4 1 5 D-i6 0.83 14 2 1 150 0.5 1.4 2 5 D-17 0.73 65 2 4 150 0.5 1.4 2 6 D-18 0.75 65 2 4 120 0.5 1.4 1 5 F-1 0.95 30 2 1 360 0.5 1.4 4 5 F-2 0.95 30 2 1 360 0.5 1.4 4 5 F3 0.83 18 2 2 67 0.5 1.4 1 5 F4 0.78 65 2 4 62 0-5 14 1 5 F-5 0.75 70 2 4 300 0.5 1.4 4 8 F6 0.76 60 2 4 620 0.5 14 7 11 F-7 0.73 90 2 5 650 0.5 1.4 8 13 P-8 078 32 2 3 650 0.5 1.4 8 11 F-9 0.72 60 2 4 300 0.5 1.4 4 8 F-10 0.74 60 2 4 82 0.5 1.4 1 5 Ftt 0.84 15 2 1 315 0.5 1.4 4 5 F-12 0.78 87 2 4 t95 0.5 1.4 2 6 F13 0.81 25 2 2 375 0.5 1.4 4 6 F-14 0.74 50 2 4 450 0.5 1.4 5 9 F-15 0.74 65 2 4 550 0.5 1.4 7 11 F-16 0.61 15 2 2 305 0.5 1.4 4 6 F-17 0.84 20 2 2 305 0.5 1.4 4 6 F-18 0.85 200 2 5 177 Q5 1.4 2 7 F19 0.79 95 2 4 182 0.5 1.4 2 6 F-20 0.74 65 2 4 215 0-5 14 3 7 F21 0.62 65 2 6 405 0.5 1A 5 11 F-22 0.74 65 2 4 590 OS 1.4 7 11 ST .>LL: MONTAVA SUBDIVISION PHASED Pinal Drainage Report F-23 0.90 15 2 1 �31 0.5 1.4 2 5 F24 0.85 20 2 2 95 0.5 1.4 1 5 F-25 0.86 15 2 1 120 0.5 1.4 1 5 F-26 0.87 25 2 2 236 0.5 1.4 3 5 F-27 0.74 65 2 4 290 0.5 1.4 3 7 F-28 0.50 60 2 7 200 0.5 1.4 2 9 F-29 0.77 35 2 3 556 0.5 1.4 7 10 F30 0.81 68 2 4 182 0.5 1.4 2 6 F31 0.74 70 2 5 300 0-5 14 4 9 F32 0.85 12 2 1 260 0.5 1.4 3 5 F-33 0.71 90 2 6 80 OS 1.4 1 7 G1-1 0.72 65 2 5 605 0.5 1.4 7 12 G1-2 0.70 65 2 5 605 0.5 1.4 7 12 G13 0.86 15 2 1 320 0.5 1.4 4 5 GL4 0.89 20 2 1 306 0.5 1.4 4 5 Gi-5 0.85 280 2 6 0 0.5 1.4 0 6 Gi-6 0.74 106 2 6 219 0.5 1.4 3 9 G1-7 0.73 51 2 4 540 0.5 1.4 6 10 Gi-8 0.95 20 2 1 30 0.5 1.4 0 5 G1-9 0.88 15 2 1 500 0.5 1.4 6 7 Gt-10 0.88 30 2 2 335 0.5 1.4 4 6 G1-11 0.72 70 2 5 130 0.5 1.4 2 7 G1-12 0.74 15 2 2 155 0-5 14 2 5 G1-13 0.81 32 2 2 180 0.5 1.4 2 5 G1-14 0.89 23 2 1 175 OS 1.4 2 5 G1-15 0.84 25 2 2 130 0.5 1A 2 5 G1-16 0.85 25 2 2 130 0.5 1.4 2 5 G1-17 0.95 15 2 1 45 0.5 1.4 1 5 G1-18 0.95 20 2 1 45 0.5 1.4 1 5 ���� ���� ���� ���� GIDDINGS-1 0.84 20 2 2 1675 0.5 1A 20 22 GIDDINGS-2 0.61 20 2 3 1150 0.5 1.4 14 17 FUTURE-1 0.67 155 2 8 765 Q5 1.4 9 17 FUTURE2 0.73 145 2 7 200 0.5 1.4 2 9 FUTURE3 0.60 400 2 15 1395 0-5 14 17 32 FUTURE-4 0.74 400 2 11 300 0.5 1.4 4 15 FUTURE-5 072 400 2 11 300 OS 1.4 4 15 SCHOOL 0.68 400 2 12 600 0.5 1.4 7 19 POND D 0.39 150 2 13 150 0.5 1.4 2 15 POND 427 0.36 50 2 8 2750 0.5 1.4 33 41 ST - MONTAVA SUBDIVISION PHASE D Final Drainage Report Basin Peak Discharge Time of Basin Basin Area Frequency Adj. Runoff Coefficients Concentration Rainfall Intensity (inlhr) Peak Discharge (cfs) (ac) 2-year 10-year 100-year Tc�min) 2-Year 10-Vear 100-Year 2-Year 10-Year 100-Year 0-1 0.79 0.81 0.81 1.00 12 2.05 3.50 7.16 1.31 224 5.66 D-2 1.63 0.74 0.74 0.93 14 1.92 3.29 6.71 2.33 3.98 10.16 D-3 0.40 0.76 0.76 0.95 6 2.67 4.56 9.31 0.81 1.39 3.55 D-4 0.22 0.85 0.85 1.00 5 2.85 4.87 9.95 0.53 0.91 2.19 �-5 0.18 0.82 0.82 1.00 5 2.85 4.87 9.95 0.42 072 179 D-6 0.24 0.73 0.73 0.91 9 2.30 3.93 8.03 0.40 0.68 7.75 D-7 2.14 0.73 0.73 0.91 13 1.98 3.39 6.92 3.08 527 73.46 D-8 1.72 0.60 0.60 0.75 10 221 3.78 7.72 228 3.90 9.95 D-9 0.47 0.73 0.73 0.92 6 2.67 4.56 9.31 0.92 1.57 4.01 D-10 1.37 0.80 0.80 1.00 10 221 3.78 7.72 2.41 4.13 10.53 D-17 0.38 0.87 0.87 1.00 6 2.67 4.56 9.31 0.88 1.51 3.54 D-12 0.82 0.78 0.78 0.98 9 2.30 3.93 8.03 1.47 2.52 6.43 D-13 0.77 0.81 0.81 1-00 8 2.40 4.10 8.38 L50 2.57 6A5 D-14 0.70 0.88 0.88 1.00 5 2.85 4.87 9.95 1.75 2.99 6.97 D-15 0.22 0.�6 0.76 0.95 5 2.85 4.87 9.95 0.48 0.81 2.08 D-16 0.10 0.83 0.83 1.00 5 2.85 4.87 9.95 0.24 0.40 1.00 D-17 029 073 0.73 0.92 6 2.67 4.56 9.31 0.57 0.97 2.47 D-18 0.36 0.75 0.75 0.94 5 2.85 4.87 9.95 0.77 1.31 3.36 F-7 0.51 0.95 0.95 1.00 5 2.85 4.87 9.95 1.38 2.36 5.07 F-2 0.49 0.95 0.95 1.00 5 2.85 4.87 9.95 1.33 227 4.88 F-3 0.05 0.83 0.83 1.00 5 2.85 4.87 9.95 0.12 020 0.50 F-4 0.14 0.78 0.78 0.97 5 2.85 4.87 9.95 0.37 0.53 1.36 F-5 0.64 0.75 0.75 0.94 S 2.40 4.10 8.38 1.16 1.98 5.05 F-6 2.07 0.76 0.76 0.95 13 1.98 3.39 6.92 3.11 5.32 13.58 F-7 2.00 0.73 0.73 0.92 13 1.98 3.39 6.92 2.91 4.98 12.70 F-8 2.65 0.78 0.78 0.98 11 2.13 3.63 7.42 4.42 7.53 79.23 F-9 0.81 0.72 0.72 0.91 8 2.40 4.10 8.38 1.47 2.40 6.14 F-10 020 074 0.74 0-93 5 2.85 4.87 9.95 OA2 072 1.84 F-11 0.22 0.84 0.84 1.00 5 2.85 4.87 9.95 0.53 0.90 2.19 F-12 0.54 0.�8 076 0.97 6 2.67 4.56 9.31 1.12 1.92 4.89 F-13 0.36 0.81 0.81 1.00 6 2.67 4.56 9.31 0.78 1.33 3.35 F-14 0.94 0.74 0.74 0.92 9 2.30 3.93 8.03 1.60 2.73 6.98 F-15 1.43 0.74 0.74 0.92 11 2.13 3.63 7.42 2.24 3.82 9.76 F-16 0.26 0.81 0.81 1.00 6 2.67 4.56 9.31 0.56 0.96 2.42 F-17 0.34 0.84 0.84 1.00 6 2.67 4.56 9.31 0.77 1.31 3.17 F-18 1.45 0.85 0.85 1.00 7 2.52 4.31 8.80 3.17 5.31 72.76 �7 '� MONTAVA SUBDIVISION PHASE D Final Drainage Report F-19 0.79 0.79 0.79 0.99 6 2.67 4.56 9.31 1.67 2.86 7.30 F-20 0.58 0.74 074 0.92 7 252 4.31 8.80 1.08 1.84 471 F-21 1.30 0.62 0.62 0.78 17 2.13 3.63 7.42 1.72 2.94 7.50 F-22 1.61 074 0.74 0.92 11 2.13 3.63 7A2 254 4.32 71.04 F-23 0.23 0.90 0.90 1.00 5 2.85 4.87 9.95 0.59 1.01 2.29 F-24 0.12 0.85 0.85 1.00 5 2.85 4.87 9.95 0.29 0.50 1.19 F-25 0.28 0.86 0.86 1.00 5 2.85 4.87 9.95 0.69 1.18 2.79 F-26 0.29 0.87 0.87 1.00 5 2.85 4.87 9.95 0.72 122 2.89 F-27 0.74 0.74 0.74 0.92 7 2.52 4.31 8.80 1.38 2.36 6.02 F-28 0.52 0.50 0.50 0.63 9 2.30 3.93 8.03 0.60 1.02 2.61 F-29 0.79 0.77 0.77 0.96 10 221 3.78 7.72 1.34 229 5.85 F30 0.86 0.81 0.81 1-00 6 2.67 4.56 9.31 185 3.16 8.01 F31 1.32 0.74 0.74 0.92 9 2.30 3.93 8.03 2.24 3.82 9.76 F32 0.06 0.85 0.85 1.00 5 2.85 4.87 9.95 0.15 0.25 0.60 F33 0.27 0.71 0.71 0.88 7 2.52 4.31 8.80 0.48 0.82 2.10 G1-1 1.67 0.72 0.72 0.90 12 2.05 3.50 7.16 2.45 4.19 10.71 G1-2 1.57 0.70 070 0.88 12 2.05 3.50 7.16 226 3.87 9.89 G1-3 0.34 0.86 0.86 1.00 5 2.85 4.87 9.95 0.84 1.43 3.38 G1-4 0.31 0.89 0.89 1.00 5 2.85 4.87 9.95 079 1.35 3.08 G1-5 4.08 0.85 0.85 1.00 6 2.67 4.56 9.31 926 15.81 37.98 G1-6 0.69 0.74 0.74 0.92 9 2.30 3.93 8.03 1.17 2.00 5.10 G1-7 1.82 073 0.73 0.92 10 221 378 7]2 2.95 5.04 12.86 G1-S 0.09 0,95 0.95 1.00 5 2.85 4.87 9.95 0.24 0.42 0.90 G1-9 0.99 0.88 0.88 1.00 7 2.52 4.31 8.80 2.20 3.77 8.71 G1-10 0.49 0.88 0.88 1.00 6 2.67 4.56 9.31 1.15 1.96 4.56 G1-11 0.34 0.72 0.72 0.90 7 2.52 4.31 S.BO 0.62 1.06 2.70 G1-12 0.31 074 0.74 0-92 5 2.85 4.87 9.95 0.65 1_11 2.84 G1-13 0.22 0.81 0.81 1.00 5 2.85 4.87 9.95 0.51 0.87 2.19 G1-14 0.21 0.89 0.89 1.00 5 2.85 4.87 9.95 0.53 0.91 2.09 G1-15 0.11 0.84 0.84 1.00 5 2.85 4.87 9.95 0.26 0.45 1.09 G1-16 0.12 0.85 0.85 1.00 5 2.85 4.87 9.95 0.29 0.50 1.19 G1-17 0.05 0.95 0.95 1.00 5 2.85 4.87 9.95 0.14 023 0.50 G1-18 0.04 0.95 0.95 1.00 5 2.85 4.87 9.95 0.11 0.19 0.40 �7� MONTAVA SUBDIVISION PHASE D Final Drainage Report C2-1 0.58 0.84 0.84 1.00 9 2.30 3.93 8.03 1.12 1.91 4.66 C&2 0.57 0.83 0.83 1.00 9 2.30 3.93 8.03 1.09 1.87 4.58 GIDDINGS-1 7.98 0.61 0.61 0.77 22 1.53 2.61 5.32 1.86 3.17 8.07 GID�INGS-2 1.39 0.61 0.61 0.76 17 175 2.99 6.10 1.48 253 6.46 FUTURE-1 6.37 0.67 0.67 0.84 17 1.75 2.99 6.10 7.46 12.74 32.49 FUTURE-2 3.31 0.73 0.73 0.91 9 2.30 3.93 8.03 5.52 9.43 24.10 FUTURE-3 2.96 0.60 0.60 0.75 32 1.24 2.12 4.33 2.20 3.77 9.62 FUTURE-4 4.52 0.74 0.74 0.93 15 1.87 3.19 6.52 6.27 10.69 27.32 FUTURE-5 Z57 072 0.72 0-91 15 1.87 3.19 6.52 1026 1Z51 4472 SCHOOI 1826 0.68 0.68 0.85 19 1.65 2.82 5.75 20.46 34.96 89.10 POND D 7.49 0.39 0.39 0.49 15 1.87 3.19 6.52 5.46 9.32 23.81 POND 427 1023 0.36 0.36 0,45 41 1.05 1.80 3.68 3.83 6.56 16J7 OFFSITE 1 103.58 020 0.20 025 59 0.83 1.42 2.89 17.19 29.42 74.84 OFFSITE 2 75.61 020 0.20 025 77 0.82 1.40 2.86 12.40 21.17 54.06 �7� MONTAVA SUBDIVISION PHASE D Attenuation of Peak Discharge Time of Concentration Weighted Runoff Coe�cient n Poi�t Contributin Basins & Desi n Points Area acres Tc (min) 2- year 10 - year 100 - ye 1 SCHOOL, D-1, D-2 20.68 19.00 0.69 0.69 0.86 2 DP-1, D-18 21.04 19.00 0.69 0.69 0.86 3 DP-2, D-4 21.26 19.00 0.69 0.69 0.86 Final Drainage Report Rainfall Intensity (inlhr) Peak Discharge (cfs) 2- year � 10 - year � 100 - year 2- year � 10 - year � 100 - 1.65 � 2.82 � 5.75 � 24.26 � 41.47 � 105.56 4 D-3, D-9 0.87 6.00 0.75 0.75 0.93 2.67 4.56 9.31 1.73 2.96 7.56 5 DP-4, D-14 1.57 6.00 0.80 0.80 0.96 2.67 4.56 9.31 3.37 5.76 14.08 6 DP-5, D-10, D-13 3.71 10.00 0.80 0.80 0.98 2.21 3.78 7.72 6.59 11.27 28.15 7 DP-6, D-8 5.43 10.00 0.74 0.74 0.91 2.21 3.78 7.72 8.87 15.17 38.10 8 DP-7, D-7, D-15 7.79 13.00 0.74 0.74 0.91 1.98 3.39 6.92 11.36 19.44 49.05 9 DP-8, D-11, D-12 8.99 13.00 0.75 0.75 0.92 1.98 3.39 6.92 13.28 22.74 57.23 10 D-16, D-17 0.39 6.00 0.76 0.76 0.94 2.67 4.56 9.31 0.79 1.35 3.40 11 DP-9, DP-10 9.38 13.00 0.75 0.75 0.92 1.98 3.39 6.92 13.87 23.74 59.76 12 DP-11, D-6 9.62 13.00 0.75 0.75 0.92 1.98 3.39 6.92 14.21 24.33 61.26 13 DP-12, D-5 9.80 13.00 0.75 0.75 0.92 1.98 3.39 6.92 14.50 24.83 62.51 14 F-3, F-4, F-33 1.51 9.00 0.74 0.74 0.93 2.30 3.93 8.03 2.58 4.41 11.25 15 DP-14, F-11, F-12 2.27 9.00 0.76 0.76 0.95 2.30 3.93 8.03 3.97 6.79 17.23 16 DP-15, F-5 2.91 9.00 0.76 0.76 0.94 2.30 3.93 8.03 5.08 8.68 22.07 17 F-9, F-10 1.01 8.00 0.73 0.73 0.91 2.40 4.10 8.38 1.76 3.01 7.69 18 DP-17, F-27 1.75 8.00 0.73 0.73 0.92 2.40 4.10 8.38 3.08 5.25 13.42 19 DP-18, F-8, F-29, F-30 6.05 11.00 0.77 0.77 0.95 2.13 3.63 7.42 9.92 16.90 42.57 20 DP-19, F-7 8.05 13.00 0.76 0.76 0.94 1.98 3.39 6.92 12.13 20.76 52.41 21 DP-20, F-6, F-13, F-28 11.00 13.00 0.75 0.75 0.93 1.98 3.39 6.92 16.33 27.95 70.73 22 DP-16, DP-21 13.91 13.00 0.75 0.75 0.93 1.98 3.39 6.92 20.70 35.44 89.75 23 DP-22, F-32, F-33 1424 13.00 0.75 0.75 0.93 1.98 3.39 6.92 21.18 36.26 91.82 24 F-14, F-15 2.37 11.00 0.74 0.74 0.92 2.13 3.63 7.42 3.72 6.34 16.21 25 F-20, F-22 2.19 11.00 0.74 0.74 0.92 2.13 3.63 7.42 3.45 5.88 15.01 26 F-21, F-26 1.59 11.00 0.67 0.67 0.82 2.13 3.63 7.42 2.26 3.85 9.66 27 DP-24, DP-25, DP-26 6.15 11.00 0.72 0.72 0.90 2.13 3.63 7.42 9.43 16.07 40.87 28 DP-27, F-25, F-19 7.22 11.00 0.73 0.73 0.91 2.13 3.63 7.42 11.28 19.22 48.77 29 DP-23, DP-28 21.46 13.00 0.75 0.75 0.92 1.98 3.39 6.92 31.66 54.21 137.30 30 DP-32, F-16, F-17, F-18 23.51 13.00 0.75 0.75 0.93 1.98 3.39 6.92 35.09 60.08 151.48 �T �'�_.�� �. c -. APPENDIX B LOW IMPACT DEVELOPMENT (LID) CALCULATIONS . �� . . . � i �� . �� �� �� i � � � � � � ��� �� �� . �� � ��� � �� � � 5.43 LJD 2 AREA LID 2 (UNDERGROUND INFILTRATION) � 4REA LID 3 (RAINGARDEN) � Y�}�}\�� ;>. � � /\. �� LID 4 (UNDERGROUND INFILTRATION) � � LID 5 - (UNDERGROUND INFILTRATION) Low Im act Develo ment LID Basin/ Sub-Basin Total Area (acres) TO BE LID TREATED AREA TO BE TREATED D-1 0. 79 YE S 0. 79 D-2 1. 63 Y E S 1. 63 D-3 0.40 YES 0.4d D-4 0.22 YES 0.22 D-5 0.18 NO 0.00 D-6 Q. 24 N O 0. 00 D-7 2.14 N O 0. 00 D-8 1. 72 Y E S 1. 72 D-9 Q.47 YE S 0.47 D-1 Q 1.37 YES 1.37 D-11 0.38 NO 0.00 D-12 0.82 NO 0.00 D-13 d.77 YES 0.77 D-14 d.70 YES 0.70 D-15 0.22 NO 0.00 D-16 0.10 NO 0.00 D-17 0.29 NO 0.00 D-18 0. 36 Y E S 0. 36 F-1 0.51 NO 0.00 F-2 0.49 NO 0.00 F-3 0.05 NO 0.00 F-4 0.14 NO 0. 00 F-5 0.64 NO 0. 00 F-� 2.07 No a.aa F-7 2.00 NO 0.00 F-8 2. 65 Y E S 2. 65 F-9 0.81 YES 0.81 F-10 0.20 YES 0.20 F-11 0.22 NO 0.00 F-12 0.54 NO 0.00 F-13 0.36 NO 0.00 F-14 0. 94 Y E S 0. 94 F-15 1.43 YES 1.43 F-16 0.26 NO 0.00 F-17 0. 34 N O 0. 00 F-18 1.45 NO 0.00 F-19 0.79 YES 0.79 F-20 Q.58 YES 0.58 F-21 1.30 YES 1.30 F-22 1. 61 Y E S 1. 61 F-23 0.23 NO 0.00 F-24 0.12 N O 0. 00 F-25 0.28 YES 0.28 F-26 0. 29 Y E S 0. 29 F-27 0. 74 Y E S 0. 74 F-28 0. 52 Y E S 0. 52 F-29 0.79 YES 0.79 F-30 0. 86 Y E S 0. 86 F-31 1. 32 Y E S 0. 89 F-32 0. 06 N O 0. 00 F-33 0.27 NO 0.00 G1-1 1.67 NO 0.00 G1-2 1.57 NO 0.00 G1-3 0.34 NO 0.00 G1-4 0.31 NO 0.00 G1-5 4.08 NO 0.00 G1-6 0.69 NO 0.00 G1-7 1.82 NO 0.00 G1-8 0.09 NO 0.00 G1-9 0.99 NO O.OQ G1-10 0.49 NO 0.00 G1-11 0.34 NO 0.00 G1-12 0.31 NO 0.0� G1-13 0.22 NO 0.00 G1-14 0.21 NO 0.00 G1-15 0.11 NO 0.00 G1-16 0.12 NO 0.00 G1-17 0.05 NO 0.00 G1-18 0.04 NO 0.00 C2-1 0.58 NO 0.00 C2-2 0.57 NO 0.00 POND D 7.49 NO 0.00 POND 427 10.23 NO 0.00 LID 1 LID 2 LID 3 LID 4 LID 5 LEC�END X X= TOTAL AREA DRAINING TO LID (ACRES) u� X LID X= LID NAME (AREAS TO BE OVER TREATED TO ACCOUNT FOR 50% NEWLY ADDED IMPERVIOUSNESS FOR TOTAL SITE AREA) REMAINDER OF SITE THAT IS TAKEN CARE OF BY THE AREAS THAT ARE BEING OVER TREATED ���� FUTURE FILINGS (WHEN DEVELOPED WILL HAVE TO PROVIDE LID) LID FOOTPRINT 150 0 150 300 scale 1 "=150' feet z 0 � N a Z U O N w > � w � � Q 0 >- m DRAWN BAMG CHECKED DAP DESIGNED BAMG FILENAME LID AREAS Z � � � � � � � � a � Q � Z O � �❑ W � Q � � � ��I � 1 � � � CONSULTING ENGINEERS 748 Whalers Way Suite 200 Fort Collins Colorado 80525 Phone: 970.226.0557 J08 N0. 1230.0009.00 SCALE 1 " = 150' DATE MAY 2024 SHEET 1of1 . LID 1 ., ,.,..�..,....,.., ,.... MONTAVA $UB�IVISION PHASE � PONDD �.49 0.00 0.00 749 0.64 854% NO 10.70% 0.00 PON0421 10.23 0.00 0.�0 1023 0.31 3.05% NO 14.62% 0.00 Total= i7.'/2 0.00 0.00 1].l2 0.95 53]% 25.32°0 0.00 BASINPERCENTTREATMENTREQUIRED 50.00% IMPEftVI0U5AREAREpUIREDTOBETREATED 0.48 Total Impervious Area Required to be Treated Using Z2 ZZ lID Techniques (acres) _ LID 1 LID 2 LIO 3 LID 4 LID 5 Total Impervious Area to be Treated Using LI� z3 �� Techniques(acres)= Final �rainage Report C2-1 0.58 0.00 0.00 0.58 �.4� 81.41% NO 0.83% 0.00 C2-2 �.SI 0.00 0.00 0.5] 0.46 81.09% NO 0.81% 0.00 To�al= 7.15 0.00 0.00 7.15 0.93 81.25% 7.64% 0.00 BASIN PE2CENT TREATMENT REQUIRED 50.00 % IMPEftVI0U5 AREA REpl11RE0 TO BE TREATED 0.47 PROJECT INFORMATION ENGINEERED PRODUCT MANAGER ADS SALES REP PROJECT NO. � Advanced Drainage Systems, Inc. MONTAVA PHASE D LID 1 FORT COLLINS, CO, USA MC-3500 STORMTECH CHAMBER SPECIFICATIONS 1. CHAMBERS SHALL BE STORMTECH MC-3500. 2. CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE COPOLYMERS. 3. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS. 4. CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION. 5. THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES. 6. CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK. 7. REQUIREMENTS FOR HANDLING AND INSTALLATION: • TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS. • TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3". • TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 450 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F/ 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS. 8. ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS: • THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER. • THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE. • THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN. 9. CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY. //�D6� �, o . SiteAssist �, FOR STORMTECH �■' INSTALLATION INSTRUCTIONS � VISIT OUR APP � 1 .�' IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-3500 CHAMBER SYSTEM 1. STORMTECH MC-3500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS. 2. STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". 3. CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS: • STONESHOOTER LOCATED OFF THE CHAMBER BED. • BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE. • BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR. 4. THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS. 5. JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. 6. MAINTAIN MINIMUM - 6" (150 mm) SPACING BETWEEN THE CHAMBER ROWS. 7. INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 12" (300 mm) INTO CHAMBER END CAPS. 8. EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE MEETING THE AASHTO M43 DESIGNATION OF #3 OR #4. 9. STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING. 10. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN ENGINEER. 11. ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF. NOTES FOR CONSTRUCTION EQUIPMENT STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". THE USE OF EQUIPMENT OVER MC-3500 CHAMBERS IS LIMITED: • NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS. • NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". • WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". FULL 36" (900 mm) OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING. USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY. CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT. 002024 ADS, INC. PROPOSEDLAYOUT 6 12 3820 149.9 RMTECH MC-3500 END CAPS �METER STONE INCLUDED) 'ER STONE INCLUDED) E STONE INCLUDED) CONCEPTUAL ELEVATIONS: P OF MC-3500 CHAMBER: OF MC-3500 CHAMBER: OF STONE: 0. PART TYPE ABRICATED END CAP ABRICATED END CAP (OU DESCRIPTION A 24" BOTTOM CORED END CAP, PART#: MC35001EPP246C / TYP OF ALL 24" BOTTOM CONNECTIONS AND ISOLATOR PLUS ROWS B 12" TOP CORED END CAP, PART#: MC35001EPP12T / TYP OF ALL 12" TOP CONNECT 'INVERT ABOVE BASE OF CHAMBER NVERT MAX FLOW 2.06" 26.36" REFABRICATED END CAP C 12" BOTTOM CORED END CAP, PART#: MC35001EPP12B / TYP OF ALL 12" BOTTOM CONNECTIONS 1.35" _AMP D INSTALL FLAMP ON 24" ACCESS PIPE / PART#: MCFLAMP ANIFOLD E 12" x 12" TOP MANIFOLD, ADS N-12 26.36" IPE CONNECTION F 12" BOTTOM CONNECTION 1.35" YLOPLAST (INLET W/ ISO ,,,� r,,,,,,,� G 30" DIAMETER (24.00" SUMP MIN) 5.0 CFS IN 52.68' :. x� � � ,� x�� �n � :�� �n �x �x� ;: �:_�� � � J ¢ z 0 � m o z w W o � � (� � ¢� _ Q Z o c� 2^ L.L J ; O Q � � O � � � .. w F O ¢ � o n. Y 2 U � � � W F Q � H C F � — — — — — ��� � ISOLATOR ROW PLUS (SEE DETAIL) �Xu�k� k PLACE MINIMUM 17.50' OF ADSPLUS125 WOVEN GEOTEXTILE OVER BEDDING ;"'I STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL � >. ' CHAMBER WLET ROWS BED LIMITS I�r�z��nn�� � in if� N N � E o c�i B N N �D �A G � I NOTES • NIANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE. DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COUPLE ADDITIONAL PIPE TO STANDARD MANIFOLD COMPONENTS IN THE FIELD. • THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUIREMENTS ARE MET. THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR DETERMINING THE SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED OR DECREASED ONCE THIS INFORMATION IS PROVIDED. • NOT FOR CONSTRUCTION: THIS LAYOUT �S FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORAGE VOLUME CAN BE ACHIEVED ON SITE. � d � F� � �� L � � � �i+ � V� U o� � N J � m M Z � � = v W � � �pc+� � � r � J O � J � � V 2 � ` o z O � a � U � W � � 0 U x U w H � � � � � � � N � � � SHEET 20F6 ACCEPTABLE FILL MATERIALS: STORMTECH MC-3500 CHAMBER SYSTEMS MATERIAL LOCATION DESCRIPTION AASHTO MATERIAL COMPACTION / DENSITY REQUIREMENT CLASSIFICATIONS FINAL FILL: FILL MATERIAL FOR LAYER'D' STARTS FROM THE TOP OF THE'C' PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED p LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. N/A INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE'D' CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS. PREPARATION REQUIREMENTS. LAYER AASHTO M145' INITIAL FILL: FILL MATERIAL FOR LAYER'C' STARTS FROM THE TOP OF THE GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR A-1, A-2-4, A-3 BEGIN COMPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE PROCESSED AGGREGATE. THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN � CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' OR 12" (300 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR LAYER. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR LAYER. AASHTO M43' PROCESSED AGGREGATE MATERIALS. 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10 B EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE CLEAN, CRUSHED, ANGULAR S SONE AASHTO M43' NO COMPACTION REQUIRED. FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE. OR RECYCLED CONCRETE 3, 357, 4, 467, 5, 56, 57 FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO CLEAN, CRUSHED, ANGULAR STONE AASHTO M43' A THE FOOT (BOTTOM) OF THE CHAMBER. OR RECYCLED CONCRETES 3, 357, 4, 467, 5, 56, 57 PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE.z•3 PLEASE NOTE: 1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4(AASHTO M43) STONE". 2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR. 3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS. 4. ONCE LAYER'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER'C' OR'D' AT THE SITE DESIGN ENGINEER'S DISCRETION. 5. WHERE RECYCLED CONCRETE AGGREGATE IS USED IN LAYERS'A' OR'B' THE MATERIAL SHOULD ALSO MEET THE ACCEPTABILITY CRITERIA OUTLINED IN TECHNICAL NOTE 6.20 "RECYCLED CONCRETE STRUCTURAL BACKFILL". ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE ALL PAVEMENT LAYER (DESIGNED AROUND CLEAN, CRUSHED, ANGULAR STONE IN A& B LAYERS �, � BY SITE DESIGN ENGINEER) PERIMETER STONE (SEE NOTE 4) EXCAVATION WALL (CAN BE SLOPED OR VERTICAL) 6" (150 mm) MIN - I � i NOTES: _ Il I / I �.� O `TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, WCREASE COVER TO 24" (600 mm), �!� � �I�I���"Q�'�� �_' -_ � � I��I ' I \ 6II _I i �q _ I' - II II � ' -I - I- - I - I - I - '�i. .� - I - I - I -;� I- .-� - I -� -I I - I I . �- ii - I - I - - I - - I � I . I . - - I - il I I I - - I - I - .. I_ , �/ MC-3500 - - - 6 - END CAP SUBGRADE SOILS (150 mm) MIN (SEE NOTE 3) • $i 18" (2.4 m) � (450 mm) MIN' MAX 12" (300 mm) MIN l 45" "`THIS CROSS SECTION DETAIL REPRESENTS (1140 mm) MINIMUM REQUIREMENTS FOR INSTALLATION. PLEASE SEE THE LAYOUT SHEET(S) FOR � PROJECT SPECIFIC REQUIREMENTS. - - I - i - -I - ,- - - � DEPTH OF STONE TO BE DETERMINED I I i i BY SITE DESIGN ENGINEER 9" (230 mm) MIN 77" (19501mm)I 12" (300 mm) MIN 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS. 2. MC-3500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS. 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS. 5. REQUIREMENTS FOR HANDLING AND INSTALLATION: • TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS. • TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3". • TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 450 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F/ 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS. � 0 J 0 W � 2 � Q i Q H Z � Q Q � z � m o � w o Z Y U Q w � � x Z � U J O U � � O � � � .. w F O ¢ � o n. � W � H� � � � � O � � V� U o� � N J � m M Z � � = v W��- �o� ��� � J O � J � V 2 � � z O � a � U � w 0 Y x U � � � W F ¢ 0 � O U x U W � � � O � � � rn � N N � � � SHEET 30F6 COVER PIPE CONNECTION TO END CAP WITH ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE INSTALL FLAMP ON 24" (600 mm) ACCESS PIPE PART #: MCFLAMP MC-3500 CHAMBER STORMTECH HIGHLY RECOMMENDS FLEXSTORM INSERTS IN ANY UPSTREAM STRUCTURES WITH OPEN GRATES ELEVATED BYPASS MANIFOLD L -----I 7 - - i u rn u n` �>� u,�� u �n ,�a�;, �li �- �,� � i � �.r �r i i I i u i u- i �i � i� ,�. ,��; � �� u��,��.'_ �, _ �� � � ����� SUMP DEPTH TBD BY SITE DESIGN ENGINEER (24" [600 mm] MIN RECOMMENDED) NYLOPLAST 24" (600 mm) HDPE ACCESS PIPE REQUIRED USE FACTORY PARTIAL CUT END CAP PART #: MC35001EPP246C OR MC35001EPP246W � � � /// � : ili li��/il u - � � �\ _� �,,� � ;�i il �� � � MC-3500 ISOLATOR ROW PLUS DETAIL NTS INSPECTION & MAINTENANCE STEP 1) INSPECT ISOLATOR ROW PLUS FOR SEDIMENT A. INSPECTION PORTS (IF PRESENT) A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN A.2. REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED A.3. USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG A.4. LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL) A.5. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3. B. ALL ISOLATOR PLUS ROWS B.1. REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS 6.2. USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE B.3. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3. STEP 2) CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED B. APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN C. VACUUM STRUCTURE SUMP AS REQUIRED STEP 3) REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS. STEP 4) INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM. NOTES 1. INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS. 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY. � OPTIONAL INSPECTION PORT � I I"� ! -= _ MC-3500 END CAP ONE LAYER OF ADSPLUS125 WOVEN GEOTEXTILE BETWEEN FOUNDATION STONE AND CHAMBERS 8.25' (2.51 m) MIN WIDE CONTINUOUS FABRIC WITHOUT SEAMS � � J 0 W � _ � i H Z � ¢ Q � z � m p � W � Z Y U Q w Uj 2 2 Z � U J O U � O � � � .. w F O o n�. � s v � d � F� � � � L � � � � � V� U o� � N J � m M z� �=v W�� �pc+� � � r � J O � J � V 2 � � Z O H a � U � w 0 Y 2 U � � 0 w � ¢ 0 � 0 U _ U w � � � O H � � � � � � N rn � � SHEET 40F6 MC-SERIES END CAP INSERTION DETAIL NTS 12" (300 mm) MIN INSERTION MANIFOLD STUB MANIFOLD HEADER �/i ,� , �; �! /a ' �,I �� �;� 1 ;��i ��!���;,� j �'1i= I I I �I- II I i 12" (300 mm) MIN SEPARATION (" � , �; �� ; 12" (300 mm) MIN INSERTION STORMTECH END CAP ��1 1'�' �''I i iI ` . ,`1 I I NOTE: MANIFOLD STUB MUST BE LAID HORIZONTAL FOR A PROPER FIT IN END CAP OPENING. 12" (300 mm) MIN SEPARATION / \ I� � MANIFOLD HEADER MANIFOLD STUB MC-3500 TECHNICAL SPECIFICATION NTS L (11� CREST WEB LOWER JOINT CORRUGATION FOOT 45.0" (1143 mm) I 77.0" I f'-' (1956 mm) —�1 75.0" (1905 mm) NOMINAL CHAMBER SPECIFICATIONS SIZE (W X H X INSTALLED LENGTH) 77.0" X 45.0" X 86.0" (1956 mm X 1143 mm X 2184 mm) CHAMBER STORAGE 109.9 CUBIC FEET (3.11 m3) MINIMUM INSTALLED STORAGE" 175.0 CUBIC FEET (4.96 m3) WEIGHT 134 Ibs. (60.8 kg) NOMINAL END CAP SPECIFICATIONS SIZE (W X H X INSTALLED LENGTH) 75.0" X 45.0" X 22.2" (1905 mm X 1143 mm X 564 mm) END CAP STORAGE 14.9 CUBIC FEET (0.42 m3) MINIMUM INSTALLED STORAGE* 45.1 CUBIC FEET (1.28 m3) WEIGHT 49 Ibs. (22.2 kg) "ASSUMES 12" (305 mm) STONE ABOVE, 9" (229 mm) STONE FOUNDATION, 6" SPACING BETWEEN CHAMBERS, 6" (152 mm) STONE PERIMETER IN FRONT OF END CAPS AND 40% STONE POROSITY STUBS AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH "B" STUBS AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T" END CAPS WITH A WELDED CROWN PLATE END WITH "C" END CAPS WITH A PREFABRICATED WELDED STUB END WITH "W" PART # STUB B C MC35001EPP06T 33.21" (844 mm) --- MC35001EPP06B 6" (150 mm) ___ 0.66" (17 mm) MC35001EPP08T 31.16" (791 mm) --- 8" (200 mm) ___ 0.81" (21 mm) MC35001EPP08B MC35001EPP10T 29.04" (738 mm) --- 10" (250 mm) MC35001EPP10B --- 0.93" (24 mm) MC35001EPP12T 26.36" (670 mm) --- 12" (300 mm) MC35001EPP12B --- 1.35" (34 mm) MC35001EPP15T 23.39" (594 mm) --- MC35001EPP15B 15" (375 mm) ___ 1.50" (38 mm) MC35001EPP18TC 20.03" (509 mm) --- MC35001EPP18TW 18" (450 mm) MC35001EPP18BC MC35001EPP18BW --- 177" (45 mm) MC35001EPP24TC 14.48" (368 mm) --- MC35001EPP24TW 24" (600 mm) MC35001EPP246C MC35001EPP24BW --- 2.06" (52 mm) MC35001EPP30BC 30" (750 mm) --- 2.75" (70 mm) NOTE: ALL DIMENSIONS ARE NOMINAL 22.2�� (564 mm) INSTALLED 25.7„ (653 mm) � % ii Ili�' ,: I I I I . I, : �j�j II . � . � � CUSTOM PRECORED INVERTS ARE AVAILABLE UPON REQUEST. INVENTORIED MANIFOLDS INCLUDE 12-24" (300-600 mm) SIZE ON SIZE AND 15-48" (375-1200 mm) ECCENTRIC MANIFOLDS. CUSTOM INVERT LOCATIONS ON THE MC-3500 END CAP CUT IN THE FIELD ARE NOT RECOMMENDED FOR PIPE SIZES GREATER THAN 10" (250 mm). THE INVERT LOCATION IN COLUMN'B' ARE THE HIGHEST POSSIBLE FOR THE PIPE SIZE. � � J ¢ z 0 � m p z w W o � � (� � ¢� _ Q Z o c� ^ J L.L J / O Q � � O O � � .. w F O ¢ � o n. 0 d � F� � � � L � � � *+ �a V� U o� � N J � m M z� �=v W�� �pc+� � � r � J O � J � v=� � z O � a � U � w 0 Y x U � � 0 w � ¢ 0 � 0 U _ U W � � � 0 � � � � � N � � � SHEET 50F6 90.0" (2256 mm) ACTUALLENGTH �— UPPER JOINT CORRUGATION BUILD ROW IN THIS DIRECTION � INTEGRATED DUCTILE IRON FRAME & GRATE/SOLID TO MATCH BASIN O.D. NYLOPLAST DRAIN BASIN NTS 12" (610 mm) MIN (FOR AASHTO H-20) INVERT ACCORDING TO PLANS/TAKE OFF VARIOUS TYPES OF INLET AND OUTLET ADAPTERS AVAILABLE: 4-30" (100-750 mm) FOR CORRUGATED HDPE WATERTIGHT JOINT (CORRUGATED HDPE SHOWN) , -, � � I a-o-o-o- ,_�.ar��-= ' / ' �. 18" (457 mm) MIN WIDTH AASHTO H-20 CONCRETE SLAB 8" (203 mm) MIN THICKNESS TRAFFIC LOADS: CONCRETE DIMENSIONS ARE FOR GUIDELINE PUPOSES ONLY. ACTUAL CONCRETE SLAB MUST BE DESIGNED GIVING CONSIDERATION FOR LOCAL SOIL CONDITIONS, TRAFFIC LOADING & OTHER APPLICABLE DESIGN FACTORS ADAPTER ANGLES VARIABLE 0°- 360° ACCORDING TO PLANS VARIABLE SUMP DEPTH ACCORDING TO PLANS [6" (152 mm) MIN ON 8-24" (200-600 mm), 10" (254 mm) MIN ON 30" (750 mm)] 4" (102 mm) MIN ON 8-24" (200-600 mm) 6" (152 mm) MIN ON 30" (750 mm) - BACKFILL MATERIAL BELOW AND TO SIDES A OF STRUCTURE SHALL BE ASTM D2321 CLASS I OR II CRUSHED STONE OR GRAVEL AND BE PLACED UNIFORMLY IN 12" (305 mm) LIFTS AND COMPACTED TO MIN OF 90% NOTES 1. 8-30" (200-750 mm) GRATES/SOLID COVERS SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 2. 12-30" (300-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 3. DRAIN BASIN TO BE CUSTOM MANUFACTURED ACCORDING TO PLAN DETAILS 4. DRAINAGE CONNECTION STUB JOINT TIGHTNESS SHALL CONFORM TO ASTM D3212 FOR CORRUGATED HDPE (ADS & HANCOR DUAL WALL) & SDR 35 PVC 5. FOR COMPLETE DESIGN AND PRODUCT INFORMATION: WWW.NYLOPLAST-US.COM 6. TO ORDER CALL: 800-821-6710 A PART # GRATE/SOLID COVER OPTIONS $ 2808AG PEDESTRIAN LIGHT STANDARD LIGHT SOLID LIGHT DUTY (200 mm) DUTY DUTY 10" 2g10AG PEDESTRIAN LIGHT STANDARD LIGHT SOLID LIGHT DUTY (250 mm) DUTY DUTY 12 2812AG PEDESTRIAN STANDARD AASHTO SOLID (300 mm) AASHTO H-10 H-20 AASHTO H-20 15" 2g15AG PEDESTRIAN STANDARD AASHTO SOLID (375 mm) AASHTO H-10 H-20 AASHTO H-20 �$ 2818AG PEDESTRIAN STANDARD AASHTO SOLID (450 mm) AASHTO H-10 H-20 AASHTO H-20 24 2824AG PEDESTRIAN STANDARD AASHTO SOLID (600 mm) AASHTO H-10 H-20 AASHTO H-20 30" 2g30AG PEDESTRIAN STANDARD AASHTO SOLID (750 mm) AASHTO H-20 H-20 AASHTO H-20 � 0 J 0 W � Q 2 � Q i Q � Z O � Q Q � z � m p � W O Z Y U Q w Uj 2 2 Z � U J J � U � � O � � � v . w F O o n�. z O H a � U � W � Y 2 U � � 0 w � ¢ 0 � � � 0 � Z o� � N J � m M z� �=v W�� �pc+� � � r � J O � J � V 2 � � SHEET 60F6 �� � % �� / I PROJECT INFORMATION ENGINEERED PRODUCT MANAGER ADS SALES REP PROJECT NO. � Advanced Drainage Systems, Inc. MONTAVA PHASE D LID 2 FORT COLLINS, CO, USA MC-3500 STORMTECH CHAMBER SPECIFICATIONS 1. CHAMBERS SHALL BE STORMTECH MC-3500. 2. CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE COPOLYMERS. 3. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS. 4. CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION. 5. THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES. 6. CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK. 7. REQUIREMENTS FOR HANDLING AND INSTALLATION: • TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS. • TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3". • TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 450 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F/ 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS. 8. ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS: • THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER. • THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE. • THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN. 9. CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY. //�D6� �, o . SiteAssist �, FOR STORMTECH �■' INSTALLATION INSTRUCTIONS � VISIT OUR APP � 1 .�' IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-3500 CHAMBER SYSTEM 1. STORMTECH MC-3500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS. 2. STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". 3. CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS: • STONESHOOTER LOCATED OFF THE CHAMBER BED. • BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE. • BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR. 4. THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS. 5. JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. 6. MAINTAIN MINIMUM - 6" (150 mm) SPACING BETWEEN THE CHAMBER ROWS. 7. INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 12" (300 mm) INTO CHAMBER END CAPS. 8. EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE MEETING THE AASHTO M43 DESIGNATION OF #3 OR #4. 9. STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING. 10. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN ENGINEER. 11. ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF. NOTES FOR CONSTRUCTION EQUIPMENT STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". THE USE OF EQUIPMENT OVER MC-3500 CHAMBERS IS LIMITED: • NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS. • NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". • WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". FULL 36" (900 mm) OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING. USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY. CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT. 002024 ADS, INC. PROPOSEDLAYOUT 6 12 6241 222.6 RMTECH MC-3500 END CAPS �METER STONE INCLUDED) 'ER STONE INCLUDED) E STONE INCLUDED) OF MC-3500 CHAMBER: OF STONE: 1 i ��,��g��: � � ^�'I I in in I N N I � �- E o c�i � �, N N �>'� � B ���:> D �n A � G � � /. - �'��-� - 2.50 PART TYPE 6.50 6.00 PREFABRICATED END CAP 6.00 PREFABRICATED END CAP 6.00 5.50 pREFABRICATED END CAP 4.50 1.96 FLAMP 0.92 MANIFOLD 0.90 PIPE CONNECTION 0.75 CONCRETE STRUCTURE � � 0 � G DESCRIPTION " BOTTOM CORED END CAP, PART#: MC35001EPP246C / TYP OF ALL 24" BOTTOM �NNECTIONS AND ISOLATOR PLUS ROWS 18" BOTTOM CORED END CAP, PART#: MC35001EPP18BC / TYP OF ALL 18" BOTTOM CONNECTIONS INSTALL FLAMP ON 24" ACCESS PIPE / PART#: MCFLAMP 24" x 24" TOP MANIFOLD, ADS N-12 18" BOTTOM CONNECTION z O � a � U � W � 89.07' 82.58' �.�.����x�..,s�r.x��.� -� � � CONCEPTUAL ELEVATIONS: P OF MC-3500 CHAMBER: H C F I � I � � � I I � I� �,�a j 'j / !/ / / ✓ / I� ,��— / � ��/ /, � � � � i � �� / , , , . „ , , . , � !, — ,=�%, = —,—'% �—/— —/ / /— / — —/ — — — ��� � ISOLATOR ROW PLUS (SEE DETAIL) �Xu�k� k PLACE MINIMUM 17.50' OF ADSPLUS125 WOVEN GEOTEXTILE OVER BEDDING ;"'I STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL � >. ' CHAMBER WLET ROWS BED LIMITS 'INVERT ABOVE BASE OF CHAMBER NVERT` MAX FLOW N 2.06" � Q NS 14.48" Q ? m o 1.77" Z w � � Y 14.48" = Z � U 1.77" a, � 17.0 CFS IN Q O 4.0 CFS OUT � F Q � � O Z ;* O � � .. w � o a � o n. NOTES • NIANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE. DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COUPLE ADDITIONAL PIPE TO STANDARD MANIFOLD COMPONENTS IN THE FIELD. • THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUIREMENTS ARE MET. THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR DETERMINING THE SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED OR DECREASED ONCE THIS INFORMATION IS PROVIDED. • NOT FOR CONSTRUCTION: THIS LAYOUT �S FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORAGE VOLUME CAN BE ACHIEVED ON SITE. O d � H� � � �� O � � � V� U o� � N J � m M Z � � = v W � � �pc+� � � r o Q o V J � � � � 2 � ` o Y 2 U � � � W Q � � O U _ U w � � � 0 � � � � � N � W � SHEET 20F6 ACCEPTABLE FILL MATERIALS: STORMTECH MC-3500 CHAMBER SYSTEMS MATERIAL LOCATION DESCRIPTION AASHTO MATERIAL COMPACTION / DENSITY REQUIREMENT CLASSIFICATIONS FINAL FILL: FILL MATERIAL FOR LAYER'D' STARTS FROM THE TOP OF THE'C' PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED p LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. N/A INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE'D' CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS. PREPARATION REQUIREMENTS. LAYER AASHTO M145' INITIAL FILL: FILL MATERIAL FOR LAYER'C' STARTS FROM THE TOP OF THE GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR A-1, A-2-4, A-3 BEGIN COMPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE PROCESSED AGGREGATE. THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN � CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' OR 12" (300 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR LAYER. LAYER. AASHTO M43' PROCESSED AGGREGATE MATERIALS. 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10 B EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE CLEAN, CRUSHED, ANGULAR S SONE AASHTO M43' NO COMPACTION REQUIRED. FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE. OR RECYCLED CONCRETE 3, 357, 4, 467, 5, 56, 57 FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO CLEAN, CRUSHED, ANGULAR STONE AASHTO M43' A THE FOOT (BOTTOM) OF THE CHAMBER. OR RECYCLED CONCRETES 3, 357, 4, 467, 5, 56, 57 PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE.z•3 PLEASE NOTE: 1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4(AASHTO M43) STONE". 2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR. 3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS. 4. ONCE LAYER'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER'C' OR'D' AT THE SITE DESIGN ENGINEER'S DISCRETION. 5. WHERE RECYCLED CONCRETE AGGREGATE IS USED IN LAYERS'A' OR'B' THE MATERIAL SHOULD ALSO MEET THE ACCEPTABILITY CRITERIA OUTLINED IN TECHNICAL NOTE 6.20 "RECYCLED CONCRETE STRUCTURAL BACKFILL". ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE ALL PAVEMENT LAYER (DESIGNED AROUND CLEAN, CRUSHED, ANGULAR STONE IN A& B LAYERS �, � BY SITE DESIGN ENGINEER) PERIMETER STONE (SEE NOTE 4) EXCAVATION WALL (CAN BE SLOPED OR VERTICAL) 6" (150 mm) MIN - I � i NOTES: _ Il I / I �.� O `TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, WCREASE COVER TO 24" (600 mm), �!� � �I�I���"Q�'�� �_' -_ � � I��I ' I \ 6II _I i �q _ I' - II II � ' -I - I- - I - I - I - '�i. .� - I - I - I -;� I- .-� - I -� -I I - I I . �- ii - I - I - - I - - I � I . I . - - I - il I I I - - I - I - .. I_ , �/ MC-3500 - - - 6 - END CAP SUBGRADE SOILS (150 mm) MIN (SEE NOTE 3) • $i 18" (2.4 m) � (450 mm) MIN' MAX 12" (300 mm) MIN l 45" "`THIS CROSS SECTION DETAIL REPRESENTS (1140 mm) MINIMUM REQUIREMENTS FOR INSTALLATION. PLEASE SEE THE LAYOUT SHEET(S) FOR � PROJECT SPECIFIC REQUIREMENTS. - - I - i - -I - ,- - - � DEPTH OF STONE TO BE DETERMINED I I i i BY SITE DESIGN ENGINEER 9" (230 mm) MIN 77" (19501mm)I 12" (300 mm) MIN 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS. 2. MC-3500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS. 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS. 5. REQUIREMENTS FOR HANDLING AND INSTALLATION: • TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS. • TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3". • TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 450 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F/ 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS. N � J 0 w � 2 �.. Q i Q H Z � � Q Q � Z � m o � w o Z Y U Q w � � x Z � U J O U � � O � xt � v w F O ¢ � o n. � W � H� � � � � O � � V� U o� � N J � m M Z � � = v W��- �o� ��� � J O � J � V 2 � � z O � a � U � w 0 Y x U � � � W F ¢ 0 � O U x U W � � � O � � � rn � N N � � � SHEET 30F6 INSTALL FLAMP ON 24" (600 mm) ACCESS PIPE PART #: MCFLAMP COVER PIPE CONNECTION TO END CAP WITH ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE STORMTECH HIGHLY RECOMMENDS _� FLEXSTORM INSERTS IN ANY UPSTREAM j�� � k�r :, STRUCTURES WITH OPEN GRATES '�� � \ ��_ �; � �z,� �����" \ O p i�,���< ,. ,� �,i , . ��^� I �b i: . . _ � - I MG3500 CHAMBER i i i i o u II � '. n� pn li i � . ��II� SUMP DEPTH TBD BY SITE DESIGN ENGINEER (24" [600 mm] MIN RECOMMENDED) 24" (600 mm) HDPE ACCESS PIPE REQUIRED USE FACTORY PRE-CORED END CAP PART #: MC35001EPP24BC OR MC35001EPP24BW MC-3500 ISOLATOR ROW PLUS DETAIL NTS INSPECTION & MAINTENANCE STEP 1) INSPECT ISOLATOR ROW PLUS FOR SEDIMENT A. INSPECTION PORTS (IF PRESENT) A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN A.2. REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED A.3. USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG A.4. LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL) A.5. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3. B. ALL ISOLATOR PLUS ROWS B.1. REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS 6.2. USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE B.3. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3. STEP 2) CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED B. APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN C. VACUUM STRUCTURE SUMP AS REQUIRED STEP 3) REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS. STEP 4) INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM. NOTES 1. INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS. 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY. MC-3500 END CAP ..,.� ".,"..., ,.....,, �.,.,,�., ....VEN GEOTEXTILE BETWEEN FOUNDATION STONE AND CHAMBERS 8.25' (2.51 m) MIN WIDE CONTINUOUS FABRIC WITHOUT SEAMS N � J � w � 2 � / � Z � ¢ Q � Z � m p � W O Z Y U Q w � � x Z � U J � U � O � � � v w ¢ � o �. � s v � d � F� � � � L � � � � � V� U o� � N J � m M z� �=v W�� �pc+� � � r � J O � J � V 2 � � z 0 � a � U � w 0 Y x U � � 0 w � ¢ 0 � 0 U _ U w � � � O H � � � � � � N rn � � SHEET 40F6 � OPTIONAL INSPECTION PORT MC-SERIES END CAP INSERTION DETAIL NTS 12" (300 mm) MIN INSERTION MANIFOLD STUB MANIFOLD HEADER �/i ,� , �; �! /a ' �,I �� �;� 1 ;��i ��!���;,� j �'1i= I I I �I- II I i 12" (300 mm) MIN SEPARATION (" � , �; �� ; 12" (300 mm) MIN INSERTION STORMTECH END CAP ��1 1'�' �''I i iI ` . ,`1 I I NOTE: MANIFOLD STUB MUST BE LAID HORIZONTAL FOR A PROPER FIT IN END CAP OPENING. 12" (300 mm) MIN SEPARATION / \ I� � MANIFOLD HEADER MANIFOLD STUB MC-3500 TECHNICAL SPECIFICATION NTS L (11� CREST WEB LOWER JOINT CORRUGATION FOOT 45.0" (1143 mm) I 77.0" I f'-' (1956 mm) —�1 75.0" (1905 mm) NOMINAL CHAMBER SPECIFICATIONS SIZE (W X H X INSTALLED LENGTH) 77.0" X 45.0" X 86.0" (1956 mm X 1143 mm X 2184 mm) CHAMBER STORAGE 109.9 CUBIC FEET (3.11 m3) MINIMUM INSTALLED STORAGE" 175.0 CUBIC FEET (4.96 m3) WEIGHT 134 Ibs. (60.8 kg) NOMINAL END CAP SPECIFICATIONS SIZE (W X H X INSTALLED LENGTH) 75.0" X 45.0" X 22.2" (1905 mm X 1143 mm X 564 mm) END CAP STORAGE 14.9 CUBIC FEET (0.42 m3) MINIMUM INSTALLED STORAGE* 45.1 CUBIC FEET (1.28 m3) WEIGHT 49 Ibs. (22.2 kg) "ASSUMES 12" (305 mm) STONE ABOVE, 9" (229 mm) STONE FOUNDATION, 6" SPACING BETWEEN CHAMBERS, 6" (152 mm) STONE PERIMETER IN FRONT OF END CAPS AND 40% STONE POROSITY STUBS AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH "B" STUBS AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T" END CAPS WITH A WELDED CROWN PLATE END WITH "C" END CAPS WITH A PREFABRICATED WELDED STUB END WITH "W" PART # STUB B C MC35001EPP06T 33.21" (844 mm) --- MC35001EPP06B 6" (150 mm) ___ 0.66" (17 mm) MC35001EPP08T 31.16" (791 mm) --- 8" (200 mm) ___ 0.81" (21 mm) MC35001EPP08B MC35001EPP10T 29.04" (738 mm) --- 10" (250 mm) MC35001EPP10B --- 0.93" (24 mm) MC35001EPP12T 26.36" (670 mm) --- 12" (300 mm) MC35001EPP12B --- 1.35" (34 mm) MC35001EPP15T 23.39" (594 mm) --- MC35001EPP15B 15" (375 mm) ___ 1.50" (38 mm) MC35001EPP18TC 20.03" (509 mm) --- MC35001EPP18TW 18" (450 mm) MC35001EPP18BC MC35001EPP18BW --- 177" (45 mm) MC35001EPP24TC 14.48" (368 mm) --- MC35001EPP24TW 24" (600 mm) MC35001EPP246C MC35001EPP24BW --- 2.06" (52 mm) MC35001EPP30BC 30" (750 mm) --- 2.75" (70 mm) NOTE: ALL DIMENSIONS ARE NOMINAL 22.2�� (564 mm) INSTALLED 25.7„ (653 mm) � % ii Ili�' ,: I I I I . I, : �j�j II . � . � � CUSTOM PRECORED INVERTS ARE AVAILABLE UPON REQUEST. INVENTORIED MANIFOLDS INCLUDE 12-24" (300-600 mm) SIZE ON SIZE AND 15-48" (375-1200 mm) ECCENTRIC MANIFOLDS. CUSTOM INVERT LOCATIONS ON THE MC-3500 END CAP CUT IN THE FIELD ARE NOT RECOMMENDED FOR PIPE SIZES GREATER THAN 10" (250 mm). THE INVERT LOCATION IN COLUMN'B' ARE THE HIGHEST POSSIBLE FOR THE PIPE SIZE. N � Q J Q � Z p cn m o � w W Z Y � O Q vi � x = Z o c� � J J � Q � � � Z ;* � � � .. w F O ¢ � o n. 0 d � F� � � � L � � � *+ �a V� U o� � N J � m M z� �=v W�� �pc+� � � r � J O � J � v=� � z O � a � U � w 0 Y x U � � 0 w � ¢ 0 � 0 U _ U W � � � 0 � � � � � N � � � SHEET 50F6 90.0" (2256 mm) ACTUALLENGTH �— UPPER JOINT CORRUGATION BUILD ROW IN THIS DIRECTION � INTEGRATED DUCTILE IRON FRAME & GRATE/SOLID TO MATCH BASIN O.D. NYLOPLAST DRAIN BASIN NTS 12" (610 mm) MIN (FOR AASHTO H-20) INVERT ACCORDING TO PLANS/TAKE OFF VARIOUS TYPES OF INLET AND OUTLET ADAPTERS AVAILABLE: 4-30" (100-750 mm) FOR CORRUGATED HDPE WATERTIGHT JOINT (CORRUGATED HDPE SHOWN) , -, � � I a-o-o-o- ,_�.ar��-= ' / ' �. 18" (457 mm) MIN WIDTH AASHTO H-20 CONCRETE SLAB 8" (203 mm) MIN THICKNESS TRAFFIC LOADS: CONCRETE DIMENSIONS ARE FOR GUIDELINE PUPOSES ONLY. ACTUAL CONCRETE SLAB MUST BE DESIGNED GIVING CONSIDERATION FOR LOCAL SOIL CONDITIONS, TRAFFIC LOADING & OTHER APPLICABLE DESIGN FACTORS ADAPTER ANGLES VARIABLE 0°- 360° ACCORDING TO PLANS VARIABLE SUMP DEPTH ACCORDING TO PLANS [6" (152 mm) MIN ON 8-24" (200-600 mm), 10" (254 mm) MIN ON 30" (750 mm)] 4" (102 mm) MIN ON 8-24" (200-600 mm) 6" (152 mm) MIN ON 30" (750 mm) - BACKFILL MATERIAL BELOW AND TO SIDES A OF STRUCTURE SHALL BE ASTM D2321 CLASS I OR II CRUSHED STONE OR GRAVEL AND BE PLACED UNIFORMLY IN 12" (305 mm) LIFTS AND COMPACTED TO MIN OF 90% NOTES 1. 8-30" (200-750 mm) GRATES/SOLID COVERS SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 2. 12-30" (300-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 3. DRAIN BASIN TO BE CUSTOM MANUFACTURED ACCORDING TO PLAN DETAILS 4. DRAINAGE CONNECTION STUB JOINT TIGHTNESS SHALL CONFORM TO ASTM D3212 FOR CORRUGATED HDPE (ADS & HANCOR DUAL WALL) & SDR 35 PVC 5. FOR COMPLETE DESIGN AND PRODUCT INFORMATION: WWW.NYLOPLAST-US.COM 6. TO ORDER CALL: 800-821-6710 A PART # GRATE/SOLID COVER OPTIONS $ 2808AG PEDESTRIAN LIGHT STANDARD LIGHT SOLID LIGHT DUTY (200 mm) DUTY DUTY 10" 2g10AG PEDESTRIAN LIGHT STANDARD LIGHT SOLID LIGHT DUTY (250 mm) DUTY DUTY 12 2812AG PEDESTRIAN STANDARD AASHTO SOLID (300 mm) AASHTO H-10 H-20 AASHTO H-20 15" 2g15AG PEDESTRIAN STANDARD AASHTO SOLID (375 mm) AASHTO H-10 H-20 AASHTO H-20 �$ 2818AG PEDESTRIAN STANDARD AASHTO SOLID (450 mm) AASHTO H-10 H-20 AASHTO H-20 24 2824AG PEDESTRIAN STANDARD AASHTO SOLID (600 mm) AASHTO H-10 H-20 AASHTO H-20 30" 2g30AG PEDESTRIAN STANDARD AASHTO SOLID (750 mm) AASHTO H-20 H-20 AASHTO H-20 N � J � w � Q 2 � Q i Q � Z O � Q Q � Z � m p � W O Z Y U Q w Uj 2 2 Z � U J J � U � � O � � � v . w F O o n�. z O H a � U � W � Y 2 U � � 0 w � ¢ 0 � � � 0 � Z o� � N J � m M z� �=v W�� �pc+� � � r � J O � J � V 2 � � SHEET 60F6 � - - - - �- �-,�-..,-�r-�� � I � � il � � I - I I�,�,�.,�� � ����� / � � �� ' �� � ;� � , , , � � � /: i/ / / � / �' ,/,� ��/�� , / /,%� � , i �%� //�%� �� �/' . �� - - - - - - - - - - - - - - - - - - - - - - Design Procedure Form: Rain Garden (RG) UD-BMP (Version 3.07, March 2018) Sheet 1 of 2 Designer: BAMG Company: TST INC. CONSULTING ENGINEERS Date: July 15, 2024 Project: MONTAVA SUBDIVISION Location: RAINGARDEN - LID 3 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, la la = 75.2 % (100 % if all paved and roofed areas upstream of rain garden) B) Tributary Area's Imperviousness Ratio (i = la/100) i= 0.752 C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time WQCV = 0.24 watershed inches (WQCV=0.8`(0.91*i3-1.19*i2+0.78*i) D) Contributing Watershed Area (including rain garden area) Area = 38,975 sq ft E) Water Quality Capture Volume (WQCV) Design Volume VWo�� =�cu ft Vol = (WQCV / 12)' Area F) For Watersheds Outside of the Denver Region, Depth of ds = 0.60 in Average Runoff Producing Storm G) For Watersheds Outside of the Denver Region, VWQcvorneR = 1,089 cu ft Water Quality Capture Volume (WQCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume VwQcvuseR =�cu ft (Only if a different WQCV Design Volume is desired) 2. Basin Geometry A) WQCV Depth (12-inch maximum) DWo�� = 12 in B) Rain Garden Side Slopes (Z = 4 min., horiz. dist per unit vertical) Z= 4.00 ft/ ft (Use "0" if rain garden has vertical walls) C) Mimimum Flat Surface Area AM;,, = 586 sq ft D) Actual Flat Surface Area AA�t„ai = 740 sq ft E) Area at Design Depth (Top Surface Area) ATOP = 1440 sq ft F) Rain Garden Total Volume VT= 1,090 cu ft (Vr= ��%�rov + Aa�mai) / 2) ` Depth) Choose One 3. Growing Media Q 18" Rain Garden Growing Media Q Other (Explain): 4. Underdrain System Choose One QQ YES A) Are underdrains provided? Q NO B) Underdrain system orifice diameter for 12 hour drain time i) Distance From Lowest Elevation of the Storage y= 1.5 ft Valume to the Center of the Orifice ii) Volume to Drain in 12 Hours Vo1�2= 1,089 cu ft iii) Orifice Diameter, 3/8" Minimum Do = 13/16 in UD-BMP 3.xlsm, RG 7/15/2024, 2:59 PM PROJECT INFORMATION ENGINEERED PRODUCT MANAGER ADS SALES REP PROJECT NO. � Advanced Drainage Systems, Inc. MONTAVA PHASE D LID 4 FORT COLLINS, CO, USA MC-3500 STORMTECH CHAMBER SPECIFICATIONS 1. CHAMBERS SHALL BE STORMTECH MC-3500. 2. CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE COPOLYMERS. 3. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS. 4. CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION. 5. THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES. 6. CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK. 7. REQUIREMENTS FOR HANDLING AND INSTALLATION: • TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS. • TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3". • TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 450 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F/ 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS. 8. ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS: • THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER. • THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE. • THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN. 9. CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY. //�D6� �, o . SiteAssist �, FOR STORMTECH �■' INSTALLATION INSTRUCTIONS � VISIT OUR APP � 1 .�' IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-3500 CHAMBER SYSTEM 1. STORMTECH MC-3500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS. 2. STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". 3. CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS: • STONESHOOTER LOCATED OFF THE CHAMBER BED. • BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE. • BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR. 4. THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS. 5. JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. 6. MAINTAIN MINIMUM - 6" (150 mm) SPACING BETWEEN THE CHAMBER ROWS. 7. INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 12" (300 mm) INTO CHAMBER END CAPS. 8. EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE MEETING THE AASHTO M43 DESIGNATION OF #3 OR #4. 9. STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING. 10. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN ENGINEER. 11. ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF. NOTES FOR CONSTRUCTION EQUIPMENT STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". THE USE OF EQUIPMENT OVER MC-3500 CHAMBERS IS LIMITED: • NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS. • NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". • WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". FULL 36" (900 mm) OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING. USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY. CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT. 002024 ADS, INC. PROPOSEDLAYOUT 4 12 7471 323.6 RMTECH MC-3500 END CAPS �METER STONE INCLUDED) 'ER STONE INCLUDED) E STONE INCLUDED) CONCEPTUAL ELEVATIONS: P OF MC-3500 CHAMBER: 2.50 PART TYPE 6.50 6.00 PREFABRICATED END CAP 6.00 PREFABRICATED END CAP 6.00 5.50 pREFABRICATED END CAP 4.50 2 g5 FLAMP 0.92 MANIFOLD 0.90 PIPE CONNECTION 0.75 NYLOPLAST (INLET W/ ISO OF MC-3500 CHAMBER: I I � E M ih M d? B � tC7 �D I — A i � � 0 � � DESCRIPTION " BOTTOM CORED END CAP, PART#: MC35001EPP246C / TYP OF ALL 24" BOTTOM �NNECTIONS AND ISOLATOR PLUS ROWS 18" BOTTOM CORED END CAP, PART#: MC35001EPP18BC / TYP OF ALL 18" BOTTOM CONNECTIONS INSTALL FLAMP ON 24" ACCESS PIPE / PART#: MCFLAMP 12" x 12" TOP MANIFOLD, ADS N-12 18" BOTTOM CONNECTION 30" DIAMETER (24.00" SUMP MIN) z O � a � U � W � 145.85' 139.92' H— C — — — — — — — — — — -- � — — F_ � �T, _�x�a. �� 7�-,_. ' � !� � l�l_-1 I I I_ � ���.� / �� �j,'';�� ��/�%/� %� ���� ;��/� ;// ���� �,/,,, . .� /,/ „/ / r � � , .. .//:. ��� � ISOLATOR ROW PLUS (SEE DETAIL) �Xu�k� k PLACE MINIMUM 17.50' OF ADSPLUS125 WOVEN GEOTEXTILE OVER BEDDING ;"'I STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL � >. ' CHAMBER WLET ROWS BED LIMITS 'INVERT ABOVE BASE OF CHAMBER NVERT` MAX FLOW '�t 2.06" 0 Q S 26.36" Q ? m o 1.77" Z w � � Y 26.36" = Z � U 1.77" � � 2.5 CFS IN Q �U 4.0 CFS OUT Q � Z " O � � .. w � o a � o n. NOTES • NIANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE. DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COUPLE ADDITIONAL PIPE TO STANDARD MANIFOLD COMPONENTS IN THE FIELD. • THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUIREMENTS ARE MET. THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR DETERMINING THE SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED OR DECREASED ONCE THIS INFORMATION IS PROVIDED. • NOT FOR CONSTRUCTION: THIS LAYOUT �S FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORAGE VOLUME CAN BE ACHIEVED ON SITE. 0 W � F� � �� L � � � �i+ � V� U o� � N J � m M Z � � = v W � � �pc+� � � r o Q o V J � � � � 2 � ` o Y 2 U � � 0 w � ¢ 0 � 0 U _ U w H � � O � � � � N � � � SHEET 20F6 ACCEPTABLE FILL MATERIALS: STORMTECH MC-3500 CHAMBER SYSTEMS MATERIAL LOCATION DESCRIPTION AASHTO MATERIAL COMPACTION / DENSITY REQUIREMENT CLASSIFICATIONS FINAL FILL: FILL MATERIAL FOR LAYER'D' STARTS FROM THE TOP OF THE'C' PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED p LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. N/A INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE'D' CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS. PREPARATION REQUIREMENTS. LAYER AASHTO M145' INITIAL FILL: FILL MATERIAL FOR LAYER'C' STARTS FROM THE TOP OF THE GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR A-1, A-2-4, A-3 BEGIN COMPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE PROCESSED AGGREGATE. THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN � CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' OR 12" (300 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR LAYER. LAYER. AASHTO M43' PROCESSED AGGREGATE MATERIALS. 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10 B EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE CLEAN, CRUSHED, ANGULAR S SONE AASHTO M43' NO COMPACTION REQUIRED. FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE. OR RECYCLED CONCRETE 3, 357, 4, 467, 5, 56, 57 FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO CLEAN, CRUSHED, ANGULAR STONE AASHTO M43' A THE FOOT (BOTTOM) OF THE CHAMBER. OR RECYCLED CONCRETES 3, 357, 4, 467, 5, 56, 57 PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE.z•3 PLEASE NOTE: 1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4(AASHTO M43) STONE". 2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR. 3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS. 4. ONCE LAYER'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER'C' OR'D' AT THE SITE DESIGN ENGINEER'S DISCRETION. 5. WHERE RECYCLED CONCRETE AGGREGATE IS USED IN LAYERS'A' OR'B' THE MATERIAL SHOULD ALSO MEET THE ACCEPTABILITY CRITERIA OUTLINED IN TECHNICAL NOTE 6.20 "RECYCLED CONCRETE STRUCTURAL BACKFILL". ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE ALL PAVEMENT LAYER (DESIGNED AROUND CLEAN, CRUSHED, ANGULAR STONE IN A& B LAYERS �, � BY SITE DESIGN ENGINEER) PERIMETER STONE (SEE NOTE 4) EXCAVATION WALL (CAN BE SLOPED OR VERTICAL) 6" (150 mm) MIN - I � i NOTES: _ Il I / I �.� O `TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, WCREASE COVER TO 24" (600 mm), �!� � �I�I���"Q�'�� �_' -_ � � I��I ' I \ 6II _I i �q _ I' - II II � ' -I - I- - I - I - I - '�i. .� - I - I - I -;� I- .-� - I -� -I I - I I . �- ii - I - I - - I - - I � I . I . - - I - il I I I - - I - I - .. I_ , �/ MC-3500 - - - 6 - END CAP SUBGRADE SOILS (150 mm) MIN (SEE NOTE 3) • $i 18" (2.4 m) � (450 mm) MIN' MAX 12" (300 mm) MIN l 45" "`THIS CROSS SECTION DETAIL REPRESENTS (1140 mm) MINIMUM REQUIREMENTS FOR INSTALLATION. PLEASE SEE THE LAYOUT SHEET(S) FOR � PROJECT SPECIFIC REQUIREMENTS. - - I - i - -I - ,- - - � DEPTH OF STONE TO BE DETERMINED I I i i BY SITE DESIGN ENGINEER 9" (230 mm) MIN 77" (19501mm)I 12" (300 mm) MIN 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS. 2. MC-3500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS. 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS. 5. REQUIREMENTS FOR HANDLING AND INSTALLATION: • TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS. • TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3". • TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 450 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F/ 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS. � 0 J 0 w � 2 � Q i Q �- Z 0 � Q Q � Z � m o � w o Z Y U Q w � � x Z � U J O U � � O � xt � v w F O ¢ � o n. � W � H� � � � � O � � V� U o� � N J � m M Z � � = v W��- �o� ��� � J O � J � V 2 � � z O � a � U � w 0 Y x U � � � W F ¢ 0 � O U x U W � � � O � � � rn � N N � � � SHEET 30F6 COVER PIPE CONNECTION TO END CAP WITH ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE INSTALL FLAMP ON 24" (600 mm) ACCESS PIPE PART #: MCFLAMP MC-3500 CHAMBER STORMTECH HIGHLY RECOMMENDS FLEXSTORM INSERTS IN ANY UPSTREAM STRUCTURES WITH OPEN GRATES ELEVATED BYPASS MANIFOLD L -----I 7 - - i u rn u n` �,i u,�� u �n ,�a�;, �li; . �- �,� � i � �.r �r i/ I i u i u- i �i � i� ,�. ,��; � �� u��,��.'_ �, � � � ����� SUMP DEPTH TBD BY SITE DESIGN ENGINEER (24" [600 mm] MIN RECOMMENDED) NYLOPLAST 24" (600 mm) HDPE ACCESS PIPE REQUIRED USE FACTORY PARTIAL CUT END CAP PART #: MC35001EPP246C OR MC35001EPP246W � � � /// � : ili li��/il u - � � �\ _� �,,� � ;�i il �� � � MC-3500 ISOLATOR ROW PLUS DETAIL NTS INSPECTION & MAINTENANCE STEP 1) INSPECT ISOLATOR ROW PLUS FOR SEDIMENT A. INSPECTION PORTS (IF PRESENT) A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN A.2. REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED A.3. USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG A.4. LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL) A.5. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3. B. ALL ISOLATOR PLUS ROWS B.1. REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS 6.2. USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE B.3. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3. STEP 2) CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED B. APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN C. VACUUM STRUCTURE SUMP AS REQUIRED STEP 3) REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS. STEP 4) INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM. NOTES 1. INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS. 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY. � OPTIONAL INSPECTION PORT � I I"� ! -= _ MC-3500 END CAP ONE LAYER OF ADSPLUS125 WOVEN GEOTEXTILE BETWEEN FOUNDATION STONE AND CHAMBERS 8.25' (2.51 m) MIN WIDE CONTINUOUS FABRIC WITHOUT SEAMS '�t 0 J 0 w � _ � i Q �-- Z 0 � ¢ Q � Z � m p � W � Z Y U Q w Uj 2 2 Z � U J O U � O � xt � U . w F O o n�. � s v � d � F� � � � L � � � � � V� U o� � N J � m M z� �=v W�� �pc+� � � r � J O � J � V 2 � � Z O H a � U � w 0 Y 2 U � � 0 w � ¢ 0 � 0 U _ U w � � � O H � � � � � � N rn � � SHEET 40F6 UNDERDRAIN DETAIL NTS STORMTECH STORMTECH CHAMBER �UTLET MANIFOLD � - � � ' � - ����� � i �� ��� � , ,. � ��< .�i- < � M� I 71' ,� 1 � i FOUNDATION STONE BENEATH CHAMBERS � / / ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE STORMTECH END CAP FOUNDATION STONE BENEATH CHAMBERS � ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE � . � � . � , � DESIGN ENGINEER 4" (100 mm) TYP FOR SC'310 & SC-160LP SYSTEMS 6" (150 mm) TYP FOR SC-740, SC-800, DC-780, MC-3500, MC-4500 & MC-7200 SYSTEMS MC-SERIES END CAP INSERTION DETAIL NTS STORMTECH END CAP SECTION A-A DUAL WALL PERFORATED HDPE , �; � , , UNDERDRAIN �_ i , ��. � �i ����c ; i: �� I SECTION B-B 12" (300 mm) MIN SEPARATION 12" (300 mm) MIN INSERTION MANIFOLD STUB MANIFOLD HEADER �/i ,� , �; �! /a ' �,I �� �;� 1 ;��i ��!���;,� j �'1i= I I I �I- II I i 12" (300 mm) MIN SEPARATION (" � , �; �� ; 12" (300 mm) MIN INSERTION ��1 1'�' �''I i iI ` . ,`1 I I NOTE: MANIFOLD STUB MUST BE LAID HORIZONTAL FOR A PROPER FIT IN END CAP OPENING. / \ I� � MANIFOLD HEADER MANIFOLD STUB MC-3500 TECHNICAL SPECIFICATION NTS (11c CREST WEB LOWER JOINT CORRUGATION FOOT 45.0" (1143 mm) I 77.0" I f'-' (1956 mm) —�1 75.0" (1905 mm) NOMINAL CHAMBER SPECIFICATIONS SIZE (W X H X INSTALLED LENGTH) 77.0" X 45.0" X 86.0" (1956 mm X 1143 mm X 2184 mm) CHAMBER STORAGE 109.9 CUBIC FEET (3.11 m3) MINIMUM INSTALLED STORAGE" 175.0 CUBIC FEET (4.96 m3) WEIGHT 134 Ibs. (60.8 kg) NOMINAL END CAP SPECIFICATIONS SIZE (W X H X INSTALLED LENGTH) 75.0" X 45.0" X 22.2" (1905 mm X 1143 mm X 564 mm) END CAP STORAGE 14.9 CUBIC FEET (0.42 m3) MINIMUM INSTALLED STORAGE* 45.1 CUBIC FEET (1.28 m3) WEIGHT 49 Ibs. (22.2 kg) "ASSUMES 12" (305 mm) STONE ABOVE, 9" (229 mm) STONE FOUNDATION, 6" SPACING BETWEEN CHAMBERS, 6" (152 mm) STONE PERIMETER IN FRONT OF END CAPS AND 40% STONE POROSITY STUBS AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH "B" STUBS AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T" END CAPS WITH A WELDED CROWN PLATE END WITH "C" END CAPS WITH A PREFABRICATED WELDED STUB END WITH "W" PART # STUB B C MC35001EPP06T 33.21" (844 mm) --- MC35001EPP06B 6" (150 mm) ___ 0.66" (17 mm) MC35001EPP08T 31.16" (791 mm) --- 8" (200 mm) ___ 0.81" (21 mm) MC35001EPP08B MC35001EPP10T 29.04" (738 mm) --- 10" (250 mm) MC35001EPP10B --- 0.93" (24 mm) MC35001EPP12T 26.36" (670 mm) --- 12" (300 mm) MC35001EPP12B --- 1.35" (34 mm) MC35001EPP15T 23.39" (594 mm) --- MC35001EPP15B 15" (375 mm) ___ 1.50" (38 mm) MC35001EPP18TC 20.03" (509 mm) --- MC35001EPP18TW 18" (450 mm) MC35001EPP18BC MC35001EPP18BW --- 177" (45 mm) MC35001EPP24TC 14.48" (368 mm) --- MC35001EPP24TW 24" (600 mm) MC35001EPP246C MC35001EPP24BW --- 2.06" (52 mm) MC35001EPP30BC 30" (750 mm) --- 2.75" (70 mm) NOTE: ALL DIMENSIONS ARE NOMINAL 22.2" (564 mm) INSTALLED 25.7„ (653 mm) � % ii Ili�' ,: I I I I . I, : �j�j II . � . � � CUSTOM PRECORED INVERTS ARE AVAILABLE UPON REQUEST. INVENTORIED MANIFOLDS INCLUDE 12-24" (300-600 mm) SIZE ON SIZE AND 15-48" (375-1200 mm) ECCENTRIC MANIFOLDS. CUSTOM INVERT LOCATIONS ON THE MC-3500 END CAP CUT IN THE FIELD ARE NOT RECOMMENDED FOR PIPE SIZES GREATER THAN 10" (250 mm). THE INVERT LOCATION IN COLUMN'B' ARE THE HIGHEST POSSIBLE FOR THE PIPE SIZE. � 0 Q J Q � Z p cn m o � w W Z Y � O Q vi � x = Z o c� � J � Q � Z � O � � .. w F O ¢ � o n. 0 d � F� � � � L � � � *+ �a V� U o� � N J � m M z� �=v W�� �pc+� � � r � J O � J � v=� � z O � a � U � w 0 Y x U � � 0 w � ¢ 0 � 0 U _ U W � � � 0 � � � � � N � � � SHEET 50F6 90.0" (2256 mm) ACTUALLENGTH �— UPPER JOINT CORRUGATION BUILD ROW IN THIS DIRECTION � INTEGRATED DUCTILE IRON FRAME & GRATE/SOLID TO MATCH BASIN O.D. NYLOPLAST DRAIN BASIN NTS 12" (610 mm) MIN (FOR AASHTO H-20) INVERT ACCORDING TO PLANS/TAKE OFF VARIOUS TYPES OF INLET AND OUTLET ADAPTERS AVAILABLE: 4-30" (100-750 mm) FOR CORRUGATED HDPE WATERTIGHT JOINT (CORRUGATED HDPE SHOWN) , -, � � I a-o-o-o- ,_�.ar��-= ' / ' �. 18" (457 mm) MIN WIDTH AASHTO H-20 CONCRETE SLAB 8" (203 mm) MIN THICKNESS TRAFFIC LOADS: CONCRETE DIMENSIONS ARE FOR GUIDELINE PUPOSES ONLY. ACTUAL CONCRETE SLAB MUST BE DESIGNED GIVING CONSIDERATION FOR LOCAL SOIL CONDITIONS, TRAFFIC LOADING & OTHER APPLICABLE DESIGN FACTORS ADAPTER ANGLES VARIABLE 0°- 360° ACCORDING TO PLANS VARIABLE SUMP DEPTH ACCORDING TO PLANS [6" (152 mm) MIN ON 8-24" (200-600 mm), 10" (254 mm) MIN ON 30" (750 mm)] 4" (102 mm) MIN ON 8-24" (200-600 mm) 6" (152 mm) MIN ON 30" (750 mm) - BACKFILL MATERIAL BELOW AND TO SIDES A OF STRUCTURE SHALL BE ASTM D2321 CLASS I OR II CRUSHED STONE OR GRAVEL AND BE PLACED UNIFORMLY IN 12" (305 mm) LIFTS AND COMPACTED TO MIN OF 90% NOTES 1. 8-30" (200-750 mm) GRATES/SOLID COVERS SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 2. 12-30" (300-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05 3. DRAIN BASIN TO BE CUSTOM MANUFACTURED ACCORDING TO PLAN DETAILS 4. DRAINAGE CONNECTION STUB JOINT TIGHTNESS SHALL CONFORM TO ASTM D3212 FOR CORRUGATED HDPE (ADS & HANCOR DUAL WALL) & SDR 35 PVC 5. FOR COMPLETE DESIGN AND PRODUCT INFORMATION: WWW.NYLOPLAST-US.COM 6. TO ORDER CALL: 800-821-6710 A PART # GRATE/SOLID COVER OPTIONS $ 2808AG PEDESTRIAN LIGHT STANDARD LIGHT SOLID LIGHT DUTY (200 mm) DUTY DUTY 10" 2g10AG PEDESTRIAN LIGHT STANDARD LIGHT SOLID LIGHT DUTY (250 mm) DUTY DUTY 12 2812AG PEDESTRIAN STANDARD AASHTO SOLID (300 mm) AASHTO H-10 H-20 AASHTO H-20 15" 2g15AG PEDESTRIAN STANDARD AASHTO SOLID (375 mm) AASHTO H-10 H-20 AASHTO H-20 �$ 2818AG PEDESTRIAN STANDARD AASHTO SOLID (450 mm) AASHTO H-10 H-20 AASHTO H-20 24 2824AG PEDESTRIAN STANDARD AASHTO SOLID (600 mm) AASHTO H-10 H-20 AASHTO H-20 30" 2g30AG PEDESTRIAN STANDARD AASHTO SOLID (750 mm) AASHTO H-20 H-20 AASHTO H-20 � 0 J 0 w � Q _ � Q i Q �-- Z 0 � Q Q � Z � m p � W O Z Y U Q w Uj 2 2 Z � U J J � U � � O � xt � v . w F O o n�. z O H a � U � W � Y 2 U � � 0 w � ¢ 0 � � � 0 � Z o� � N J � m M z� �=v W�� �pc+� � � r � J O � J � V 2 � � SHEET 60F6 � - - - - - - - - - - - - - - - - - ��� V I I I � I I I I � � !������� ����! '/ �/� .%' ' %,/ � -� �'���/'% j� � ; .� ��/� ��, ;///� ���,%%� � ;�,,%� ��: / , � / /, / � � T ,- .�. �,� ��� ;`%/�/�i%; ' �= - ;: PROJECT INFORMATION ENGINEERED PRODUCT MANAGER ADS SALES REP PROJECT NO. � Advanced Drainage Systems, Inc. MONTAVA PHASE D LID 5 FORT COLLINS, CO, USA MC-3500 STORMTECH CHAMBER SPECIFICATIONS 1. CHAMBERS SHALL BE STORMTECH MC-3500. 2. CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE COPOLYMERS. 3. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS. 4. CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION. 5. THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES. 6. CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK. 7. REQUIREMENTS FOR HANDLING AND INSTALLATION: • TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS. • TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3". • TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 450 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F/ 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS. 8. ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS: • THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER. • THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE. • THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN. 9. CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY. //�D6� �, o . SiteAssist �, FOR STORMTECH �■' INSTALLATION INSTRUCTIONS � VISIT OUR APP � 1 .�' IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-3500 CHAMBER SYSTEM 1. STORMTECH MC-3500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS. 2. STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". 3. CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS: • STONESHOOTER LOCATED OFF THE CHAMBER BED. • BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE. • BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR. 4. THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS. 5. JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. 6. MAINTAIN MINIMUM - 6" (150 mm) SPACING BETWEEN THE CHAMBER ROWS. 7. INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 12" (300 mm) INTO CHAMBER END CAPS. 8. EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE MEETING THE AASHTO M43 DESIGNATION OF #3 OR #4. 9. STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING. 10. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN ENGINEER. 11. ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF. NOTES FOR CONSTRUCTION EQUIPMENT STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". THE USE OF EQUIPMENT OVER MC-3500 CHAMBERS IS LIMITED: • NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS. • NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". • WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". FULL 36" (900 mm) OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING. USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY. CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT. 002024 ADS, INC. PROPOSEDLAYOUT 6 12 8181 266.1 RMTECH MC-3500 END CAPS �METER STONE INCLUDED) 'ER STONE INCLUDED) E STONE INCLUDED) CONCEPTUAL ELEVATIONS: P OF MC-3500 CHAMBER: OF MC-3500 CHAMBER: 0. PART TYPE LAYC ABRICATED END CAP A ABRICATED END CAP ANIFOLD IPE CONNECTION ONCRETESTRUCTURE ONCRETESTRUCTURE �/WEIR NDERDRAIN � 0 � � DESCRIPTION 24" BOTTOM CORED END CAP, PART#: MC35001EPP246C / TYP OF ALL 24" BOTTOM CONNECTIONS AND ISOLATOR PLUS ROWS 18" BOTTOM CORED END CAP. PART#: MC35001EPP18BC / TYP OF ALL 18" BOTTOM INSTALL FLAMP ON 24" ACCESS PIPE / PART#: MCFLAMP 18" x 18" BOTTOM MANIFOLD, ADS N-12 18" BOTTOM CONNECTION OCS (DESIGN BY ENGINEER / PROVIDED BY OTHERS) (DESIGN BY ENGINEER / PROVIDED BY OTHERS) 6" ADS N-12 DUAL WALL PERFORATED HDPE UNDERDRAIN z O � a � U � W � F E H � � - - - - ��� � ISOLATOR ROW PLUS (SEE DETAIL) �Xu�k� k PLACE MINIMUM 17.50' OF ADSPLUS125 WOVEN GEOTEXTILE OVER BEDDING ;"'I STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL � >. ' CHAMBER WLET ROWS BED LIMITS I_ ._ ..... 'INVERT ABOVE BASE OF CHAMBER NVERT` MAX FLOW � 2.06" 0 Q J Q � Z 1.77" Q � m o W Z Y 1.77„ � o � _ 1.77" = Z o U 4.0 CFS OUT � � 11.0 CFS IN Q �U Q � Z � O � � .. w � o a � o n. � in � � I D a �i N NOTES • NIANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE. DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COUPLE ADDITIONAL PIPE TO STANDARD MANIFOLD COMPONENTS IN THE FIELD. • THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUIREMENTS ARE MET. THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR DETERMINING THE SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED OR DECREASED ONCE THIS INFORMATION IS PROVIDED. • NOT FOR CONSTRUCTION: THIS LAYOUT �S FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORAGE VOLUME CAN BE ACHIEVED ON SITE. � s �� d� H� � �� L � � � �i+ � V� U o� � N J � m M Z � � = v W � � �pc+� � � r o Q o V J � � � � 2 � ` o Y 2 U � � � W Q � � O U _ U W � � � � H � � � � � N � � � SHEET 20F5 ACCEPTABLE FILL MATERIALS: STORMTECH MC-3500 CHAMBER SYSTEMS MATERIAL LOCATION DESCRIPTION AASHTO MATERIAL COMPACTION / DENSITY REQUIREMENT CLASSIFICATIONS FINAL FILL: FILL MATERIAL FOR LAYER'D' STARTS FROM THE TOP OF THE'C' PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED p LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. N/A INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE'D' CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS. PREPARATION REQUIREMENTS. LAYER AASHTO M145' INITIAL FILL: FILL MATERIAL FOR LAYER'C' STARTS FROM THE TOP OF THE GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR A-1, A-2-4, A-3 BEGIN COMPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE PROCESSED AGGREGATE. THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN � CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' OR 12" (300 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR LAYER. LAYER. AASHTO M43' PROCESSED AGGREGATE MATERIALS. 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10 B EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE CLEAN, CRUSHED, ANGULAR S SONE AASHTO M43' NO COMPACTION REQUIRED. FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE. OR RECYCLED CONCRETE 3, 357, 4, 467, 5, 56, 57 FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO CLEAN, CRUSHED, ANGULAR STONE AASHTO M43' A THE FOOT (BOTTOM) OF THE CHAMBER. OR RECYCLED CONCRETES 3, 357, 4, 467, 5, 56, 57 PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE.z•3 PLEASE NOTE: 1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4(AASHTO M43) STONE". 2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR. 3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS. 4. ONCE LAYER'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER'C' OR'D' AT THE SITE DESIGN ENGINEER'S DISCRETION. 5. WHERE RECYCLED CONCRETE AGGREGATE IS USED IN LAYERS'A' OR'B' THE MATERIAL SHOULD ALSO MEET THE ACCEPTABILITY CRITERIA OUTLINED IN TECHNICAL NOTE 6.20 "RECYCLED CONCRETE STRUCTURAL BACKFILL". ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE ALL PAVEMENT LAYER (DESIGNED AROUND CLEAN, CRUSHED, ANGULAR STONE IN A& B LAYERS �, � BY SITE DESIGN ENGINEER) PERIMETER STONE (SEE NOTE 4) EXCAVATION WALL (CAN BE SLOPED OR VERTICAL) 6" (150 mm) MIN - I � i NOTES: _ Il I / I �.� O `TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, WCREASE COVER TO 24" (600 mm), �!� � �I�I���"Q�'�� �_' -_ � � I��I ' I \ 6II _I i �q _ I' - II II � ' -I - I- - I - I - I - '�i. .� - I - I - I -;� I- .-� - I -� -I I - I I . �- ii - I - I - - I - - I � I . I . - - I - il I I I - - I - I - .. I_ , �/ MC-3500 - - - 6 - END CAP SUBGRADE SOILS (150 mm) MIN (SEE NOTE 3) • $i 18" (2.4 m) � (450 mm) MIN' MAX 12" (300 mm) MIN l 45" "`THIS CROSS SECTION DETAIL REPRESENTS (1140 mm) MINIMUM REQUIREMENTS FOR INSTALLATION. PLEASE SEE THE LAYOUT SHEET(S) FOR � PROJECT SPECIFIC REQUIREMENTS. - - I - i - -I - ,- - - � DEPTH OF STONE TO BE DETERMINED I I i i BY SITE DESIGN ENGINEER 9" (230 mm) MIN 77" (19501mm)I 12" (300 mm) MIN 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS. 2. MC-3500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS. 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS. 5. REQUIREMENTS FOR HANDLING AND INSTALLATION: • TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS. • TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3". • TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 450 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F/ 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS. � 0 J 0 w � 2 � Q i Q �- Z 0 � Q Q � Z � m o � w o Z Y U Q w � � x Z � U J O U � � O � xt � v w F O ¢ � o n. � W � H� � � � � O � � V� U o� � N J � m M Z � � = v W��- �o� ��� � J O � J � V 2 � � z O � a � U � w 0 Y x U � � � W F ¢ 0 � O U x U W � � � O � � � rn � N N � � � SHEET 30F5 INSTALL FLAMP ON 24" (600 mm) ACCESS PIPE PART #: MCFLAMP COVER PIPE CONNECTION TO END CAP WITH ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE STORMTECH HIGHLY RECOMMENDS _� FLEXSTORM INSERTS IN ANY UPSTREAM j�� � k�r :, STRUCTURES WITH OPEN GRATES '�� � \ ��_ �; � �z,� �����" � O p i�,���< ,. ,� �,i , . ��^� I �b i: . . _ � - I MG3500 CHAMBER i i i i o u II � '. n� pn li i � . ��II� SUMP DEPTH TBD BY SITE DESIGN ENGINEER (24" [600 mm] MIN RECOMMENDED) 24" (600 mm) HDPE ACCESS PIPE REQUIRED USE FACTORY PRE-CORED END CAP PART #: MC35001EPP24BC OR MC35001EPP24BW MC-3500 ISOLATOR ROW PLUS DETAIL NTS INSPECTION & MAINTENANCE STEP 1) INSPECT ISOLATOR ROW PLUS FOR SEDIMENT A. INSPECTION PORTS (IF PRESENT) A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN A.2. REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED A.3. USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG A.4. LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL) A.5. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3. B. ALL ISOLATOR PLUS ROWS B.1. REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS 6.2. USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE B.3. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3. STEP 2) CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED B. APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN C. VACUUM STRUCTURE SUMP AS REQUIRED STEP 3) REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS. STEP 4) INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM. NOTES 1. INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS. 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY. MC-3500 END CAP ..,.� ".,"..., ,.....,, �.,.,,�., ....VEN GEOTEXTILE BETWEEN FOUNDATION STONE AND CHAMBERS 8.25' (2.51 m) MIN WIDE CONTINUOUS FABRIC WITHOUT SEAMS � 0 J 0 w � 2 � Q �-- Z � ¢ Q � Z � m p � W O Z Y U Q w � � x Z � U J � U � O � xt � U w ¢ � o �. � s v � d � F� � � � L � � � � � V� U o� � N J � m M z� �=v W�� �pc+� � � r � J O � J � V 2 � � z 0 � a � U � w 0 Y x U � � 0 w � ¢ 0 � 0 U _ U w � � � O H � � � � � � N rn � � SHEET 40F5 � OPTIONAL INSPECTION PORT UNDERDRAIN DETAIL NTS STORMTECH STORMTECH CHAMBER �UTLET MANIFOLD � - � � ' � - ����� � i �� ��� � , ,. � ��< .�i- < � M� I 71' ,� 1 � i FOUNDATION STONE BENEATH CHAMBERS � / / ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE STORMTECH END CAP FOUNDATION STONE BENEATH CHAMBERS � ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE � . � � . � , � DESIGN ENGINEER 4" (100 mm) TYP FOR SC'310 & SC-160LP SYSTEMS 6" (150 mm) TYP FOR SC-740, SC-800, DC-780, MC-3500, MC-4500 & MC-7200 SYSTEMS MC-SERIES END CAP INSERTION DETAIL NTS STORMTECH END CAP SECTION A-A DUAL WALL PERFORATED HDPE , �; � , , UNDERDRAIN �_ i , ��. � �i ����c ; i: �� I SECTION B-B 12" (300 mm) MIN SEPARATION 12" (300 mm) MIN INSERTION MANIFOLD STUB MANIFOLD HEADER �/i ,� , �; �! /a ' �,I �� �;� 1 ;��i ��!���;,� j �'1i= I I I �I- II I i 12" (300 mm) MIN SEPARATION (" � , �; �� ; 12" (300 mm) MIN INSERTION ��1 1'�' �''I i iI ` . ,`1 I I NOTE: MANIFOLD STUB MUST BE LAID HORIZONTAL FOR A PROPER FIT IN END CAP OPENING. / \ I� � MANIFOLD HEADER MANIFOLD STUB MC-3500 TECHNICAL SPECIFICATION NTS (11c CREST WEB LOWER JOINT CORRUGATION FOOT 45.0" (1143 mm) I 77.0" I f'-' (1956 mm) —�1 75.0" (1905 mm) NOMINAL CHAMBER SPECIFICATIONS SIZE (W X H X INSTALLED LENGTH) 77.0" X 45.0" X 86.0" (1956 mm X 1143 mm X 2184 mm) CHAMBER STORAGE 109.9 CUBIC FEET (3.11 m3) MINIMUM INSTALLED STORAGE" 175.0 CUBIC FEET (4.96 m3) WEIGHT 134 Ibs. (60.8 kg) NOMINAL END CAP SPECIFICATIONS SIZE (W X H X INSTALLED LENGTH) 75.0" X 45.0" X 22.2" (1905 mm X 1143 mm X 564 mm) END CAP STORAGE 14.9 CUBIC FEET (0.42 m3) MINIMUM INSTALLED STORAGE* 45.1 CUBIC FEET (1.28 m3) WEIGHT 49 Ibs. (22.2 kg) "ASSUMES 12" (305 mm) STONE ABOVE, 9" (229 mm) STONE FOUNDATION, 6" SPACING BETWEEN CHAMBERS, 6" (152 mm) STONE PERIMETER IN FRONT OF END CAPS AND 40% STONE POROSITY STUBS AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH "B" STUBS AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T" END CAPS WITH A WELDED CROWN PLATE END WITH "C" END CAPS WITH A PREFABRICATED WELDED STUB END WITH "W" PART # STUB B C MC35001EPP06T 33.21" (844 mm) --- MC35001EPP06B 6" (150 mm) ___ 0.66" (17 mm) MC35001EPP08T 31.16" (791 mm) --- 8" (200 mm) ___ 0.81" (21 mm) MC35001EPP08B MC35001EPP10T 29.04" (738 mm) --- 10" (250 mm) MC35001EPP10B --- 0.93" (24 mm) MC35001EPP12T 26.36" (670 mm) --- 12" (300 mm) MC35001EPP12B --- 1.35" (34 mm) MC35001EPP15T 23.39" (594 mm) --- MC35001EPP15B 15" (375 mm) ___ 1.50" (38 mm) MC35001EPP18TC 20.03" (509 mm) --- MC35001EPP18TW 18" (450 mm) MC35001EPP18BC MC35001EPP18BW --- 177" (45 mm) MC35001EPP24TC 14.48" (368 mm) --- MC35001EPP24TW 24" (600 mm) MC35001EPP246C MC35001EPP24BW --- 2.06" (52 mm) MC35001EPP30BC 30" (750 mm) --- 2.75" (70 mm) NOTE: ALL DIMENSIONS ARE NOMINAL 22.2" (564 mm) INSTALLED 25.7„ (653 mm) � % ii Ili�' ,: I I I I . I, : �j�j II . � . � � CUSTOM PRECORED INVERTS ARE AVAILABLE UPON REQUEST. INVENTORIED MANIFOLDS INCLUDE 12-24" (300-600 mm) SIZE ON SIZE AND 15-48" (375-1200 mm) ECCENTRIC MANIFOLDS. CUSTOM INVERT LOCATIONS ON THE MC-3500 END CAP CUT IN THE FIELD ARE NOT RECOMMENDED FOR PIPE SIZES GREATER THAN 10" (250 mm). THE INVERT LOCATION IN COLUMN'B' ARE THE HIGHEST POSSIBLE FOR THE PIPE SIZE. � 0 Q J Q � Z p cn m o � w W Z Y � O Q vi � x = Z o c� � J � Q � Z � O � � .. w F O ¢ � o n. 0 d � F� � � � L � � � *+ �a V� U o� � N J � m M z� �=v W�� �pc+� � � r � J O � J � v=� � z O � a � U � w 0 Y x U � � 0 w � ¢ 0 � 0 U _ U W � � � 0 � � � � � N � � � SHEET 50F5 90.0" (2256 mm) ACTUALLENGTH �— UPPER JOINT CORRUGATION BUILD ROW IN THIS DIRECTION � � I � � I -___ .��_� ��n � � .,. i �� / � - � — - � ���' �, ��� ' � i � / / �� , � �� `'' , i , �, � � � , ;,�,,;: � ; ,; �,,;;� /� ,, .. . �-=�==--' =--'='======--�-=-=-=---� DIVERSION ST�' '�T' ��r w (STMH-1 A) P 48"X76" HERCP OUTLET Qioo= 105.56 CFS Q2 = 19.83 CFS DIVERSION �'To"�T"o� � (STMH-2F) 30" RCP OUTLET Q�oo= 38.10 CFS DIVERSION S� (STMH-3BD) 48" RCP OUTLET Q1oo= 45.54 CFS DIVERSION STRUCTURE 4 (STMH-3AB) 54" RCP OUTLET Qioo= 48.77 CFS 18" RCP OUTLET Q2=4.43 CFS L�_.' 18" RCP OUTLET Q2=8.87 CFS � � 18" RCP OUTLET Q2= 10.47 CFS 18" RCP OUTLET Q2=11.28 CFS � � � 48"X76" HERCP INLET Qioo=105.56 CFS Q2= 24.26 CFS / 30" RCP INLET Qioo=38.10 CFS Q2= 8.87 CFS 36" RCP INLET Q�oo= 45.54 CFS Q2= 10.47 CFS I 48" RCP INLET Qioo= 48.77 CFS Q2= 11.28 CFS I � 48"X76" HERCP INLET INV. OUT=4995.11 ------------------------- RIM ELEV= 5003.05 100-YR WSE = 5001.12 2-YR WSE = 4999.50 48"X76" HERCP INLET � INV. IN=4995.11 ---------------------------- 18" RCP INV. OUT=4995.11 SECTI ON A- A DIVERSION STRUCTURE 1 RIM ELEV= 5005.43 100-YR WSE = 5002.58 2-YR WSE = 5000.83 18" RCP INV. OUT=4999.391 SECTI ON A- A DIVERSION STRUCTURE 2 RIM ELEV= 5002.69 �� 36" RCP INLET INV. IN=4995.27 18" RCP INV. OUT=4995.27 - 100-YR WSE = 5000.25 - 2-YR WSE = 4996.57 48" RCP INLET INV. OUT=4995.27 � SECTI ON A- A DIVERSION STRUCTURE 3 RIM ELEV= 5003.05 54" RCP INLET INV. OUT=4994.32 - 100-YR WSE = 5000.64 � 2-YR WSE = 4996.63 » �48 RCP INLET INV. IN=4994.34 � 18" RCP INV. OUT=4994.34 SECTI ON A- A DIVERSION STRUCTURE 4 RIM ELEV= 5003.05 TOP OF WEIR WALL = 4999.50 -------------- i _-� � � ��/ \�� 18" RCP INLET 48"X76" HERCP INLET �� 1� INV. IN=4995.11 � INV. OUT=4995.11 � � / � ----------� ��� �� � � -------------- � � ----------- 48"X76" RCP INV. OUT=4995.11 SECTION B-B DIVERSION STRUCTURE 1 RIM ELEV= 5005.43 J � 30" RCP INLET INV. OUT=4999.39 \ / TOP OF WEIR WALL = 5000.82 18" RCP INLET INV_ IN=4999.39 _ _ _ � 30" RCP INV. OUT=4999.39 SECTION B-B DIVERSION STRUCTURE 2 RIM ELEV= 5002.69 TOP OF WEIR WALL = 4996.57 18" RCP INLET INV. IN=4995.27 -------- � � 48" RCP INLET � INV. OUT=4995.27 � 36" RCP INV. OUT=4995.27 SECTION B-B DIVERSION STRUCTURE 3 RIM ELEV= 5003.05 � ----' ----- 54 HERCP INLET � INV. OUT=4994.34 \� �/ - - - - - - - - - - - \ / TOP OF WEIR WALL = 4996.63 18" RCP INLET INV. IN_4994.34_ _ _ - � 48" RCP INV. OUT=4994.34 SECTION B-B DIVERSION STRUCTURE 4 5 � scale 0 5 1 "=5' 10 � feet z 0 � � � Z � O � � N w > � w � � Q 0 �- m DRAWN BRB CHECKED DAP DESIGNED BRB FILENAME 0009_Details o�PpO L/� ,..... vo; ��PN �pJP��p� . QQ �G ����G G��S�� � �v Q � . . F . � �0� •....••'' � G S��NA� E� Z � � - � - � 0 m W � � � � a= � � Q � Z � � C/) J a � w � Z O � � � � � � � Z 0 V TST, INC. CONSULTING ENGINEERS 748 Whalers Way Suite 200 Fort Collins Colorado 80525 Phone: 970.226.0557 J08 N0. 1230.0009.00 SCALE 1" = 5� DATE JULY 17, 2024 SHEET 200 of 206 APPENDIX C FEMA FLOOD INSURANCE RATE MAP National Flood Hazard Layer FIRMette 105°1'44"W 40°37'12"N � " 4 � � �� � '• � �+ a= I . ^ . ' � a V � , ��� L �� � ��7 � �. � �. ' 1 -'. F�68LV S33 r t � l f�::. 1 •.. Feet 1 :6,000 105�1����W 4��36�45��N 0 250 500 1,000 1,500 2,000 Basemap Imagery Source: USGS National Map 2023 �� ��� -� � ■ .� � �+ � + -1 � :�:� FEMA � '"� _ s �,.,� * �• #tiM1-� � � �', � _ f' � � �� � T � �fzE i1(�)f,�Ml��f.LOU( � I U��'i\f�f � � � � `-�- 7�1 • �" � � — � - Legend SEE FIS REPORT FOR DEfAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) Zone A. V. A99 SPECIAL FLOOD With BFE or Depth zone 4E. n0. nH, vE. nR HAZARD AREAS Regulatory Floodway 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile zo+,� x - � Future Conditions 1% Annual �_- Chance Flood Hazard zone x Area with Reduced Flood Risk due to OTHER AREAS OF Levee. See Notes. zo�,� x FLOOD HAZARD Area with Flood Risk due to Leveezo�,e o NO SCREEN Area of Minimal Flood Hazard zonc x 0 Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard zone o GENERAL ---- Channel, Culvert, or Storm Sewer STRUCTURES i i i i i i i Levee, Dike, or Floodwall � Cross Sections with 1%Annual Chance ��•5 Water Surface Elevation e - - - Coastal Transect �s��� Base Flood Elevation Line (BFE) Limit of Study Jurisdiction Boundary -- --- Coastal Transect Baseline OTHER _ — profile Baseline FEATURES Hydrographic Feature Digital Data Available N No Digital Data Available MAP PANELS Unmapped OThe pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location. This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 7/15/2024 at 5:13 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes. ._ � �; . �w1� t P " �� � � �� . . �'���� � ., � � - ti �F. ti�. �� ' . APPENDIX D USDA HYDROLOGIC SOIL GROUP MAP USDA United States = Department of Agriculture �I RCS Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants i• ��• � � - � .;� .� . a��.� �.� �.��� : � ��� '�� � � ': �. , . 1 { i � � �r "' '� 'R .! r1'l �'Jr `�':.7 i� r � R � • �� �-v �i �:'� ni �: ,, ; � � � � '����i . i � I r- � / � .. _ � " — _ ■�■■■�■■■■ 1 ;_'''�-' ft r'. � -+ y ���r�,. �_ �� � Custom Soil Resource Report for Larimer County Area, Colorado � ► r.' �. -�-�� � ,�-; ,, -� ,. �. - �,, � �� ��. � . �`� `y , -,��� _� � �. �''�.,` , � • 1 i .� \ . � I . �� . _ . -'� - J �s .F � r� 1 �1�.. ,�� � ••�11�r11 x� - - � L�C . � �J. ti -� July 9, 2024 Preface Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment. Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations. Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nres.usda.gov/wps/ portal/nres/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nres) or your NRCS State Soil Scientist (http://www.nres.usda.gov/wps/portal/nres/detail/soils/contactus/? cid=nres142p2_053951). Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations. The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey. Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. 3 Contents Preface.................................................................................................................... 2 How Soil Surveys Are Made ..................................................................................5 SoilMap .................................................................................................................. 8 SoilMap ................................................................................................................9 Legend................................................................................................................10 MapUnit Legend ................................................................................................ 11 MapUnit Descriptions .........................................................................................11 Larimer County Area, Colorado ...................................................................... 13 5—Aquepts, loamy ......................................................................................13 22—Caruso clay loam, 0 to 1 percent slope ............................................... 14 35—Fort Collins loam, 0 to 3 percent slopes .............................................. 15 36—Fort Collins loam, 3 to 5 percent slopes .............................................. 16 95—Satanta loam, 1 to 3 percent slopes .................................................... 18 98—Satanta Variant clay loam, 0 to 3 percent slopes .................................19 101—Stoneham loam, 1 to 3 percent slopes .............................................. 20 Soil Information for All Uses ...............................................................................23 Soil Properties and Qualities .............................................................................. 23 Soil Qualities and Features .............................................................................23 HydrologicSoil Group ................................................................................. 23 References............................................................................................................ 28 :� How Soil Surveys Are Made Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surFace down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity. Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA. The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape. Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries. Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil 5 Custom Soil Resource Report scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research. The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas. Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of ineasurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape. Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties. While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil. Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date. After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and C� Custom Soil Resource Report identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately. 7 Soil Map The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit. E:3 Custom Soil Resource Report � Soil Map 0 497500 497600 497700 497800 497900 498000 494100 498200 493.900 40° 3T15"N � �... ,�,. . �. �. .. .�._ . �„ .� �. � I�� .�� M . .. � � . . . n4� � - � 7�Z . I H� � . -. ' . . . �'!.} ' � : i . � ~ . � , .. _ . i� . �� . . ��N: -.� - �� y' �` . .Y �, , v.'. 4!L ��� .� ' I -,'� ` • "-,a, � �"T' � j� a `�� � � r � �, .:; ��) � I � s �� �� - � �4: +i� � . . '�.�A. � 4fJ 7 Y� � I N �. . . � . , 1 ' i . .� j',1 N " � �, . �� t, � ��� �' -_ � � r ��. � i I. .'• j ' � ���� y �• a}• �'' _ r � .,�, I, . . �, — _� � �fi'�=1��!`-_,..i. � � g � - _ z , . ; ���* � •a � �-r— �-�5,� ��, _�-� a '1� - ' . a�.Y 9041 ` � 4�� ' .� � �— �` � I � � � � ' �l . . . I _�i+: < Y � � � 1 .� T � - V . �.,.� I g '�� �-_ — y� . ��� I � . � � _ —. . — . _.. �� r �k�� �'� �� r.r.�y . � .»� � _ IC ` tir!- _ ,. — - _ 'a .r � .�,F.., � �:;w �� �. l . _ ���1 ""�� id I� f�f14 � � v- � I .. _ . . .n +� _ i �fylf I � � , _ �r" �. '" a�-'�'y��` - . t. 1 � I � � � '11, � �.� � Ik ri�ik:;_ . i � t ��,� .. .._�� � ' ~ � ����� . . " � �i ��� � , � i, -�_ � �� � � ��. r: . � ; . � � -�� , �+ a �- ,�. � � � '` N e I '�� i� ��� I� 1� 4 i.�� . ������.i i .�l :... 'r1tr . �� S' � . . . . �.�.. � . tir. . . i, i T I � � � _ ' a � � Soil'M��p m�y iiot be valid at this scale. 40° 36' 33" N� I I I I I I I as�soo as�soo asnoo as�eao as�soo aseaoo ase�oo ao 3 � Map Scale: 1:6,260 if printed on A porhait (8.5" x 11") sheet. ° N Meters � 0 50 100 200 300 � Feet 0 300 600 1200 1800 Map projectlon: Web Mercator Comer coordinates: WGS84 Edge dcs: UTM Zone 13N WGS84 9 � � asszoo I� � d a �c � 0 4.984W 40° 3i 15" N � � � � � 8 � � � � � � — � � _� � , , -- - � I � I� � 40° 36' 33" N 498.'300 498400 3 0 Custom Soil Resource Report MAPLEGEND Area of Interest (AOI) Area of Interest (AOI) Soils Soil Map Unit Polygons s:,� Soil Map Unit Lines � Soil Map Unit Points Special Point Features U Blowout Borrow Pit p� Clay Spot Closed Depression Gravel Pit Gravelly Spot Landfill Lava Flow _ Marsh or swamp Mine or Quarry Miscellaneous Water Perennial Water Rock Outcrop Saline Spot Sandy Spot = Severely Eroded Spot Sinkhole Slide or Slip oa Sodic Spot Spoil Area Stony Spot Very Stony Spot Wet Spot Other . Special Line Features Water Features Streams and Canals Transportation �..�. Rails ti Interstate Highways US Routes Major Roads Local Roads Background � Aerial Photography MAP INFORMATION The soil surveys that comprise your AOI were mapped at 1:24,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) Iisted below. Soil Survey Area: Larimer County Area, Colorado Survey Area Data: Version 18, Aug 24, 2023 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Jul 2, 2021—Aug 25, 2021 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. 10 Custom Soil Resource Report Map Unit Legend Map Unit Symbol Map Unit Name Acres in AOI Percent of AOI 22 35 36 95 98 101 Totals for Area of Interest Aquepts, loamy Caruso clay loam, 0 to 1 percent slope Fort Collins loam, 0 to 3 percent slopes Fort Collins loam, 3 to 5 percent slopes Satanta loam, 1 to 3 percent slopes Satanta Variant clay loam, 0 to 3 percent slopes Stoneham loam, 1 to 3 percent slopes 0.4 0.1 34.3 4.4 2.1 67.7 1.1 110.1 0.4% 0.1 % 31.2% 4.0% 1.9% 61.5% 1.0% 100.0% Map Unit Descriptions The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit. A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils. Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor 11 Custom Soil Resource Report components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas. An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities. Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement. Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series. Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups. A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example. An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example. An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example. Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example. 12 Custom Soil Resource Report Larimer County Area, Colorado 5—Aquepts, loamy Map Unit Setting National map unit symbol: jpws Elevation: 4,500 to 6,700 feet Mean annual precipitation: 12 to 18 inches Mean annual air temperature: 39 to 50 degrees F Frost-free period: 80 to 140 days Farmland classification: Not prime farmland Map Unit Composition Aquepts and similar soi/s: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Aquepts Setting Landform: Depressions, draws, stream terraces Landform position (three-dimensional): Base slope, tread, dip Down-slope shape: Linear Across-slope shape: Linear Parent material: Loamy alluvium Typical profile H1 - 0 to 60 inches: variable Properties and qualities Slope: 0 to 3 percent Depth to restrictive feature: More than 80 inches Drainage class: Very poorly drained Runoff class: Negligible Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (0.60 to 99.90 in/hr) Depth to water table: About 6 to 18 inches Frequency of flooding: Rare Frequency of ponding: None Interpretive groups Land capability classification (irrigated): 5w Land capability classification (nonirrigated): 3w Hydrologic Soil Group: A/D Ecological site: R067BY038C0 - Wet Meadow Hydric soil rating: Yes Minor Components Nunn Percent of map unit.• 5 percent Ecological site: R067BY002C0 - Loamy Plains Hydric soil rating: No Kim Percent of map unit.• 5 percent 13 Custom Soil Resource Report Ecological site: R067BY002C0 - Loamy Plains Hydric soil rating: No Stoneham Percent of map unit.• 5 percent Ecological site: R067BY002C0 - Loamy Plains Hydric soil rating: No Fort collins Percent of map unit.• 5 percent Ecological site: R067BY002C0 - Loamy Plains Hydric soil rating: No 22—Caruso clay loam, 0 to 1 percent slope Map Unit Setting National map unit symbol: jpvt Elevation: 4,800 to 5,500 feet Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 48 to 50 degrees F Frost-free period: 135 to 150 days Farmland classification: Prime farmland if irrigated Map Unit Composition Caruso and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Caruso Setting Landform: Flood-plain steps, stream terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Mixed alluvium Typical profile H1 - 0 to 35 inches: clay loam H2 - 35 to 44 inches: fine sandy loam H3 - 44 to 60 inches: gravelly sand Properties and qualities Slope: 0 to 1 percent Depth to restrictive feature: More than 80 inches Drainage c/ass: Somewhat poorly drained Runoff c/ass: High Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr) Depth to water table: About 24 to 48 inches Frequency of flooding: Occasional 14 Custom Soil Resource Report Frequency of ponding: None Calcium carbonate, maximum content.• 5 percent Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Moderate (about 8.4 inches) Interpretive groups Land capability classification (irrigated): 3w Land capability classification (nonirrigated): 5w Hydrologic Soil Group: D Ecological site: R067BY036C0 - Overflow Hydric soil rating: No Minor Components Loveland Percent of map unit.• 9 percent Landform: Terraces Ecological site: R067BY036C0 - Overflow Hydric soil rating: Yes Fluvaquents Percent of map unit.• 6 percent Landform: Terraces Hydric soil rating: Yes 35—Fort Collins loam, 0 to 3 percent slopes Map Unit Setting National map unit symbol: 2tlnc Elevation: 4,020 to 6,730 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 48 degrees F Frost-free period: 135 to 160 days Farmland classification: Prime farmland if irrigated Map Unit Composition Fort collins and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Fort Collins Setting Landform: Interfluves, stream terraces Landform position (three-dimensional): Interfluve, tread Down-slope shape: Linear Across-s/ope shape: Linear Parent material: Pleistocene or older alluvium and/or eolian deposits Typical profile Ap - 0 to 4 inches: loam 15 Custom Soil Resource Report Bt1 - 4 to 9 inches: clay loam Bt2 - 9 to 16 inches: clay loam Bk1 - 16 to 29 inches: loam Bk2 - 29 to 80 inches: loam Properties and qualities Slope: 0 to 3 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Runoff class: Low Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 2.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content.• 12 percent Maximum salinity: Nonsaline to very slightly saline (0.1 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: High (about 9.1 inches) Interpretive groups Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 3e Hydrologic Soil Group: C Ecological site: R067BY002C0 - Loamy Plains Hydric soil rating: No Minor Components Nunn Percent of map unit.• 10 percent Landform: Stream terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Ecological site: R067BY002C0 - Loamy Plains Hydric soil rating: No Vona Percent of map unit.• 5 percent Landform: I nterfl uves Landform position (three-dimensional): Interfluve, side slope Down-slope shape: Linear Across-s/ope shape: Linear Ecological site: R067BY024C0 - Sandy Plains Hydric soil rating: No 36—Fort Collins loam, 3 to 5 percent slopes Map Unit Setting National map unit symbol: 2yqpg Elevation: 4,800 to 5,900 feet i[^.' Custom Soil Resource Report Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 48 to 50 degrees F Frost-free period: 135 to 150 days Farmland classification: Prime farmland if irrigated Map Unit Composition Fort collins and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Fort Collins Setting Landform: Alluvial fans, terraces Landform position (three-dimensional): Tread Down-slope shape: Linear, convex Across-slope shape: Linear Parent material: Pleistocene or older alluvium and/or eolian deposits Typical profile Ap - 0 to 5 inches: loam Bt1 - 5 to 8 inches: clay loam Bt2 - 8 to 18 inches: clay loam Bk1 - 18 to 24 inches: loam Bk2 - 24 to 80 inches: loam Properties and qualities Slope: 3 to 5 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Runoff c/ass: Low Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 2.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content.• 12 percent Maximum salinity: Nonsaline to very slightly saline (0.1 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: High (about 9.1 inches) Interpretive groups Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e Hydrologic Soil Group: C Ecological site: R067BY002C0 - Loamy Plains Hydric soil rating: No Minor Components Table mountain Percent of map unit.• 15 percent Landform: Alluvial fans, stream terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Ecological site: R067BY036C0 - Overflow Hydric soil rating: No 17 Custom Soil Resource Report Larim Percent of map unit.• 5 percent Landform: Alluvial fans Down-slope shape: Linear Across-slope shape: Linear Ecological site: R067BY063C0 - Gravel Breaks Hydric soil rating: No 95—Satanta loam, 1 to 3 percent slopes Map Unit Setting National map unit symbol: 2w5f3 Elevation: 3,650 to 5,350 feet Mean annual precipitation: 12 to 18 inches Mean annual air temperature: 46 to 54 degrees F Frost-free period: 115 to 155 days Farmland classification: Prime farmland if irrigated Map Unit Composition Satanta and similar soils: 90 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Satanta Setting Landform: Paleoterraces Landform position (two-dimensional): Backslope Landform position (three-dimensional): Head slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Eolian sands Typical profile Ap - 0 to 9 inches: loam Bt - 9 to 18 inches: clay loam C- 18 to 79 inches: loam Properties and qualities Slope: 1 to 3 percent Depth to restrictive feature: More than 80 inches Drainage c/ass: Well drained Runoff c/ass: Low Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content.• 10 percent Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) 18 Custom Soil Resource Report Available water supply, 0 to 60 inches: Very high (about 12.2 inches) Interpretive groups Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4c Hydrologic Soil Group: C Ecological site: R067BY002C0 - Loamy Plains Hydric soil rating: No Minor Components Nunn Percent of map unit: 5 percent Landform: Terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-s/ope shape: Linear Ecological site: R067BY002C0 - Loamy Plains Hydric soil rating: No Fort collins Percent of map unit.• 5 percent Landform: Alluvial fans Landform position (two-dimensional): Backslope Landform position (three-dimensional): Head slope Down-slope shape: Linear Across-slope shape: Linear Ecological site: R067BY002C0 - Loamy Plains Hydric soil rating: No 98—Satanta Variant clay loam, 0 to 3 percent slopes Map Unit Setting National map unit symbol: jpyh E/evation: 4,800 to 5,600 feet Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 48 to 50 degrees F Frost-free period: 135 to 150 days Farmland classification: Prime farmland if irrigated Map Unit Composition Satanta variant and similar soils: 90 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Satanta Variant Setting Landform: Terraces Landform position (three-dimensional): Tread Down-slope shape: Linear 19 Custom Soil Resource Report Across-slope shape: Linear Parent material: Alluvium Typical profile H1 - 0 to 9 inches: clay loam H2 - 9 to 22 inches: clay loam H3 - 22 to 60 inches: loam Properties and qualities Slope: 0 to 3 percent Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained Runoff c/ass: High Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr) Depth to water table: About 24 to 48 inches Frequency of flooding: Occasional Frequency of ponding: None Calcium carbonate, maximum content.• 15 percent Gypsum, maximum content: 10 percent Maximum salinity: Very slightly saline to slightly saline (2.0 to 4.0 mmhos/cm) Available water supply, 0 to 60 inches: Moderate (about 8.7 inches) Interpretive groups Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 4e Hydrologic Soil Group: D Ecological site: R067BY036C0 - Overflow Hydric soil rating: No Minor Components Nunn Percent of map unit: 5 percent Ecological site: R067BY002C0 - Loamy Plains Hydric soil rating: No Caruso Percent of map unit.• 3 percent Ecological site: R067BY036C0 - Overflow Hydric soil rating: No Loveland Percent of map unit.• 2 percent Ecological site: R067BY036C0 - Overflow Hydric soil rating: No 101—Stoneham loam, 1 to 3 percent slopes Map Unit Setting National map unit symbol: jptt Elevation: 4,800 to 5,600 feet 20 Custom Soil Resource Report Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 48 to 50 degrees F Frost-free period: 135 to 150 days Farmland classification: Prime farmland if irrigated Map Unit Composition Stoneham and similar soils: 90 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Stoneham Setting Landform: Benches, terraces Landform position (three-dimensional): Base slope, tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Mixed alluvium and/or eolian deposits Typical profile H1 - 0 to 4 inches: loam H2 - 4 to 10 inches: sandy clay loam H3 - 10 to 60 inches: clay loam Properties and qualities Slope: 1 to 3 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Runoff class: Low Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 15 percent Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: High (about 9.6 inches) Interpretive groups Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: R067BY002C0 - Loamy Plains Hydric soil rating: No Minor Components Fort collins Percent of map unit.• 5 percent Ecological site: R067BY002C0 - Loamy Plains Hydric soil rating: No Kim Percent of map unit.• 5 percent Ecological site: R067BY002C0 - Loamy Plains Hydric soil rating: No 21 Custom Soil Resource Report 22 Soil Information for All Uses Soil Properties and Qualities The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality. Soil Qualities and Features Soil qualities are behavior and perFormance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil. Hydrologic Soil Group Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. 23 Custom Soil Resource Report Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. 24 � � 0 as�soo 40° 3T 15" N � I^. I� .�� M . e4 � Y � �� � —M �Y � H � !li s ' �, �) t � �1 � N � � N r � �tt � �� e � , �� .'�_�I �-�, �- � , � �� � � i , ,+' a� 'n �. r � � � � 'r, ,� - � k ', '�� � ti �J� �—`�ti� � � ;.' I�f.r. '�Ir- o � � R� Custom Soil Resource Report Map—Hydrologic Soil Group 497600 497700 497800 497900 498000 494100 498200 .�.. . �. �. . . .. .�. _ . �,. .� �. _ 7�Z g� �., . .Y �r{qv .a � r �� � � � - , �����r � � Y I - � �f A � ' ^ �'I'1�L�F�. L 4. ' ���`� � ���F.f � .r �— , - . � 5a — '�,., � V . � . ��'�� � � .. w.���;� r �� � � . �� �_ � . �.r�l�: � V � ' 1i�� � �y�,- � . � `� — �"i .�. . . - . a , '� Soil'M��p m�y iiot be valid at this scale. 40° 36' 33" N� I I I I I I I as�soo as�soo asnoo as�eao as�soo aseaoo ase�oo asi ao as 3 � Map Scale: 1:6,260 if printed on A porhait (8.5" x 11") sheet. ° N Meters � 0 50 100 200 300 � Feet 0 300 600 1200 1800 Map projectlon: Web Mercator Comer coordinates: WGS84 Edge dcs: UTM Zone 13N WGS84 25 493900 � 1 f,l _ t i I � � � ��' � � � � ���. � g ,� � ; � �� � I � ' —� � � � �•� �� '-� _ � � I � I 0 — � � �—�—_—' �, I I �= � � � �� , ; --- � -;� I � �I 40° 36' 33" N 200 498.'300 498400 3 0 � 0 4.98I4W si� 40° 3i 15" N Custom Soil Resource Report MAPLEGEND Area of Interest (AOI) Area of Interest (AOI) Soils Soil Rating Polygons � A 0 A/D 0 B 0 B/D 0 C 0 cio � D � Not rated or not available Soil Rating Lines F;-� A � A/D +�/ B „y B/D . . C ,.y C/D ,,� D .. Not rated or not available Soil Rating Points a A � A/D ■ B � a/� a � � C/D � D � Not rated or not available Water Features Streams and Canals Transportation �� . Rails � Interstate Highways US Routes Major Roads Local Roads Background � Aerial Photography MAP INFORMATION The soil surveys that comprise your AOI were mapped at 1:24,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) Iisted below. Soil Survey Area: Larimer County Area, Colorado Survey Area Data: Version 18, Aug 24, 2023 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Jul 2, 2021—Aug 25, 2021 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. 26 Custom Soil Resource Report Table—Hydrologic Soil Group Map unit symbol Map unit name Rating Acres in AOI Percent of AOI 5 Aquepts, loamy A/D 22 Caruso clay loam, 0 to 1 D percent slope 35 Fort Collins loam, 0 to 3 C percent slopes 36 Fort Collins loam, 3 to 5 C percent slopes 95 Satanta loam, 1 to 3 C percent slopes 98 Satanta Variant clay D loam, 0 to 3 percent slopes 101 Stoneham loam, 1 to 3 B percent slopes Totals for Area of Interest 0.4 0.1 34.3 4.4 2.1 67.7 1.1 110.1 0.4% 0.1 % 31.2% 4.0% 1.9% 61.5% Rating Options—Hydrologic Soil Group Aggregation Method: Dominant Condition Component Percent Cutoff.� None Specified Tie-break Rule: Higher 1.0% 100.0% 27 References American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition. American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00. Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31. Federal Register. July 13, 1994. Changes in hydric soils of the United States. Federal Register. September 18, 2002. Hydric soils of the United States. Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States. National Research Council. 1995. Wetlands: Characteristics and boundaries. Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nres.usda.gov/wps/portal/ nres/detail/nationaUsoils/?cid=nres142p2_054262 Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http:// www.nres.usda.gov/wps/portal/nres/detail/national/soils/?cid=nres142p2_053577 Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http:// www.nres.usda.gov/wps/portal/nres/detail/national/soils/?cid=nres142p2_053580 Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section. United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1. United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nres.usda.gov/wps/portal/nres/detail/soils/ home/?cid=nres 142p2_053374 United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nres.usda.gov/wps/portal/nres/ detail/national/landuse/rangepasture/?cid=stelprdb1043084 28 Custom Soil Resource Report United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nres.usda.gov/wps/portal/ nres/detail/soils/scientists/?cid=nres142p2_054242 United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nres.usda.gov/wps/portal/nres/detail/national/soils/? cid=nres142p2_053624 United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http:// www.nres.usda.gov/I nternet/FSE_DOCUMENTS/nres142p2_052290. pdf 29 APPENDIX E DRAINAGE PLANS � � \ \�� � � / / � �/ �� � ` � \�� � �/ � � �-� �//� � � � �� � \ f /// � �, � � � � � � ` � � % �� � y�� � � � �—, � , �ir , / ,� �+ � � �i .� . �j �� � y � �� � � ��i � / l �/ , /// �, �� � ��� � \ � \ \ p � / � / / / �j . / // , � \ � � � �� �� � � °� � \ / + �� �/�� �� �/� � � � — � � � /% /� � � � � � / % /� > ,' � \ � � `� � � / ��/ � � � � /�°� %�� � �% ��°� � � � \ \ \ � \ \ / \\� \ \�+ + / � � �j�� � j/ / � / � � � � � � / /// / / � r/% ' // � � i� ,� , � � l � � � �; � � �� � �` , > > / � 1 /// ��� /� � ,' �' �'� �- ��� � � �\� \ �\ � � + / / � //�% �j// /�� �� � � � � � � \ �`�� ./ � �� �. /� �� � , �� \ � � � � \ �� � � � /�/ y // / \ � � � �� � � — —� ��� \ \� \�\ � \ � \ �\ \ , \ � � � � � � � �. ) \ / \ � �� � � � � `� � � � �< � � � \ � � � � j� —� �, \ � � � � \ / � / � ` � �\�. �I� � � � / � \ `, � \ l \ � J \ � � /� � � � � � / �/�% � \ —� � � � j//% 1 � � — � � �% � � . \ � �/�// � \ \ � � �- —� / ��� /i / ��� � � / //�� % � � \ � � � ��//� �� \ � \� � ��% /%� � � � � /��� -� / '- � \ � \ � � ��� . ., � � ��� \ � � / ��/�/, .. � � ;;�: \ � � ////% / �;,:� \ � \ ,, //j� . .. e / � ;,. � �, i \ � �� � �%%/ � � � l � �� � / \ � \ 1 � � ���/ /� / / � • /%�� � / ,.b��� � � �� \ I /���' �/ / � ��. \ \ �� /�/%���� � ��/ � � � � \ �� � �� //� � v � � f //%� � % � � � � � �� %�� / .. Z � //� � % � \ � / � y��/ � \ � � � ��� � �� , � / � /// / / \ \ � \ //�� �� � � \ I ���/ /� / � � %/ / / / ;�:�,' / i � \\ \ \ � � ��// �� � � \ � ' //� � � \ %/ � /// / / � �;;� � � � /%/� " // / / / � � // � �� — — � 1 � �� /%/ �/%/ / � i ; � ) ( %/�\ "j/ / / i i � � � k 1 /� � / / / � / � // /e � i � i � � � �//% j / / � ���:��.. � � � / � �� ) 1 1 � � �� � � �� � - � ii , �� � `����:�:, -� � // � / � i i , � � // �/ i i / _ � � �� J //� �� � � ,�--� / � � � � ,,/ . �� I / � ` - � � i „�' � I ` / ��, � ,� � � � � � � �� � � � �� � � / .�,. � / / �� � 1 � . � �� � ( ��s�.,, � '� / /�� ; �� , � _.4� ������� �� � � � � � � � �� , � ��� � � ( � 5���:. / � %/�� � / � � � � ` > � / j/ � � � � ��, //�/ / � � � 1 %/, , �/ � \ � � �,�'�/�/ .� � � �) / � / I / �/� ' / / — � � / � ,�� � / � � / �,. � � � � � � � � \ � , I I � I � � I� 1 �� � � / �`/// y� /// �i �� �� o� ( � j/ , � / /, � � �o � � /�/ : /� /,� i� �� / /�/ //�� %/ / i � � x� j/ // � , � � � �/ / /// . � /� � �� , �� � � /% , �� , � �`�%/ ��/ / � , �� / � /�% ,���� � �� i� � I /�� ' �� � � � �� / ��� / � /� �� � � � � ' / � � �� / � � ti� � �� � � � ,� // , � � .� _ 1 � �� / --� -- l \ o� � � / / � ;. I �// � I � � � � \ � � I � \ � , _ \ \ / � � \ � I �/ � I � � � � W w 2 W w � � � � � W W _ w W � N KEY MAP N.T.S. x AB-C Y � � � � � __ �`�'� � i � ,5` i _� � ������ 50 � LEQEND X = AREA (ACRES) AB—C = BASIN NUMBER Y = IMPERVIOUSNESS EXISIING STORM SEWER PROPOSED STORM SEWER PROPOSED BASIN BOUNDARY PROPOSED CONTOURS EXISIING CONTOURS FLOW DIRECTION POSSIBLE LID LOCATION scale 1 "=50' � �� 50 100 � Z � � % W � z 0 � � � U � W � � Q 0 � m DRAWN BRB CHECKED DAP DESIGNED BRB FILENAME 0009_Drainage r•..••••. :� �:. �o QQ�o���o�' : Q���O� G��S �'� � F ?: ��, �o� ........ . �aG Z 0 � � � � � 0 m W � � Cn Q Q = > � Q H z 0 � II � � � W C� Q Z — Q � � CONSULTING ENGINEERS 748 Whalers Way Suite 200 Fort Collins Colorado 80525 Phone: 970.226.0557 JOB N0. 1230.0009.00 SCALE 1 " = 50� DATE JULY 17, 2024 feet SHEET 195 of 218 0 � � w W _ W W � //,� / /�, � �. � �� � �� � r %/� ��/ � � � � � � � // /� � ,� / �� � � � � / ! / %/ � +/, ��/ ,�� �� � ��, / �� � + � // % � / �ir � � / � j�% � � +�� l / j/ /% , \ + �� � ���, � � �! �� � ��� �� , / +/////� �/�� .� � ✓ �� �� Y/�/��� lil�� +�/��� / � rr i� � �� � , �,��� ���� i�%/ r� /��� ���� �` /��� �///// �j/ / /// / � � r/ / / �� , � �' , �� � /, , � � / / / �, � � ���,� ,. �/, , ,. , /� � / ��� / �/ �/ � � � + � j/� ��� �� � / // � �� / /�� ��� � / � / � �� i � %% ' %/� / � � � / � /� /� , �� ,� , �� � /�// /� � � � � �► /,' ,,, i'��Y,,� , . , ./ _ % �� ///// / /�� �� ,�� %�� / /,' i' � ; ����� , � ��► .��� � ;� ,� � ` ,�� � �� � � � /%��/ � � ,' ��i � , i� ;' � .� �►� � / / /� � / � � / /i� ��� / �� / /,� i � �� � /�� i� � �� �, � � � , � � � �—� �, , � �� � � � ,� � � � / �'► � � � � � �' �► � �� � � I � � \ � � I �� � ( "�— '�� � 1 � / / � � / � � / � � r � / � � / � ,� , 1 / /�� ��� � �' � � � ��� I � / /�// /// / /,' � ��1' � / � / ' \ /� � �' � / �� � � � / � o � �� ��' �► � 1 / � / �/ � �� � /�/ � /� � � � � � � � � i ��' � �► � I � = � � �/ / � / �� / �1 � ����\ / � � � I ��� �� � �� � � '►� f � � � ���,`�'� 1 /�j /� � � � �+ I \ '�� � / � � �/ � � r I � �\� ��, �� � � l ��� � � / 1 �.��� ,' �� � / � a / � I � I ��L �� � � I �� �►�► � I �� 4 . ��► � � � � � � S, t � � � � T� � � I � �� / � EX. WETLANDS CHANNEL � � � i I ' � �� / � � \�, , ��\\ � I � \ �- � � ���� � � r � � � � � �� — _ % � \ ��� ��� \ � / � � � \ � _ _ �� � � . �- �� �- � �� �� � �� ` �� � �' � �- � . ��� � � � �� t � �� � � � � �� - � �_ � � 1� � � � ��- � � 1 � � 1 �- - SEE SHEET 197 \ ` � ' � 1 / � "f ' l I ' � ' I � \ I � I � � I � � � I , � I I � I � � 1 � I � I \� � � � � I I \ � � � I � � � � � � / \ 1 � 1 I I I \ I � � ( � I \ � � � � l � � � � I � � � \ \ � \ � / � � / � � I I � � \ � � 1 � � / � I � � � � / � I I � � I � / � � 1 \ � I � � I l � 1 � I � I � � �� � � � I 1 1 � I � I \ � �� � � � � I I � I � I / � ` I I I I I I � ' l I I I \ \ I \ I I ' ' 103.58 1 1 \ \ I I OFFSITE-1 1 I 1 I I / 2�.�� � , \ � � � � � � � � � � � I I I � I \ I I I I I 1 � 1 1 I I � 1 1 I � I � I � \ I � I I � I � � I \ � � \ \ \ \ I I \ \ 1 1 \ 1 I ' \ / \ \ \ \ � \ \ � 1 � � � � � 1 I 1 \ � o I \ � I \ I � � � 1 � � I � � � � � �� � � � I � � � 1 ` � \ � , � � \ I � \ � �, \ \ \ ' \ \ \ \ o � � I � 1 � \ \ � \ \ I � � 1 �� � � \ � I \ � � \ � � � � \ � \ \ � � � � ! \ � \ � � � \ � � \ � 1 � � � � � � � \ � \ � \ � \ ` � � \ \ \ \ � � � � \ \ � � \ � � 1 \ � 1 � � � o � � � � � � � \ � � I � 1 I � � � � � � \ \ I \ ��� \ � \ \ � � \ \ 1 � \ \ � � \ \ \ � � �\ � � \ � s�� � � � � 1 �. � � � � � 1 I 1 � � �,\ � � � \ o�� � \ \ � � �► \ , � � I I 1 � � �►\ � � � � � � � I � �, � , �o � � � � � � �� � � � � � � � I I s �� \ � 1 � \ � \ � �h oo � \ \ \ \ � � �� � � � � \ \ 1 � � �o, � \ � � \ 1 \ I ` I �� \ 1 � \ \ � \ 1 \ � I � �• � \ � I , � � \ \ ` �\ \ \ \ \ \ \ l \ � � � � � � � � � \ I \ �\ � � \ � \ \ �� � � i � � � � � \ ` � � � \ oos i \ � \ � � /� \ so � i � � \ � � � � � � � \ � � i \ � � \ � � s �,, � � i � � � � � � \ oo� � � r• � � \ � � \ � so � � � \� , � � \ � � � \� o� � �r• � � � � 000 \ \ � I i � � \ � � � � � �i � � \ � � � ��� � � � � � * � � � � � 9 \ � \ � � � � � � \ � � � � � � � � � � \ � � � _ � i � � \ � \ ,� I I I � \ r.\ \ \ \ \ � � r, � � � \ \ � I I I \ \ � i\ � \ � \ \ \ � � i � \ � \ � � � � � � r. \ � \ � \ 1 I � \ r� \ � � � � � � � r. � \ \ � \ 1 1 � � � � � � \ � � � � � r. \� � I \ 1 \ � \ r. � \ � 1 1 � I � �. \\ �\ I \ � � �� � � \ 1 � � � ) � � \ � \ 1 � \ � � �� � \ \ 1 � � / � \ � � \ \ \ I � � � �+ � \ � 1 � I \ � � \ 1 � � � \ � � � \ �\ \ �� \ \ INFRASiRUCiURE \ \ \ \ � �r � � � s�owN � \ REFQiQdCE ONLY \ \ \ \ \ \ ������\ ���� \ �� � ��� \ .,. . �����������i���ll������'�� \ 1 .� . 'r � .� � . .__.... , . _ .. . .. . _ "a. . _ .. . _ . . . . _ . . � � \ \ — — �� �''�� �� !� ��i O`� � �i�` % '•� I �i % i � , �i�� � !o �, ��`�...•��`% 50 � scale N Z 0 �� Z v o Q > w � � Q 0 � m DRAWN BRB CHECKED DAP DESIGNED BRB FILENAME 0009_Drainage P�� ��C � ....... :• �:. �o QQ�o���o�' KEY MAP �O��G G ��'� : � Q� Fo� �° �,�, N.T.S. �o� .•. •....•• �G ��NA� E LEQEND X X = AREA (ACRES) AB—C AB—C = BASIN NUMBER Y Y = IMPERVIOUSNESS EXISIING STORM SEWER � PROPOSED STORM SEWER PROPOSED BASIN BOUNDARY �b,d'� PROPOSED CONTOURS _� y,,00� EXIS11NG CONTOURS Z _ � � FLOW DIREC110N Q — � POSSIBLE LID LOCAl10N � Z > � 00 � °° w w � � C� �a Q a= z > � � Q a � � z � � � TST, INC. CONSULTING ENGINEERS 748 Whalers Way Suite 200 Fort Collins Colorado 80525 Phone: 970.226.0557 JOB N0. 1230.0009.00 SCALE 1 " = 50� 0 50 �oo �A� JULY 17, 2024 1 »=50� feet SHEET 196 of 218 � - � I � �` �� � / � � ` ::,�. � - � \ ` LID#1 (UNDERGROUND FULL INFILTRATION ) 1 � �T � VI r � H w � �I � W � � I ��� F; ��r �, ( , � � �� � � � �I I ��p����� �� @F � �_ � � �. , I . � i �� � i � � �� �� � . r � _ � � I � I �-����, � ' � .. SEE SHEET 196 , I � - � ,� , ---\---- � � � � � � ., � � :..: .. .z _ � .. � � � � � .. � _ : . . - _: _ �.�.s � � � ..;... ,.. .. .: . � � � � � � � � � � � � �� s � .. ��� ���� .. . . . .. _ .. .. ... . .,:..:. � � �. .. . .. .. . ..:. . .. . .. . ..:..... x _ . :. �.:. :... ;. ... ..... .• ,.. . _ , .., . . .. . ... :. �: i '1 � '�� "�. �1. \ I o - _ � \ � � � / � ° - � � �, � �, \ ( 0.79 � � �,\ � \ � _1� 1 f o-, �, � � ri \ � � � 80.40 � _ � - � i%� � � - �' t. °` /� `\ \�� \ � . � \ :, 8 � � . .. \ \ � � \ . . :t � � � �� �. � � . .; ,. ..,, ``�� � . . . . . .. . .:. � .: _. � . . . ,� . . . : , ... . _, . , .. , _ . ,. . ,. . ...' � . . .. . , � ,<. .. .. .. . . - . . , .. . _ . . ,. . ..� ... ; ._ - r :�. �� s. ' - �': I � � � � �'T � _ ' � \ 1.63 I d �' . � . . . . . . � � . . •: i. � � .�.. . . .. ��. : . . . i '. �. . � • " _ � . ... . � . . � '.�. . � .. . ..� . . � . !.. p � .. . . -, . . � . .. .^' j ... �i .� .. ..- : :.�' : ' �y' �\ � .. • . : . �. .. . � :;' � • �: �. � . . . . . .�':. ' '' • �.� '• :��. ' :.��. .. ':�� .. ..�,.. . �' ':.i.� ` - \ �, ' �, .. .. � ..- ..'�'. '��' . • / � .. . . �� � . . � � � . • % / , /�/ � \ . � . v �. ' • . . . ., . . � . : � , ' .. ... '... .•� �. � �� � \ \` � . . a... :. � ♦ .�":�: . � 1 ■ � \ � � i 7C.7. O � \ �� \ \ � \ �t � - - I �� �� � � \ � L� y �'`:�i '" �, < � � �y� � \ \ � � ` ,�� ,� � l �- � � �. - � � � � \ � \ ffff � ::� �-� -��-�-� � � \ \ �� � \ � ) I - � � � ` ,\ `\ � f r' � � � � I � - I .::• � 1 .. � � \ �� \ � \ � ,�-�� �> / ' \ .. I � :�• I � �� � ;; ��' --- -- --� -- , - -_-� ---- ----� --- --- ----- � �-, � � � �� � \ \ , , ... � � .. , 0.40 \ .,. � � ; - - �-.- �-- . .. . � - �. � :;:-= � - ; �-- - •�:-�- f 1 . : .. : T. : , . ., . :_ r.� .. T : , ..; .. . .---� . .. � .�. :�-- . :.:-.:.. ,, : � . .... .. a. . .. , i. =�.. :. �.. ...._� , ,. . . . . , . ,: � . .. T; . .. , , . :� ,� . ... . . . . . . . .. ., . . . ... , . ,.:, i � , .� . . . . �..... _: . . . . . .. .. . . . . � .Y :�. , ,... .: . ... . . . n � . - - ,. . .... .. . .. . . . .. , . . . , .:.. , ,. :. � \ / ': .'. .: ; .. . ... . ... .. . . . . . . . .. .. .. � . . . ... . � . .. ,:. . ;, ,.: . ..• . . ,... . . .. ._ .: � .- :.- .. .. ... . , ... . . . . '�: , : . . . .. . . . . . . . .. .. . . ., . . . .. .. �.�: :�+;.. 'i.. . , . . . .. .. .. . . . . .. . . . . - . . .. . . . . .. . .. .. . . � �'� ''i•. . . . . . . .. .. . � . . . . . . .. . . � . . . . .. . .. . . . ;;�=: "- D 3 �� . . . . ... � . , . . . .. , +� � � „ . ..... . . .,... .. .:. . . . . . \ , . .. , . �/ �.. . .. .... , . . / . . . . . . . . .. . .. . � .. . .... . , .. . . . .. .. _.. . . _ �. \ . e .. ; .. . ... , .. . }7� . . . . .. . ..... . , .., . . . ...... . . . .. . . ....., . . .. , ..; ; . . � ': �. . . ...,:. .. . \ D . , .. . �. .:.... .:........ y 8125 \ ,�. .� _ � . � 1 .. � ... .. .. .. ... . . ..,. . ... . .. . . . . . . . , . ::. ,.... �. , . . . ... ,.. : . . : - •< - , , . . ... . , . . .. . . .. . . .:. .: .- • .. :. . , ... ... . ... , ..... , . , .. .. � . ... ,' �' • , . . ... . . , r? ..., : .. ..., .. �: , ,// . . .. . ..:J .. .. : . . . . �.. . _ - _ - - _ _ , . � . .' � ..1'. � ♦ / ;:. . . ... . . e. . •.r . �� � ' _ _ _ _ _ _ y _ _ � _ _ � � s. - . ... �. .. � .. '. . � . �.;.�K ... . . � �_ ..� ■ ■ � . .v r �� \ .r.� .. .. . .. ' � r. T � r •�(}4�` I \ \ i . . .. . \ • • � .. +_ .. . . v. . . .�. . � � ..�.... ' ''�.. ,A, r �^�\ „•� \ \ (L '. /� , � �p � � � i �y � I . � i� � / I:; I I {.<�' I \ � � , 0.22 '% `� -� ,� ::' / � ��: �' _� � I � � ."� 1 �� , ��1 � � ' • �: / � .� � 2.�4 I I ��-:'�:. I ' � \ D-4 � '°. / � `s � -I \ � � \ 1 86.64 / / ��� � � � D-7 '�� \ \ \ �� \ \ �: � � - ���. � � � , � `'? � � 76.47 � : I � 1 \ \ �� , �,. _ � _* i. � � f� ,� � I �Y.•;f � \ � / � � `�' .�- � >` ' " * � j , � \ o.3s� � , � :� � � _�� � � ::.. ; i �.: i :�i � �■ i :�� i \ \ � .� � �� \ D-18 � . `� - - s �.r - - `..` � � f . � \ � \ \ \ . .. . : . =' _ ,. . .:. .. ,. - .: ..: _.: !; . '...i.�! �il= a` .. ��.ss ; � :.: : . ..,: � :.�,. ,.°. � = j ... .:-• �: :; .6 � ra;i , ,ye: .:t � ';`r. �:.R'= 'aa',7:•,e..• y \ �� \ \ � �� � � '� _ � I I I \ z ,,., _I '`w` � � � � � \ �: T� - ��:' - I �l . L � I � � �� / - �� I � , �� \ \ i - I� II , '� . J � n' � p� I �1p� ,•1 � �. I \ fVIV I !�G H� 1� ••+` RV - � I �Y ADWAY � :p .:�w I o � 1 "5 ` \ IN U \ '�' s• I � FR/1S7R CiURE � - ~n • \ `� ,:: �. : . \ � , - . f`� '� � �sHowri �at ;� t'` `r" 's``c �.y. : ,� I ,� I :r, N � k �=• - I I � R�to�c� �.�. � \ oN�Y � F \ . . � I � � /, �.+jY :���� � ` �' �r \ i � :�;. , � � ` � I � -.:,. :'I . ,� �:r <. I ,� .. � � �; �-.': � -:.��;: � ,;q'yt•' •� - I I I A ��-S..i�'• �':Fi.,. ���.� 1.=: .`P."� - 1 Ii ��• �� \ / "�V, .4 5� '��.. r I !')�' '�..I \ \ \ � I * .i.e��� i:R . I � �.�. : �: � \ �y � .'•F `�9a. � I- � - �•�� I I � .�r� a.e;.> � � � , \ o '� \ :+F' r :r s:�x \ \ � � �� � � 1 � / �; � � .�;: ��` �.x., ... s :` � 1 1.37 * 0.70 -� \ \�� \ \ \ � � ,� �` J � � I I ` \ \ * � -� . �z • � ,::> .a _ � � D-14 \ / ,/.: � : � :'�< �;, � ��. D-10 * � � i � •-'i�. s , , , �' � �; . _ 1.72 :� F< =� L� �� � - � 92.71 \ � / �� � y r D-S �' f� I � � � a • • -. I � � 82.73 � � * I � � � �� I \ \ \ ` h:. � .,k��` �� � �:� �:.�.�: �''��� I�, �,I I I , \ \ \ - ,a�� , 52.57 :,� � \ � \ \ !`: e�y � f� � � I ': •� � � , s: = � � ,� � �' '' > � .c:,: ��" i'' I � :�-= t � �;- i � . � � � i � _ �� - :Y o.4� � i � i ��� `" � i i � J � � , , �� \ � \ ���: � �°=f `� � \ �� \ 0.24 I �� LID#2 (UNDERGROUND �� I '� �- � _9 I � I �� � �, � � ' "' D � `�� -�k.� � � � I � �-s -6 FULL INFILTRAl10N) ���. � ;�° <.� - i I '� '� 1 � � � 1 ` � � ��'= �` �s.3o a i� , � 75.58 � � ' � ;,; � :�. �* 'i. - _ i ' _ * � : � � � II •�r. =:, � i:. ` � �Y i3. � 'r4 .\ �:�: ,�r: r �� � � �.. � y� � � :f � � ♦ v. � � ; . ...,� • �:. :.. . . .. , '. �' \ I , '.�• � `' L'7 � I 'i •. � . � :. x. � .. �: : . . .' ' . . :.... , .. �. .� .�r:�� � . .. . . . e .. . 'w..: �:.�_ �{ I s2. §. _ � �A ' � }. Yi�'. '.� Y y w.� w :l � :%Y \ I � � � r. �.. _ 1 � \ I •Y''.�' r.�. � t I \ .f � � -�: 5 y�, . (+ J•: � � � � .w 1'� - �ir^� I � : .a� � . , ,� I \ � � ,�� ::4:, 4 � � :� .`Al.:w �:• ,�3�• � � _ � � _ _ _ •� � •I - S.t. � � I �� j/,�./� 1� _� �q� � �/� \ � � � 4•t.' - • "�" ii;/ �� G�� II � - � 1 � � I I \ \ � ti1 �y,� ji ��j �';../� �� �{ �i ".J I � J '.I. 4- �`e; �� I 1 ��� \ \ � � ' � � � o % �r�_I � � - � � ' �'" � � �i '.� � � � � �� � � - _ _ ,_,� 'R • � •�.I �� r*� - /; � � %/ � //1%-�."-i'= t a. � �'f' __ `e� ��f - - � - �_ _ _ _ _ _ _ _ - �� \ I • u I � _ _ .� I I 111 \ \ ? \ \ . ..+ '; . - - - - _ _ _ \ '. : .. . .. � \ \ \ . , ; '�. :. . . . �.. � �.� .�. . .. �. • . � . . . . . . � .. . : , � ..� . . .. � � � �� � � .. ... . ., . ...,. . 0.38 • . - . � ` ,.. _. ..._ ,. _ .. .. _.. _. _ . _ . . _ . . i � 1 � . . . . . . . . . .. . ... .. . . , . . . ,. . .. .. � _ �; r � .. .. . .. ... . .. . . - -:. ,::. A ■ . . � �: �\I I � � I . . . . . . i . . < .. �' : ' ' . . , . . . . . . . . . . . .Y . . + - -. �. . - � I ' . .. . .. .. . ... . . .. � . : . . . . . ... . •. . �.• �.. . . .. :.. :. � r s V '.. : ' .�♦ .. .: '. ....� �... . . .. . .. . . � . ... .. . . . . �. , .. .. . .. .. . . . �-.. .J . .. . . . �e. �. . . ,. •, . .� . . . . . .. . ... .. � , . . . . . . ... ... .. . a.: . . . . . . . . . . . . .. . . . . .. . . .. .. ,x . �. r.. . . . . . . . , . ,. : . , � . .. .. . . .. x :.�':' .... �,. � • , . ....:�. . .. ... .. . � .w . . . , . . .. .. ,...,:. .' .:. '�;�: � 1 r •` � Z:. � I 1 I I I I I I � ' D 11 \ , 1 � ��. � � \ . , � \ 0 . 1 � ;.. �I��IIIIIII� � ;�� , ��� 9 8 7 / � _ _ .i _..,. ., , , ' � � \ s�.�i ° � �.:,;-�; �,;;;;,, � � .. , , s ° 5 � `I.1� �! 1� I I f { I I � ' 1 }� ' , ' :-� ` ` -I . 6..; i� � - (: -'-}. I II II I Y I I I I I� I I I � Fu1u f�E-�1 � � � y' \ \ � ,� �� � �� � , � �%�:�i�i�iiii � � �_ ; F-2 '� ' _ - , , I � 56. �i� \ l � � s.� iA" � ��� �u.�e ��i i i v i i � i� � � � � i � �.-�v �� � - � , � , � � � � I \ � ... . ' . . ' .: t ... • ' � ' ♦. ... ' . .. . . . .. � � .. ..: .... ". �. �� : "�� �.. . i, ... . .'. ":. , � . , . . ... ..• •' . � � i � . . .. . . .. .'. ..�: . . . . . y. . . , . � .� . . . '. .. '.'i� :�� '� ': ._ ' • . � � J. ',l ...Ai.� ] �.� . . :. � � . . � . .. . � c ' . _ . . .. . .., ., . . . - �. .. �. . . _ . . . .. . . �: :.: � ♦ . . : . . . ..�a. .. . � . n .. , ' ..� � ' . . �.. e � . . . . . � . ... . �.. _ ,. _ '.. � �. � • : � . � �. .�. � . ' .� . : : O.00 . . . .. : . . . .. .. . Y . . .. : .. . .. . . .. . � . �:' . 1 ' . . . • . . . � c. - � �-. . '�: . . ' • �.. . � . . � . 1� . . .. . . . . . . . . . . : . \ . � . . . .v . . . . . . . � . .. . • . . .' .- . .r . .s .. • .� . . .. �. . . -� a � - \ � ' i / 1 \ . .. . .. . . . . . , s .. .. . .. . . . .. .e...4 . . . . . . � . .. .. . \ r • � � • � . . .. . . . � a� . . . � . .. ' . . ' . . � ^ ,_ , • �� . \ � . . . � / I / , / , a I .r . . ... . ♦. . � . a �� • � I , . . . . . . .... .. .. . ' v.... . � . . . .. �.. :. . '. • .�� . .� �,p' ..:. .� , .:�... . . ,• . .�.r . �� �'C'. " . � .t. . � .. . . . . . i . .. .. . .��� ♦ • � • � . � - - .. �Y I .: . . '.� '' . . . . . � I i .� . �.'. � _ r • �. � .. . . "' a • �� .a. � . �r. • .' .'- ' .. . �' • .. . . ��'.: . . �, �� • ± i �' . . . . . . . . . . .. . . . . . . . . . . . . . . - •. . .. • . . :. ': . �.. � •• • .. . e . ' •: � �. .�.. .. �:� �i / . . ' . �.�. . . d• �.. � • • . . • . • �. . . � • � . ..��.. .. ♦ � . �.'. : ... 1 I . � � . . . . . . . . .. . . .. . .. ... . .\ � . ./. �: .. . .. : : :� . - �� -ti. - / / I I 1 I / I \. \ :, F.. •,. �. 10 . .. � � � _ � _ :� . �'� � _ _ _ , , - � _ __ I - -���- - �- ---- . --- -- --- � --�- �- -- ------- � - - ---- I ; � � ♦� , �►'� i ;:�t �► !� � f �� � � - � � f f f ff � i ��`�:��� i i ' � � i ` , �� ` � _: � , , �I � _ \ � � � � . ;, ��, �, ;� :� �► � �► - - � --� 0.82 ♦ - o.�� - � _ f I �I �► � � � -�- � 0.22� "l � �� �-i 2 °� � � � � � �' D-13 ':7 i .� � � `�� I I I � � ��* � 1 :�. ' -. 1 � � D-15 � _ � :�.� �� � � - - �� '� � � �::� S � � _ � � � � � � 80.85 \ n � � 83.90 � j� � � � � \ .� 1 � � 1 ;;� � -.��= :: , ♦ ., * � � =� � � \ � 80 9 � , / .� , � \ _ �' � i� r � ♦ � � �,- - � - ♦ � � \ �.f I � I � � i 'i� �,.�: / � � I �J� �:1� �!� �: �� � •.�� � �;- f ::�� H-�- � , 0.10 �0.29 � � I �' I � 1 I � � I � i. � -.''�- '. � 'r � � � , �,� � ��.�� =.: � � D-16 +� D-17 � - - � �. � / . 2.00 �� : � � � � � \ - I _ - _ - _� \r � J( .ia � F�7 I ` i f�� I � / �� \ / J+ ' . \ 80 40 � 75.66 �� - �� � '•� �`� J I l z ■� - � 76.83 � � � .'� ` s�` � � .,.e � ;s L ] I �i . .�'..•' � *. ~�. � / I � �: , i :�r+ � � ` � , ti �;=: 1 -�:;���: r ��: �� � � � .� J : i ::f � \ ��'°: / I I � � �� �= � � � L I � / / � : I� �; � :;:' � :� / I I :'� I � � � .�� / � i ti I � '� / � \ � ._�. ,� � ;T; � f �:.,. � ; I � � � � 1.:`�.; =:: =' o.s� � L� . � � �`� * f; '::;: ` , . � : j � I� � i � 7 � rn / ' '� � , �� F-s i I � rn I •�a ��:. � / �:�'::�:�.. `: � � �` ~`�= � y �:� I i �� � �, � � ':� �. : � : - � � � • ::. � / �� :�:' `.'.:: •� �" (.` � � 77.41 :�� � \ �� \ � I ; �. � `. C` ''-< ` y� �, � " ` ; I � ., � ,. , � -, �: � , � : � �. � � ` f . �, ♦ =;. �:�� �°a i � W �� -;:� , � i �, �..,:. i � � \ W i ��..:t � � �, +��r � � a \ �� 0.05 ,•0.14 � � � � � ��. � � � y 2 ,.32 L--- I �.��.� --- � : . ' I �� ` ,i� l : ...r - � - � I / ♦ � cn _ �.�`: _:= � ( ,.- . :I l � F 3 F-4 - � / �;' _ fviu� Ro�ww�Y { F 31 � '� � �. ) I -� �` �F:� '!� T' M� �:� � / � '1= - :�.� ." IN W �J FR11S1RU CiU .�: i :, . RE 'k � � F \ � �::. �5.� � • _ .i�.'� � . /� �., � • �.., � - �/ ; � 80.40 82.86 � � \ o W �� wN \ . � 5.1 FOR 7 8 �: �:� \ _: _ •. '•�,� _ � �:• ��:- I : � ��. ''�:' � •'•. � �EN ,: � . �. . CE I � oriL � �- ��.. I Y � N LID 3 RAIN , ,� � �t := , ,� � � \�.��•..:,r�.''�' ,'i �+ N � � � ;,:. 1 .•�� �'�.•a . � .' .' � 4... � �• � .� � � `��.. i ��' _.�.� ::�•; • `..' �■ S /� � -- - i r■ l :� GARDEN) z , _ / . ; , � : � /; / - - - - I � � I �:} I : %. � � �f' � � \ � � I �.. - � I r,� � � ;:` � , �,��� .� � - `1. � � � � � I � I � � / ` � =:�:' , / � � \� � ''� 1:: � �.'' o -�- ♦ ♦ � P, 'I / � �� � �.���;.�: � � � . .. 14 �;� ,� � �:� � .�,, 1 M'� ::�.j � • . . `�, / j :''.:: � � � � , - ♦ • 1 i �; . • � � , `;.:�;; r.:" t � �� `= I � ♦ � � � � ` � � /: �� 1� ..� � ,� -I � � � \ I � `� ' .. , � * � � - �T � \ M �`�' � � � 2.0� � � � ��, � r`l I � � � T , , � � /;, � � � \ � �ri � �� i� � `:f / , � - ► � \ � � II � /' ; � 'J _ � � � � � F 6 ; �, / T ti: � � ♦ - � � � ,. , � � :,�. �. ,: ` � � - � ;T / / � � 1. '�S ,: I � � � =�.. � � � % � ♦ �`. J _4 78.85 0► � � � \� , � � : :..�. \ \, � i I � \ /' 1 i i i � r \ '� / � / � � - o� - `o � � .. .._ ,., . Y� M >. �.. .:, . �� - .. .. . .: .: . . � .. ; ., , ..` �: • ` .. ...;,. :... ,l.: - : . <.- � ..^� � :, . , . .. ,,. ::. , ,.. � � � ' ' � ''''^ O \� � . ; ' ._ . l .. ,. � . ...: :� �.. .." I -, . � ' � . .,. . . /.. : � / � � ��-. 1� � � ♦ :.. �. ; . ; � , ,. : , . . , �. : ,: . / , ' 5 � . .:. : � . . .. . . . �, ._ .,-' .� . � � �\ . 2 s \�. '..' . I '' ., s � j '\ , ` i � �; ;� /. . / , F-8 . .��. . \ , 17 � \� � � � � � � � I �� i� \ :� `` '�- l ' / � � `:��� / � � . ff�� � - � '-� . � y , ) •• � ' •� ,,. ' `� � � 73.91 �t � , � � � I ;, , ,. /.: . � � � �: ' o .: : J � \ % _, � � i� . ,�. i�:�' ;x l 1� j�: / 0 �' ♦ � . .. .:. . : . .. . : .. , , .. .. . . , ., -: . . ;:: ..:. ' :: � , ' y.. :. �...... .... : ;. . � ! ` .. , .. . . �_, � . .... '� I - : . � . ; � : �--` . . . . , �: . � . . ..._ . .: :: . , :. . .� .. , ... . / . �� � , ::; t . : R .. . , �/ ' `.. . , .. .e .. .. . .. .. .. �/ : � � � _ �� / \� \� �� . �► � _ : �■ \�, i :�� �i� \ � �♦ 0.22 0.54 � � :1' =.` � ./ / � ( _ � � � �� \ �� i ��:. ... � , �_ , - , :.�': � - \ , � � � \ J� , � � _ <� F 11 - � � � , � F 12 - �. \ � . ;•. • .. ,:,,. . ... .. _. : ,;: , .. . .... :_.- � I 0.64 � - �i• / �> �� . ;`. � ',: � � \ � � 82.18 '� 79.96 � F-5 � � � C � y ' � � $ / i' �� �' �.� ' � • � �a � �� � � h � � , � � � � � � � 0.20 ��` ;` I \ A i • 80.31 ` , i �: � � �� � �:. � � � � ' � � F-10 � i � M� � � j:: � o � ':� \ \ � �� � %'`� � i � � I , �,�� � 0 1 , -�.7 � • / � � 79.00 i � h , � � \ � � � _ /: � :;, � � ��"s ' � � / � �s' - �7'� � � - �'� � \ � _ M� � � � �: .. . , . �' `: : , . �:. :.: / i / , � \ . . : .: :: _ � � \ .: I ' , . . . . ... . �_... . .. .. .:: - �'i ' - - - • ., , r �_� � • � � :, _ � � :. � � , � /- � f , 50 �� � - - / .�y..:�� � . . _ � .. : . .: . - / 0.86 . :` ,: <. . ., . ,.. :� . . .. . : . .': � `. .:. • ;. � � f: M I �, - . �. :... , . .. . .: . .:. .:. �.. ... ,. . .: ,. ,,. , .,: , . , ., , T- : ;..:.:� : . . . �;. _. :. .: . . . . . �.. ..: .�.. ; �. �� 5.�. . i ,,� :� "-� ♦ \ i � \ �1► � �. - � 15 I � � , ) � :� � � ���. _ � �''� �: :,- �. a , � . • .. . . , . ,. . ; .,., .. . � ;�.. � F 30 � � � .. / ,� � � � . , '0.74' :� :../ � scale / I � � / t =� � _ � ♦ � \ ----�/ � �` a� � 1 � � ::� . M - � 1 83.05 .< . � � - � w Y �•l. \ s•.,, \ \\ \ � F-27 •��+'•:. ,�� � \ ��. � SEE SHEET 198 N � •' �/ :•'��I `'� ��`� '��` , � � � i ` � � I ` � � ♦ , � ♦ ♦ � ♦ i , ♦ � I ,���, i I �/I ,� � ,:`�/..����`���� ,���-````�� -. � I KEY MAP N.T.S. LEQEND X X = AREA (ACRES) AB-C AB-C = BASIN NUMBER Y Y = IMPERVIOUSNESS EXISIING STORM SEWER � PROPOSED STORM SEWER PROPOSED BASIN BOUNDARY . �b,d'� � PROPOSED CONTOURS _� y,,00� EXISIING CONTOURS _� � FLOW DIRECTION POSSIBLE LID LOCAT10N � � �I � 50 100 1 »=50� feet Z O � � Z v O `^ � �.I..� V\ / Q / w � � Q 0 � m DRAWN BRB CHECKED DAP DESIGNED BRB FILENAME 0009_Drainage '(�'���"�• •• � . � P � J . � c� . O O � � � � : G PQQ �,��G • ���� G�� � Q� ��� �1�' lv� .• `'�' �0� •...... \ �aG � 0 � � - � � � mW � � � � Q = � � � � Z � � � � � W � Q Z � Q � � CONSULTING ENGINEERS 748 Whalers Way Suite 200 Fort Collins Colorado 80525 Phone: 970.226.0557 JOB N0. 1230.0009.00 SCALE 1 " = 50� DATE JULY 17 2024 SHEET ' 197 of 218 � � � � w w _ W w � � � � H w w _ W w � .1 "�� '/// �' '' / � ,\ \ \ \ � ��� �/ � / � � \� \� \ 1 � / �� / \ � � � � � / �� �/ � � \ � � � \ � �� � �� � � � \ I / / / � /� �'� � � � � � � /� /� � � � ) � � /�// /�� � � \ � ( ; , � �/ I /// \ ) � � ��� /, � � � \ \ \ _ / � �� , � � \ \ / , //� � � \ � � � � /� �_ r// � \ � � / / /�� � \ \ � � / � /��� � \ � � / / / � //�� , \ \ � � / , / / � � ��/ \ \ � \ � � l l , � /� ' ��/� \ \ ` � � \ \ � // � � � � � � /� ��� � \ � \ � � \ \ � � I �� / , � � \ � � \ � �i I�� �// � \ � � � � � � // � I � ���� � \ � / � �� � � � \ � � � � �� � �� � � \ � � � \\\\ � � �� � \ � � � � � � \ � /� ` � \ � � \ \ / � �i � � � � � � � � \ / � \ \ � \ \ \ \ , / � � � � � , /� � � � � � � \ / � \ \ 1 \ \ � � � \ � � — /� � � \ \ \ � \ � � / � \ � � \ � � i � �, -/ �� , � \ � � / i / �� �/ / i�� � � \ \ \ � / � � i� / I , �� � \ � \ I � // �� // �h h � \ l ll � � / / / / ���`�a�4 \ � � \ \ /� � � / / � �' �O r � I % � � � � , / / / °�,; 4�p � � � � / � / \ � \ \ � l� / � � / / � / � / // � �~o`�° �'7 \ ` 1 — \ � //� �� � �����'ro � \ � � � � \ /� � � � / 1 � � / � �`s ss�v/ \ � ` � / '� // /� / � \ � � � � � % �� � / / � \ \ \ \ � � /o �o / �// � \ � \ � � � � � /�j/� /� \ � \ \ � �� l ' / �� / \ \ � \ � I \ �,o � / , / 1 , � � � � \ � � ' � � / ��%��� � � � � � `° o���� � - � � � � � � I \ � � / � � \ 1 1 �/ �� � � � � � J � I � /�� � � � � ,� ; � / / � � �� � � ,\ � l � � � � � I � � n ,/ � � o So�2 � , ( ( � � � � � � ' 1 I \ \ \ \ I \ / ' � \ \ 1 \ \ \ \ ,�,� � / � \ � � \ \ � � \ �`,�, � � � � � � � � � � � �,, S��o � � � � � � � \ � � , � � � \ 1 � \ � � \ \ \ `� � � � � � � \.� � � ; . � ,\ / � �/ �� `, � ` �� ` \ o � _ \ � \ \ � \ �` � �' � � / // � � �� � � � � � � \ \ � \ \ \ \ \ � � ��jr � , // % / � �� � � � � � � � � � � � � � � 1►�►., , � V �ii �� � � � � � �•� � \ � � � � \ \ \ � �_ �' , � , '�► � � •� \ \ \ 1 � .+�' , ,- /�� �, �/�/ � � � � \ \ � � �,� , � /� � , , �, �� , ,� ,\ ,� �� � ` � \ \ � \ \ �,►� , ,� /� ,� ,/ , ,� � \ ,�, � �, � \ � \ � � � � '� , �/ �� r� �� ��� � \ I \ I � , �/ % ///;� �� `, �� � � � � i \ \ � / /- � � � I I \ INTERIM POND , � -��. � ��/`� �, \ \ `� , � \ � � \ � / I / / \ . � � � � � �/ ��� , � , � �� � � � I � � � � � �/ // // i \ � � \ � � 1 �/ � � �� � I I � I\ ' �/ ���� � � � ,� � \ � I POND � j % J/ / � � , � \ �� ♦ � I / � \ JCTURE I � /�/ /� / / \ ` \ \ � � I I I I 1 \ � � � � � (/' %� . / /�/ /�� / �i � � ' ` � � � � � � 1 � \ INTERIM l /% �/ , �� ' 1 � � � POND > ! / � � � � �' � � � � � � � � , _ \�� /'/ � r � /� < \ � \ � l % I jILLWAY �� - `�. _ ,; r/ � �� / / / �� � 1 � / / � � � � � '� � � , � �/ � / % , � I � v� � � � \ \ v � i�. � , / � / //� , � �� � � � 1 � // , �,� �j � �� � � � ��,� � �� � � � � � � � 1 � , � / � � � � � r I � � � � �� � � � �� / 1 � � I /// � ,� � � � I �� � � 1 �,� % , � � ��, � � � � , I � �, �� � � i I � � I , �, � �� �, � � � � � � � 1 1 � �i%, �� �� � � � � � / ���� i � ��/ -� � � l \ � � � I � %�� �� i ��� � � � \ � � / // 1 \ I � \. � I �j/� � /��j /� \ \ \ � I \ /� / / /� � % / \ ' � � � \ I \ � \ � I \ \ / \ �� � � /� �// `\ \ \ \ \ � / � / � I � /� � / � I 1 � � � \ � ��i / / �/ % �I I 1 1 � � I � % '/ � / r �j � j, � � � � � \ \ � � / � ��/ \ � \ \ I � \ r� / / / � // ' 1 I I ♦ ) \ /,/� !�' � , 1 � 1 1 �, I , ��,. / � 1 � 50 sc�ale N KEY MAP N.T.S. LEQEND X X = AREA (ACRES) AB—C AB—C = BASIN NUMBER Y Y = IMPERVIOUSNESS EXISIING STORM SEWER � PROPOSED STORM SEWER PROPOSED BASIN BOUNDARY �b,d'� PROPOSED CONTOURS _� y,,00� EXISIING CONTOURS _, � FLOW DIRECTION � POSSIBLE LID LOCATION � �� � 50 1 "=50' 100 � feet Z 0 � �� Z v o� �o > w � � Q 0 � m DRAWN BRB CHECKED DAP DESIGNED BRB FILENAME 0009_Drainage r•..••••. :' �:. �o QQ�o���o�' : Q���O� G��S �'� � F ?: ��, �o� ........ . �aG Z O — � > � � � � �� �Q Q= >� Q H Z O � Z � � w c� Q z Q � � CONSULTING ENGINEERS 748 Whalers Way Suite 200 Fort Collins Colorado 80525 Phone: 970.226.0557 JOB N0. 1230.0009.00 SCALE 1 " = 50� DATE JULY 17, 2024 SHEET 199 of 218 �- , �'T ,� � � � � i � � � �� � � Q� � i � J � .� \\\ � � � � � � .� ,� � � � � � � � ,� -I _� � O � �9 � � � � 1 � s ,� � 1 � � � � i l I � � � � � � 1 � � � \ \ I \ �ci> 1 � � �\ � � N �� \9> � 1 � ` '� � � . � � I I S ' 1 A9 9 � I I � � � � � � SEE SHEET 200 � \� �� � � � � \\ \� ` � � � \ � \ � �� �� �— � '� \ �� ��� � �� � � � �� �� � � i \� � � � � � ,� � � � \\\ � � � '� \� � �, �` ��\ �; ' -� � � �, �\\� � �, � � ��� � � � � ���� ��,��� - I �� ��\\� , � ��� � � � � \ � � �,n.� ��� \ � , '�-, �� � ` � � � � , � � � �\\\`� �, �� �\ � � � -r ' � , �" � �\\� `` "—r ` i T �\\ \ � � � � �� ✓ ��\\ �� �, � — � �.�� � � � � '�.\\ �� � �� � � f � E � � �� �� � ?— �� � �� � � r � � r r F F �- � � � � � � � � , � � '� � �/ '///%/'/� / � � � / � �/ � i� � // // � _' � � � /// //��� � � /1 / �� /� � � / // / �� �� / � � / /� / � �/ �� ��i � i � ��/��� / /� // ///// / � // i �/ // / / � / /� // / i / � ) � // / � � //�// / � / � ��%//, / � ��j//� � / , � // //� /, �/ ///// // / i � , . , � /����%�� � � ��\ /T � T \�\ ` � // / / /////// / / � _ � � �� � � � � �� � � � � � ��//�� � � � � � � � � � % / ���� � � \ � ��'� � �/ / � � � � �- �� � � � �,'� � / ��`/��� , �- ,� � � � �� ��� ��� //��// � ,� �-------� \ � /���/ � ,� � �\� � • �� � ,�� -,�� �� � �� � � �. � / � � �� �� �����, ��, �� � � � .�� �� � � ��, , , � , �,, � � ���. � - ��� � � � �� �, � �� � � > , � � �� � � ���� � � .� � � � \ �, y�,��- � � �,�% J� � � �, �� � � 7 � ��i.�'�% `` � ` ` � - % � — � . � '��� ��" , � �,��/ �� � \ ��' � % j � � -r-, �� ��� � �� '� � � � %�,-� , ������ �\�� �' � � %� ,!, - �� �� � � ��� � / / / /��,� � i � � �� ���� � �° �� �'�� �% � / ,� ��� � � ��� �j �,�/ /� � < ���� �,� � . � ��� � ,� . � � I � � J \ . � � � �i����� � J v�� \ ���, `� ,� ' � / �,�",� / %� � ,% � � / � � , � `� \\\� . , �` /` / / � \ � � � � � ��� �` � ,i � � � \ � � ���� � � � \\\ � � / � — � \\ � � � � � �' � � � � _ _ --� \� \ � � ,�' /'�' '-�� � y � � � — ! � � � \� \\�� � � � � — — � -�_— �� ��\ `� , � � J � '\ � �\ \ � � � ` � ,% � ' ,% � � � '� �� � T ,� \ \ � � �\,� � \\�\ � � � ' �' � �` �' �� � \ � \ '�\ \\�\� � �r \ il �.�� � � \ � � / � � � -r, � - � �� � � \ \ \\\\ �, ,� 1 _ �III ^ / ,-� �,, -� �. � � \ \ � � � . � �� � 1 \/ , kl . � i � . � , \ � �\ . � \ � — � � / � / � / � N KEY MAP� N.T.S. x AB-C Y � � � � / __ ��/ � i � ,5` i _� � %///%/ 50 � LEQEND X = AREA (ACRES) AB-C = BASIN NUMBER Y = IMPERVIOUSNESS EXISIING STORM SEWER PROPOSED STORM SEWER PROPOSED BASIN BOUNDARY PROPOSED CONTOURS EXISIING CONTOURS FLOW DIRECTION POSSIBLE LID LOCATION scale 1 "=50' � �� 50 100 � Z � � % W � Z 0 � � � U � W � � Q � � m DRAWN BRB CHECKED DAP DESIGNED BRB FILENAME � 0009_Drainage r•..••••. :' �:. �o QQ�o���o�' : Q���O� G��S �'� � F ?: ��, �o� ........ . �aG Z 0 - � — � � � m W � � c� Q Q = > � Q H Z 0 � ii � f 7 W C� Q Z — Q � � CONSULTING ENGINEERS 748 Whalers Way Suite 200 Fort Collins Colorado 80525 Phone: 970.226.0557 JOB N0. 1230.0009.00 SCALE 1 " = 50� DATE JULY 17, 2024 feet SHEET 201 of 218 r � � � � � � � � � � , � ` '� � � � � � � � � � � � � �. � � � � � . ` r � � 1 � � ♦ � � � � i � � � � � ' FARM `� � PHASE A � � � i �' � � i ,� � � � � � i � � � •' � � � � PHASE 6 � � � � �-�� ♦ �- ••� ♦ ♦ � ` � � � � ♦` � � � � '� �--r ♦ I �� �� � �x � , PHASE M , � , � . � � � �� � ,' � �� � ♦� ,�.�� � �� ,` -' � � PHASE C , , � r �� i �� � � �� � ♦� ♦ 1 �� �_J� ` � `�� ♦ �� � PHASE L � � ,"� PHASE D �_,. _ �� � � ♦` �� 7 ♦` 1 ,♦ ` ,� � ♦` 1 ♦ ♦ ♦ 1 � � � I ♦ �� � �♦` � / � ♦ 1 � � � 1 I� � 1 ♦ � I 1 � I� 1 � ���, � PHASE E c� ` PHASE F � PHASE K � � �� � ���7 � �` � � � j � �� �� 1 ♦ ♦ � �� 1 � � � �`� `� � � � ► ' ' '� ``` ' , ' ,� � � � ♦ ��� �� ♦ �- � � � � �� `♦ 1 1 �I ' �, ♦` 'I ♦, � � � PHASE G � � �� .► �' i � � � � PHASE J � ► � PHASE H �� � � � � � �� PHASE I � ► � i � ii � � �____________�___L______.��._______________.�_____________� �_______�___________, � � , � � � � � � � � � � � � � � PHASE 0 � � PHASE N � � � � � � � � � � � � � � � � � � � � �-------;---------- - - � C�DESIGN 0 U N -o d � Q � z � L Q � Q � z O � Revision & Date: � Project Number: Date: Produced by: Sheet Number: � N L.L _ C � U z Q � � w � � Q � 0 � � 1734 02104120 DPZ CODESIGN r� � � � ui 0 � � 0 U N � � � C 0 J U .L 0 � � _ �� � 0 �t N O N C � � � D _ � � � � D s d. U � J O � � � 0 a � N � �I O � O � N O Z / m i � w U � W m � � � w � Q� � � O H � � � � a 1 Q Q O � � I .— L!� � r� �t- � N O � N � � � 0 � �� � � � z II � � � � � U � �j J �� z � � o � � � �r * �so� -f�- .� . . , -_ .r• r =� � ' �� � � `� :, �� ��,. � ��r _ � �' .,� . SOD FARM RICHARDS LAKE RD. (CR 52) - i' � i � � a }, _ . , �...._ . - ,. . . •--• � ' � � � � � � � � � � � � � � � _ � — � � � � � � � � � � � � � � � � � � � ` ' � � ��i� ' � r� . � �� � � � ! 1� , � � � � ��-�� 4 ,, .r� . _ 1. � . . - « i I � rf .. .' ' ' - � r; ' � � • _ _ � T I '� 7 _ _ , • �"�' I _ . , ' � ' - �'I py �Y�• 1 � . _ _ • NL ,. , r � _ _ ..� , _ _� � � - _ _ �� �' . 1 � ' ' ' 1` , ' r,_.r - — i � � � MAPLE HILL , ' � � _ � SUBDIVISION � 1 � � - , �. - _ _ 1 _ ! � � � L � , � ' ' , • i , ' � - ' ' �` � - �r _ _ . . , � Q ' � �� � Y 1 r' � � o � 1 , , � _ _ , 1 � ���i «� � � � � 1 ' p � •� � �` �' ' � � �'�; ` � � " �� � � � ' ♦ ' Q , . � . z ♦ 1� ' ' _ , , � ANHEUSER �I - �,� o � BUSCH r �: � ! — _ >��._s� . « --�' � � � � � U � � � � �� �� '��� ���������� z� ���� ������ ��,I � ■�' �— � I� N � � � — ' t ' � � ' i � � ,� 1 � 1 'r � � !� .�� 1 � - _ � I' � � u � , ��'�___ � -. � i � � � � � 1 � , � — � � � � � , ' � / ' , ' , ' ' � ♦ �� � ♦ � � � � � � , - - _ , ' 'i "� � � � , . � � � ,�-,�. � ♦ � � ��.�� � ♦ - � � � �`�� � � � � � � � � 1 , ��" ' ' , ' STORYBOOK , ' � SUBDIVISION I � � - � � � � � � � � � � � � �,Iw�� � � � � � � � �■ � r � � � � � � � � � � � I■� � � � � � � � �� �� MOUNTAIN VISTA DR. (CR 50) , .r ' , ' � , ' I 1 � 1 �� � U � ' �, � 1 � ����� _i ' ' �_i � � ' �r . ! ' � �i � z � � ' � ' �. � ' �! � �i , 1.1 � ' � ���� � � � i. � __� �� L&W CANAL � � U� �:a E �- �. . . �. � . . � _ � � : � ��s� . . i � � s:1 4 a �� � " " - _ . ." , � . � . . .. .. . � .. . � - -41C�< 4�9d� ,a:=�� . =� :8i.. « q �: . . �t ���;,,� �'�, .1.� i��. i I ' � �' i e � � e�� , - � � � _ � _ , r" d� � ,; F rS�y��, ;y p� ��-+ �,��� � a����� � � �!� �_ � : ,� �+ .� � ��- � . .. � � � � r� -� "' �♦� � !-� `f �`�. -� ( � *y `�' - f� �'- - ,,a r.� _ - . . . . ,� ■ ' a � � � ` �' � =a " ��' ,r ;� � _ ,;�,�' ����� � ,� � ; _ _ � ,�,_, � .�� , �.. ~' � '�� ` �1 _ ° � ..� . . I � 1 !� _ p st 1 .:��r�,F�y� �, � �&IlV CqN� I � I � � WATERGLEN � a ���,' � � ��� '��� SUBDIVISION '��`� �� I �v�� � '. , ��- � ; , _ ,, ,.. ; � . � . , - ,r ` y , � - � _ - = _ . � � � �, � � �► .� ` �, i �� , � '��� ' y ��` , r �:_��. i��j � �_ �� � � '��� A � ��.��' `-"� -9, �� nj�'�.� �� TRAI L H EAD ` � ,� � -� � �� � r _ �'� I ,� ` ,// � � ' ;y -� �R��� � � �► SUBDIVISION ' ",,.f� '9� in / � ,� ? , `M "`f r �u� 500 250 0 500 1000 SCALE: 1 "=500' ALL DIMENSIONS SHOWN ARE U.S. SURVEY FEET Z" `" � � � o W o u � w � � ocZ �� Q - �, c� o� G z o � w U � m � � � �O Z O � ~ Y � J � � az �° � v � � v Q x w° u° o 0 � � 3 � � � M t7 � M rl M O U � � O � O O z Q / Q � z O � � � z a� � � 0 � :° a� � � � L1� � Q _ � z O � � O W � 0 Q J U � 0 _ N � � � O z W W J Z � z z Q � � �' m m � � � . . . . � � � � � � L � � � � m m � � � � � � � � � � z � ' cn � N 0 � � � O C� � � � virwz c���w z¢o� �WJ� ���� � oow� ��r� Q��� UWQ� C_j U Q � w Z w ���� z ���a Q U ¢ _ � � \ z�Ocn z o�ow � �ww=¢ �o�� � U 0 Q z � U � O Z�Sj�� � w ��� �o�� z =�o� o Qw� �n Z � � Q ( n ��,o� � � � U z � w cn�w—� �m� zw�o c� � o ,� ( n U Z � w- o o�z= W � U � ��,�z � � � � � � U � � Q .� � Sheet Number: APPENDIX F STREET CAPACITY & STORM INLET ANALYSIS MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: FLINT HILL DR r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) of Curb at Gutter Flow Line :e from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - ?F1.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 10.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.005 ft/ft �sraeer = 0.013 Minor Storm Ma'or Storm Allowable Spread for Minor & Major Storm TMAx = 10.0 10.0 ft Allowable Depth at Gutter Flowline for Minor & Major Storm dMAx = 6.0 7.0 inches Flow Depth at Street Crown (check box for yes, leave blank for no) � iR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm �R STORM Allowable Capacity is based on Depth Criterion Qa��ow = 2J 16.1 cfs �r storm max. allowable capacity GOOD - greater than the design peak flow of 2.33 cfs on sheet'Inlet Management' �r storm max. allowable caoacitv GOOD - areater than the desian oeak flow of 10.16 cfs on sheet'Inlet Manaaement' MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: N TIMBERLINE RD r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) of Curb at Gutter Flow Line :e from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - 29.0 ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 11.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.005 ft/ft �sraeer = 0.013 Minor Storm Ma'or Storm Allowable Spread for Minor & Major Storm TMAx = 11.0 11.0 ft Allowable Depth at Gutter Flowline for Minor & Major Storm dMAx = 6.0 7.0 inches Flow Depth at Street Crown (check box for yes, leave blank for no) � iR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm �R STORM Allowable Capacity is based on Depth Criterion Qa��ow = 3.4 16.9 cfs �r storm max. allowable capacity GOOD - greater than the design peak flow of 2.41 cfs on sheet'Inlet Management' �r storm max. allowable caoacitv GOOD - areater than the desian oeak flow of 10.53 cfs on sheet'Inlet Manaaement' MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: LONGWOOD DR r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) of Curb at Gutter Flow Line :e from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - ZO.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 10.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.007 ft/ft �sraeer = 0.013 Minor Storm Ma'or Storm Allowable Spread for Minor & Major Storm TMAx = 10.0 10.0 ft Allowable Depth at Gutter Flowline for Minor & Major Storm dMAx = 6.0 7.0 inches Flow Depth at Street Crown (check box for yes, leave blank for no) � iR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm �R STORM Allowable Capacity is based on Depth Criterion Qa��ow = 3.2 19.0 cfs �r storm max. allowable capacity GOOD - greater than the design peak flow of 3.11 cfs on sheet'Inlet Management' �r storm max. allowable caoacitv GOOD - areater than the desian oeak flow of 13.58 cfs on sheet'Inlet Manaaement' MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: MONTAVA AVE r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) of Curb at Gutter Flow Line :e from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LS.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 20.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.005 ft/ft �sraeer = 0.013 Minor Storm Ma'or Storm Allowable Spread for Minor & Major Storm TMAx = 20.0 20.0 ft Allowable Depth at Gutter Flowline for Minor & Major Storm dMAx = 6.0 7.0 inches Flow Depth at Street Crown (check box for yes, leave blank for no) � iR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm �R STORM Allowable Capacity is based on Depth Criterion Qa��ow = 12.0 20.1 cfs �r storm max. allowable capacity GOOD - greater than the design peak flow of 2.45 cfs on sheet'Inlet Management' �r storm max. allowable caoacitv GOOD - areater than the desian oeak flow of 10.71 cfs on sheet'Inlet Manaaement' MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: GOODHEART DR r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) of Curb at Gutter Flow Line :e from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - 29.0 ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 11.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.005 ft/ft �sraeer = 0.013 Minor Storm Ma'or Storm Allowable Spread for Minor & Major Storm TMAx = 11.0 11.0 ft Allowable Depth at Gutter Flowline for Minor & Major Storm dMAx = 6.0 7.0 inches Flow Depth at Street Crown (check box for yes, leave blank for no) � iR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm �R STORM Allowable Capacity is based on Depth Criterion Qa��ow = 3.4 16.9 cfs �r storm max. allowable capacity GOOD - greater than the design peak flow of 2.20 cfs on sheet'Inlet Management' �r storm max. allowable caoacitv GOOD - areater than the desian oeak flow of 8.71 cfs on sheet'Inlet ManaaemenY MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: TEALBROOK DR r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) of Curb at Gutter Flow Line :e from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - ZO.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 10.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.005 ft/ft �sraeer = 0.013 Minor Storm Ma'or Storm Allowable Spread for Minor & Major Storm TMAx = 10.0 10.0 ft Allowable Depth at Gutter Flowline for Minor & Major Storm dMAx = 6.0 7.0 inches Flow Depth at Street Crown (check box for yes, leave blank for no) � iR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm �R STORM Allowable Capacity is based on Depth Criterion Qa��ow = 2J 16.1 cfs �r storm max. allowable capacity GOOD - greater than the design peak flow of 2.33 cfs on sheet'Inlet Management' �r storm max. allowable caoacitv GOOD - areater than the desian oeak flow of 9.55 cfs on sheet'Inlet ManaaemenY MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: NANNA LN r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) of Curb at Gutter Flow Line :e from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LI.S ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 10.D ft W = 2.00 ft Sx = 0.030 h/ft SW = 0.083 ft/ft So = 0.005 ft/ft �sraeer = 0.013 Minor Storm Ma'or Storm Allowable Spread for Minor & Major Storm TMAx = 10.0 10.0 ft Allowable Depth at Gutter Flowline for Minor & Major Storm dMAx = 6.0 7.0 inches Flow Depth at Street Crown (check box for yes, leave blank for no) � iR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm �R STORM Allowable Capacity is based on Depth Criterion Qa��ow = 4.8 14.2 cfs �r storm max. allowable capacity GOOD - greater than the design peak flow of 3.11 cfs on sheet'Inlet Management' �r storm max. allowable caoacitv GOOD - areater than the desian oeak flow of 13.58 cfs on sheet'Inlet Manaaement' MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: HARWOOD LN r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) of Curb at Gutter Flow Line :e from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LI.S ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 14.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.007 ft/ft �sraeer = 0.013 Minor Storm Ma'or Storm Allowable Spread for Minor & Major Storm TMAx = 14.0 14.0 ft Allowable Depth at Gutter Flowline for Minor & Major Storm dMAx = 6.0 7.0 inches Flow Depth at Street Crown (check box for yes, leave blank for no) � iR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm �R STORM Allowable Capacity is based on Depth Criterion Qa��ow = 7.0 22.2 cfs �r storm max. allowable capacity GOOD - greater than the design peak flow of 2.10 cfs on sheet'Inlet Management' �r storm max. allowable caoacitv GOOD - areater than the desian oeak flow of 9.13 cfs on sheet'Inlet ManaaemenY MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: MIDDLE FARM WY r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) of Curb at Gutter Flow Line :e from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LI.S ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 14.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.006 ft/ft �sraeer = 0.013 Minor Storm Ma'or Storm Allowable Spread for Minor & Major Storm TMAx = 14.0 14.0 ft Allowable Depth at Gutter Flowline for Minor & Major Storm dMAx = 6.0 7.0 inches Flow Depth at Street Crown (check box for yes, leave blank for no) � iR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm �R STORM Allowable Capacity is based on Depth Criterion Qa��ow = 6.2 19.6 cfs �r storm max. allowable capacity GOOD - greater than the design peak flow of 2.10 cfs on sheet'Inlet Management' �r storm max. allowable caoacitv GOOD - areater than the desian oeak flow of 9.13 cfs on sheet'Inlet ManaaemenY MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: MOUNTAIN WILLOW WY . T T, T� �` _�" W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) of Curb at Gutter Flow Line :e from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - 24.0 ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 10.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.005 ft/ft �sraeer = 0.013 Minor Storm Ma'or Storm Allowable Spread for Minor & Major Storm TMAx = 10.0 10.0 ft Allowable Depth at Gutter Flowline for Minor & Major Storm dMAx = 6.0 7.0 inches Flow Depth at Street Crown (check box for yes, leave blank for no) � iR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm �R STORM Allowable Capacity is based on Depth Criterion Qa��ow = 2J 16.1 cfs �r storm max. allowable capacity GOOD - greater than the design peak flow of 2.20 cfs on sheet'Inlet Management' �r storm max. allowable caoacitv GOOD - areater than the desian oeak flow of 8.71 cfs on sheet'Inlet ManaaemenY MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D D-3 � T""^" � This worksheet uses the NRCS vegetal � T � retardance method to determine � Manning's n for grass-lined channels. i� - �i z d z d Mnx - 1 An override Manning's n can be � � entered for other channel materials. �I-B� RCS Vegetal Retardance (A, B, C, D, or E) anning's n(Leave cell D16 blank to manually enter an n value) iannel Invert Slope �ttom Width �ft Side Slope ght Side Sloe Check one of the following soil types: Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI Non-Cohesive 5.0 fps 0.60 Cohesive 7.0 fps 0.80 Paved N/A N/A aximum Allowable Top Width of Channel for Minor & Major Storm aximum Allowable Water Depth in Channel for Minor & Major Storm A, B, C, D, or E_ n = 0.013 So = 0.0050 k/ft B = 0.00 ft Z1 = 50.00 fUft Z2 = 50.00 ft/ft Choose One: �; NomCohesive � Cohesive � Paved Minor Storm Ma�or Storm TM,ix = 28.00 28.00 ft dMAX - O.ZS 0.28 ft num Allowable Top Width r Depth Area =_d Perimeter 3ulic Radius iing's n Velocity ity-Depth Product aulic Depth ie Number num Flow Based on Allowable Water Depth imum Allowable Water Depth Width r Area [ed Perimeter �aulic Radius ning's n � Velocity city-Depth Product aulic Depth ide Number imum Flow Based On Allowable Water Depth M WOR STORM Allowable Capaciry is based on Top Width Criterion MAJOR STORM Allowable Capacity is based on Top Width Qiterion TM,ix = 28.00 28.00 ft d = 0.28 0.28 ft A= 3.92 3.92 sq ft P = 28.01 28.01 ft R = 0.14 0.14 ft n = 0.013 0.013 V = 2.18 2.18 fps VR = 031 031 ft^2, D = 0.14 0.14 ft Fr = 1.03 1.03 Qr = 8.6 8.6 cfs Minor Storm Ma�or Storm dMAX - O.ZS 0.28 T = 28.00 28.00 A = 3.92 3.92 P = 28.01 28.01 ft R = 0.14 0.14 ft n = 0.013 0.013 V = 2.18 2.18 fps VR = 031 031 fM; D = 0.14 0.14 ft Fr = 1.03 1.03 Qa = 8.6 8.6 cfs Minor Storm Major Storm Q,iio„, = 8.6 S.6 cfs da��ow = 0.28 0.28 ft Design Peak Flow Qa = 0.8 Water Depth d = 0.12 Top Width T = 11.56 Flow Area A = 0.67 Wetted Perimeter P = 11.57 Hydraulic Radius R = 0.06 Manning's n n = 0.013 Flow Velocity V = 1.21 Velocity-Depth Product VR = 0.07 Hydraulic Depth D = 0.06 Froude Number Fr = 0.89 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY 3.6 I cfs 20.13 0.10 0.013 1.75 ft BASIN D INLETS.xlsm, D-3 7/15/2024, 329 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D D-3 � of Inlet User-Defned _I Inlet Type = User-Defned e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees h of Grate � W= 1.73 ft th of Grate L= 6.00 ft i Area Ratio A�no = OJO ht of Indined Grate � � HB = 0.00 ft �ing Factor . ' _ � Cf = 0.50 e Discharge Coefficient '� ��� Cd = N/A :e Coeffcient , �� ,� � Cb = 0.64 Coefficient W � 1 C� = 2.05 `\`; 1.� ^ Depth at Inlet (for depressed inlets, 1 foot is added for depression) MINOR MAJOR d = 0.12 0.20 �erged Side Weir Length ed Side Weir Flow Weir Flow :eption WithoutCloggging :eption With Clogging Without Clogging With Clogging Inlet Interception Capacity (assumes clogged condition) sed Flow re Percentage = Qa/Qo X = 6.00 6.00 ft Qws = 0.8 19 cfs Qwn = 0.3 0.8 cfs Q„; = 2.0 4J cfs Qwa = 1.0 23 cfs Qa; = 12J 16J cfs Qoa = 6.3 8.4 cfs Q, = 1.0 2.3 cfs Qb = 0.0 1.2 cfs C% — 100 66 % BASIN D INLETS.xlsm, D-3 7/15/2024, 329 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D D-7 � T""^" � This worksheet uses the NRCS vegetal � T � retardance method to determine � Manning's n for grass-lined channels. i� - �i z d z d Mnx - 1 An override Manning's n can be � � entered for other channel materials. �I-B� RCS Vegetal Retardance (A, B, C, D, or E) anning's n(Leave cell D16 blank to manually enter an n value) iannel Invert Slope �ttom Width �ft Side Slope ght Side Sloe Check one of the following soil types: Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI Non-Cohesive 5.0 fps 0.60 Cohesive 7.0 fps 0.80 Paved N/A N/A aximum Allowable Top Width of Channel for Minor & Major Storm aximum Allowable Water Depth in Channel for Minor & Major Storm A, B, C, D, or E_ n = 0.013 So = 0.0050 k/ft B = 0.00 ft Z1 = 33.33 fUft Z2 = 33.33 ft/ft Choose One: �; NomCohesive � Cohesive � Paved Minor Storm Ma�or Storm TM,ix = 38.00 38.00 ft dMAX - 0.42 0.42 ft num Allowable Top Width r Depth Area =_d Perimeter 3ulic Radius iing's n Velocity ity-Depth Product aulic Depth ie Number num Flow Based on Allowable Water Depth imum Allowable Water Depth Width r Area [ed Perimeter �aulic Radius ning's n � Velocity city-Depth Product aulic Depth ide Number imum Flow Based On Allowable Water Depth M WOR STORM Allowable Capaciry is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion TM,ix = 38.00 38.00 ft d = 0.57 0.57 ft A= 10.83 10.83 sq ft P = 38.02 38.02 ft R = 0.28 0.28 ft n = 0.013 0.013 V = 3.51 3.51 fps VR = 1.00 1.00 ft^2, D = 0.29 0.29 ft Fr = 1.16 1.16 Qr = 35.0 38.0 cfs dMAX - T= A= P= R= Minor Storm Ma�or Storm 0.42 0.42 ft n = 0.013 0.013 V = 2.86 2.86 fps VR = 0.60 0.60 fM; D = 0.21 0.21 ft Fr = 1.10 1.10 Qa = 16.8 16.8 cfs Minor Storm Major Storm Q,iio„, = 16.8 16.5 cfs da��ow = 0.42 0.42 ft Design Peak Flow Qa = 3.1 Water Depth d = 0.22 Top Width T = 14.81 Flow Area A = 1.65 Wetted Perimeter P = 14.82 Hydraulic Radius R = 0.11 Manning's n n = 0.013 Flow Velocity V = 1.87 Velocity-Depth Product VR = 0.21 Hydraulic Depth D = 0.11 Froude Number Fr = 0.99 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY 13.5 I cfs 25.76 0.19 0.013 2.71 ft BASIN D INLETS.xlsm, D-7 7/15/2024, 330 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D D-7 � of Inlet User-Defned _I Inlet Type = User-Defned e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees h of Grate � W= 1.92 ft th of Grate L= 9.00 ft i Area Ratio A�no = OJO ht of Indined Grate � � HB = 0.00 ft �ing Factor . ' _ � Cf = 0.50 e Discharge Coefficient '� ��� Cd = N/A :e Coeffcient , �� ,� � Cb = 0.64 Coefficient W � 1 C� = 2.05 `\`; 1.� ^ Depth at Inlet (for depressed inlets, 1 foot is added for depression) MINOR MAJOR d = 0.22 039 �erged Side Weir Length ed Side Weir Flow Weir Flow :eption WithoutCloggging :eption With Clogging Without Clogging With Clogging Inlet Interception Capacity (assumes clogged condition) sed Flow re Percentage = Qa/Qo X = 9.00 9.00 ft Qws = 3.4 7.8 cfs Qwn = 1.0 2.4 cfs Q„; = 7J93 17.863 cfs Qwa = 3.896 8.931 cfs Qa; = 293 38.6 cfs Qoa = 14.6 19.3 cfs Q, = 3.9 8.9 cfs Qb = 0.0 4.5 cfs C% — 100 66 % BASIN D INLETS.xlsm, D-7 7/15/2024, 330 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D D-9 � T""^" � This worksheet uses the NRCS vegetal � T � retardance method to determine � Manning's n for grass-lined channels. i� - �i z d z d Mnx - 1 An override Manning's n can be � � entered for other channel materials. �I-B� RCS Vegetal Retardance (A, B, C, D, or E) anning's n(Leave cell D16 blank to manually enter an n value) iannel Invert Slope �ttom Width �ft Side Slope ght Side Sloe Check one of the following soil types: Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI Non-Cohesive 5.0 fps 0.60 Cohesive 7.0 fps 0.80 Paved N/A N/A aximum Allowable Top Width of Channel for Minor & Major Storm aximum Allowable Water Depth in Channel for Minor & Major Storm A, B, C, D, or E_ n = 0.013 So = 0.0050 k/ft B = 0.00 ft Z1 = 50.00 fUft Z2 = 50.00 ft/ft Choose One: �; NomCohesive � Cohesive � Paved Minor Storm Ma�or Storm TM,ix = 28.00 28.00 ft dMAX - O.ZS 0.28 ft num Allowable Top Width r Depth Area =_d Perimeter 3ulic Radius iing's n Velocity ity-Depth Product aulic Depth ie Number num Flow Based on Allowable Water Depth imum Allowable Water Depth Width r Area [ed Perimeter �aulic Radius ning's n � Velocity city-Depth Product aulic Depth ide Number imum Flow Based On Allowable Water Depth M WOR STORM Allowable Capaciry is based on Top Width Criterion MAJOR STORM Allowable Capacity is based on Top Width Qiterion TM,ix = 28.00 28.00 ft d = 0.28 0.28 ft A= 3.92 3.92 sq ft P = 28.01 28.01 ft R = 0.14 0.14 ft n = 0.013 0.013 V = 2.18 2.18 fps VR = 031 031 ft^2, D = 0.14 0.14 ft Fr = 1.03 1.03 Qr = 8.6 8.6 cfs Minor Storm Ma�or Storm dMAX - O.ZS 0.28 T = 28.00 28.00 A = 3.92 3.92 P = 28.01 28.01 ft R = 0.14 0.14 ft n = 0.013 0.013 V = 2.18 2.18 fps VR = 031 031 fM; D = 0.14 0.14 ft Fr = 1.03 1.03 Qa = 8.6 8.6 cfs Minor Storm Major Storm Q,iio„, = 8.6 S.6 cfs da��ow = 0.28 0.28 ft Design Peak Flow Qa = 0.9 Water Depth d = 0.12 Top Width T = 12.13 Flow Area A = 0.74 Wetted Perimeter P = 12.13 Hydraulic Radius R = 0.06 Manning's n n = 0.013 Flow Velocity V = 1.25 Velocity-Depth Product VR = 0.08 Hydraulic Depth D = 0.06 Froude Number Fr = 0.90 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY 4.0 I cfs 21.07 0.11 0.013 1.81 ft BASIN D INLETS.xlsm, D-9 7/15/2024, 330 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D D-9 � of Inlet User-Defned _I Inlet Type = User-Defned e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees h of Grate � W= 1.92 ft th of Grate L= 6.00 ft i Area Ratio A�no = OJO ht of Indined Grate � � HB = 0.00 ft �ing Factor . ' _ � Cf = 0.50 e Discharge Coefficient '� ��� Cd = N/A :e Coeffcient , �� ,� � Cb = 0.64 Coefficient W � 1 C� = 2.05 `\`; 1.� ^ Depth at Inlet (for depressed inlets, 1 foot is added for depression) MINOR MAJOR d = 0.12 0.21 �erged Side Weir Length ed Side Weir Flow Weir Flow :eption WithoutCloggging :eption With Clogging Without Clogging With Clogging Inlet Interception Capacity (assumes clogged condition) sed Flow re Percentage = Qa/Qo X = 6.00 6.00 ft Qws = 0.9 2.1 cfs Qwn = 0.4 lA cfs Q„; = 2.2 5.1 cfs Qwa = 1.1 2b cfs Qa; = 14.4 19A cfs Qoa = 7.2 9.5 cfs Q, = 1.1 2.6 cfs Qb = 0.0 1.5 cfs C% — 100 64 % BASIN D INLETS.xlsm, D-9 7/15/2024, 330 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D D-14 � T""^" � This worksheet uses the NRCS vegetal � T � retardance method to determine � Manning's n for grass-lined channels. i� - �i z d z d Mnx - 1 An override Manning's n can be � � entered for other channel materials. �I-B� RCS Vegetal Retardance (A, B, C, D, or E) anning's n(Leave cell D16 blank to manually enter an n value) iannel Invert Slope �ttom Width �ft Side Slope ght Side Sloe Check one of the following soil types: Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI Non-Cohesive 5.0 fps 0.60 Cohesive 7.0 fps 0.80 Paved N/A N/A aximum Allowable Top Width of Channel for Minor & Major Storm aximum Allowable Water Depth in Channel for Minor & Major Storm A, B, C, D, or E_ n = 0.013 So = 0.0050 k/ft B = 0.00 ft Z1 = 50.00 fUft Z2 = 50.00 ft/ft Choose One: �; NomCohesive � Cohesive � Paved Minor Storm Ma�or Storm TM,ix = 28.00 28.00 ft dMAX - O.ZS 0.28 ft num Allowable Top Width r Depth Area =_d Perimeter 3ulic Radius iing's n Velocity ity-Depth Product aulic Depth ie Number num Flow Based on Allowable Water Depth imum Allowable Water Depth Width r Area [ed Perimeter �aulic Radius ning's n � Velocity city-Depth Product aulic Depth ide Number imum Flow Based On Allowable Water Depth M WOR STORM Allowable Capaciry is based on Top Width Criterion MAJOR STORM Allowable Capacity is based on Top Width Qiterion TM,ix = 28.00 28.00 ft d = 0.28 0.28 ft A= 3.92 3.92 sq ft P = 28.01 28.01 ft R = 0.14 0.14 ft n = 0.013 0.013 V = 2.18 2.18 fps VR = 031 031 ft^2, D = 0.14 0.14 ft Fr = 1.03 1.03 Qr = 8.6 8.6 cfs Minor Storm Ma�or Storm dMAX - O.ZS 0.28 T = 28.00 28.00 A = 3.92 3.92 P = 28.01 28.01 ft R = 0.14 0.14 ft n = 0.013 0.013 V = 2.18 2.18 fps VR = 031 031 fM; D = 0.14 0.14 ft Fr = 1.03 1.03 Qa = 8.6 8.6 cfs Minor Storm Major Storm Q,iio„, = 8.6 S.6 cfs da��ow = 0.28 0.28 ft Design Peak Flow Qa = 1.8 Water Depth d = 0.15 Top Width T = 15.44 Flow Area A = 1.19 Wetted Perimeter P = 15.44 Hydraulic Radius R = 0.08 Manning's n n = 0.013 Flow Velocity V = 1.47 Velocity-Depth Product VR = 0.11 Hydraulic Depth D = 0.08 Froude Number Fr = 0.93 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY 7.0 I cfs 25.92 0.13 0.013 2.08 ft BASIN D INLETS.xlsm, D-14 7/15/2024, 331 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D D-14 � of Inlet User-Defned _I Inlet Type = User-Defned e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees h of Grate � W= 1.92 ft th of Grate L= 9.00 ft i Area Ratio A�no = OJO ht of Indined Grate � � HB = 0.00 ft �ing Factor . ' _ � Cf = 0.50 e Discharge Coefficient '� ��� Cd = N/A :e Coeffcient , �� ,� � Cb = 0.64 Coefficient W � 1 C� = 2.05 `\`; 1.� ^ Depth at Inlet (for depressed inlets, 1 foot is added for depression) MINOR MAJOR d = 0.15 0.26 �erged Side Weir Length ed Side Weir Flow Weir Flow :eption WithoutCloggging :eption With Clogging Without Clogging With Clogging Inlet Interception Capacity (assumes clogged condition) sed Flow re Percentage = Qa/Qo X = 9.00 9.00 ft Qws = 2.0 43 cfs Qwn = 0.6 1.3 cfs Q„; = 4.5 9.8 cfs Qwa = 2.3 4.9 cfs Qa; = 24.4 31.6 cfs Qoa = 12.2 15.8 cfs Q, = 2.3 4.9 cfs Qb = 0.0 2.1 cfs C% — 100 70 % BASIN D INLETS.xlsm, D-14 7/15/2024, 331 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D D-15 � T""^" � This worksheet uses the NRCS vegetal � T � retardance method to determine � Manning's n for grass-lined channels. i� - �i z d z d Mnx - 1 An override Manning's n can be � � entered for other channel materials. �I-B� RCS Vegetal Retardance (A, B, C, D, or E) anning's n(Leave cell D16 blank to manually enter an n value) iannel Invert Slope �ttom Width �ft Side Slope ght Side Sloe Check one of the following soil types: Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI Non-Cohesive 5.0 fps 0.60 Cohesive 7.0 fps 0.80 Paved N/A N/A aximum Allowable Top Width of Channel for Minor & Major Storm aximum Allowable Water Depth in Channel for Minor & Major Storm A, B, C, D, or E_ n = 0.013 So = 0.0050 k/ft B = 0.00 ft Z1 = 50.00 fUft Z2 = 50.00 ft/ft Choose One: �; NomCohesive � Cohesive � Paved Minor Storm Ma�or Storm TM,ix = 28.00 28.00 ft dMAX = 0.33 0.33 ft num Allowable Top Width r Depth Area =_d Perimeter 3ulic Radius iing's n Velocity ity-Depth Product aulic Depth ie Number num Flow Based on Allowable Water Depth imum Allowable Water Depth Width r Area [ed Perimeter �aulic Radius ning's n � Velocity city-Depth Product aulic Depth ide Number imum Flow Based On Allowable Water Depth M WOR STORM Allowable Capaciry is based on Top Width Criterion MAJOR STORM Allowable Capacity is based on Top Width Qiterion TM,ix = 28.00 28.00 ft d = 0.28 0.28 ft A= 3.92 3.92 sq ft P = 28.01 28.01 ft R = 0.14 0.14 ft n = 0.013 0.013 V = 2.18 2.18 fps VR = 031 031 ft^2, D = 0.14 0.14 ft Fr = 1.03 1.03 Qr = 8.6 8.6 cfs dMAX - T= A= P= R= Minor Storm Ma�or Storm 0.33 0.33 ft n = 0.013 0.013 V = 2.44 2.44 fps VR = 0.40 0.40 fM; D = 0.17 0.17 ft Fr = 1.06 1.06 Qa = 13.3 13.3 cfs Minor Storm Major Storm Q,iio„, = 8.6 S.6 cfs da��ow = 0.28 0.28 ft Design Peak Flow Qa = 0.5 Water Depth d = 0.10 Top Width T = 9.51 Flow Area A = 0.45 Wetted Perimeter P = 9.51 Hydraulic Radius R = 0.05 Manning's n n = 0.013 Flow Velocity V = 1.06 Velocity-Depth Product VR = 0.05 Hydraulic Depth D = 0.05 Froude Number Fr = 0.86 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY 2.1 Icfs 16.47 0.08 0.013 1.53 ft BASIN D INLETS.xlsm, D-15 7/15/2024, 331 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D D-15 � of Inlet User-Defned _I Inlet Type = User-Defned e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees h of Grate � W= 1.92 ft th of Grate L= 6.00 ft i Area Ratio A�no = OJO ht of Indined Grate � � HB = 0.00 ft �ing Factor . ' _ � Cf = 0.50 e Discharge Coefficient '� ��� Cd = N/A :e Coeffcient , �� ,� � Cb = 0.64 Coefficient W � 1 C� = 2.05 `\`; 1.� ^ Depth at Inlet (for depressed inlets, 1 foot is added for depression) MINOR MAJOR d = 0.10 0.16 �erged Side Weir Length ed Side Weir Flow Weir Flow :eption WithoutCloggging :eption With Clogging Without Clogging With Clogging Inlet Interception Capacity (assumes clogged condition) sed Flow re Percentage = Qa/Qo X = 6.00 6.00 ft Qws = 0.6 1.4 cfs Qwn = 0.3 OJ cfs Q„; = 1.6 3.5 cfs Qwa = 0.8 1.8 cfs Qa; = 12.8 16.8 cfs Qoa = 6.4 8.4 cfs Q, = 0.8 1.8 cfs Qb = 0.0 0.3 cfs C% — 100 85 % BASIN D INLETS.xlsm, D-15 7/15/2024, 331 PM MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D InIetID: D-1 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LS.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 29.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 18.0 18A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 4.32 432 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 5.83 5.83 inches Tx = 16.0 16.0 � Eo = 0.330 0.330 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 5.8 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 4.9 7.0 cfs with Clogging Q„„ = 2.5 3.5 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 7J 8.4 cfs with Clogging Qoa = 3.8 4.2 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.17 0.17 MINOR MAJOR Qw; = 4.0 6.6 cfs Qwa = 3.4 5.5 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 3.00 3.00 feet T = 18.0 22.9 ft dceowry = 0.0 0.0 inches MINOR MAIOR d�,a�e = 0.51 0.61 ft dc�ro = 032 0.42 ft RF�,a�e = 0.91 1.00 RFc,,,b = N/A N/A RFcombmano� = 0.91 1.00 MINOR MAJOR Q, = 4.8 6.6 cfs �Fae aFnivaFn = 13 5.7 cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D InIetID: D-2 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LS.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 18.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 18.0 18A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 4.32 432 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 5.83 5.83 inches Tx = 16.0 16.0 � Eo = 0.330 0.330 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 2 Ponding Depth = 5.8 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 5.4 8.5 cfs with Clogging Q„„ = 3.4 53 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 15.3 16J cfs with Clogging Qoa = 9.6 10.5 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.08 0.08 MINOR MAJOR Qw; = 4.4 7.9 cfs Qwa = 4.0 7.2 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 6.00 6.00 feet T = 18.0 22.9 ft. >T-Crown dceowry = 0.0 1.2 inches MINOR MAIOR d�,a�e = 0.51 0.61 ft dc�ro = 032 0.42 ft RF�,a�e = 0.69 0.82 RFc,,,b = N/A N/A RFcomb;,,ae�,o„ = 0.69 0.82 MINOR MAJOR Q, = 6.1 10.2 cfs �Fae aFnivaFn = 23 10.2 cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D InIetID: D-4 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LZ.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 29.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 29A 29A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 6.96 6.96 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 8.47 8.47 inches Tx = 27.0 27.0 � Eo = 0.201 0.201 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 2 Ponding Depth = 6.0 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 5.8 8.5 cfs with Clogging Q„„ = 3.6 53 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 15.5 16J cfs with Clogging Qoa = 9J 10.5 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.08 0.08 MINOR MAJOR Qw; = 4.8 7.9 cfs Qwa = 4.4 7.2 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 6.00 6.00 feet T = 18.7 22.9 ft dceowry = 0.0 0.0 inches MINOR MAIOR d�,a�e = 0•52 0.61 ft dc�ro = 033 0.42 ft RF�,a�e = OJl 0.82 RFc,,,b = N/A N/A RFcombmano� = OJl 0.82 MINOR MAJOR Q, = 6.6 10.2 cfs �Fae aFnivaFn = 0.5 2.2 cf5 MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D InIetID: D-5 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LS.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 18.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 18.0 18A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 4.32 432 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 5.83 5.83 inches Tx = 16.0 16.0 � Eo = 0.330 0.330 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 5.8 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 4.9 7.0 cfs with Clogging Q„„ = 2.5 3.5 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 7J 8.4 cfs with Clogging Qoa = 3.8 4.2 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.17 0.17 MINOR MAJOR Qw; = 4.0 6.6 cfs Qwa = 3.4 5.5 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 3.00 3.00 feet T = 18.0 22.9 ft. >T-Crown dceowry = 0.0 1.2 inches MINOR MAIOR d�,a�e = 0.51 0.61 ft dc�ro = 032 0.42 ft RF�,a�e = 0.91 1.00 RFc,,,b = N/A N/A RFcombmano� = 0.91 1.00 MINOR MAJOR Q, = 4.8 6.6 cfs �Fae aFnivaFn = 0.4 1.8 cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D InIetID: D-6 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LS.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 18.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 18.0 18A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 4.32 432 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 5.83 5.83 inches Tx = 16.0 16.0 � Eo = 0.330 0.330 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 5.8 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 4.9 7.0 cfs with Clogging Q„„ = 2.5 3.5 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 7J 8.4 cfs with Clogging Qoa = 3.8 4.2 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.17 0.17 MINOR MAJOR Qw; = 4.0 6.6 cfs Qwa = 3.4 5.5 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 3.00 3.00 feet T = 18.0 22.9 ft. >T-Crown dceowry = 0.0 1.2 inches MINOR MAIOR d�,a�e = 0.51 0.61 ft dc�ro = 032 0.42 ft RF�,a�e = 0.91 1.00 RFc,,,b = N/A N/A RFcombmano� = 0.91 1.00 MINOR MAJOR Q, = 4.8 6.6 cfs �Fae aFnivaFn = 0.4 1.8 cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D InIetID: D-10 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - ZL.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 19.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 19.0 19A ft drnnx = 6.0 8.0 inches Minor Storm Ma'or Storm y = 4.56 4.56 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 6.07 6.07 inches Tx = 17.0 17.0 � Eo = 0.313 0.313 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 27.0 ff Tx ni = 167 25.0 ft Eo = 0315 0.216 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 3 Ponding Depth = 6.0 8.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 6.2 12.4 cfs with Clogging Q„„ = 4.4 8.8 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 233 26.8 cfs with Clogging Qoa = 16.5 19A cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.06 0.06 MINOR MAJOR Qw; = 5.1 12.5 cfs Qwa = 4.8 11.8 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 9.00 9.00 feet T = 18J 27.0 ft. >T-Crown dceowry = 0.0 1.9 inches MINOR MAIOR d�,a�e = 0•52 0.69 ft dc�ro = 0.33 0.50 ft RF�,a�e = 0.57 0.75 RFc,,,b = N/A N/A RFcombmano� = 0.57 OJS MINOR MAJOR Q, = 7.5 16.8 cfs �Fae aFnivaFn = 2.4 15.3 cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D InIetID: D-11 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - ZL.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 19.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 19.0 19A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 4.56 4.56 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 6.07 6.07 inches Tx = 17.0 17.0 � Eo = 0.313 0.313 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 2 Ponding Depth = 6.0 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 5.8 8.5 cfs with Clogging Q„„ = 3.6 53 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 15.5 16J cfs with Clogging Qoa = 9J 10.5 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.08 0.08 MINOR MAJOR Qw; = 4.8 7.9 cfs Qwa = 4.4 7.2 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 6.00 6.00 feet T = 18.7 22.9 ft. >T-Crown dceowry = 0.0 0.9 inches MINOR MAIOR d�,a�e = 0•52 0.61 ft dc�ro = 033 0.42 ft RF�,a�e = OJl 0.82 RFc,,,b = N/A N/A RFcombmano� = OJl 0.82 MINOR MAJOR Q, = 6.6 10.2 cfs �Fae aFnivaFn = 0.9 8.1 Cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D InIetID: D-12 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - ZL.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 19.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 19.0 19A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 4.56 4.56 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 6.07 6.07 inches Tx = 17.0 17.0 � Eo = 0.313 0.313 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 2 Ponding Depth = 6.0 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 5.8 8.5 cfs with Clogging Q„„ = 3.6 53 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 15.5 16J cfs with Clogging Qoa = 9J 10.5 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.08 0.08 MINOR MAJOR Qw; = 4.8 7.9 cfs Qwa = 4.4 7.2 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 6.00 6.00 feet T = 18.7 22.9 ft. >T-Crown dceowry = 0.0 0.9 inches MINOR MAIOR d�,a�e = 0•52 0.61 ft dc�ro = 033 0.42 ft RF�,a�e = OJl 0.82 RFc,,,b = N/A N/A RFcombmano� = OJl 0.82 MINOR MAJOR Q, = 6.6 10.2 cfs �Fae aFnivaFn = 1.5 6.7 cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D InIetID: D-13 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - ZL.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 19.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 19.0 19A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 4.56 4.56 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 6.07 6.07 inches Tx = 17.0 17.0 � Eo = 0.313 0.313 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 6.0 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 53 7.0 cfs with Clogging Q„„ = 2.6 3.5 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 7.8 8.4 cfs with Clogging Qoa = 3.9 4.2 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.17 0.17 MINOR MAJOR Qw; = 4.4 6.6 cfs Qwa = 3.7 5.5 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 3.00 3.00 feet T = 18.7 22.9 ft. >T-Crown dceowry = 0.0 0.9 inches MINOR MAIOR d�,a�e = 0•52 0.61 ft dc�ro = 0.33 0.42 ft RF�,a�e = 0.94 1.00 RFc,,,b = N/A N/A RFcombmano� = 0.94 1.00 MINOR MAJOR Q, = 5.1 6.6 cfs aF� = 1.5 6.5 cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D InIetID: D-16 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LZ.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 18.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 18.0 18A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 4.32 432 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 5.83 5.83 inches Tx = 16.0 16.0 � Eo = 0.330 0.330 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 5.8 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 4.9 7.0 cfs with Clogging Q„„ = 2.5 3.5 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 7J 8.4 cfs with Clogging Qoa = 3.8 4.2 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.17 0.17 MINOR MAJOR Qw; = 4.0 6.6 cfs Qwa = 3.4 5.5 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 3.00 3.00 feet T = 18.0 22.9 ft. >T-Crown dceowry = 0.0 1.2 inches MINOR MAIOR d�,a�e = 0.51 0.61 ft dc�ro = 032 0.42 ft RF�,a�e = 0.91 1.00 RFc,,,b = N/A N/A RFcombmano� = 0.91 1.00 MINOR MAJOR Q, = 4.8 6.6 cfs �Fae aFnivaFn = 0.2 1.0 Cf5 MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D InIetID: D-17 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LZ.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 18.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 18.0 18A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 4.32 432 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 5.83 5.83 inches Tx = 16.0 16.0 � Eo = 0.330 0.330 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 5.8 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 4.9 7.0 cfs with Clogging Q„„ = 2.5 3.5 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 7J 8.4 cfs with Clogging Qoa = 3.8 4.2 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.17 0.17 MINOR MAJOR Qw; = 4.0 6.6 cfs Qwa = 3.4 5.5 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 3.00 3.00 feet T = 18.0 22.9 ft. >T-Crown dceowry = 0.0 1.2 inches MINOR MAIOR d�,a�e = 0.51 0.61 ft dc�ro = 032 0.42 ft RF�,a�e = 0.91 1.00 RFc,,,b = N/A N/A RFcombmano� = 0.91 1.00 MINOR MAJOR Q, = 4.8 6.6 cfs �Fae aFnivaFn = 0.6 2.5 cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D InIetID: D-18 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LS.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 18.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 18.0 18A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 4.32 432 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 5.83 5.83 inches Tx = 16.0 16.0 � Eo = 0.330 0.330 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 5.8 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 4.9 7.0 cfs with Clogging Q„„ = 2.5 3.5 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 7J 8.4 cfs with Clogging Qoa = 3.8 4.2 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.17 0.17 MINOR MAJOR Qw; = 4.0 6.6 cfs Qwa = 3.4 5.5 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 3.00 3.00 feet T = 18.0 22.9 ft. >T-Crown dceowry = 0.0 1.2 inches MINOR MAIOR d�,a�e = 0.51 0.61 ft dc�ro = 032 0.42 ft RF�,a�e = 0.91 1.00 RFc,,,b = N/A N/A RFcombmano� = 0.91 1.00 MINOR MAJOR Q, = 4.8 6.6 cfs �Fae aFnivaFn = 0.8 3.4 Cfs MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D F-5 � T""^" � This worksheet uses the NRCS vegetal � T � retardance method to determine � Manning's n for grass-lined channels. i� - �i z d z d Mnx - 1 An override Manning's n can be � � entered for other channel materials. �I-B� RCS Vegetal Retardance (A, B, C, D, or E) anning's n(Leave cell D16 blank to manually enter an n value) iannel Invert Slope �ttom Width �ft Side Slope ght Side Sloe Check one of the following soil types: Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI Non-Cohesive 5.0 fps 0.60 Cohesive 7.0 fps 0.80 Paved N/A N/A aximum Allowable Top Width of Channel for Minor & Major Storm aximum Allowable Water Depth in Channel for Minor & Major Storm A, B, C, D, or E_ n = 0.013 So = 0.0050 k/ft B = 0.00 ft Z1 = 50.00 fUft Z2 = 50.00 ft/ft Choose One: �; NomCohesive � Cohesive � Paved Minor Storm Ma�or Storm TM,ix = 28.00 28.00 ft dMAX - 0.42 0.42 ft num Allowable Top Width r Depth Area =_d Perimeter 3ulic Radius iing's n Velocity ity-Depth Product aulic Depth ie Number num Flow Based on Allowable Water Depth imum Allowable Water Depth Width r Area [ed Perimeter �aulic Radius ning's n � Velocity city-Depth Product aulic Depth ide Number imum Flow Based On Allowable Water Depth M WOR STORM Allowable Capaciry is based on Top Width Criterion MAJOR STORM Allowable Capacity is based on Top Width Qiterion TM,ix = 28.00 28.00 ft d = 0.28 0.28 ft A= 3.92 3.92 sq ft P = 28.01 28.01 ft R = 0.14 0.14 ft n = 0.013 0.013 V = 2.18 2.18 fps VR = 031 031 ft^2, D = 0.14 0.14 ft Fr = 1.03 1.03 Qr = 8.6 8.6 cfs dMAX - T= A= P= R= Minor Storm Ma�or Storm 0.42 0.42 ft n = 0.013 0.013 V = 2.86 2.86 fps VR = 0.60 0.60 fM; D = 0.21 0.21 ft Fr = 1.10 1.10 Qa = 25.3 25.3 cfs Minor Storm Major Storm Q,iio„, = 8.6 S.6 cfs da��ow = 0.28 0.28 ft Design Peak Flow Qa = 1.2 Water Depth d = 0.13 Top Width T = 13.23 Flow Area A = 0.88 Wetted Perimeter P = 13.23 Hydraulic Radius R = 0.07 Manning's n n = 0.013 Flow Velocity V = 133 Velocity-Depth Product VR = 0.09 Hydraulic Depth D = 0.07 Froude Number Fr = 0.91 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY 5.1 Icfs 22.97 0.11 0.013 1.91 ft BASIN F INLETS.xlsm, F-5 7/15/2024, 3:36 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D F-5 � of Inlet User-Defned _I Inlet Type = User-Defned e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees h of Grate � W= 1.92 ft th of Grate L= 6.00 ft i Area Ratio A�no = OJO ht of Indined Grate � � HB = 0.00 ft �ing Factor . ' _ � Cf = 0.50 e Discharge Coefficient '� ��� Cd = N/A :e Coeffcient , �� ,� � Cb = 0.64 Coefficient W � 1 C� = 2.05 `\`; 1.� ^ Depth at Inlet (for depressed inlets, 1 foot is added for depression) MINOR MAJOR d = 0.13 0.23 �erged Side Weir Length ed Side Weir Flow Weir Flow :eption WithoutCloggging :eption With Clogging Without Clogging With Clogging Inlet Interception Capacity (assumes clogged condition) sed Flow re Percentage = Qa/Qo X = 6.00 6.00 ft Qws = 1.0 2.4 cfs Qwb - �.S 1.1 Cf5 Q„; = 2.5 5.8 cfs Qwa = 1.3 2.9 cfs Qa; = 15.1 19.8 cfs Qoa = 7.5 9.9 cfs Q, = 1.3 2.9 cfs Qb = 0.0 2.1 cfs C% — 100 58 % BASIN F INLETS.xlsm, F-5 7/15/2024, 3:36 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D F-7 � T""^" � This worksheet uses the NRCS vegetal � T � retardance method to determine � Manning's n for grass-lined channels. i� - �i z d z d Mnx - 1 An override Manning's n can be � � entered for other channel materials. �I-B� RCS Vegetal Retardance (A, B, C, D, or E) anning's n(Leave cell D16 blank to manually enter an n value) iannel Invert Slope �ttom Width �ft Side Slope ght Side Sloe Check one of the following soil types: Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI Non-Cohesive 5.0 fps 0.60 Cohesive 7.0 fps 0.80 Paved N/A N/A aximum Allowable Top Width of Channel for Minor & Major Storm aximum Allowable Water Depth in Channel for Minor & Major Storm A, B, C, D, or E_ n = 0.013 So = 0.0050 k/ft B = 0.00 ft Z1 = 33.33 fUft Z2 = 33.33 ft/ft Choose One: �; NomCohesive � Cohesive � Paved Minor Storm Ma�or Storm TM,ix = 28.00 28.00 ft dMAX - 0.42 0.42 ft num Allowable Top Width r Depth Area =_d Perimeter 3ulic Radius iing's n Velocity ity-Depth Product aulic Depth ie Number num Flow Based on Allowable Water Depth imum Allowable Water Depth Width r Area [ed Perimeter �aulic Radius ning's n � Velocity city-Depth Product aulic Depth ide Number imum Flow Based On Allowable Water Depth M WOR STORM Allowable Capaciry is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion TM,ix = 28.00 28.00 ft d = 0.42 0.42 ft A= 5.88 5.88 sq ft P = 28.01 28.01 ft R = 0.21 0.21 ft n = 0.013 0.013 V = 2.86 2.86 fps VR = 0.60 0.60 ft^2, D = 0.21 0.21 ft Fr = 1.10 1.10 QT = 16.8 16.8 cfs dMAX - T= A= P= R= Minor Storm Ma�or Storm 0.42 0.42 ft n = 0.013 0.013 V = 2.86 2.86 fps VR = 0.60 0.60 fM; D = 0.21 0.21 ft Fr = 1.10 1.10 Qa = 16.8 16.8 cfs Minor Storm Major Storm Q,iio„, = 16.8 16.5 cfs da��ow = 0.42 0.42 ft Design Peak Flow Qa = 2.9 Water Depth d = 0.22 Top Width T = 14.50 Flow Area A = 1.58 Wetted Perimeter P = 14.50 Hydraulic Radius R = 0.11 Manning's n n = 0.013 Flow Velocity V = 1.85 Velocity-Depth Product VR = 0.20 Hydraulic Depth D = 0.11 Froude Number Fr = 0.99 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY 12.7 I cfs 25.20 0.19 0.013 2.67 ft BASIN F INLETS.xlsm, F-7 7/15/2024, 3:36 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D F-7 � of Inlet User-Defned _I Inlet Type = User-Defned e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees h of Grate � W= 1.92 ft th of Grate L= 9.00 ft i Area Ratio A�no = OJO ht of Indined Grate � � HB = 0.00 ft �ing Factor . ' _ � Cf = 0.50 e Discharge Coefficient '� ��� Cd = N/A :e Coeffcient , �� ,� � Cb = 0.64 Coefficient W � 1 C� = 2.05 `\`; 1.� ^ Depth at Inlet (for depressed inlets, 1 foot is added for depression) MINOR MAJOR d = 0.22 038 �erged Side Weir Length ed Side Weir Flow Weir Flow :eption WithoutCloggging :eption With Clogging Without Clogging With Clogging Inlet Interception Capacity (assumes clogged condition) sed Flow re Percentage = Qa/Qo X = 9.00 9.00 ft Qws = 3.3 7.5 cfs Qwn = 1.0 2.3 cfs Q„,; = 7.5 17.3 cfs Qwa = 3.8 Sb cfs Qa; = 29.0 38.2 cfs Qoa = 14.5 19.1 cfs Q, = 3.8 8.6 cfs Qb = 0.0 4.1 cfs C% — 100 68 % BASIN F INLETS.xlsm, F-7 7/15/2024, 3:36 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D F-9 � T""^" � This worksheet uses the NRCS vegetal � T � retardance method to determine � Manning's n for grass-lined channels. i� - �i z d z d Mnx - 1 An override Manning's n can be � � entered for other channel materials. �I-B� RCS Vegetal Retardance (A, B, C, D, or E) anning's n(Leave cell D16 blank to manually enter an n value) iannel Invert Slope �ttom Width �ft Side Slope ght Side Sloe Check one of the following soil types: Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI Non-Cohesive 5.0 fps 0.60 Cohesive 7.0 fps 0.80 Paved N/A N/A aximum Allowable Top Width of Channel for Minor & Major Storm aximum Allowable Water Depth in Channel for Minor & Major Storm A, B, C, D, or E_ n = 0.013 So = 0.0050 k/ft B = 0.00 ft Z1 = 50.00 fUft Z2 = 50.00 ft/ft Choose One: �; NomCohesive � Cohesive � Paved Minor Storm Ma�or Storm TM,ix = 28.00 28.00 ft dMAX - O.ZS 0.28 ft num Allowable Top Width r Depth Area =_d Perimeter 3ulic Radius iing's n Velocity ity-Depth Product aulic Depth ie Number num Flow Based on Allowable Water Depth imum Allowable Water Depth Width r Area [ed Perimeter �aulic Radius ning's n � Velocity city-Depth Product aulic Depth ide Number imum Flow Based On Allowable Water Depth M WOR STORM Allowable Capaciry is based on Top Width Criterion MAJOR STORM Allowable Capacity is based on Top Width Qiterion TM,ix = 28.00 28.00 ft d = 0.28 0.28 ft A= 3.92 3.92 sq ft P = 28.01 28.01 ft R = 0.14 0.14 ft n = 0.013 0.013 V = 2.18 2.18 fps VR = 031 031 ft^2, D = 0.14 0.14 ft Fr = 1.03 1.03 Qr = 8.6 8.6 cfs Minor Storm Ma�or Storm dMAX - O.ZS 0.28 T = 28.00 28.00 A = 3.92 3.92 P = 28.01 28.01 ft R = 0.14 0.14 ft n = 0.013 0.013 V = 2.18 2.18 fps VR = 031 031 fM; D = 0.14 0.14 ft Fr = 1.03 1.03 Qa = 8.6 8.6 cfs Minor Storm Major Storm Q,iio„, = 8.6 S.6 cfs da��ow = 0.28 0.28 ft Design Peak Flow Qa = 1.4 Water Depth d = 0.14 Top Width T = 14.24 Flow Area A = 1.01 Wetted Perimeter P = 14.24 Hydraulic Radius R = 0.07 Manning's n n = 0.013 Flow Velocity V = 1.39 Velocity-Depth Product VR = 0.10 Hydraulic Depth D = 0.07 Froude Number Fr = 0.92 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY 6.1 Icfs 24.72 0.12 0.013 2.01 ft BASIN F INLETS.xlsm, F-9 7/15/2024, 3:37 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D F-9 � of Inlet User-Defned _I Inlet Type = User-Defned e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees h of Grate � W= 1.92 ft th of Grate L= 6.00 ft i Area Ratio A�no = OJO ht of Indined Grate � � HB = 0.00 ft �ing Factor . ' _ � Cf = 0.50 e Discharge Coefficient '� ��� Cd = N/A :e Coeffcient , �� ,� � Cb = 0.64 Coefficient W � 1 C� = 2.05 `\`; 1.� ^ Depth at Inlet (for depressed inlets, 1 foot is added for depression) MINOR MAJOR d = 0.14 0.25 �erged Side Weir Length ed Side Weir Flow Weir Flow :eption WithoutCloggging :eption With Clogging Without Clogging With Clogging Inlet Interception Capacity (assumes clogged condition) sed Flow re Percentage = Qa/Qo X = 6.00 6.00 ft Qws = 1.2 2.6 cfs Qwb - �.S 1.2 Cf5 Q„; = 2.8 6.5 cfs Qwa = 1.4 3.2 cfs Qa; = 15.6 20.6 cfs Qoa = 7.8 10.3 cfs Q, = 1.4 3.2 cfs Qb = 0.0 2.9 cfs C% — 100 53 % BASIN F INLETS.xlsm, F-9 7/15/2024, 3:37 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D F-10 � T""^" � This worksheet uses the NRCS vegetal � T � retardance method to determine � Manning's n for grass-lined channels. i� - �i z d z d Mnx - 1 An override Manning's n can be � � entered for other channel materials. �I-B� RCS Vegetal Retardance (A, B, C, D, or E) anning's n(Leave cell D16 blank to manually enter an n value) iannel Invert Slope �ttom Width �ft Side Slope ght Side Sloe Check one of the following soil types: Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI Non-Cohesive 5.0 fps 0.60 Cohesive 7.0 fps 0.80 Paved N/A N/A aximum Allowable Top Width of Channel for Minor & Major Storm aximum Allowable Water Depth in Channel for Minor & Major Storm A, B, C, D, or E_ n = 0.013 So = 0.0050 k/ft B = 0.00 ft Z1 = 50.00 fUft Z2 = 50.00 ft/ft Choose One: �; NomCohesive � Cohesive � Paved Minor Storm Ma�or Storm TM,ix = 28.00 28.00 ft dMAX - O.ZS 0.28 ft num Allowable Top Width r Depth Area =_d Perimeter 3ulic Radius iing's n Velocity ity-Depth Product aulic Depth ie Number num Flow Based on Allowable Water Depth imum Allowable Water Depth Width r Area [ed Perimeter �aulic Radius ning's n � Velocity city-Depth Product aulic Depth ide Number imum Flow Based On Allowable Water Depth M WOR STORM Allowable Capaciry is based on Top Width Criterion MAJOR STORM Allowable Capacity is based on Top Width Qiterion TM,ix = 28.00 28.00 ft d = 0.28 0.28 ft A= 3.92 3.92 sq ft P = 28.01 28.01 ft R = 0.14 0.14 ft n = 0.013 0.013 V = 2.18 2.18 fps VR = 031 031 ft^2, D = 0.14 0.14 ft Fr = 1.03 1.03 Qr = 8.6 8.6 cfs Minor Storm Ma�or Storm dMAX - O.ZS 0.28 T = 28.00 28.00 A = 3.92 3.92 P = 28.01 28.01 ft R = 0.14 0.14 ft n = 0.013 0.013 V = 2.18 2.18 fps VR = 031 031 fM; D = 0.14 0.14 ft Fr = 1.03 1.03 Qa = 8.6 8.6 cfs Minor Storm Major Storm Q,iio„, = 8.6 S.6 cfs da��ow = 0.28 0.28 ft Design Peak Flow Qa = 0.4 Water Depth d = 0.09 Top Width T = 9.05 Flow Area A = 0.41 Wetted Perimeter P = 9.05 Hydraulic Radius R = 0.05 Manning's n n = 0.013 Flow Velocity V = 1.03 Velocity-Depth Product VR = 0.05 Hydraulic Depth D = 0.05 Froude Number Fr = 0.85 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY 1.S Icfs 15.73 0.08 0.013 1.49 ft BASIN F INLETS.xlsm, F-10 7/15/2024, 3:37 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D F-10 � of Inlet User-Defned _I Inlet Type = User-Defned e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees h of Grate � W= 1.92 ft th of Grate L= 3.00 ft i Area Ratio A�no = OJO ht of Indined Grate � � HB = 0.00 ft �ing Factor . ' _ � Cf = 0.50 e Discharge Coefficient '� ��� Cd = N/A :e Coeffcient , �� ,� � Cb = 0.64 Coefficient W � 1 C� = 2.05 `\`; 1.� ^ Depth at Inlet (for depressed inlets, 1 foot is added for depression) MINOR MAJOR d = 0.09 0.16 �erged Side Weir Length ed Side Weir Flow Weir Flow :eption WithoutCloggging :eption With Clogging Without Clogging With Clogging Inlet Interception Capacity (assumes clogged condition) sed Flow re Percentage = Qa/Qo X = 3.00 3.00 ft Qws = 03 OJ cfs Qwn = 0.3 0.6 cfs Q„; = 0.9 2A cfs Qwa = 0.4 lA cfs Qa; = 6.2 8.2 cfs Qoa = 3.1 4.1 cfs Q, = 0.4 1.0 cfs Qb = 0.0 0.9 cfs C% — 100 53 % BASIN F INLETS.xlsm, F-10 7/15/2024, 3:37 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D F-14 � T""^" � This worksheet uses the NRCS vegetal � T � retardance method to determine � Manning's n for grass-lined channels. i� - �i z d z d Mnx - 1 An override Manning's n can be � � entered for other channel materials. �I-B� RCS Vegetal Retardance (A, B, C, D, or E) anning's n(Leave cell D16 blank to manually enter an n value) iannel Invert Slope �ttom Width �ft Side Slope ght Side Sloe Check one of the following soil types: Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI Non-Cohesive 5.0 fps 0.60 Cohesive 7.0 fps 0.80 Paved N/A N/A aximum Allowable Top Width of Channel for Minor & Major Storm aximum Allowable Water Depth in Channel for Minor & Major Storm A, B, C, D, or E_ n = 0.013 So = 0.0055 k/ft B = 0.00 ft Z1 = 50.00 fUft Z2 = 50.00 ft/ft Choose One: �; NomCohesive � Cohesive � Paved Minor Storm Ma�or Storm TM,ix = 28.00 28.00 ft dMAX - O.ZS 0.28 ft num Allowable Top Width r Depth Area =_d Perimeter 3ulic Radius iing's n Velocity ity-Depth Product aulic Depth ie Number num Flow Based on Allowable Water Depth imum Allowable Water Depth Width r Area [ed Perimeter �aulic Radius ning's n � Velocity city-Depth Product aulic Depth ide Number imum Flow Based On Allowable Water Depth M WOR STORM Allowable Capaciry is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion TM,ix = 28.00 28.00 ft d = 0.28 0.28 ft A= 3.92 3.92 sq ft P = 28.01 28.01 ft R = 0.14 0.14 ft n = 0.013 0.013 V = 2.29 2.29 fps VR = 032 032 ft^2, D = 0.14 0.14 ft Fr = 1.08 1.08 Qr = 9.0 9.0 cfs Minor Storm Ma�or Storm dMAX - O.ZS 0.28 T = 28.00 28.00 A = 3.92 3.92 P = 28.01 28.01 ft R = 0.14 0.14 ft n = 0.013 0.013 V = 2.29 2.29 fps VR = 032 032 fM; D = 0.14 0.14 ft Fr = 1.08 1.08 Qa = 9.0 9.0 cfs Minor Storm Major Storm Q,iio„, = 9.0 9.0 cfs da��ow = 0.28 0.28 ft Design Peak Flow Qa = 1.6 Water Depth d = 0.15 Top Width T = 14.66 Flow Area A = 1.08 Wetted Perimeter P = 14.67 Hydraulic Radius R = 0.07 Manning's n n = 0.013 Flow Velocity V = 1.49 Velocity-Depth Product VR = 0.11 Hydraulic Depth D = 0.07 Froude Number Fr = 0.97 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY 7.0 I cfs 25.48 0.13 0.013 2.15 ft BASIN F INLETS.xlsm, F-14 7/15/2024, 3:37 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D F-14 � of Inlet User-Defned _I Inlet Type = User-Defned e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees h of Grate � W= 1.92 ft th of Grate L= 9.00 ft i Area Ratio A�no = OJO ht of Indined Grate � � HB = 0.00 ft �ing Factor . ' _ � Cf = 0.50 e Discharge Coefficient '� ��� Cd = N/A :e Coeffcient , �� ,� � Cb = 0.64 Coefficient W � 1 C� = 2.05 `\`; 1.� ^ Depth at Inlet (for depressed inlets, 1 foot is added for depression) MINOR MAJOR d = 0.15 0.25 �erged Side Weir Length ed Side Weir Flow Weir Flow :eption WithoutCloggging :eption With Clogging Without Clogging With Clogging Inlet Interception Capacity (assumes clogged condition) sed Flow re Percentage = Qa/Qo X = 9.00 9.00 ft Qws = 1.8 4.2 cfs Qwn = 0.6 1.3 cfs Q„; = 4.2 9.6 cfs Qwa = 2.1 4.8 cfs Qa; = 23.8 31.4 cfs Qoa = 11.9 15.7 cfs Q, = 2.1 4.8 cfs Qb = 0.0 2.2 cfs C% — 100 69 % BASIN F INLETS.xlsm, F-14 7/15/2024, 3:37 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D F-15 � T""^" � This worksheet uses the NRCS vegetal � T � retardance method to determine � Manning's n for grass-lined channels. i� - �i z d z d Mnx - 1 An override Manning's n can be � � entered for other channel materials. �I-B� RCS Vegetal Retardance (A, B, C, D, or E) anning's n(Leave cell D16 blank to manually enter an n value) iannel Invert Slope �ttom Width �ft Side Slope ght Side Sloe Check one of the following soil types: Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI Non-Cohesive 5.0 fps 0.60 Cohesive 7.0 fps 0.80 Paved N/A N/A aximum Allowable Top Width of Channel for Minor & Major Storm aximum Allowable Water Depth in Channel for Minor & Major Storm A, B, C, D, or E_ n = 0.013 So = 0.0050 k/ft B = 0.00 ft Z1 = 33.33 fUft Z2 = 33.33 ft/ft Choose One: �; NomCohesive � Cohesive � Paved Minor Storm Ma�or Storm TM,ix = 28.00 28.00 ft dMAX - 0.42 0.42 ft num Allowable Top Width r Depth Area =_d Perimeter 3ulic Radius iing's n Velocity ity-Depth Product aulic Depth ie Number num Flow Based on Allowable Water Depth imum Allowable Water Depth Width r Area [ed Perimeter �aulic Radius ning's n � Velocity city-Depth Product aulic Depth ide Number imum Flow Based On Allowable Water Depth M WOR STORM Allowable Capaciry is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion TM,ix = 28.00 28.00 ft d = 0.42 0.42 ft A= 5.88 5.88 sq ft P = 28.01 28.01 ft R = 0.21 0.21 ft n = 0.013 0.013 V = 2.86 2.86 fps VR = 0.60 0.60 ft^2, D = 0.21 0.21 ft Fr = 1.10 1.10 QT = 16.8 16.8 cfs dMAX - T= A= P= R= Minor Storm Ma�or Storm 0.42 0.42 ft n = 0.013 0.013 V = 2.86 2.86 fps VR = 0.60 0.60 fM; D = 0.21 0.21 ft Fr = 1.10 1.10 Qa = 16.8 16.8 cfs Minor Storm Major Storm Q,iio„, = 16.8 16.5 cfs da��ow = 0.42 0.42 ft Design Peak Flow Qa = 2.2 Water Depth d = 0.20 Top Width T = 13.14 Flow Area A = 1.30 Wetted Perimeter P = 13.15 Hydraulic Radius R = 0.10 Manning's n n = 0.013 Flow Velocity V = 1J3 Velocity-Depth Product VR = 0.17 Hydraulic Depth D = 0.10 Froude Number Fr = 0.97 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY 9.S Icfs 22.83 0.17 0.013 2.50 ft BASIN F INLETS.xlsm, F-15 7/15/2024, 3:38 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D F-15 � of Inlet User-Defned _I Inlet Type = User-Defned e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees h of Grate � W= 1.92 ft th of Grate L= 6.00 ft i Area Ratio A�no = OJO ht of Indined Grate � � HB = 0.00 ft �ing Factor . ' _ � Cf = 0.50 e Discharge Coefficient '� ��� Cd = N/A :e Coeffcient , �� ,� � Cb = 0.64 Coefficient W � 1 C� = 2.05 `\`; 1.� ^ Depth at Inlet (for depressed inlets, 1 foot is added for depression) MINOR MAJOR d = 0.20 034 �erged Side Weir Length ed Side Weir Flow Weir Flow :eption WithoutCloggging :eption With Clogging Without Clogging With Clogging Inlet Interception Capacity (assumes clogged condition) sed Flow re Percentage = Qa/Qo X = 6.00 6.00 ft Qws = 1.9 43 cfs Qwn = 0.9 2.0 cfs Q„; = 4.6 10.6 cfs Qwa = 2.3 53 cfs Qa; = 18.4 24.2 cfs Qoa = 9.2 12.1 cfs Q, = 2.3 5.3 cfs Qb = 0.0 4.5 cfs C% — 100 54 % BASIN F INLETS.xlsm, F-15 7/15/2024, 3:38 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D F-20 � T""^" � This worksheet uses the NRCS vegetal � T � retardance method to determine � Manning's n for grass-lined channels. i� - �i z d z d Mnx - 1 An override Manning's n can be � � entered for other channel materials. �I-B� RCS Vegetal Retardance (A, B, C, D, or E) anning's n(Leave cell D16 blank to manually enter an n value) iannel Invert Slope �ttom Width �ft Side Slope ght Side Sloe Check one of the following soil types: Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI Non-Cohesive 5.0 fps 0.60 Cohesive 7.0 fps 0.80 Paved N/A N/A aximum Allowable Top Width of Channel for Minor & Major Storm aximum Allowable Water Depth in Channel for Minor & Major Storm A, B, C, D, or E_ n = 0.013 So = 0.0050 k/ft B = 0.00 ft Z1 = 50.00 fUft Z2 = 50.00 ft/ft Choose One: �; NomCohesive � Cohesive � Paved Minor Storm Ma�or Storm TM,ix = 28.00 28.00 ft dMAX - O.ZS 0.28 ft num Allowable Top Width r Depth Area =_d Perimeter 3ulic Radius iing's n Velocity ity-Depth Product aulic Depth ie Number num Flow Based on Allowable Water Depth imum Allowable Water Depth Width r Area [ed Perimeter �aulic Radius ning's n � Velocity city-Depth Product aulic Depth ide Number imum Flow Based On Allowable Water Depth M WOR STORM Allowable Capaciry is based on Top Width Criterion MAJOR STORM Allowable Capacity is based on Top Width Qiterion TM,ix = 28.00 28.00 ft d = 0.28 0.28 ft A= 3.92 3.92 sq ft P = 28.01 28.01 ft R = 0.14 0.14 ft n = 0.013 0.013 V = 2.18 2.18 fps VR = 031 031 ft^2, D = 0.14 0.14 ft Fr = 1.03 1.03 Qr = 8.6 8.6 cfs Minor Storm Ma�or Storm dMAX - O.ZS 0.28 T = 28.00 28.00 A = 3.92 3.92 P = 28.01 28.01 ft R = 0.14 0.14 ft n = 0.013 0.013 V = 2.18 2.18 fps VR = 031 031 fM; D = 0.14 0.14 ft Fr = 1.03 1.03 Qa = 8.6 8.6 cfs Minor Storm Major Storm Q,iio„, = 8.6 S.6 cfs da��ow = 0.28 0.28 ft Design Peak Flow Qa = 1.1 Water Depth d = 0.13 Top Width T = 12.88 Flow Area A = 0.83 Wetted Perimeter P = 12.88 Hydraulic Radius R = 0.06 Manning's n n = 0.013 Flow Velocity V = 1.30 Velocity-Depth Product VR = 0.08 Hydraulic Depth D = 0.06 Froude Number Fr = 0.90 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY 4.7 I cfs 22.38 0.11 0.013 1.88 ft BASIN F INLETS.xlsm, F-20 7/15/2024, 3:38 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D F-20 � of Inlet User-Defned _I Inlet Type = User-Defned e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees h of Grate � W= 1.92 ft th of Grate L= 6.00 ft i Area Ratio A�no = OJO ht of Indined Grate � � HB = 0.00 ft �ing Factor . ' _ � Cf = 0.50 e Discharge Coefficient '� ��� Cd = N/A :e Coeffcient , �� ,� � Cb = 0.64 Coefficient W � 1 C� = 2.05 `\`; 1.� ^ Depth at Inlet (for depressed inlets, 1 foot is added for depression) MINOR MAJOR d = 0.13 0.22 �erged Side Weir Length ed Side Weir Flow Weir Flow :eption WithoutCloggging :eption With Clogging Without Clogging With Clogging Inlet Interception Capacity (assumes clogged condition) sed Flow re Percentage = Qa/Qo X = 6.00 6.00 ft Qws = lA 23 cfs Qwb - �.S 1.� Cf5 Q„; = 2.4 5.6 cfs Qwa = 1.2 2.8 cfs Qa; = 14.9 19.6 cfs Qoa = 7.4 9.8 cfs Q, = 1.2 2.8 cfs Qb = 0.0 1.9 cfs C% — 100 59 % BASIN F INLETS.xlsm, F-20 7/15/2024, 3:38 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D F-22 � T""^" � This worksheet uses the NRCS vegetal � T � retardance method to determine � Manning's n for grass-lined channels. i� - �i z d z d Mnx - 1 An override Manning's n can be � � entered for other channel materials. �I-B� RCS Vegetal Retardance (A, B, C, D, or E) anning's n(Leave cell D16 blank to manually enter an n value) iannel Invert Slope �ttom Width �ft Side Slope ght Side Sloe Check one of the following soil types: Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI Non-Cohesive 5.0 fps 0.60 Cohesive 7.0 fps 0.80 Paved N/A N/A aximum Allowable Top Width of Channel for Minor & Major Storm aximum Allowable Water Depth in Channel for Minor & Major Storm A, B, C, D, or E_ n = 0.013 So = 0.0050 k/ft B = 0.00 ft Z1 = 33.33 fUft Z2 = 33.33 ft/ft Choose One: �; NomCohesive � Cohesive � Paved Minor Storm Ma�or Storm TM,ix = 28.00 28.00 ft dMAX - 0.42 0.42 ft num Allowable Top Width r Depth Area =_d Perimeter 3ulic Radius iing's n Velocity ity-Depth Product aulic Depth ie Number num Flow Based on Allowable Water Depth imum Allowable Water Depth Width r Area [ed Perimeter �aulic Radius ning's n � Velocity city-Depth Product aulic Depth ide Number imum Flow Based On Allowable Water Depth M WOR STORM Allowable Capaciry is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion TM,ix = 28.00 28.00 ft d = 0.42 0.42 ft A= 5.88 5.88 sq ft P = 28.01 28.01 ft R = 0.21 0.21 ft n = 0.013 0.013 V = 2.86 2.86 fps VR = 0.60 0.60 ft^2, D = 0.21 0.21 ft Fr = 1.10 1.10 QT = 16.8 16.8 cfs dMAX - T= A= P= R= Minor Storm Ma�or Storm 0.42 0.42 ft n = 0.013 0.013 V = 2.86 2.86 fps VR = 0.60 0.60 fM; D = 0.21 0.21 ft Fr = 1.10 1.10 Qa = 16.8 16.8 cfs Minor Storm Major Storm Q,iio„, = 16.8 16.5 cfs da��ow = 0.42 0.42 ft Design Peak Flow Qa = 2.5 Water Depth d = 0.21 Top Width T = 13.78 Flow Area A = 1.42 Wetted Perimeter P = 13.78 Hydraulic Radius R = 0.10 Manning's n n = 0.013 Flow Velocity V = 1J8 Velocity-Depth Product VR = 0.18 Hydraulic Depth D = 0.10 Froude Number Fr = 0.98 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY 11.0 I cfs 23.91 0.18 0.013 2.58 ft BASIN F INLETS.xlsm, F-22 7/15/2024, 3:39 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D F-22 � of Inlet User-Defned _I Inlet Type = User-Defned e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees h of Grate � W= 1.92 ft th of Grate L= 9.00 ft i Area Ratio A�no = OJO ht of Indined Grate � � HB = 0.00 ft �ing Factor . ' _ � Cf = 0.50 e Discharge Coefficient '� ��� Cd = N/A :e Coeffcient , �� ,� � Cb = 0.64 Coefficient W � 1 C� = 2.05 `\`; 1.� ^ Depth at Inlet (for depressed inlets, 1 foot is added for depression) MINOR MAJOR d = 0.21 036 �erged Side Weir Length ed Side Weir Flow Weir Flow :eption WithoutCloggging :eption With Clogging Without Clogging With Clogging Inlet Interception Capacity (assumes clogged condition) sed Flow re Percentage = Qa/Qo X = 9.00 9.00 ft Qws = 3.0 69 cfs Qwn = 0.9 2.1 cfs Q„; = 7.0 16A cfs Qwa = 3.5 SA cfs Qa; = 28.2 37.2 cfs Qoa = 14.1 18.6 cfs Q, = 3.5 8.0 cfs Qb = 0.0 3.1 cfs C% — 100 72 % BASIN F INLETS.xlsm, F-22 7/15/2024, 3:39 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D F-27 � T""^" � This worksheet uses the NRCS vegetal � T � retardance method to determine � Manning's n for grass-lined channels. i� - �i z d z d Mnx - 1 An override Manning's n can be � � entered for other channel materials. �I-B� RCS Vegetal Retardance (A, B, C, D, or E) anning's n(Leave cell D16 blank to manually enter an n value) iannel Invert Slope �ttom Width �ft Side Slope ght Side Sloe Check one of the following soil types: Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI Non-Cohesive 5.0 fps 0.60 Cohesive 7.0 fps 0.80 Paved N/A N/A aximum Allowable Top Width of Channel for Minor & Major Storm aximum Allowable Water Depth in Channel for Minor & Major Storm A, B, C, D, or E_ n = 0.013 So = 0.0050 k/ft B = 0.00 ft Z1 = 50.00 fUft Z2 = 50.00 ft/ft Choose One: �; NomCohesive � Cohesive � Paved Minor Storm Ma�or Storm TM,ix = 28.00 28.00 ft dMAX - O.ZS 0.28 ft num Allowable Top Width r Depth Area =_d Perimeter 3ulic Radius iing's n Velocity ity-Depth Product aulic Depth ie Number num Flow Based on Allowable Water Depth imum Allowable Water Depth Width r Area [ed Perimeter �aulic Radius ning's n � Velocity city-Depth Product aulic Depth ide Number imum Flow Based On Allowable Water Depth M WOR STORM Allowable Capaciry is based on Top Width Criterion MAJOR STORM Allowable Capacity is based on Top Width Qiterion TM,ix = 28.00 28.00 ft d = 0.28 0.28 ft A= 3.92 3.92 sq ft P = 28.01 28.01 ft R = 0.14 0.14 ft n = 0.013 0.013 V = 2.18 2.18 fps VR = 031 031 ft^2, D = 0.14 0.14 ft Fr = 1.03 1.03 Qr = 8.6 8.6 cfs Minor Storm Ma�or Storm dMAX - O.ZS 0.28 T = 28.00 28.00 A = 3.92 3.92 P = 28.01 28.01 ft R = 0.14 0.14 ft n = 0.013 0.013 V = 2.18 2.18 fps VR = 031 031 fM; D = 0.14 0.14 ft Fr = 1.03 1.03 Qa = 8.6 8.6 cfs Minor Storm Major Storm Q,iio„, = 8.6 S.6 cfs da��ow = 0.28 0.28 ft Design Peak Flow Qa = 1.4 Water Depth d = 0.14 Top Width T = 14.12 Flow Area A = 1.00 Wetted Perimeter P = 14.13 Hydraulic Radius R = 0.07 Manning's n n = 0.013 Flow Velocity V = 1.38 Velocity-Depth Product VR = 0.10 Hydraulic Depth D = 0.07 Froude Number Fr = 0.92 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY 6.0 I cfs 24.54 0.12 0.013 2.00 ft BASIN F INLETS.xlsm, F-27 7/15/2024, 3:39 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D F-27 � of Inlet User-Defned _I Inlet Type = User-Defned e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees h of Grate � W= 1.92 ft th of Grate L= 6.00 ft i Area Ratio A�no = OJO ht of Indined Grate � � HB = 0.00 ft �ing Factor . ' _ � Cf = 0.50 e Discharge Coefficient '� ��� Cd = N/A :e Coeffcient , �� ,� � Cb = 0.64 Coefficient W � 1 C� = 2.05 `\`; 1.� ^ Depth at Inlet (for depressed inlets, 1 foot is added for depression) MINOR MAJOR d = 0.14 0.25 �erged Side Weir Length ed Side Weir Flow Weir Flow :eption WithoutCloggging :eption With Clogging Without Clogging With Clogging Inlet Interception Capacity (assumes clogged condition) sed Flow re Percentage = Qa/Qo X = 6.00 6.00 ft Qws = 11 2.6 cfs Qwb - �.S 1.2 Cf5 Q„; = 2.8 6.4 cfs Qwa = 1.4 3.2 cfs Qa; = 15.6 20.5 cfs Qoa = 7.8 10.3 cfs Q, = 1.4 3.2 cfs Qb = 0.0 2.S cfs C% — 100 53 % BASIN F INLETS.xlsm, F-27 7/15/2024, 3:39 PM MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-1 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - 29.0 ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 11.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 11.0 11A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 2.64 2.64 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 415 4.15 inches Tx = 9.0 9A R Eo = 0.532 0.532 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 4.2 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 2Z 7.0 cfs with Clogging Q„„ = 1.1 3.5 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 6.5 8.4 cfs with Clogging Qoa = 33 4.2 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.17 0.17 MINOR MAJOR Qw; = 1.2 6.6 cfs Qwa = 1.0 5.5 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 3.00 3.00 feet T = 11.0 22.9 ft. >T-Crown dceowry = 0.0 2.8 inches MINOR MAIOR d�,a�e = 037 0.61 ft dc,,,b = 0.18 0.42 ft RF�,a�e = 0.65 1.00 RFc,,,b = N/A N/A RFcombmano� = 0.65 1.00 MINOR MAJOR Q, = 1.7 6.6 cfs �Fae aFnivaFn = 1.4 5.1 cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-2 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - 29.0 ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 11.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 11.0 11A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 2.64 2.64 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 415 4.15 inches Tx = 9.0 9A R Eo = 0.532 0.532 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 4.2 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 2Z 7.0 cfs with Clogging Q„„ = 1.1 3.5 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 6.5 8.4 cfs with Clogging Qoa = 33 4.2 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.17 0.17 MINOR MAJOR Qw; = 1.2 6.6 cfs Qwa = 1.0 5.5 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 3.00 3.00 feet T = 11.0 22.9 ft. >T-Crown dceowry = 0.0 2.8 inches MINOR MAIOR d�,a�e = 037 0.61 ft dc,,,b = 0.18 0.42 ft RF�,a�e = 0.65 1.00 RFc,,,b = N/A N/A RFcombmano� = 0.65 1.00 MINOR MAJOR Q, = 1.7 6.6 cfs �Fae aFnivaFn = 13 4.9 Cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-3 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LZ.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 18.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 18.0 18A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 4.32 432 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 5.83 5.83 inches Tx = 16.0 16.0 � Eo = 0.330 0.330 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 5.8 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 4.9 7.0 cfs with Clogging Q„„ = 2.5 3.5 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 7J 8.4 cfs with Clogging Qoa = 3.8 4.2 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.17 0.17 MINOR MAJOR Qw; = 4.0 6.6 cfs Qwa = 3.4 5.5 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 3.00 3.00 feet T = 18.0 22.9 ft. >T-Crown dceowry = 0.0 1.2 inches MINOR MAIOR d�,a�e = 0.51 0.61 ft dc�ro = 032 0.42 ft RF�,a�e = 0.91 1.00 RFc,,,b = N/A N/A RFcombmano� = 0.91 1.00 MINOR MAJOR Q, = 4.8 6.6 cfs �Fae aFnivaFn = 0.1 0.5 Cf5 MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-4 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LZ.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 18.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 18.0 18A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 4.32 432 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 5.83 5.83 inches Tx = 16.0 16.0 � Eo = 0.330 0.330 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 5.8 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 4.9 7.0 cfs with Clogging Q„„ = 2.5 3.5 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 7J 8.4 cfs with Clogging Qoa = 3.8 4.2 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.17 0.17 MINOR MAJOR Qw; = 4.0 6.6 cfs Qwa = 3.4 5.5 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 3.00 3.00 feet T = 18.0 22.9 ft. >T-Crown dceowry = 0.0 1.2 inches MINOR MAIOR d�,a�e = 0.51 0.61 ft dc�ro = 032 0.42 ft RF�,a�e = 0.91 1.00 RFc,,,b = N/A N/A RFcombmano� = 0.91 1.00 MINOR MAJOR Q, = 4.8 6.6 cfs �Fae aFnivaFn = 03 1.4 Cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-6 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LZ.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 18.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 18.0 18A ft drnnx = 6.0 7.5 inches Minor Storm Ma'or Storm y = 4.32 432 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 5.83 5.83 inches Tx = 16.0 16.0 � Eo = 0.330 0.330 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 25.0 ff Tx ni = 167 23.0 ft Eo = 0315 0.235 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 4 Ponding Depth = 6.0 7.5 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 7.6 13.2 cfs with Clogging Q„„ = 5.8 101 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 31.1 34.6 cfs with Clogging Qoa = 23.8 26.5 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = L25 1.25 CIo9 = 0.05 0.05 MINOR MAJOR Qw; = 63 12J cfs Qwa = 6.0 12.0 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 12.00 12.00 feet T = 18.7 25.0 ft. >T-Crown dceowry = 0.2 1J inches MINOR MAIOR d�,a�e = 0•52 0.65 ft dc�ro = 0.33 0.46 ft RF�,a�e = 0.57 0.71 RFc,,,b = N/A N/A RFcombmano� = 0.57 OJl MINOR MAJOR Q, = 9.6 18.0 cfs �Fae aFnivaFn = 3.1 17.6 Cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-11 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LZ.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 18.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 18.0 18A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 4.32 432 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 5.83 5.83 inches Tx = 16.0 16.0 � Eo = 0.330 0.330 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 5.8 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 4.9 7.0 cfs with Clogging Q„„ = 2.5 3.5 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 7J 8.4 cfs with Clogging Qoa = 3.8 4.2 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.17 0.17 MINOR MAJOR Qw; = 4.0 6.6 cfs Qwa = 3.4 5.5 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 3.00 3.00 feet T = 18.0 22.9 ft. >T-Crown dceowry = 0.0 1.2 inches MINOR MAIOR d�,a�e = 0.51 0.61 ft dc�ro = 032 0.42 ft RF�,a�e = 0.91 1.00 RFc,,,b = N/A N/A RFcombmano� = 0.91 1.00 MINOR MAJOR Q, = 4.8 6.6 cfs �Fae aFnivaFn = 0.5 2.2 cf5 MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-12 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LZ.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 18.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 18.0 18A ft drnnx = 6.0 8.0 inches Minor Storm Ma'or Storm y = 4.32 432 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 5.83 5.83 inches Tx = 16.0 16.0 � Eo = 0.330 0.330 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 27.0 ff Tx ni = 167 25.0 ft Eo = 0315 0.216 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 5.8 8.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 4.9 8.5 cfs with Clogging Q„„ = 2.5 43 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 7J 8.9 cfs with Clogging Qoa = 3.8 4.5 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.17 0.17 MINOR MAJOR Qw; = 4.0 8J cfs Qwa = 3.4 7.2 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 3.00 3.00 feet T = 18.0 27.0 ft. >T-Crown dceowry = 0.0 2.2 inches MINOR MAIOR d�,a�e = 0.51 0.69 ft dc�ro = 032 0.50 ft RF�,a�e = 0.91 1.00 RFc,,,b = N/A N/A RFcombmano� = 0.91 1.00 MINOR MAJOR Q, = 4.8 7.6 cfs �Fak aFniiraFn = 1.1 7,0 Cf5 MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-13 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LZ.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 18.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 18.0 18A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 4.32 432 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 5.83 5.83 inches Tx = 16.0 16.0 � Eo = 0.330 0.330 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 2 Ponding Depth = 5.8 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 5.4 8.5 cfs with Clogging Q„„ = 3.4 53 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 15.3 16J cfs with Clogging Qoa = 9.6 10.5 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.08 0.08 MINOR MAJOR Qw; = 4.4 7.9 cfs Qwa = 4.0 7.2 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 6.00 6.00 feet T = 18.0 22.9 ft. >T-Crown dceowry = 0.0 1.2 inches MINOR MAIOR d�,a�e = 0.51 0.61 ft dc�ro = 032 0.42 ft RF�,a�e = 0.69 0.82 RFc,,,b = N/A N/A RFcomb;,,ae�,o„ = 0.69 0.82 MINOR MAJOR Q, = 6.1 10.2 cfs �Fae aFnivaFn = 0.8 7.4 Cf5 MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-16 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LZ.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 29.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 29A 29A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 6.96 6.96 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 8.47 8.47 inches Tx = 27.0 27.0 � Eo = 0.201 0.201 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 6.0 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 53 7.0 cfs with Clogging Q„„ = 2.6 3.5 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 7.8 8.4 cfs with Clogging Qoa = 3.9 4.2 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.17 0.17 MINOR MAJOR Qw; = 4.4 6.6 cfs Qwa = 3.7 5.5 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 3.00 3.00 feet T = 18.7 22.9 ft dceowry = 0.0 0.0 inches MINOR MAIOR d�,a�e = 0•52 0.61 ft dc�ro = 0.33 0.42 ft RF�,a�e = 0.94 1.00 RFc,,,b = N/A N/A RFcombmano� = 0.94 1.00 MINOR MAJOR Q, = 5.1 6.6 cfs aF� = 0.6 2.4 cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-17 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LS.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 18.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 18.0 18A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 4.32 432 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 5.83 5.83 inches Tx = 16.0 16.0 � Eo = 0.330 0.330 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 5.8 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 4.9 7.0 cfs with Clogging Q„„ = 2.5 3.5 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 7J 8.4 cfs with Clogging Qoa = 3.8 4.2 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.17 0.17 MINOR MAJOR Qw; = 4.0 6.6 cfs Qwa = 3.4 5.5 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 3.00 3.00 feet T = 18.0 22.9 ft. >T-Crown dceowry = 0.0 1.2 inches MINOR MAIOR d�,a�e = 0.51 0.61 ft dc�ro = 032 0.42 ft RF�,a�e = 0.91 1.00 RFc,,,b = N/A N/A RFcombmano� = 0.91 1.00 MINOR MAJOR Q, = 4.8 6.6 cfs �Fae aFnivaFn = 0.8 3.2 cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-25 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - ZO.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 10.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 10.0 l0A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 2.40 2.40 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 3.91 3.91 inches Tx = 8.0 8A R Eo = 0.577 0.577 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 2 Ponding Depth = 3.9 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 2.1 8.5 cfs with Clogging Q„„ = 13 53 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 12J 16J cfs with Clogging Qoa = 7.9 10.5 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.08 0.08 MINOR MAJOR Qw; = 1.0 7.9 cfs Qwa = 1.0 7.2 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 6.00 6.00 feet T = 10.0 22.9 ft. >T-Crown dceowry = 0.0 3.1 inches MINOR MAIOR d�,a�e = 035 0.61 ft dc,,,b = 0.16 0.42 ft RF�,a�e = 0.46 0.82 RFc,,,b = N/A N/A RFcombmano� = 0.46 0.82 MINOR MAJOR Q, = 1.8 10.2 cfs �Fae aFnivaFn = 0.7 6.9 Cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-26 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - ZO.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 10.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 10.0 l0A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 2.40 2.40 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 3.91 3.91 inches Tx = 8.0 8A R Eo = 0.577 0.577 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 2 Ponding Depth = 3.9 7.5 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 21 10.1 cfs with Clogging Q„„ = 13 63 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 12J 173 cfs with Clogging Qoa = 7.9 10.8 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.08 0.08 MINOR MAJOR Qw; = 1.0 9J cfs Qwa = 1.0 8.9 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 6.00 6.00 feet T = 10.0 25.0 ft. >T-Crown dceowry = 0.0 3.6 inches MINOR MAIOR d�,a�e = 035 0.65 ft dc,,,b = 0.16 0.46 ft RF�,a�e = 0.46 0.88 RFc,,,b = N/A N/A RFcombmano� = 0.46 0.88 MINOR MAJOR Q, = 1.8 12.2 cfs �Fae aFnivaFn = 0.7 10.4 Cf5 MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-29 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LZ.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 18.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 18.0 18A ft drnnx = 6.0 7.5 inches Minor Storm Ma'or Storm y = 4.32 432 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 5.83 5.83 inches Tx = 16.0 16.0 � Eo = 0.330 0.330 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 25.0 ff Tx ni = 167 23.0 ft Eo = 0315 0.235 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 2 Ponding Depth = 5.8 8.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 5.4 11.8 cFs with Clogging Q„„ = 3.4 7.4 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 15.3 17.8 cfs with Clogging Qoa = 9.6 11.2 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.08 0.08 MINOR MAJOR Qw; = 4.4 11.8 cfs Qwa = 4.0 10.9 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 6.00 6.00 feet T = 18.0 27.0 ft. >T-Crown dceowry = 0.0 2.2 inches MINOR MAIOR d�,a�e = 0.51 0.69 ft dc�ro = 032 0.50 ft RF�,a�e = 0.69 0.94 RFc,,,b = N/A NJA RFcomb;,,ae�,o„ = 0.69 0.94 MINOR MAJOR Q, = 6.1 13.9 cfs �Fae aFnivaFn = 13 13.2 cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-8 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LZ.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 18.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 18.0 18A ft drnnx = 6.0 8.0 inches Minor Storm Ma'or Storm y = 4.32 432 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 5.83 5.83 inches Tx = 16.0 16.0 � Eo = 0.330 0.330 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 27.0 ff Tx ni = 167 25.0 ft Eo = 0315 0.216 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 5 Ponding Depth = 5.8 8.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 8.5 18.4 cFs with Clogging Q„„ = 6.9 14.8 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 38.3 44.6 cfs with Clogging Qoa = 30.9 36A cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.31 131 CIo9 = 0.04 0.04 MINOR MA]OR Qw; = 6.9 18.4 cfs Qwa = 6.6 17.6 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 15.00 15.00 feet T = 18.0 27.0 ft. >T-Crown dceowry = 0.0 2.2 inches MINOR MAIOR d�,a�e = 0.51 0.69 ft dc�ro = 032 0.50 ft RF�,a�e = 0.55 0.75 RFc,,,b = N/A N/A RFcombmano� = 0.55 OJS MINOR MAJOR Q, = 10.9 26.5 cfs �Fae aFnivaFn = 63 33.8 cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-32 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LZ.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 18.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 18.0 18A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 4.32 432 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 5.83 5.83 inches Tx = 16.0 16.0 � Eo = 0.330 0.330 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 5.8 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 4.9 7.0 cfs with Clogging Q„„ = 2.5 3.5 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 7J 8.4 cfs with Clogging Qoa = 3.8 4.2 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.17 0.17 MINOR MAJOR Qw; = 4.0 6.6 cfs Qwa = 3.4 5.5 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 3.00 3.00 feet T = 18.0 22.9 ft. >T-Crown dceowry = 0.0 1.2 inches MINOR MAIOR d�,a�e = 0.51 0.61 ft dc�ro = 032 0.42 ft RF�,a�e = 0.91 1.00 RFc,,,b = N/A N/A RFcombmano� = 0.91 1.00 MINOR MAJOR Q, = 4.8 6.6 cfs �Fae aFnivaFn = 0.2 0.6 Cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: F-33 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LZ.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 18.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 18.0 18A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 4.32 432 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 5.83 5.83 inches Tx = 16.0 16.0 � Eo = 0.330 0.330 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 5.8 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 4.9 7.0 cfs with Clogging Q„„ = 2.5 3.5 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 7J 8.4 cfs with Clogging Qoa = 3.8 4.2 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.17 0.17 MINOR MAJOR Qw; = 4.0 6.6 cfs Qwa = 3.4 5.5 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 3.00 3.00 feet T = 18.0 22.9 ft. >T-Crown dceowry = 0.0 1.2 inches MINOR MAIOR d�,a�e = 0.51 0.61 ft dc�ro = 032 0.42 ft RF�,a�e = 0.91 1.00 RFc,,,b = N/A N/A RFcombmano� = 0.91 1.00 MINOR MAJOR Q, = 4.8 6.6 cfs �Fae aFnivaFn = 0.5 2.1 cf5 MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D Gl-6 � T""^" � This worksheet uses the NRCS vegetal � T � retardance method to determine � Manning's n for grass-lined channels. i� - �i z d z d Mnx - 1 An override Manning's n can be � � entered for other channel materials. �I-B� RCS Vegetal Retardance (A, B, C, D, or E) anning's n(Leave cell D16 blank to manually enter an n value) iannel Invert Slope �ttom Width �ft Side Slope ght Side Sloe Check one of the following soil types: Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI Non-Cohesive 5.0 fps 0.60 Cohesive 7.0 fps 0.80 Paved N/A N/A aximum Allowable Top Width of Channel for Minor & Major Storm aximum Allowable Water Depth in Channel for Minor & Major Storm A, B, C, D, or E_ n = 0.013 So = 0.0050 k/ft B = 0.00 ft Z1 = 50.00 fUft Z2 = 50.00 ft/ft Choose One: �; NomCohesive � Cohesive � Paved Minor Storm Ma�or Storm TM,ix = 28.00 28.00 ft dMAX - O.ZS 0.28 ft num Allowable Top Width r Depth Area =_d Perimeter 3ulic Radius iing's n Velocity ity-Depth Product aulic Depth ie Number num Flow Based on Allowable Water Depth imum Allowable Water Depth Width r Area [ed Perimeter �aulic Radius ning's n � Velocity city-Depth Product aulic Depth ide Number imum Flow Based On Allowable Water Depth M WOR STORM Allowable Capaciry is based on Top Width Criterion MAJOR STORM Allowable Capacity is based on Top Width Qiterion TM,ix = 28.00 28.00 ft d = 0.28 0.28 ft A= 3.92 3.92 sq ft P = 28.01 28.01 ft R = 0.14 0.14 ft n = 0.013 0.013 V = 2.18 2.18 fps VR = 031 031 ft^2, D = 0.14 0.14 ft Fr = 1.03 1.03 Qr = 8.6 8.6 cfs Minor Storm Ma�or Storm dMAX - O.ZS 0.28 T = 28.00 28.00 A = 3.92 3.92 P = 28.01 28.01 ft R = 0.14 0.14 ft n = 0.013 0.013 V = 2.18 2.18 fps VR = 031 031 fM; D = 0.14 0.14 ft Fr = 1.03 1.03 Qa = 8.6 8.6 cfs Minor Storm Major Storm Q,iio„, = 8.6 S.6 cfs da��ow = 0.28 0.28 ft Design Peak Flow Qa = 1.2 Water Depth d = 0.13 Top Width T = 13.27 Flow Area A = 0.88 Wetted Perimeter P = 13.28 Hydraulic Radius R = 0.07 Manning's n n = 0.013 Flow Velocity V = 133 Velocity-Depth Product VR = 0.09 Hydraulic Depth D = 0.07 Froude Number Fr = 0.91 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY 5.1 Icfs 23.06 0.12 0.013 1.92 ft BASIN G INLETS.xlsm, G1-6 7/15/2024, 3:53 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D Gl-6 � of Inlet User-Defned _I Inlet Type = User-Defned e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees h of Grate � W= 1.92 ft th of Grate L= 6.00 ft i Area Ratio A�no = OJO ht of Indined Grate � � HB = 0.00 ft �ing Factor . ' _ � Cf = 0.50 e Discharge Coefficient '� ��� Cd = N/A :e Coeffcient , �� ,� � Cb = 0.64 Coefficient W � 1 C� = 2.05 `\`; 1.� ^ Depth at Inlet (for depressed inlets, 1 foot is added for depression) MINOR MAJOR d = 0.13 0.23 �erged Side Weir Length ed Side Weir Flow Weir Flow :eption WithoutCloggging :eption With Clogging Without Clogging With Clogging Inlet Interception Capacity (assumes clogged condition) sed Flow re Percentage = Qa/Qo X = 6.00 6.00 ft Qws = 1.0 2.4 cfs Qwb - �.S 1.1 Cf5 Q„; = 2.6 59 cfs Qwa = 1.3 2.9 cfs Qa; = 15.1 19.9 cfs Qoa = 7.5 9.9 cfs Q, = 1.3 2.9 cfs Qb = 0.0 2.2 cfs C% — 100 57 % BASIN G INLETS.xlsm, G1-6 7/15/2024, 3:53 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D G1-7 � T""^" � This worksheet uses the NRCS vegetal � T � retardance method to determine � Manning's n for grass-lined channels. i� - �i z d z d Mnx - 1 An override Manning's n can be � � entered for other channel materials. �I-B� RCS Vegetal Retardance (A, B, C, D, or E) anning's n(Leave cell D16 blank to manually enter an n value) iannel Invert Slope �ttom Width �ft Side Slope ght Side Sloe Check one of the following soil types: Soil Tvoe: Max. VelociN (VMo„) Max Froude No. (FM,vI Non-Cohesive 5.0 fps 0.60 Cohesive 7.0 fps 0.80 Paved N/A N/A aximum Allowable Top Width of Channel for Minor & Major Storm aximum Allowable Water Depth in Channel for Minor & Major Storm A, B, C, D, or E_ n = 0.013 So = 0.0050 k/ft B = 0.00 ft Z1 = 33.33 fUft Z2 = 33.33 ft/ft Choose One: �; NomCohesive � Cohesive � Paved Minor Storm Ma�or Storm TM,ix = 28.00 28.00 ft dMAX - 0.42 0.42 ft num Allowable Top Width r Depth Area =_d Perimeter 3ulic Radius iing's n Velocity ity-Depth Product aulic Depth ie Number num Flow Based on Allowable Water Depth imum Allowable Water Depth Width r Area [ed Perimeter �aulic Radius ning's n � Velocity city-Depth Product aulic Depth ide Number imum Flow Based On Allowable Water Depth M WOR STORM Allowable Capaciry is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion TM,ix = 28.00 28.00 ft d = 0.42 0.42 ft A= 5.88 5.88 sq ft P = 28.01 28.01 ft R = 0.21 0.21 ft n = 0.013 0.013 V = 2.86 2.86 fps VR = 0.60 0.60 ft^2, D = 0.21 0.21 ft Fr = 1.10 1.10 QT = 16.8 16.8 cfs dMAX - T= A= P= R= Minor Storm Ma�or Storm 0.42 0.42 ft n = 0.013 0.013 V = 2.86 2.86 fps VR = 0.60 0.60 fM; D = 0.21 0.21 ft Fr = 1.10 1.10 Qa = 16.8 16.8 cfs Minor Storm Major Storm Q,iio„, = 16.8 16.5 cfs da��ow = 0.42 0.42 ft Design Peak Flow Qa = 3.0 Water Depth d = 0.22 Top Width T = 14.57 Flow Area A = 1.59 Wetted Perimeter P = 14.58 Hydraulic Radius R = 0.11 Manning's n n = 0.013 Flow Velocity V = 1.85 Velocity-Depth Product VR = 0.20 Hydraulic Depth D = 0.11 Froude Number Fr = 0.99 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet'Inlet ManagemenY 12.9 I cfs 25.32 0.19 0.013 2.68 ft BASIN G INLETS.xlsm, G1-7 7/15/2024, 3:53 PM MHFD-Inlet, �ersion 5.03 (August ZOZ3) �• � � � MONTAVA PHASE D G1-7 � of Inlet User-Defned _I Inlet Type = User-Defned e of Inclined Grate (must be <= 30 degrees) B= 0.00 degrees h of Grate � W= 1.92 ft th of Grate L= 9.00 ft i Area Ratio A�no = OJO ht of Indined Grate � � HB = 0.00 ft �ing Factor . ' _ � Cf = 0.50 e Discharge Coefficient '� ��� Cd = N/A :e Coeffcient , �� ,� � Cb = 0.64 Coefficient W � 1 C� = 2.05 `\`; 1.� ^ Depth at Inlet (for depressed inlets, 1 foot is added for depression) MINOR MAJOR d = 0.22 038 �erged Side Weir Length ed Side Weir Flow Weir Flow :eption WithoutCloggging :eption With Clogging Without Clogging With Clogging Inlet Interception Capacity (assumes clogged condition) sed Flow re Percentage = Qa/Qo X = 9.00 9.00 ft Qws = 3.3 7.6 cfs Qwn = 1.0 2.3 cfs Q„,; = 7.6 17.4 cfs Qwa = 3.8 8.7 cfs Qa; = 29.0 38.3 cfs Qoa = 14.5 19.1 cfs Q, = 3.8 SJ cfs Qb = 0.0 4.2 cfs C% — 100 68 % BASIN G INLETS.xlsm, G1-7 7/15/2024, 3:53 PM MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: Gl-1 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LS.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 20.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 20A 20A ft drnnx = 6.0 7.5 inches Minor Storm Ma'or Storm y = 4.80 4.80 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 631 631 inches Tx = 18.0 18.0 � Eo = 0.296 0.296 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 25.0 ff Tx ni = 167 23.0 ft Eo = 0315 0.235 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 2 Ponding Depth = 6.0 7.5 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 5.8 10.1 cfs with Clogging Q„„ = 3.6 63 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 15.5 173 cfs with Clogging Qoa = 9J 10.8 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.08 0.08 MINOR MAJOR Qw; = 4.8 9J cfs Qwa = 4.4 8.9 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 6.00 6.00 feet T = 18.7 25.0 ft. >T-Crown dceowry = 0.0 1.2 inches MINOR MAIOR d�,a�e = 0•52 0.65 ft dc�ro = 033 0.46 ft RF�,a�e = OJl 0.88 RFc,,,b = N/A N/A RFcombmano� = OJl 0.88 MINOR MAJOR Q, = 6.6 12.2 cfs �Fae aFnivaFn = 2.5 10.7 cf5 MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: Gl-2 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LS.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 20.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 20A 20A ft drnnx = 6.0 7.5 inches Minor Storm Ma'or Storm y = 4.80 4.80 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 631 631 inches Tx = 18.0 18.0 � Eo = 0.296 0.296 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 25.0 ff Tx ni = 167 23.0 ft Eo = 0315 0.235 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 2 Ponding Depth = 6.0 7.5 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 5.8 10.1 cfs with Clogging Q„„ = 3.6 63 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 15.5 173 cfs with Clogging Qoa = 9J 10.8 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.08 0.08 MINOR MAJOR Qw; = 4.8 9J cfs Qwa = 4.4 8.9 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 6.00 6.00 feet T = 18.7 25.0 ft. >T-Crown dceowry = 0.0 1.2 inches MINOR MAIOR d�,a�e = 0•52 0.65 ft dc�ro = 033 0.46 ft RF�,a�e = OJl 0.88 RFc,,,b = N/A N/A RFcombmano� = OJl 0.88 MINOR MAJOR Q, = 6.6 12.2 cfs �Fae aFnivaFn = 23 9.9 cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: Gl-3 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LZ.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 29.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 29A 29A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 6.96 6.96 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 8.47 8.47 inches Tx = 27.0 27.0 � Eo = 0.201 0.201 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 6.0 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 53 7.0 cfs with Clogging Q„„ = 2.6 3.5 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 7.8 8.4 cfs with Clogging Qoa = 3.9 4.2 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.17 0.17 MINOR MAJOR Qw; = 4.4 6.6 cfs Qwa = 3.7 5.5 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 3.00 3.00 feet T = 18.7 22.9 ft dceowry = 0.0 0.0 inches MINOR MAIOR d�,a�e = 0•52 0.61 ft dc�ro = 0.33 0.42 ft RF�,a�e = 0.94 1.00 RFc,,,b = N/A N/A RFcombmano� = 0.94 1.00 MINOR MAJOR Q, = 5.1 6.6 cfs aF� = 0.8 3.4 cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: Gl-4 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LS.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 18.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 18.0 18A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 4.32 432 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 5.83 5.83 inches Tx = 16.0 16.0 � Eo = 0.330 0.330 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 5.8 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 4.9 7.0 cfs with Clogging Q„„ = 2.5 3.5 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 7J 8.4 cfs with Clogging Qoa = 3.8 4.2 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.17 0.17 MINOR MAJOR Qw; = 4.0 6.6 cfs Qwa = 3.4 5.5 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 3.00 3.00 feet T = 18.0 22.9 ft. >T-Crown dceowry = 0.0 1.2 inches MINOR MAIOR d�,a�e = 0.51 0.61 ft dc�ro = 032 0.42 ft RF�,a�e = 0.91 1.00 RFc,,,b = N/A N/A RFcombmano� = 0.91 1.00 MINOR MAJOR Q, = 4.8 6.6 cfs �Fae aFnivaFn = 0.8 3.1 Cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: Gl-9 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - ZL.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 19.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 19.0 19A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 4.56 4.56 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 6.07 6.07 inches Tx = 17.0 17.0 � Eo = 0.313 0.313 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 2 Ponding Depth = 6.0 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 5.8 8.5 cfs with Clogging Q„„ = 3.6 53 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 15.5 16J cfs with Clogging Qoa = 9J 10.5 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.08 0.08 MINOR MAJOR Qw; = 4.8 7.9 cfs Qwa = 4.4 7.2 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 6.00 6.00 feet T = 18.7 22.9 ft. >T-Crown dceowry = 0.0 0.9 inches MINOR MAIOR d�,a�e = 0•52 0.61 ft dc�ro = 033 0.42 ft RF�,a�e = OJl 0.82 RFc,,,b = N/A N/A RFcombmano� = OJl 0.82 MINOR MAJOR Q, = 6.6 10.2 cfs �Fae aFnivaFn = 2.2 8.7 Cf5 MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: G1-10 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - L9.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 19.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 19.0 19A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 4.56 4.56 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 6.07 6.07 inches Tx = 17.0 17.0 � Eo = 0.313 0.313 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 6.0 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 53 7.0 cfs with Clogging Q„„ = 2.6 3.5 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 7.8 8.4 cfs with Clogging Qoa = 3.9 4.2 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.17 0.17 MINOR MAJOR Qw; = 4.4 6.6 cfs Qwa = 3.7 5.5 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 3.00 3.00 feet T = 18.7 22.9 ft. >T-Crown dceowry = 0.0 0.9 inches MINOR MAIOR d�,a�e = 0•52 0.61 ft dc�ro = 0.33 0.42 ft RF�,a�e = 0.94 1.00 RFc,,,b = N/A N/A RFcombmano� = 0.94 1.00 MINOR MAJOR Q, = 5.1 6.6 cfs aF� = 1.� 4.6 cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: Gl-il r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - SI.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 20.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 20A 20A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 4.80 4.80 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 631 631 inches Tx = 18.0 18.0 � Eo = 0.296 0.296 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 6.0 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 53 7.0 cfs with Clogging Q„„ = 2.6 3.5 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 7.8 8.4 cfs with Clogging Qoa = 3.9 4.2 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.17 0.17 MINOR MAJOR Qw; = 4.4 6.6 cfs Qwa = 3.7 5.5 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 3.00 3.00 feet T = 18.7 22.9 ft. >T-Crown dceowry = 0.0 OJ inches MINOR MAIOR d�,a�e = 0•52 0.61 ft dc�ro = 0.33 0.42 ft RF�,a�e = 0.94 1.00 RFc,,,b = N/A N/A RFcombmano� = 0.94 1.00 MINOR MAJOR Q, = 5.1 6.6 cfs aF� = 0.6 2.7 cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: G1-12 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LS.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 20.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 20A 20A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 4.80 4.80 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 631 631 inches Tx = 18.0 18.0 � Eo = 0.296 0.296 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 6.0 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 53 7.0 cfs with Clogging Q„„ = 2.6 3.5 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 7.8 8.4 cfs with Clogging Qoa = 3.9 4.2 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.17 0.17 MINOR MAJOR Qw; = 4.4 6.6 cfs Qwa = 3.7 5.5 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 3.00 3.00 feet T = 18.7 22.9 ft. >T-Crown dceowry = 0.0 OJ inches MINOR MAIOR d�,a�e = 0•52 0.61 ft dc�ro = 0.33 0.42 ft RF�,a�e = 0.94 1.00 RFc,,,b = N/A N/A RFcombmano� = 0.94 1.00 MINOR MAJOR Q, = 5.1 6.6 cfs aF� = 0.7 2.8 cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: G1-13 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) of Curb at Gutter Flow Line :e from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - ZL.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 19.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions Minor Storm Ma'or Storm Tnnx = 19.0 19A ft drnnx = 6.0 7.0 inches INOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm AJOR STORM Allowable Capacity is not a��plicable to Sump Condition Qai�ow = SUMP SUMP efs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) �ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (typical value 23-3.7) Opening Orifice Coefficient (typical value 0.60 - OJO) ifor Grate Midwidth i for Curb Opening Weir Equation �d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets iination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capacity (assumes clogged condition) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 6.0 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 MINOR MAJOR La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Cw (C) = 3JD Co (C) = 0.66 MINOR MAJOR d��a�e = 0.52 0.61 ft dc��b = 033 0.42 ft RF��a�z = 0•94 1.00 RFc,,,b = N/A N/A RFcomnmavo� = 0•94 1.00 MINOR MAJOR Qa = 5.1 6.6 cfs QPEAKftEQIIiRED— O.S Z.Z Cf5 MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: G1-14 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - ZL.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 19.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 19.0 19A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 4.56 4.56 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 6.07 6.07 inches Tx = 17.0 17.0 � Eo = 0.313 0.313 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 6.0 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 53 7.0 cfs with Clogging Q„„ = 2.6 3.5 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 7.8 8.4 cfs with Clogging Qoa = 3.9 4.2 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.17 0.17 MINOR MAJOR Qw; = 4.4 6.6 cfs Qwa = 3.7 5.5 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 3.00 3.00 feet T = 18.7 22.9 ft. >T-Crown dceowry = 0.0 0.9 inches MINOR MAIOR d�,a�e = 0•52 0.61 ft dc�ro = 0.33 0.42 ft RF�,a�e = 0.94 1.00 RFc,,,b = N/A N/A RFcombmano� = 0.94 1.00 MINOR MAJOR Q, = 5.1 6.6 cfs aF� = 0.5 2.1 cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: G1-15 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LZ.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 18.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 18.0 18A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 4.32 432 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 5.83 5.83 inches Tx = 16.0 16.0 � Eo = 0.330 0.330 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 5.8 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 4.9 7.0 cfs with Clogging Q„„ = 2.5 3.5 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 7J 8.4 cfs with Clogging Qoa = 3.8 4.2 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.17 0.17 MINOR MAJOR Qw; = 4.0 6.6 cfs Qwa = 3.4 5.5 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 3.00 3.00 feet T = 18.0 22.9 ft. >T-Crown dceowry = 0.0 1.2 inches MINOR MAIOR d�,a�e = 0.51 0.61 ft dc�ro = 032 0.42 ft RF�,a�e = 0.91 1.00 RFc,,,b = N/A N/A RFcombmano� = 0.91 1.00 MINOR MAJOR Q, = 4.8 6.6 cfs �Fae aFnivaFn = 03 3.3 cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: G1-16 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LZ.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 18.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 18.0 18A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 4.32 432 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 5.83 5.83 inches Tx = 16.0 16.0 � Eo = 0.330 0.330 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 5.8 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 4.9 7.0 cfs with Clogging Q„„ = 2.5 3.5 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 7J 8.4 cfs with Clogging Qoa = 3.8 4.2 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.17 0.17 MINOR MAJOR Qw; = 4.0 6.6 cfs Qwa = 3.4 5.5 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 3.00 3.00 feet T = 18.0 22.9 ft. >T-Crown dceowry = 0.0 1.2 inches MINOR MAIOR d�,a�e = 0.51 0.61 ft dc�ro = 032 0.42 ft RF�,a�e = 0.91 1.00 RFc,,,b = N/A N/A RFcombmano� = 0.91 1.00 MINOR MAJOR Q, = 4.8 6.6 cfs �Fae aFnivaFn = 03 5.3 cfs MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: G1-17 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) of Curb at Gutter Flow Line :e from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LZ.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 29.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions Minor Storm Ma'or Storm Tnnx = 29A 29A ft drnnx = 6.0 7.0 inches INOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm Major Storm AJOR STORM Allowable Capacity is not a��plicable to Sump Condition Qai�ow = SUMP SUMP efs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) �ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (typical value 23-3.7) Opening Orifice Coefficient (typical value 0.60 - OJO) ifor Grate Midwidth i for Curb Opening Weir Equation �d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets iination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capacity (assumes clogged condition) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 6.0 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 MINOR MAJOR La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Cw (C) = 3JD Co (C) = 0.66 MINOR MAJOR d��a�e = 0.52 0.61 ft dc��b = 033 0.42 ft RF��a�z = 0•94 1.00 RFc,,,b = N/A N/A RFcomnmavo� = 0•94 1.00 MINOR MAJOR Qa = 5.1 6.6 cfs Q PEAK ftEQIIiRED — O.1 O.S Cf5 MHFD-Inlet �ersion 5.03 Au ust 2023 � � � i � � � �' � � � ' • i . • • (Based on Regulated Criteria for Maximum Allowable Fiow Depth and Spread) Project: MONTAVA PHASE D Inlet ID: G1-18 r T T, T� `-e�cx W T. STftEET a I p, CROwN 3, _� �� num Allowable Width for Spread Behind Curb Slope Behind Curb Qeave blank for no conveyance aedit behind curb) iing's Roughness Behind Curb (typically between 0.012 and 0.020) �. of Curb at Gutter Flow Line ce from Curb Face to Street Crown W idth Transverse Slope Cross Slope (typically 2 inches over 24 inches or 0.083 ft/R) Longitudinal Slope - Enter 0 for sump condition �g's Roughness for Street Section (typically between 0.012 and 0.020) TBACK - LS.O ft SBACK - O.OZO ft/ft �encK = 0.013 HcuRs = 6.00 inches TcaowN = 18.D ft W = 2.00 ft Sx = 0.020 h/ft SW = 0.083 ft/ft So = 0.000 ft/ft �sraeer = 0.013 Allowable Spread for Minor & Major Storm Allowable Depth at Gutter Flowline for Minor & Major Storm < boxes are not applicable in SUMP conditions =r Depth without Gutter Depression (T * Sx * 12) cal Depth between Gutter Lip and Gutter Flowline (W * Sw * 12) �r Depression (d� - (W * 5, * 12)) �r Depth at Gutter Flowline (y + a) vable Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) iarge outside the Gutter Sedion, carried in Section Tx �arge within the Gutter Section (Qr - Qx - Qsaa) �arge Behind the Curb (e.g., sidewalk, driveways, & lawns) mum Flow Based On Allowable Spread Velociry within the Gutter Section Product: Flow Velocity times Gutter Flowline Depth �retical Water Spread �retical Spread for Discharge outside the Gutter Section (T - W) �r Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7) �retical Discharge outride the Gutter Sedion, carried in Section TxrH al Discharge outside the Gutter Section, Qimited by distance Tcaowrv) �arge within the Gutter Sedion (Qtl ' Qx) iarge Behind the Curb (e.g., sidewalk, driveways, & lawns) I Discharge for Major & Minor Storm (Pre-Safety Factor) age Flow Velocity Within the Gutter Section Product: Flow Velocity Times Gutter Flowline Depth e-Based Safety Factor for Minor/Major Storm depth reduction, d> 6" Flow based on Allowable Depth (Safety Factor Applied) iltant Flow Depth at Gutter Flowline (Safety Factor Applied) iltant Flow Depth at Street Crown (Safety Factor Applied) STORM Allowable Capaciry is not applicable to Sump Condition STORM Allowable CapaciCy is not applicable to Sump Condition Minor Storm Ma'or Storm Tnnx = 18.0 18A ft drnnx = 6.0 7.0 inches Minor Storm Ma'or Storm y = 4.32 432 inches dc = 2.0 2.0 inches a = 1.51 1.51 inches d = 5.83 5.83 inches Tx = 16.0 16.0 � Eo = 0.330 0.330 Qx = 0.0 0.0 �s Qw = 0.0 0.0 cfs QBACK = O.O O.O cfs Qr = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 Minor Storm Maior Storm TTn = 18J 22.9 ff Tx ni = 167 20.9 ft Eo = 0315 0.258 Qx rn = 0.0 0.0 �s Qx = 0.0 0.0 cfs Qw = 0.0 0.0 cfs Qena = 0.0 OA cfs Q = SUMP SUMP cfs V = 0.0 0.0 fps V*d = 0.0 0.0 R = SUMP SUMP Qd = SUMP SUMP cFs d = inches dcaowm = inches Minor Storm Major Storm Q,iio„, = SUMP SUMP cfs � • �• . � � � MHFD-Inlet, �ersion 5. 03 (August 2023J � Lo (C) X H-Curb H-Vert Wo Wp W Lo (G) of Inlet I CDOT/Den�r 13 Combina[ion Depression (additional to continuous gutter depression 'a' from above) �er of Unit Inlets (Grate or Curb Opening) � Depth at Flowline (outride of local depression) � of a Unit Grate of a Unit Grate Area Ratio for a Grate (typical values 0.15-0.90) ng Factor for a Single Grate (typical value 0.50 - 0.70) Weir Coefficient (typical value 2.15 - 3.60) Orifce Coefficient (typical value 0.60 - 0.80) MINOR MAIOR Type = CDOT/Denver 13 Combination aio�ai = 2.00 inches No = 1 Ponding Depth = 5.8 7.0 inches MINOR MAJOR �.J O�rride Depths Lo (G) = 3.00 feet Wo = 1J3 feet A,a��o = 0.43 Cf (G) = 0.50 0.50 C„, (G) = 330 Co (G) = 0.60 th of a Unit Curb Opening �t of Vertical Curb Opening in Inches it of Curb Orifce Throat in Inches ° of Throat Width for Depression Pan (typically the gutter width of 2 feet) 3ing Factor for a Single Curb Opening (typical value 0.10) Opening Weir Coefficient (rypical value 23-3.7) Openinq Orifice Coefficient (tvpical value 0.60 - 0.70) Coefficient for Multiple Units Factor for Multiple Units La (C) = 3.00 feet H�en = 6.50 inches Hen,oa� = 5.25 inches Theta = O.OD degrees WP = 2.00 feet Cf(C) = 0.10 0.10 Coef Clog without Clogging Qw; = 4.9 7.0 cfs with Clogging Q„„ = 2.5 3.5 cfs �ity as an Orifice (based on MHFD - CSU 2010 Study) MINOR MA70R without Clogging Qo; = 7J 8.4 cfs with Clogging Qoa = 3.8 4.2 cfs :itV d5 Mix2d FIOw MINOR MAJOR without Clogging with Clogging Qm� _ Qma = QGrate - cfs cfs CfS Coefficient for Multiple Units Factor for Multiple Units �acitv as a Weir (based or ion without Clogging ion with Clogging �acitv as an Orifice fbasec ion without Clogging ion with Clogging �ning Capacity as Mixed F ion without Clogging ion with Clogging Inlet Length tant Street Flow Spread (based on street geometry from above) tant Flow Depth at Street Crown ifor Grate Midwidth i for Curb Opening Weir Equation d Inlet Performance Reduction Factor for Long Inlets Opening Performance Reduction Factor for Long Inlets �ination Inlet Performance Reduction Factor for Long Inlets Inlet Interception Capaciry (assumes clogged condition) Coef = 1.00 1.00 CIo9 = 0.17 0.17 MINOR MAJOR Qw; = 4.0 6.6 cfs Qwa = 3.4 5.5 cFs MINOR MAJOR •.. • cfs cfs cfs cfs cfs L = 3.00 3.00 feet T = 18.0 22.9 ft. >T-Crown dceowry = 0.0 1.2 inches MINOR MAIOR d�,a�e = 0.51 0.61 ft dc�ro = 032 0.42 ft RF�,a�e = 0.91 1.00 RFc,,,b = N/A N/A RFcombmano� = 0.91 1.00 MINOR MAJOR Q, = 4.8 6.6 cfs �Fae aFnivaFn = 0.1 0.4 Cf5 APPENDIX G STORM SEWER & CU LVERT DESIGN ST-01 �► :: e � � �: � � "Y�'`= �' j�1A � INLET-1 AB i. � �� � i = t7 Y � � �• '�' � � � _...,�_._.�ic_.�._.�_._._ �� STMH-1B �N�,FT • � INLET-1�1 !BA ' ���'�-�� +�� DI-1BA FT:S 1 A Rainfall Parameters Rainfall Return Period: 2 Backwater Calculations: Tailwater Elevation (ft): 4999.50 Manhole Input Summary: Given Flow Sub Basin Information Total Ground Local Drainage Overland Overland Gutter Gutter Element Elevation Known Contribution Area Runoff Syr Length Slope Length Velocity Name (ft) ��f � (cfs) (Ac.) Coefficient Coefficient �ft) (%) (ft) (fps) FES-lA 4994.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-lA 5003.05 4.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-lA 5002.32 4.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-lA 5002.32 0.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-1B 5003.03 4.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5003.03 0.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 BA DI-1BA 5003.03 0.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-1C 5004.67 3.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5004.79 2.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 lAB DI-lAB 5004.79 233 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5004.05 1.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 lAA DI-lAA 5004.05 131 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-lD 5005.53 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-lE 5006.67 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FES-1B 5000.84 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Manhole Output Summary: Local Contribution Total Design Flow Overland Gutter Basin Local Manhole Peak Element Time Time Tc Intensity Contrib Coeff. Intensity Tc Flow Name �min) (min) (min) <<n/hr) �cfs) Area (in/hr) �min) (cfs) FES-lA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-1 A INLET-lA DI-IA STMH-I B INLET- 1 BA DI-1 BA STMH-1 C INLET- lAB DI-1 AB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.43 4.43 0.53 4.07 0.77 0.77 3.55 2.33 2.33 Comment Surface Water Present (Upstream) Surface Water Present (Downstream) INLET- 0.00 1 AA DI-lAA 0.00 STMH-ID 0.00 STMH-IE 0.00 FES-1B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sewer Input Summary: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Elevation Loss Coefficients Element Sewer pownstream Slope Upstream Mannings Bend Lateral Length Invert o InverY Name (ft) (ft) � �O� (ft) n Loss Loss STMH-lA 83J9 4994.93 03 4995.18 0.013 0.03 0.00 INLET-lA 24.65 4995.11 0.3 4995.18 0.013 0.05 0.00 DI-1 A 1.00 4995.18 03 4995.18 0.013 0.25 0.00 STMH-1B 29.00 4995.18 0.3 4995.27 0.013 0.05 0.00 INLET-1BA 19.90 4997.35 0.5 4997.45 0.013 0.15 0.00 DI-IBA 1.00 4997.45 0.5 4997.45 0.013 0.25 0.00 STMH-1C 171.42 4995.28 0.3 4995.79 0.013 1.32 0.00 INLET-lAB 17.75 4997.87 0.5 499796 0.013 1.32 0.00 DI-lAB L00 4997.96 0.5 499796 0.013 0.25 0.00 1NLET-lAA 30.95 4997.87 0.5 4998.02 0.013 0.83 0.00 D[-IAA 1.00 499R.02 0.5 4998.02 0.013 0.25 0.00 STMH-ID 163.89 4995.79 0.3 4996.28 0.013 0.05 0.00 STMH-lE 143.18 4996.28 0.3 4996.71 0.013 0.49 0.00 FES-1B 45.12 4996.70 03 4996.84 0.013 1.32 0.00 Sewer Flow Summary: 1.31 l31 1.50 1.50 1.50 Given Dimensions Cross Rise Span Section (ft or in) (ft or in) ELLIPSE 48.00 in 76.00 in ELLIPSE 43.00 in 68.00 in ELLIPSE 48.00 in 76.00 in ELLIPSE 43.00 in 68.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in ELLIPSE 43.00 in 68.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR l 8.00 in 18.00 in CIRCULAR 48.00 in 48.00 in CIRCULAR 48.00 in 48.00 in CIRCULAR 48.00 in 48.00 in Full Flow Critical Flow Normal Flow Capacity Element Flow Velocity Depth Velocity Depth Velocity Froude Flow Flow Surcharged Name (cfs) (fps) (in) (fps) (in) (fps) Number Condition (cfs) Length (ft) STMH-lA 147.51 8.47 6.82 3.53 7.18 3.28 0.90 Pressurized 4.43 83.79 INLET- 109.88 7.87 7.02 3.59 7.40 3.32 0.90 Pressurized 4.43 24.65 lA DI-lA 147.51 8.47 2.34 2.05 2.64 1.72 0.79 Pressurized 0.53 1.00 STMH-1B 109.88 7.87 6.72 3.51 7.11 3.24 0.90 Pressurized 4.07 29.00 INLET- �.45 4.21 3.91 2.72 3.91 2J2 1.00 Pressurized 0.77 19.90 1 BA DI-1BA 7.45 4.21 3.91 2.72 3.91 2J2 1.00 Pressurized 0.77 1.00 Comment Velociry is Too Low STMH-1C 109.88 INLET- �.45 lAB DI-lAB 7.45 INLET- �.45 1 AA DI-1 AA 7.45 STMH-1D 78.89 STMH-lE 78.89 FES-1B 78.89 7.87 6.27 339 6.66 3.11 0.89 4.21 6.93 3.72 6.91 3.73 1.00 4.21 6.93 3.72 6.91 3.73 1.00 4.21 5.14 3.15 5.11 3.17 1.01 4.21 5.14 3.15 S.11 3.17 1.01 6.28 4.22 2.77 4.59 2.45 0.85 6.28 4.22 2.77 4.59 2.45 0.85 6.28 4.22 2.77 4.59 2.45 0.85 Pressurized 3.55 Pressurized 2.33 Pressurized 233 Supercritical 131 Jump Supercritical 1.31 Jump Subcritical 1.50 Subcritical 1.50 Subcritical 1.50 171.42 17.75 i .00 29.87 0.36 0.00 0.00 0.00 � � � � • A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe). • If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer. • If the sewer is pressurized, full flow represents the pressurized flow conditions. Sewer Sizing Summary: Existing Calculated Used Element Peak Cross Area Name ��f � Section �se Span Rise Span Rise Span �ft�2� Comment STMH-lA 4.43 ELLIPSE 48.00 in 76.00 in 18.00 in 18.00 in 48.00 in 76.00 in 17.42 INLET-lA 4.43 ELLIPSE 43.00 in 68.00 in 18.00 in 18.00 in 43.00 in 68.00 in 13.97 DI-IA 0.53 ELLIPSE 48.00 in 76.00 in 18.00 in 18.00 in 48.00 in 76.00 in 17.42 STMH-1 B 4.07 ELLIPSE 43.00 in 68.00 in 18.00 in 18.00 in 43.00 in 68.00 in ] 3.97 INLET-1BA 0.77 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-1BA 0.77 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 STMH-1C 3.55 ELLIPSE 43.00 in 68.00 in 18.00 in 18.00 in 43.00 in 68.00 in 13.97 INLET-lAB 2.33 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-]AB 233 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 CNLET-IAA 131 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-1 AA 131 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 STMH-1 D 1.50 CIRCULAR 48.00 in 48.00 in 18.00 in 18.00 in 48.00 in 48.00 in 12.57 STMH-lE 1.50 CIRCULAR 48.00 in 48.00 in 18.00 in 18.00 in 48.00 in 48.00 in 12.57 FES-1B 1.50 CIRCULAR 48.00 in 48.00 in 18.00 in 18.00 in 48.00 in 48.00 in 12.57 • Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size. • Sewer sizes should not decrease downstream. • All hydraulics where calculated using the 'Used' parameters. Grade Line Summary: Tailwater Elevation (ft): 4999.50 Element Downstream Upstream Name (ft) (ft) STMH-1 A INLET-lA DI-lA STMH-1 B INLET-1 BA D[-I BA STMH-1 C INLET-1 AB DI-1 AB INLET-1 AA D[-lAA STMH-1 D STMH-1 E FES-1B 4994.93 4995.11 4995.18 4995.18 499735 4997.45 4995.28 4997.87 499796 4997.87 4998.02 4995.79 4996.28 4996J0 Invert Elev Downstream Manhole Losses Bend Lateral Loss Loss (ft) (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HGL EGL Downstream Upstream Downstream Friction Upstream (ft) (ft) (ft) �t°.t�s (ft) 4999.50 4999.50 4999.50 0.00 4999.50 4999.50 4999.50 4999.50 0.00 4999.50 4999.50 4999.50 4999.50 0.00 4999.50 4999.50 4999.50 4999.50 0.00 4999.50 4999.50 4999.50 4999.50 0.00 4999.51 4999.50 4999.50 4999.51 0.00 4999.51 4999.50 4999.50 4999.50 0.00 4999.50 4999.54 4999.55 4999.57 0.01 4999.57 4999.55 4999.55 4999.58 0.00 4999.58 4999.51 4999.51 4999.52 0.00 4999.52 4999.52 4999.52 4999.53 0.00 4999.53 4999.50 4999.50 4999.50 0.00 4999.50 4999.50 4999.50 4999.50 0.00 4999.50 4999.50 4999.50 4999.50 0.00 4999.50 4995.18 4995.18 4995.18 4995.27 4997.45 4997.45 4995.79 4997.96 4997.96 4998.02 4998.02 4996.28 4996.71 4996.84 • Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer. • Bend loss - Bend K* V_fi ^ 2/(2*g) • Lateral loss = V_fo ^ 2/(2*g)- Junction Loss K* V_fi ^ 2/(2*g). • Friction loss is always Upstream EGL - Downstream EGL. ST O1 rn��,» �e rFci ST-01 100-YEAR �� s ��� �� �� S� � t7 '-� � � x ~y x Q a �, � � INLET 1t�A � �Y �' � �_._.<--�-._.�_._�---._.-�_.-. . � 57MF1-1B 1[�LET-lA STMH-1C .•'L• � P �� 5����. FES-lA Rainfall Parameters Rainfall Return Period: 100 Backwater Calculations: INLET- l �1B G � z � � . jNLEr_I� .E.� � Dr- � �n Tailwater Elevation (ft): 5001.00 Manhole Input Summary: Given Flow Sub Basin Information Total Ground Local Drainage Overland Overland Gutter Gutter Element Elevation Known Contribution Area Runoff Syr Length Slope Length Velocity Name (ft) ��f � (cfs) (Ac.) Coefficient Coefficient �ft) (%) (ft) (fps) FES-lA 4994.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-lA 5002.87 105.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-1B 5003.05 105.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-lA 5002.32 105.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-lA 5002.32 2.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-1C 5003.03 104.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5002.49 336 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1BA DI-1BA 5002.49 3.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-1D 5004.69 10235 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5004.23 10.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 lAB DI-lAB 5002.43 10.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5004.05 5.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 lAA DI-lAA 5004.05 5.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-lE 5005.53 89.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-1F 5006.67 89.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FES-IB 5000.84 89.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Manhole Output Summary: Local Contribution Total Design Tlow Overland GuYter Basin Local Manhole Peak Element Intensity Coeff. Intensity Name Time Time Tc �i��hr� Contrib Area (in/hr) Tc Flow (min) (min) (min) (cfs) (min) (cfs) Comment FES-lA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Surface Water Present STMH-1 A STMH-1 B INLET-lA DI- i A STMH-1 C INLET- 1BA DI-1 BA STMH-1D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (Upstream) 105.56 Surface Water Present (Downstream) 105.56 105.56 2.19 104.29 336 3.36 102.35 INLET- 0.00 lA6 DI-lAB 0.00 INLET- 0.00 1 AA DI-lAA 0.00 STMH-lE 0.00 STMH-1F 0.00 FES-1B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.16 Surface Water Present (Upstream) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.66 5.66 89.10 89.10 89. l0 Surface Water Present (Upstream) Sewer Input Summary: Elevation Loss Coefficients Given Dimensions Element Sewer pownstream Slope Upstream Mannings Bend Lateral Cross Rise Span Length Invert o Invert Name (ft) (ft) ��O� (ft) n Loss Loss Section (ft or in) (ft or in) STMH-lA 60.95 4994.86 03 4995.04 0.013 0.03 0.00 ELLIPSE 48.00 in 76.00 in STMH-IB 22.84 4995.04 0.3 4995.11 0.013 0.05 0.00 ELLIPSE 48.00 in 76.00 in INLET-IA 24.65 4995.11 03 4995.18 0.013 0.05 0.00 ELLIPSE 43.00 in 68.00 in DI-lA 1.00 4995.18 0.3 4995.18 0.013 0.25 0.00 ELLIPSE 48.00 in 76.00 in STMH-1C 29.00 4995.18 03 4995.27 0.013 0.05 0.00 �LLIPSE 43.00 in 68.00 in INLET-1BA 19.90 499735 0.5 4997.45 0.013 0.15 0.00 CIRCULAR 18.00 in 18.00 in DI-IBA 1.00 4997.45 0.5 4997.45 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in STMH-1 D 171.42 4995.28 0.3 4995.79 0.013 1.32 0.00 CTRCULAR 54.00 in 54.00 in INLET-lAB 17.75 4997.87 0.5 4997.96 0.013 1.32 0.00 CIRCULAR 18.00 i�� 18.00 in DI-IAB 1.00 4997.96 0.5 499796 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in INLET-lAA 30.95 4997.87 0.5 4998.02 0.013 0.83 0.00 CIRCULAR 18.00 in 18.00 in DI-lAA 1.00 �4998.02 0.5 4998.02 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in STMH-lE 163.89 4995.79 0.3 4996.28 0.013 0.05 0.00 CIRCULAR 48.00 in 48.00 in STMH-1F 143.18 4996.28 0.3 4996.71 0.013 0.49 0.00 CIRCULAR 48.00 in 48.00 in FES-1B 45.12 4996.70 0.3 4996.84 0.013 1.32 0.00 CIRCULAR 48.00 in 48.00 in Sewer Flow Summary: Full Flow Capacity Critical Flow Normal Flow Element Flow Velocity Depth Velocity Depth Velocity Froude Flow Flow Surcharged Name (cfs) (fps) (in) (fps) (in) (fps) Number Condition (cfs) Length Comment (ft) STMH-lA 147.51 8.47 34.78 8.72 3736 8.00 0.87 Pressurized 105.56 6095 STMH-IB 147.51 8.47 34.78 8.72 37.36 8.00 0.87 Pressurized 105.56 22.84 INLET-lA 109.88 7.87 35.97 9.16 41.49 7.84 0.75 Pressurized 105.56 24.65 DI-lA 147.51 8.47 4.78 295 5.13 2.65 0.87 Pressurized 2.19 1.00 STMH-IC INLET-1BA DI-1BA STMH-1D INLET-1 AB DI- I AB INLET-1 AA D[-1 AA STMH-( E STMH-i F FES-1B 109.88 7.45 7.45 108.00 7.45 7.45 7.45 7.45 78.89 78.89 78.89 7.87 4.21 4.21 6.79 4.21 4.21 4.21 4.21 6.28 6.28 6.28 35.74 8.38 8.38 35.68 18.00 I 8.00 I 1.01 t 1.01 48.00 48.00 48.00 9.12 4.17 4.17 9.18 5.75 5.75 5.00 5.00 7.09 7.09 7.09 41.07 8.48 8.48 41.92 18.00 18.00 1 1.74 1 1.74 48.00 48.00 48.00 7.82 4.11 4.11 7.73 5.75 5.75 4.64 4.64 7.09 7.09 7.09 0.76 0.98 0.98 0.72 0.00 0.00 0.88 0.88 0.00 0.00 0.00 Pressurized 104.29 Pressurized 3.36 Pressurized 3.36 Pressurized 10235 Pressurized 10.16 Pressurized 10.16 Pressurized 5.66 Pressurized 5.66 Pressurized 89.10 Press�irized 89.10 Pressurized 89.10 29.00 19.90 1.00 171.42 17.75 1.00 3095 1.00 163.89 143.18 45.12 • A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe). • If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer. • If the sewer is pressurized, full flow represents the pressurized flow conditions. Sewer Sizing Summary: Existing Calculated Used Element Peak Cross Area Name ��f � Section �se Span Rise Span Rise Span �ft�2� Comment STMH-lA 105.56 ELLIPSE 48.00 in 76.00 in 54.00 in 54.00 in 48.00 in 76.00 in ] �,42 Existing hcight is smallcr than the suggested height. STMH-1 B 105.56 ELLIPSE 48.00 in 76.00 in 54.00 in 54.00 in 48.00 in 76.00 in � 7,42 Existing height is smaller than flie suggested height. Existing height is smaller INLET-lA 105.56 ELLIPSE 43.00 in 68.00 in 54.00 in 54.00 in 43.00 in 68.00 in 13.97 than the sug�estedheight. Exceeds inax. Depth/Rise DI-lA 2.19 ELLIPSE 48.00 in 76.00 in 18.00 in 18.00 in 48.00 in 76.00 in 17.42 Existing height is smaller STMH-1C 104.29 CLLIPSE 43.00 in 68.00 in 54.00 in 54.00 in 43.00 in 68.00 in 13.97 than the suggested height. Exceeds max. Deptl�/Rise INLET-1BA 3.36 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-1BA 3.36 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 STMH-1D 102.35 CIRCULAR 54.00 in 54.00 in 54.00 in 54.00 in 54.00 in 54.00 in 15.90 INLET-lAB 10.16 CIRCULAR 18.00 in 18.00 in 21.00 in 21.00 in 18.00 in 18.00 in 1.77 DI-1 AB 10.16 CIRCULAR 18.00 in 18.00 in 21.00 in 21.00 in 18.00 in 18.00 in 1.77 Existing height is smaller than the sug�ested height. Existing width is smaller than the suggested width. Exceeds max. Deptli/Rise Existing height is smaller than the sug�ested height. Existing width is smaller than the suggested width. Exceeds max. Deptl�/Rise INLET-1 AA 5.66 C[RCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-lAA 5.66 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 Existing height is simaller tl�an the suggested height. STMH-lE 89.10 CIRCULAR 48.00 in 48.00 in 54.00 in 54.00 in 48.00 in 48.00 in 12.57 Existing width is smaller than the suggested width. I I I Y Y Y I I � Excecds inax. Depth/Rise ��������� Existing height is smaller than the suggestcd height. STMH-1F 89.10 CIRCULAR 48.00 in 48.00 in 54.00 in 54.00 in 48.00 in 48.00 in 12.57 Existing width is smaller than the suggestcd width. Exceeds inax. Deptl�/Rise Existing hcight is smallcr than the suggested height. FES-lB 89.10 C[RCULAR 48.00 in 48.00 in 54.00 in 54.00 in 48.00 in 48.00 in 12.57 Existing width is smaller I than tl�e suggested width. Exceeds max. Depth/Rise • Calculated diameter was determined by sewer hydraulic capaciry rounded up to the nearest commercially available size. • Sewer sizes should not decrease downstream. • All hydraulics where calculated using the 'Used' parameters. Grade Line Summary: Tailwater Elevation (ft): SOOI .00 Invert Elev. Downstream Manhole Losses Bend Lateral Loss Loss (ft) (ft) 0.00 0.00 0.03 0.00 0.04 0.00 0.00 0.00 0.04 0.00 0.01 0.00 0.01 0.00 0.85 0.00 0.68 0.00 0.13 0.00 0.13 0.00 0.04 0.00 0.04 0.00 0.38 0.00 1.03 0.00 HGL EGL Downstream Upstream Downstream Friction Upstream (ft) (ft) (ft) �ft�s (ft) 5001.00 5001.09 5001.57 0.09 5001.66 SOOl.12 5001.16 5001.69 0.04 5001.73 5001.20 5001.20 5001.81 0.27 5002.09 5002.09 5002.09 5002.09 0.00 5002.09 5001.27 5001.34 5002.13 0.08 5002.21 5002.16 5002.18 5002.22 0.02 5002.24 5002.20 5002.20 5002.25 0.00 5002.25 5002.42 5002.88 5003.06 0.46 5003.52 5003.69 5003.85 5004.20 0.17 500436 500398 500399 5004.49 0.01 5004.50 5003.49 5003.58 5003.65 0.09 5003.74 5003.62 5003.63 5003.78 0.00 5003.79 5002.92 5003.54 5003.70 0.63 5004.32 5003.93 5004.47 5004.71 0.55 5005.26 5005.51 5005.68 5006.29 0.17 5006.46 Element Downstream Upstream Name (ft) (ft) STMH- ] A STMH-1B INLET-1 A DI-lA 3TMH-1 C INLET-1 BA DI-1BA STMH-1 D INLET-1 AB D[-]AB [NLET-1 AA DI- I AA STMH-lE STMH-1 F FES-1B 4994.86 4995.04 4995. ] I 4995.18 4995.18 4997.35 4997.45 4995.28 4997.87 499796 4997.87 4998.02 4995J9 4996.28 4996.70 4995.04 4995.1 1 4995.18 4995.18 4995.27 4997.45 4997.45 4995.79 4997.96 4997.96 4998.02 4998.02 4996.28 4996.71 4996.84 • Bend and Lateral losses only apply wllen there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer. • Bend loss = Bend K* V_fi ^ 2/(2*g) • Lateral loss = V fo ^ 2/(2*g)- Junction Loss K* V_fi ^ 2/(2*g). • Friction loss is always Upstream EGL - Downstream EGL. ST-O 1 rn���» �z �F�t ST-1A1 � rn���„�e �� ST-1 A2 'T��� Dis,ance lFti ST-1B Distance (Ft� MHFD-Culvert, �ersion 4. 00 (May ZOZO) Project: MONTAVA SUBDIVISION PHASE D ID: ST-01 � "'�' � �..�� n � � �I � ^ I� � „, � L Lp � __ '�_ '_�_ _ �_ � __�=` -- � . _� _ - - =-- --- - --. Design Discharge �lar Culvert: Barrel Diameter in Inches Inlet Edge Type (Choose from pull-down list) OR: Culvert: Barrel Height (Rise) in Feet Barrel Width (Span) in Feet Inlet Edge Type (Choose from pull-down list) Number of Barrels Inlet Elevation Outlet Elevation OR Slope Culvert Length Manning's Roughness Bend Loss Coefficient Exit Loss Coeffcient Tailwater SurFace Elevation Max Allowable Channel Velocity Culvert Cross Sectional Area Available Culvert Normal Depth Culvert Critical Depth Froude Number Entrance Loss Coefficient Fridion Loss Coefficient Sum of All Loss Coefficients Inlet Control Headwater Outlet Control Headwater Design Headwater Elevation Headwater/Diameter OR Headwater/Rise Ratio Protection: Flow/(Diameter^2.5) Tailwater Surface Height Tailwater/Diameter Expansion Fador Flow Area at Max Channel Velocity Width of Equivalent Conduit for Multiple Barrels Length of Riprap Protection Width of Riprap Protedion at Downstream End Adjusted Diameter for Supercritical Flow Minimum Theoretical Riprap Size Nominal Riprap Size MHFD Riprap Type Soil Type: Choose One: � Sandy Q Non-Sandy Q = 105.56 cfs D = 60 inches Grooved Edge Projecting OR H (Rise) ft W (Span) = ft # Barrels = 1 Elev IN = 4995.04 ft Elev OUT = 4994.86 ft L = 60.95 ft n = 0.013 ly, = 0 k, = 1 Y� Eie�a�;o„ = 5001 ft V - 5 ft/s A = 19.63 ftz Y„ = 3.21 ft Y� = 2.93 ft Fr = 0.84 ke = 0.20 kf = 0.22 ks = 1.42 ft HW� = 4.24 ft HWo = 6.60 ft H W = 5001.64 ft HW/D = 1.32 Q/D^2.5 = 1.89 fto s/s Yt = 6.14 ft Yt/D = 1.23 1/(2*tan(0)) = 6.70 A� = 21.11 {tz Wea = - ft LP = 15 ft T- 8 ft Da = - ft dso min= 2 in dso nominal= 6 in Type = VL � ., �f�a. �,9 �,�,,� �S� i i,, i��,�v �t'r.S�';1 Rainfall Parameters Rainfall Return Period: 2 Backwater Calculations: ST-02 �► :: Tailwater Elevation (ft): 4999.50 Manhole Input Summary: Given Flow Sub Basin Information Total Ground Local Drainage Overland Overland Gutter Gutter Element Elevation Known Contribution Area Runoff Syr Length Slope Length Velocity Name (ft) ��f � (cfs) (Ac.) Coefficient Coefficient �ft) (%) (ft) (fps) FES-2A 4995.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-2A 500133 14.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 D[-2A 5001.33 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-2A 5001.73 14.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5001.89 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2AA DI-2AA 5001.89 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-2B 5001.79 13.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-2IA 5001.93 0.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5001.50 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2JA DI-2JA 5001.50 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5001.50 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.IB DI-2JB 5001.50 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-2C 5002.55 13.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5002.14 0.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2BB DI-2BB 5002.14 0.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5002.13 1.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2BA DI-2BA 5002.13 1.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-2D 5003.88 11.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-2E 5004.97 8.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-2F 5005.43 6.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-2G 5006.01 6.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5005.58 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2EB DI-2EB 5005.58 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-2H 5007.44 337 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH- 5007.44 1.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2FA STMH- 5009.41 0.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2FB INLET- 5009.59 0.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2FA DI-2FA 5009.59 0.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5008.12 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2GA DI-2GA 5008.12 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STM H-2I 5008.46 INLET-2B 5008.83 DI-SB 5008.83 INLET- 5005.58 2EA DI-2EA 5005.58 INLET- 5005.53 2DA DI-2DA 5005.53 INLET- 5004.21 2CA DI-2CA 5004.21 [NLET- 5004.22 2CB Dl-2CB 5004.22 1.75 1.75 1.75 2.41 2.41 2.28 2.28 3.08 3.08 0.48 0.48 Manhole Output Summary: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Local Contribution Total Design Flow Element Overland Gutter Basin �ntensity Local Coeff. Intensity Manhole Peak Name Time Time Tc (in/hr) Contrib Area (in/hr) Tc Flow (min) (min) (min) (cfs) (min) (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Comment 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FES-2A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Surface Water Present INLET-2A 0.00 DI-2A 0.00 STMH-2A 0.00 INLET- 0.00 2AA DI-2AA 0.00 STMH-2B 0.00 STMH- 0.00 2IA INLET- 0.00 2JA DI-2JA 0.00 INLET- 0.00 2JB DI-2JB 0.00 STMH-2C 0.00 INLET- 0.00 2BB DI-2BB 0.00 INLET- 0.00 2BA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (Upstream) 14.50 Surface Water Present (Downstreain) 0.42 14.21 0.40 0.40 13.87 0.79 0.57 0.57 0.24 0.24 13.28 0.88 0.88 1.47 DI-2BA 0.00 STMH-2D 0.00 STMH-2E 0.00 STMH-2F 0.00 STMH-2G 0.00 INLET- 0.00 2EB DI-2EB 0.00 STMH-2H 0.00 STMH- 0.00 2FA STMH- 0.00 2FB INLET- 0.00 2FA DI-2FA 0.00 INLET- 0.00 2GA DI-2GA 0.00 STMH-2[ 0.00 INLET-2B 0.00 DI-SB 0.00 INLET- 0.00 2EA DI-2EA 0.00 INLET- 0.00 2DA DI-2DA 0.00 INLET- 0.00 2CA DI-2CA 0.00 INLET- 0.00 2CB DI-2CB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.47 0.00 1 136 0.00 8.87 0.00 6.59 0.00 6.59 0.00 1.50 0.00 1.50 0.00 337 0.00 1.73 0.00 0.81 0.00 0.81 0.00 0.81 0.00 0.92 0.00 0.92 0.00 1 JS 0.00 1.75 0.00 1.75 0.00 2.41 0.00 2.41 0.00 2.28 0.00 2.28 0.00 3.08 0.00 3.08 0.00 0.48 0.00 0.48 Sewer Input Summary: Elevation Loss Coefficients Given Dimensions Element Sewer pownstream Slope Upstream Mannings Bend LaYeral Cross Rise Span Name Length Invert o Invert (ft) (ft) ��O� (ft) n Loss Loss Section (ft or in) (ft or in) INLET-2A 62.76 4993.80 0.2 4993.93 0.013 0.03 0.00 ELLIPSE 53.00 in 83.00 in DI-2A 1.00 4994.00 03 4994.00 0.013 0.25 0.00 �LLIPSE 53.00 in 83.00 in STMH-2A 21.54 4993.94 0.2 4993.98 0.013 0.18 0.00 ELLIPSE 53.00 in 83.00 in INLET-2AA 18.00 499639 0.5 4996.48 0.013 0.23 0.00 C[RCULAR 24.00 in 24.00 in DI-2AA 1.00 4996.48 0.5 4996.48 0.013 0.25 0.00 CIRCULAR 24.00 in 24.00 in STMH-2B STMH-2[A INLET-2JA DI-2JA INLET-2JB DI-2JB STMH-2C INLET-2BB D[-2BB 1NLET-2BA DI-2BA STMH-2D STMH-2E STMH-2F STMH-2G INLET-2EB DI-2EB STMH-2H STMH-2FA STMH-2FB INLET-2FA DI-2FA INLET-2GA DI-2GA STMH-2I INLET-2B DI-SB INLET-2EA DI-2EA INLET-2DA D[-2DA INLET-2CA DI-2CA INLET-2CB DI-2CB 55.41 56.89 19.15 1.00 19.15 1.00 58.41 I 5.02 1.00 23.00 1.00 79.09 126.06 82.85 106.13 23.00 1.00 248.96 90.00 244.00 44.13 1.00 29.50 1.00 122.50 48.08 1.00 15.00 1.00 48.48 1.00 46.13 1.00 54.1 ] 1.00 0.2 1.0 0.5 0.5 0.5 0.5 1.5 0.5 0.5 0.5 0.5 1.5 1.5 0.5 0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 1.5 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 4994.09 4994.66 4994.75 4994.72 4994.75 4994.72 4994.96 4997.12 4997.12 4997.16 4997.16 4996.15 4998.54 4999.46 4999.98 5001.06 5001.06 5001.73 5002.63 5004.35 5004.57 5004.57 5003.28 5003.28 5002.84 5003.56 5003.56 5001.10 5001.06 4998.78 4998.78 499838 499838 4998.42 4998.42 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.0 I 3 0.013 0.57 0.05 0.83 0.25 0.83 0.25 1.32 1.32 0.25 1.32 0.25 0.05 0.05 0.05 0.05 0.63 0.25 0.05 1.32 0.05 0.85 0.25 1.32 0.25 0.05 0.90 0.25 1.32 0.25 1.32 0.25 1.14 0.25 132 0.25 4993.98 4994.09 4994.65 4994.72 4994.65 4994.72 4994.08 4997.04 4997.12 4997.05 4997.16 4994.96 4996.65 4999.05 4999.45 5000.95 5001.06 5000.49 5001.73 5003.13 5004.35 5004.57 5003.13 5003.28 5002.23 5002.84 5003.55 5001.03 5001.06 4998.54 499R.78 4998.15 499838 4998.15 4998.42 Sewer Flow Summary: Full Flow Critical Flow Normal Flow Capacity 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ELLIPSE 53.00 in C[RCULAR 30.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in ELLIPSE 43.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in C[RCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 42.00 in CIRCULAR 36.00 in CIRCULAR 30.00 in CIRCULAR 30.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in C[RCULAR 18.00 in CIRCULAR l 8.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in 86.00 in 30.00 in 18.00 in 18.00 in 18.00 in 18.00 in 68.00 in 18.00 in 18.00 in 18.00 in 18.00 in 42.00 in 36.00 in 30.00 in 30.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in Element Flow Velocity Depth Velocity Depth Velocity Froude Flow Flow Surcharged Name (cfs) (fps) (in) (fps) (in) (fps) Number Condition (cfs) Length CommenY (ft) INLET- 155.19 7.36 12.13 4.76 13.70 3.99 0.79 Pressurized 14.50 62.76 2A DI-2A 190.07 9.01 2.03 1.91 2.31 1.58 STMH-2A 155.19 7.36 12.01 4.73 13.57 3.97 INLET- 16.04 5.11 2.60 2.18 2.61 2.16 2AA DI-2AA 16.04 5.11 2.60 2.18 2.61 2.16 STMH-2B 160.62 7.45 ll.79 4.68 13.31 3.93 STMH- 41.13 8.38 3.45 2.52 2.88 3.28 2IA INLET- �.45 4.21 336 2.50 337 2JA DI-2JA 7.45 4.21 3.36 2.50 3.37 INLET- �.45 4.21 2J6 1.99 2.21 2JB DI-2JB 7.45 4.21 2.16 1.99 2.21 STMH-2C 245.69 17.59 12.27 4.81 8.53 INLET- �.45 4.21 4J 9 2.82 4.18 2BB DI-2BB 7.45 4.21 4.19 2.82 4.18 INLET- �.45 4.21 5.46 3.25 5.42 2BA DI-2BA 7.45 4.21 5.46 3.25 5.42 STMH-2D 123.55 12.84 12.26 4.86 8.60 STMH-2E 8191 11.59 11.28 4.68 8.00 STMH-2F 29.08 5.92 ] 0.21 4.47 9.71 STMH-2G 29.08 5.92 10.21 4.47 9.71 INLET- �.45 4.21 5.51 3.27 5.48 2EB DI-2EB 7.45 4.21 5.51 3.27 5.48 STMH-2H 16.04 5.11 7.70 3.87 7.47 STMH- 22 68 7.22 5.47 3.21 4.48 2FA STMH- �.45 4.21 4.02 2.75 4.01 2FB INLET- �.45 4.21 4.02 2.75 4.01 2FA DI-2FA 7.45 4.21 4.02 2.75 4.01 [NLET- �.45 4.21 4.29 2.85 4.27 2GA DI-2GA 7.45 4.21 4.29 2.85 4.27 STMH-2[ 7.45 4.21 5.97 3.42 5.94 INLET- 12.90 7.30 5.97 3.42 4.48 2B DI-SB 12.90 730 5.97 3.42 4.48 0.77 Pressurized 0.42 0.79 Pressurized 14.21 0.99 Pressurized 0.40 0.99 Pressurized 0.40 0.79 Pressurized 13.87 1.43 Pressurized 0.79 2.49 0.99 Pressurized 0.57 2.49 0.99 Pressurized 0.57 1.93 0.95 Pressurized 0.24 1.93 0.95 Pressurized 0.24 8.11 2.04 Pressurized 13.28 2.83 1.01 Pressurized 0.88 2.83 I.01 Pressurized 0.88 3.28 1.01 Pressurized 1.47 3.28 1.01 Pressurized 1.47 8.01 1.99 Supercritical 11.36 Jump 7.58 1.95 Supercritical 8.87 4.79 1.10 Supercritical 6.59 4.79 1.10 Supercritical 6.59 330 1.01 Supercritical 1.50 3.30 I.01 Supercritical 1.50 4.04 1.06 Supercritical 3.37 4.26 1.47 Supercritical 1.73 2.76 2.76 2.76 2.87 2.87 3.44 5.10 5.10 1.00 Supercritical 0.81 1.00 Supercritical 0.81 1.00 Supercritical 0.81 1.01 Supercritical 0.92 1.01 S��percritical 0.92 1.0 ] Supercritical 1.75 1.75 Supercritical 1.75 1.75 Supercritical 1.75 I .00 21.54 18.00 1.00 55.41 56.89 19.15 I .00 19.15 1.00 58.41 15.02 1.00 23.00 1.00 71.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Velocity is Too Low Velocity is Too Low Velocity is Too Low INLET- 2EA DI-2EA INLET- 2DA DI-2DA INLET- 2CA DI-2CA INLET- 2CB DI-2CB 7.45 7.45 7.45 7.45 16.04 16.04 7.45 7.45 4.21 4.21 4.21 4.21 5.11 5.11 4.21 4.21 7.05 7.05 6.85 6.85 735 7.35 3.08 3.08 3.7G 3.76 3.69 3.69 3.77 3.77 239 2.39 7.04 7.04 6.83 6.83 7.13 7.13 3.10 3.10 3.76 3.76 3.70 3.70 3.94 3.94 2.37 2.37 I.00 Supercritical 2.41 1.00 Supercritical 2.41 1.00 Supercritical 2.28 1.00 Supercritical 2.28 1.06 Supercritical 3.08 1.06 Supercritical 3.08 0.99 Subcritical 0.48 0.99 Subcritical 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 • A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe). • If the sewer is not pressurized, full flow represents the inaximum gravity flow in the sewer. • If the sewer is pressurized, full flow represents the pressurized flow conditions. Sewer Sizing Summary: Existing Calculated Used Element Peak Cross Area Name ��f � Section �se Span Rise Span Rise Span �ft�2� Comment INLET-2A 14.50 ELLIPSE 53.00 in 83.00 in 30.00 in 30.00 in 53.00 in 83.00 in 21.09 DI-2A 0.42 ELLIPSE 53.00 in 83.00 in 18.00 in 18.00 in 53.00 in 83.00 in 21.09 STMH-2A 14.21 ELLIPSE 53.00 in 83.00 in 30.00 in 30.00 in 53.00 in 83.00 in 21.09 INLET-2AA 0.40 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 DI-2AA 0.40 CIRCULAR 24.00 ii� 24.00 in 18.00 in 18.00 i�� 24.00 in 24.00 in 3.14 STMH-2B 13.87 ELLIPSE 53.00 in 86.00 in 30.00 in 30.00 in 53.00 in 86.00 in 21.56 STMH-2IA 0.79 CIRCULAR 30.00 in 30.00 in 18.00 in 18.00 in 30.00 in 30.00 in 4.91 INLET-2JA 0.57 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-2JA 0.57 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-2JB 0.24 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 D[-2JB 0.24 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 ii� 18.00 in 18.00 in 1.77 STMH-2C 13.28 ELLIPSE 43.00 in 68.00 in 21.00 in 21.00 in 43.00 in 68.00 in 13.97 INLET-2BB 0.88 CIRCULAR 18.00 in 18.00 in 18.00 i�� 18.00 in 18.00 in 18.00 in 1.77 DI-2BB 0.88 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-2BA 1.47 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-2BA 1.47 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 STMH-2D 11.36 CIRCULAR 42.00 in 42.00 in 18.00 in 18.00 in 42.00 in 42.00 in 9.62 STMH-2E 8.87 CIRCULAR 36.00 in 36.00 in 18.00 in 18.00 in 36.00 in 36.00 in 7.07 STMH-2F 6.59 CIRCULAR 30.00 in 30.00 in 18.00 in 18.00 i�� 30.00 in 30.00 in 4.91 STMH-2G 6.59 C�IRCULAR 30.00 in 30.00 in 18.00 in 18.00 i�� 30.00 in 30.00 in 4.91 INLET-2EB 1.50 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 D[-2EB STMH-2H STMH-2FA STMH-2FB INLET-2FA DI-2FA INLET-2GA DI-2GA STMH-2[ INLET-2B DI-SB INLET-2EA DI-2EA INLET-2DA DI-2DA INLET-2CA DI-2CA INLET-2CB DI-2CB 18.00 in 18.00 in 24.00 in 24.00 in 24.00 in 24.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 24.00 in 24.00 in 24.00 in 24.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in I 8.00 in 18.00 in 18.00 in I 8.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 24.00 in 18.00 in 24.00 in I 8.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in I 8.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 ii� 24.00 in 18.00 in 24.00 in 18.00 in l 8.00 in I 8.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 1.77 3.14 3.14 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 3.14 3.14 1.77 1.77 • Calculated diameter was detennined by sewer hydraulic capacity rounded up to the nearest coinmercially available size. • Sewer sizes should not decrease downstream. • All hydraulics where calculated using the 'Used' parameters. Grade Line Summary: Tailwater Elevation (ft): 4999.50 Invert Elev. 1.50 3.37 1.73 0.81 0.81 0.81 0.92 0.92 1.75 1.75 1.75 2.41 2.41 2.28 2.28 3.08 3.08 0.48 0.48 CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR Element Downstream Upstream Name (ft) (ft) INLET-2A DI-2A STMH-2A INLET-2AA DI-2AA STMH-2B STMH-2IA [N LET-2J A DI-2JA 4993.80 4994.00 4993.94 4996.39 4996.48 4993.98 4994.09 4994.65 4994.72 4993.93 4994.00 4993 98 4996.48 4996.48 4994.09 4994.66 4994.75 4994.72 Downstream Manhole Losses Bend Lateral Loss Loss (ft) (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HGL EGL Downstream Upstream Downstream Friction Upstream (ft) (ft) (ft) �ft�s (ft) 4999.50 4999.50 4999.51 0.00 4999.51 4999.51 4999.51 4999.51 0.00 4999.51 4999.50 4999.50 4999.51 0.00 4999.51 4999.51 4999.51 4999.51 0.00 4999.51 4999.51 4999.51 4999.51 0.00 4999.51 4999.51 4999.51 4999.51 0.00 4999.51 4999.51 4999.51 4999.51 0.00 4999.51 4999.52 4999.52 4999.52 0.00 4999.52 4999.52 4999.52 4999.52 0.00 4999.52 INLET-2JB Dl-2JB STMH-2C INL�T-2BB DI-2BB INL�T-2BA DI-2BA STMH-2D STMH-2E STMH-2F STMH-2G INLET-2EB DI-2EB STMH-2H STMH-2FA STMH-2FB IN LET-2 FA DI-2FA INLET-2GA DI-2GA STMH-2I INLET-2B DI-SB [NLET-2EA DI-2EA [NLET-2DA DI-2DA INLET-2CA DI-2CA INLET-2CB DI-2CB 4994.65 4994.72 4994.08 4997.04 4997.12 4997.05 4997.16 499496 4996.65 4999.05 4999.45 5000.95 5001.06 5000.49 5001.73 5003.13 500435 5004.57 5003.13 5003.28 5002.23 5002.84 5003.55 5001.03 SOO I .06 4998.54 4998.78 4998.15 4998.38 4998.15 4998.42 4994.75 4994.72 4994.96 4997.12 4997.12 4997.16 4997.16 4996.15 4998.54 4999.46 499998 5001.06 5001.06 5001.73 5002.63 500435 5004.57 5004.57 5003.28 5003.28 5002.84 5003.56 5003.56 5001.10 5001.06 4998.78 4998.78 4998.38 4998.38 4998.42 4998.42 0.00 0.00 0.02 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.04 0.01 0.03 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4999.5 I 4999.51 4999.53 4999.54 4999.54 4999.54 4999.55 4999.53 4999.54 4999.85 5000.38 5001.40 5001.56 5001.1 I 5002.58 5003.46 5004.71 5004.93 5003.49 5003.67 5002.72 5003.35 5004.06 5001.6l SOO I .79 4999.83 4999.84 4999.55 4999.56 4999.56 4999.56 4999.51 4999.51 4999.53 4999.54 4999.54 4999.55 4999.55 4999.54 4999.54 500031 5000.83 5001.52 5001.56 5002.37 5003.09 5004.68 5004.90 5004.93 5003.64 5003.67 5003.34 5004.06 5004.25 5001.69 5001.79 4999.83 4999.84 4999.55 4999.56 4999.56 4999.56 4999.52 4999.52 4999.54 4999.55 4999.55 4999.55 4999.56 4999.55 4999.56 5000.21 5000.62 5001.57 5001.69 5001.36 5002.61 5003.58 5004.81 5005.02 5003.62 5003.76 5002.91 5003.62 500432 5001.83 5001.91 4999.86 4999.88 4999.58 4999.60 4999.56 4999.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.26 0.41 0.52 0.11 0.00 1.24 0.63 I .22 0.22 0.00 0.15 0.00 0.61 0.62 0.00 0.07 0.00 0.02 0.00 0.0 I 0.00 0.00 0.00 4999.52 4999.52 4999.54 4999.55 4999.55 4999.56 4999.56 4999.56 4999.83 5000.62 5001.14 5001.69 5001.69 5002.60 5003.25 5004.80 5005.02 5005.03 5003.76 5003.77 5003.52 5004.24 500432 5001.91 500192 4999.88 4999.88 4999.59 4999.60 4999.56 4999.56 • Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer. • Bend loss = Bend K* V_fi ^ 2/(2*g) • Lateral loss = V fo ^ 2/(2*g)- Junction Loss K* V_fi ^ 2/(2*g). • Friction loss is always Upstream EGL - Downstream EGL. ST 02 �7��� Distance IFq Rainfall Parameters Rainfall Return Period: 100 Backwater Calculations: ST-02 100-YEAR Tailwater Elevation (ft): 5001.00 Manhole Input Summary: Given Flow Element Ground Total Local Name Elevation Known Contribution (ft) Flow (cfs) (cfs) FES-2A 4995.00 0.00 0.00 INLET-2A 500133 62.51 0.00 DI-2A 5001.33 1.79 0.00 STMH-2A 5001.73 61.23 0.00 INLET-2AA 5001.24 1.75 0.00 DI-2AA 5001.24 1.75 0.00 STMH-2B 5001.60 59.76 0.00 STMH-2IA 5001.93 3.40 0.00 [NLET-2JA 5001.50 2.47 0.00 DI-2JA 5001.50 2.47 0.00 INLET-2JB 5001.50 1.00 0.00 DI-2JB 5001.50 1.00 0.00 STMH-2C 5002.55 57.23 0.00 INLET-2BB 5002.14 3.54 0.00 DI-2BB 5002.14 3.54 0.00 INLET-2BA 5002.13 6.43 0.00 D[-2BA 5002.13 6.43 0.00 STMH-2D 5003.88 49.05 0.00 STMH-2E 5004.94 38.10 0.00 STMH-2F 5005.43 28.15 0.00 STMH-2G 5006.01 28.15 0.00 INLET-2EB 5005.58 6.45 0.00 D[-2EB 5005.58 6.45 0.00 STMH-2H 5007.42 14.08 0.00 STMH-2FA 5007.99 7.56 0.00 STMH-2FB 5009.41 3.55 0.00 INLET-2FA 5009.59 3.55 0.00 DI-2FA 5009.59 3.55 0.00 INLET-2GA 5008.12 4.01 0.00 DI-2GA 5008.12 4.01 0.00 STMH-21 5008.46 6.97 0.00 [NLET-2B 5008.83 6.97 0.00 DI-SB 5008.83 6.97 0.00 INLET-2EA 5005.58 10.53 0.00 DI-2EA 5005.58 10.53 0.00 INLET-2CA 5004.21 13.46 0.00 DI-2CA 5004.21 13.46 0.00 INLET-2CB 5004.22 2.08 0.00 Sub Basin Information Runoff Syr Overland Overland Gutter Gutter Coefficient Coefficient Length Slope Length Velocity 0 Drainage Area (Ac.) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (ft) ( /o) (ft) (fps) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-2CB 5004.22 2.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Manhole Output Summary: Local Contribution Total Design Flow Overland Gutter Basin Local Manhole Peak Element Time Time Tc Intensity Contrib Coeff. Intensity Tc Flow Comment Name �min) (min) (min) ��n/hr) �cfs) Area (in/hr) �min) (cfs) FES-2A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Surface Water Present (Upstreain) ]NLET-2A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 62.51 Surface Water Present (Downstream) DI-2A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.79 STMH-2A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 61.23 INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.75 2AA DI-2AA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.75 STMH-2B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 59.76 STMH- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.40 21A INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.47 2JA DI-2JA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.47 INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 2.IB DI-2JB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 STMH-2C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 57.23 INL�T- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.54 2BB DI-2BB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.54 INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.43 2BA DI-2BA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.43 STMH-2D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 49.05 STMH-2E 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 38.10 STMH-2F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 28.15 STMH-2G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 28.15 INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.45 2EB DI-2EB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.45 STMH-2H 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14.08 STMH- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.56 2FA STMH- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.55 2FB INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.55 2FA DI-2FA INL�T- 2GA DI-2GA STMH-2I INLET-2B DI-SB INLET- 2EA DI-2EA INLET- 2CA DI-2CA INLET- 2CB DI-2CB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sewer Input Summary: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Elevation Loss Coefficients Element Sewer pownstream Slope Upstream Mannings Bend Lateral Name Length Invert o Invert (ft) (ft) � ��� (ft) n Loss Loss INLET-2A 62.76 4993.80 0.2 4993.93 0.013 0.03 0.00 DI-2A 1.00 4994.00 0.3 4994.00 0.013 0.25 0.00 STMH-2A 21.54 4993.94 0.2 4993.98 0.013 0.18 0.00 INLET-2AA 18.00 499639 0.5 4996.48 0.013 0.23 0.00 D]-2AA 1.00 4996.48 0.5 4996.48 0.013 0.25 0.00 STMH-2B 55.41 4993.98 0.2 4994.09 0.013 0.57 0.00 STMH-2IA 56.89 4994.09 1.0 4994.66 0.013 0.05 0.00 INLET-2JA 19.15 4994.65 0.5 4994.75 0.013 0.83 0.00 DI-2JA 1.00 4994.72 0.5 4994.72 0.013 0.25 0.00 INLET-2JB 19.15 4994.65 0.5 4994J5 0.013 0.83 0.00 DI-2JB ].00 4994.72 0.5 4994.72 0.013 0.25 0.00 STMH-2C 58.41 4994.08 1.5 4994.96 0.013 132 0.00 INLET-2BB 15.02 4997.04 0.5 4997.12 0.013 1.24 0.00 DI-2BB 1.00 4997.12 0.5 4997.12 0.013 0.25 0.00 INLET-2BA 23.00 4997.05 0.5 4997.16 0.013 1.32 0.00 DI-2BA 1.00 4997.16 0.5 4997.16 0.013 0.25 0.00 STMH-2D 79.09 4994.96 1.5 4996.15 0.013 0.05 0.00 STMH-2E 119.25 4996.65 I.5 4998.44 0.013 0.05 0.00 STMH-2F 89.66 4998.94 0.5 499939 0.013 0.05 0.00 STMH-2G 106.13 499939 0.5 4999.92 0.013 0.05 0.00 3.55 4.01 4.01 6.97 6.97 6.97 10.53 10.53 I 3.46 13.46 2.08 2.08 Given Dimensions Cross Rise Span Section (ft or in) (ft or in) ELLIPSE 53.00 in 83.00 in ELLIPSE 53.00 ii� 83.00 in ELL[PSE 53.00 in 83.00 in CIRCULAR 24.00 in 24.00 in C[RCULAR 24.00 in 24.00 in ELLIPSE 53.00 in 86.00 in CIRCULAR 30.00 in 30.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 i�� 18.00 in CIRCULAR 18.00 ii� 18.00 in ELLIPSE 43.00 in 68.00 in CIRCULAR 18.00 i�1 ] 8.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 42.00 in 42.00 in CIRCULAR 36.00 in 36.00 in CIRCULAR 30.00 in 30.00 in C[RCULAR 30.00 in 30.00 in INLET-2EB DI-2EB STMH-2H STMH-2FA STMH-2FB INLET-2FA Dl-2FA INLET-2GA DI-2GA STMH-2I INLET-2B DI-SB INLET-2EA DI-2EA INLET-2CA DI-2CA INLET-2CB DI-2CB 15.00 1.00 24896 90.00 244.00 44.13 1.00 29.50 1.00 122.50 48.08 I .00 23.00 1.00 46.13 1.00 54.11 1.00 5000.92 5000.99 5000.42 5001.73 5003.13 5004.35 5004.57 5003.13 5003.28 5002.16 5002.78 5003.49 5000.92 5001.03 4998.15 499838 4998.15 4998.42 Sewer Flow Summary: Element Name IN LET-2A DI-2A STMH-2A INLET-2AA DI-2AA STMH-2B STMH-2IA INLET-2JA DI-2JA Ii�[LET-2JB D�-2JB STMH-2C INLET-2BB DI-2BB INLET-2BA DI-2BA STMH-2D STMH-2E 0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 1.5 1.5 0.5 0.5 0.5 0.5 0.5 0.5 5000.99 5000.99 5001.66 5002.63 5004.35 5004.57 5004.57 5003.28 5003.28 5002.77 5003.50 5003.50 5001.03 5001.03 499838 499838 4998.42 4998.42 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 132 0.25 0.05 1.32 0.05 0.83 0.25 132 0.25 0.05 0.90 0.25 1.32 0.25 1.22 0.25 1.21 0.25 Full Flow Capacity Critical Flow Normal Flow Flow (cfs) 155.19 190.07 155.19 16.04 I 6.04 160.62 41.13 7.45 7.45 7.45 7.45 245.69 7.45 7.45 7.45 7.45 123.55 8191 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR C[RCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in I 8.00 in 18.00 in 24.00 in 24.00 in 18.00 in ] 8.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in l 8.00 in Velocity Depth Velocity Depth Velocity Froude Flow Flow Surcharged (fps) (in) (fps) (in) (fps) Number Condition (cfs) Length Comment (ft) 7.36 25J2 7.15 29.21 6.04 0.78 Pressurized 62.51 62.76 9.01 4.21 2.76 4.56 2.46 0.86 Pressurized 1.79 1.00 7.36 25.44 7.11 28.87 6.00 0.78 Pressurized 61.23 21.54 S.11 5.50 3.22 5.35 335 1.05 Pressurized 1.75 18.00 5.11 5.50 3.22 5.35 3.35 1.05 Pressurized 1.75 I.00 7.45 24.96 7.02 28.19 5.96 0.79 Pressurized 59.76 55.41 8.38 7.26 3.71 5.83 5.07 1.53 Pressurized 3.40 56.89 4.21 7.14 3.78 7.14 3.79 1.00 Pressurized 2.47 1915 4.21 7.14 3.78 7.14 3.79 1.00 Pressurized 2.47 I.00 4.21 4.47 2.92 4.45 2.94 1.01 Pressurized 1.00 19.15 4.21 4.47 2.92 4.45 2.94 1.01 Pressurized 1.00 1.00 17.59 26.12 736 17.70 12.41 2.1 ] Pressurized 57.23 58.41 4.21 8.62 4.24 8.74 4.16 0.97 Pressurized 3.54 15.02 4.21 8.62 4.24 8.74 4.16 0.97 Pressurizcd 3.54 1.00 4.21 ll.77 5.25 1290 4.74 0.83 Pressurized 6.43 23.00 4.21 ll.77 5.25 12.90 4.74 0.83 Pressurized 6.43 1.00 12.84 26.25 7.75 18.40 12.10 1.97 Pressurized 49.05 79.09 11.59 24.I0 7.58 17.26 1138 1.90 Pressurized 38.10 119.25 STMH-2F 29.08 STMH-2G 29.08 INLET-2EB 7.45 DI-2EB 7.45 STMH-2H 16.04 STMH-2FA 22.68 STMH-2FB 7.45 INLET-2FA 7.45 DI-2FA 7.45 INLET-2GA 7.45 DI-2GA 7.45 STMH-2I 7.45 INL�T-2B 12.90 DI-SB 12.90 INLET-2EA 7.45 D]-2EA 7.45 INLET-2CA 16.04 DI-2CA 16.04 INLET-2CB 7.45 DI-2CB 7.45 5.92 5.92 4.21 4.21 5.11 7.22 4.21 4.21 4.2I 4.21 4.21 4.21 7.30 7.30 4.2 I 4.21 S.11 S.11 4.21 4.21 21.71 21.71 11.78 11.78 16.22 11.73 8.63 8.63 8.63 9.20 9.20 12.26 12.26 12.26 I 8.00 I 8.00 15.85 15.85 6.53 6.53 7.40 7.40 5.26 5.26 6.23 4.96 4.24 4.24 4.24 4.42 4.42 5.44 5.44 5.44 5.96 5.96 6.12 6.12 3.59 3.59 23.77 23.77 12.94 12.94 17.44 9.54 8.75 8.75 8.75 9.41 9.4 I 13.81 9.43 9.43 18.00 18.00 16.83 16.83 6.51 6.51 6.75 6.75 4.74 4.74 5.76 6.49 4.16 4.16 4.16 4.29 4.29 4.79 7.44 7.44 5.96 5.96 5.72 5.72 3.61 3.61 0.83 Pressurized 28.15 0.83 Pressurized 28.15 0.83 Pressurized 6.45 0.83 Pressurized 6.45 0.87 Pressurized 14.08 1.48 Pressurized 7.56 � 9� Subcritical 3 55 Surcharged 0.97 Subcritical 3.55 0.97 Subcritica] 3.55 0.96 Pressurized 4.01 0.96 Pressurized 4.01 0.79 Pressurized 6.97 1.66 Pressurized 6.97 1.66 Pressurized 6.97 0.00 Pressurized 10.53 0.00 Pressurized 10.53 0.89 Pressurized 13.46 0.89 Pressurized 13.46 1.01 Pressurized 2.08 1.01 Pressurizcd 2.08 89.66 106.13 15.00 1.00 248.96 90.00 24.58 0.00 0.00 29.50 1.00 122.50 48.08 1.00 23.00 I .00 46.13 i .00 54.1 1 1.00 • A Froude nuinber of 0 indicates that pressured flow occurs (adverse slope or undersized pipe). • lf the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer. • If the sewer is pressurized, full flow represents the pressurized flow conditions. Sewer Sizing Summary: Existing Calculated Used Element Pea� Cross Area Name ��f � Section �se Span Rise Span Rise Span �ft^2) INLET-2A 62.51 ELLIPSE 53.00 in 83.00 in 48.00 in 48.00 in 53.00 in 83.00 in 21.09 DI-2A 1.79 ELLIPSE 53.00 in 83.00 in 18.00 in 18.00 in 53.00 in 83.00 in 21.09 STMH-2A 61.23 ELLIPSE 53.00 in 83.00 in 48.00 in 48.00 in 53.00 in 83.00 in 21.09 INLET-2AA 1.75 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 i�� 24.00 in 3.14 DI-2AA 1.75 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 STMH-2B 59.76 ELLIPSE 53.00 in 86.00 in 48.00 in 48.00 in 53.00 in 86.00 in 21.56 STMH-2IA 3.40 CIRCULAR 30.00 in 30.00 in 18.00 in 18.00 iv 30.00 in 30.00 in 4.91 INLET-2JA 2.47 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-2JA 2.47 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-2JB I.00 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 D[-2JB 1.00 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 Comment STMH-2C 57.23 ELLIPSE 43.00 in 68.00 in 33.00 in 33.00 in 43.00 in 68.00 in 13.97 INLET-2BB 3.54 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-2BB 3.54 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-2BA 6.43 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-2BA 6.43 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 STMH-2D 49.05 CIRCULAR 42.00 in 42.00 in 30.00 in 30.00 in 42.00 in 42.00 in 9.62 STMH-2E 38.10 CIRCULAR 36.00 in 36.00 in 30.00 in 30.00 in 36.00 in 36.00 in 7.07 STMH-2F 28.15 CIRCULAR 30.00 in 30.00 in 30.00 in 30.00 in 30.00 in 30.00 in 4.91 STMH-2G 28.15 CIRCULAR 30.00 in 30.00 in 30.00 in 30.00 in 30.00 in 30.00 in 4.91 INLET-2EB 6.45 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-2EB 6.45 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 STMH-2H 14.08 CIRCULAR 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 3.14 STMH-2FA 7.56 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 STMH-2FB 3.55 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-2FA 3.55 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 D[-2FA 3.55 CIRCULAR 18.00 i�� 18.00 in 18.00 ii� 18.00 in 18.00 in 18.00 in 1.77 INLET-2GA 4.01 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-2GA 4.01 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 i�� l 8.00 in l.77 STMH-2I 6.97 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-2B 6.97 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-SB 6.97 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-2EA 10.53 CIRCULAR 18.00 in 18.00 in 21.00 in 21.00 in 18.00 in 18.00 in 1.77 DI-2EA ] 0.53 CIRCULAR 18.00 in ] 8.00 in 21.00 i�� 21.00 in 18.00 i�� 18.00 ii� 1.77 INLET-2CA 13.46 CIRCULAR 24.00 ii� 24.00 in 24.00 ii� 24.00 in 24.00 in 24.00 in 3.14 DI-2CA 13.46 CIRCULAR 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 3.14 INLET-2CB 2.08 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 i�� l 8.00 in l.77 DI-2CB 2.08 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 Existing height is smaller than the suggested height. �xisting width is smaller than the suggested width. Exceeds max. Depth/Rise Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise • Calculated diameter was detennined by sewer hydraulic capacity rounded up to the nearest commercially available size. • Sewer sizes should not decrease downstream. • All hydraulics where calculated using the 'Used' parameters. Grade Line Summary: Tailwater Elevation (ft): 5001.00 Invert Elev. Downstream Manhole Losses Bend Lateral Loss Loss (ft) (ft) 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.03 0.00 0.01 0.00 0.00 0.00 0.00 0.00 034 0.00 0.08 0.00 0.02 0.00 0.27 0.00 0.05 0.00 0.02 0.00 0.02 0.00 0.03 0.00 0.03 0.00 0.27 0.00 0.05 0.00 0.02 0.00 0.12 0.00 0.00 0.00 0.05 0.00 0.02 0.00 0.11 0.00 0.02 0.00 0.01 0.00 0.22 0.00 0.06 0.00 0.73 0.00 0.14 0.00 035 0.00 0.07 0.00 0.03 0.00 0.01 0.00 HGL EGL Downstream Upstream Downstream Friction Upstream (ft) (ft) (ft) �f°.r�s (ft) 5001.00 5001.02 5001.14 0.02 SOOl.l6 5001.16 5001.16 5001.16 0.00 5001.16 5001.05 5001.06 5001.18 0.01 5001.19 5001 J 8 5001.18 5001.19 0.00 5001. I 9 5001.19 5001.19 5001.19 0.00 5001.19 5001.14 5001.15 5001.26 0.02 5001.27 5001.26 5001.27 5001.27 0.00 5001.27 5001.29 5001.30 5001.32 0.01 500133 500131 500131 500134 0.00 500134 5001.27 5001.28 5001.28 0.00 5001.28 5001.28 5001.28 5001.28 0.00 5001.28 5001.50 5001.50 5001.68 0.08 5001 J6 5001.77 5001.79 5001.83 0.02 5001.85 5001.80 5001.80 5001.87 0.00 5001.87 5001.82 5001.91 5002.03 0.09 5002.11 5001.96 500196 5002.16 0.00 5002.17 5001.52 5001.70 5001.92 0.19 5002.11 5001.72 5002.11 5002.18 039 5002.56 5002.14 5002.56 5002.65 0.42 5003.07 5002.58 5003.08 5003.09 0.50 5003.59 5003.66 5003.71 5003.86 0.06 5003.92 5003.77 5003.77 500397 0.00 5003.98 5003.29 5004.25 5003.61 0.96 5004.57 5004.59 5004.69 5004.68 0.10 5004.78 5004.72 5005.14 5004.79 0.57 500536 5005.25 500531 5005.41 0.16 5005.57 500539 500539 5005.59 0.00 5005.59 5004.81 5004.85 5004.89 0.04 5004.93 5004.87 5004.87 5004.95 0.00 5004.95 5004.34 5004.87 5004.58 0.54 5005.11 5005.09 5005.30 5005.33 0.21 5005.54 500536 500537 5005.60 0.00 5005.61 5003.81 5004.04 500436 0.23 5004.59 5004. ] 8 5004.19 5004.73 0.01 5004J4 5002.17 500233 5002.45 0.16 5002.62 5002.40 5002.41 5002.69 0.00 5002.69 5002.11 5002.13 5002.13 0.02 5002.15 5002.14 5002.14 5002.16 0.00 5002.16 Element Downstream Upstream Name (ft) (ft) INLET-2A DI-2A STMH-2A INLET-2AA DI-2AA STMH-2B STMH-2IA INL�T-2JA DI-2JA INLET-2JB D[-2JB STMH-2C INLET-2BB DI-2BB INLET-2BA DI-2BA STMH-2D STMH-2E STMH-2F STMH-2G INLET-2EB DI-2EB STMH-2H STMH-2FA STMH-2FB INLET-2FA DI-2FA INLET-2GA DI-2GA STMH-2I INLET-2B DI-SB INLET-2EA DI-2EA INLET-2CA DI-2CA INLET-2CB DI-2CB 4993.80 4994.00 4993.94 499639 4996.48 4993.98 4994.09 4994.65 4994.72 4994.65 4994.72 4994.08 4997.04 4997.12 4997.05 4997.16 4994.96 4996.65 4998.94 499939 5000.92 5000.99 5000.42 5001.73 5003.13 500435 5004.57 5003.13 5003.28 5002.16 5002.78 5003.49 5000.92 5001.03 4998.15 4998.38 4998.15 4998.42 4993.93 4994.00 4993.98 4996.48 4996.48 4994.09 4994.66 4994.75 4994J2 4994.75 4994J2 4994.96 4997.I2 4997.12 4997.16 4997.16 4996.15 4998.44 499939 4999.92 5000.99 5000.99 5001.66 5002.63 500435 5004.57 5004.57 5003.28 5003.28 5002.77 5003.50 5003.50 5001.03 5001.03 4998.38 4998.38 4998.42 4998.42 • Bend and Lateral losses only apply wllen there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer. • Bend loss = Bend K* V_fi ^ 2/(2*g) • Lateral loss = V fo ^ 2/(2*g)- Junction Loss K* V_fi ^ 2/(2*g). • Friction loss is always Upstream EGL - Downstream EGL. ST-�2 ��.� k � w Distance IFU ST-2A 7 �:I::. . /��E'T: ,� s';��,_, �� 1 �- _— —'- ---- '-'- --- �-- -'- s"- -� Distance IFtj ST-2B 1 � � w HGL EGL ic.: �� nis[ance �Fti ST-2B2 : ;�}- :z,�� ��'<L f` STi���.>.3 �i � w n; � sr.o sT ��� ,� Di-[ance (Ft� ST 2C 1 sf�i�_>�. HCiL EGL Distanoe (Ft�i ST-2C2 rn���„�e �� ST-2E1 LT��r � Di:�anct ; Ft i S 1'�L'� �hT >�7i Dis[ance (F[1 ST-2F Dr,rancr (� ST-2J 1 Distance IFti ST-2J2 'J/j Dis[ante (Fti MHFD-Culvert, �ersion 4. 00 (May ZOZO) Project: MONTAVA SUBDIVISION PHASE D ID: ST-02 � "'�' � �..�� „ � �� i � �- I� � „, � L Lp � __ '�_ '_�_ _ �_ � __�=` -- � . _� _ - - =-- --- - --. Design Discharge �lar Culvert: Barrel Diameter in Inches Inlet Edge Type (Choose from pull-down list) OR: Culvert: Barrel Height (Rise) in Feet Barrel Width (Span) in Feet Inlet Edge Type (Choose from pull-down list) Number of Barrels Inlet Elevation Outlet Elevation OR Slope Culvert Length Manning's Roughness Bend Loss Coefficient Exit Loss Coeffcient Tailwater SurFace Elevation Max Allowable Channel Velocity Culvert Cross Sectional Area Available Culvert Normal Depth Culvert Critical Depth Froude Number Entrance Loss Coefficient Fridion Loss Coefficient Sum of All Loss Coefficients Inlet Control Headwater Outlet Control Headwater Design Headwater Elevation Headwater/Diameter OR Headwater/Rise Ratio Protection: Flow/(Diameter^2.5) Tailwater Surface Height Tailwater/Diameter Expansion Fador Flow Area at Max Channel Velocity Width of Equivalent Conduit for Multiple Barrels Length of Riprap Protection Width of Riprap Protedion at Downstream End Adjusted Diameter for Supercritical Flow Minimum Theoretical Riprap Size Nominal Riprap Size MHFD Riprap Type Soil Type: Choose One: � Sandy Q Non-Sandy Q = 62.51 cfs D = 66 inches Grooved Edge Projecting OR H (Rise) ft W (Span) = ft # Barrels = 1 Elev IN = 4993.93 ft Elev OUT = 4993.81 ft L = 62.76 ft n = 0.013 ly, = 0 k, = 1 Y� Eie�a�;o„ = 5001 ft V - 5 ft/s A = 23.76 ftz Y„ = 2.22 ft Y� = 2.16 ft Fr = 0.95 ke = 0.20 kf = 0.20 ks = 1.40 ft HW� = 3.00 ft HWo = 6.11 ft H W = 5000.04 ft HW/D = 1.11 Q/D^2.5 = 0.88 fto s/s Yt = 7.19 ft Yt/D = 1.31 1/(2*tan(0)) = 6.70 A� = 12.50 {tz Wea = - ft LP = 17 ft T- 9 ft Da = - ft dso min= 1 in dso nominal= 6 in Type = VL ST-03 �► :: Rainfall Parameters Rainfall Return Period: 2 Backwater Calculations: Tailwater Elevation (ft): 4996.50 Manhole Input Summary: Given Flow Sub Basin Information Total Ground Local Drainage Overland Overland Gutter Gutter Element Known Runoff Syr Elevation Contribution Area Length Slope Length Velocity Name (ft) ��f � (cfs) (Ac.) Coefficient Coefficient �ft) (%) (ft) (fps) FES-3A 4992.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3A 5000.94 35.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STH-3B 5001.06 35.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3C 5001.98 31.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3D 5002.33 21.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INL�T- 5001.95 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3YA DI-3YA 5001.95 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5001.95 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3YB DI-Y-3B 5001.95 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3E 5001.92 20.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3F 5001.89 5.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3G 5001.01 5.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5001.24 1.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3FA DI-3FA 5001.24 1.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3H 5000.88 4.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3I 5001.96 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3J 5002.08 0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5001.68 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3GA DI-3GA 5001.68 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5001.68 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3GB D[-3GB 5001.68 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH- 5004.47 2.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3PA INLET- 5004.44 2.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3PA D[-3PA 5004.44 2.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5000.58 1.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3EB DI-3EB 5000.58 1.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5000.58 0.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3EA DI-3EA 5000.58 0.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH- 5001.74 1631 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3BA INLET- 5001.45 0.78 3HB D[-3HB 5001.45 0.78 INLET- 5001.45 3.11 3HA DI-3HA 5001.45 3.11 STMH- 5001.85 12.11 3BB STMH- 5003.20 12.11 3BC STMH- 5002.69 9.90 3BD STMH- 5002.66 9.90 3BE INL�T- 5002.38 1.81 30A DI-OA 5002.38 1.81 STMH- 5002.94 6.94 3BF STMH- 500335 3.08 3BG STMH- 5003.97 3.08 3BH STMH- 5004.66 ] .76 3CA STMH- 5005.76 1.76 3CB STMH- 5005.42 1.76 3CC STMH- 5005.99 1.76 3CD INLET- 5006.24 1.41 3JA DI-3JA 5006.24 1.41 INLET- 5006.20 0.42 3JB DI-3JB 5006.20 0.42 STMH-3BI 5005.23 I .38 STMH-2BJ 5005.87 1.38 INLET- 5006.03 1.38 3BA DI-3BA 5006.03 138 STMH- 5003.03 4.21 3QA STMH- 5002.90 4.21 3QB STMH- 5003.51 4.21 3QC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH- 5003.94 2.73 3QD STMH- 5004.11 2.73 3QE [NLET- 5003.70 0.71 3UA DI-3UA 5003.70 0.71 INLET- 5003.70 2.10 3UB DI-3UB 5003.70 2.10 INLET- 5004.10 1.86 3SA DI-3SA 5004.10 1.86 INLET- 500238 1.34 30B DI-30B 5002.38 1.34 INLET- 500335 2.91 3IA DI-3IA 5003.35 291 STMH- 5003.45 11.28 3AA FES-3XE1 5003.45 1.67 STMH- 5002.61 9.94 3AB INLET- 5000.94 9.94 3AA D[-3AA 5000.94 0.72 STMH- 5001.27 9.43 3AC STMH- 5002.19 3.72 3KA INLET- 5002.23 1.60 3KA DI-3KA 5002.23 1.60 INLET- 5002.24 2.24 3MA DI-3MA 5002.24 2.24 STMH- 5002.11 3.45 3LA INLET- 5002.45 1.08 3LA DI-3LA 5002.45 1.08 INLET- 5002.45 2.54 3NA DI-3NA 5002.66 2.54 INL�T- 5000.94 2.44 3AB INLET- SOOl.82 1.72 3AC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-3AC DI-3AB INLET- 3DA DI-3DA INLET- 3DB DI-3DB 5001.82 5000.94 5000.46 5000.46 5000.68 5000.68 I .72 0.72 0.56 0.56 0.77 0.77 Manhole Output Summary: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Local Contribution Total Design Flow Overland Gutter Basin Local Manhole Peak Element Time Time Tc Intensity Contrib Coeff. Intensity Tc Flow Name �min) (min) (min) (in/hr) �cfs) Area (in/hr) �min) (cfs) FES-3A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3A STH-3B STMH-3C STMH-3D INLET- 3YA DI-3YA INLET- 3YB DI-Y-3B STMH-3E STMH-3F STMH-3G INLET- 3FA DI-3FA STMH-3H STMH-3I STMH-3J INLET- 3GA DI-3GA INLET- 3GB DI-3GB STMH- 3PA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 35.08 35.08 31.65 21.17 0.15 0.15 0.48 0.48 20.69 5.30 5.30 1.16 1.16 4.61 3.00 0.43 0.12 0.12 0.31 0.31 2.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Comment 0.00 0.00 0.00 0.00 0.00 0.00 Surface Water Present (Upstream) Strrface Water Present (Downsh•eam) INLET- 3PA DI-3PA INLET- 3EB DI-3EB INLET- 3EA DI-3 EA STMH- 3BA INLET- 3HB DI-3HB INLET- 3HA DI-3HE1 STMH- 3BB STMH- 3BC STMH- 3BD STMH- 3B� INLET- 30A DI-OA STMH- 3BF STMH- 3BG STMH- 3BH STMH- 3CA STMH- 3CB STMH- 3CC STMH- 3CD INLET- 3JA DI-3JA INLET- 3JB DI-3JB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.60 0.00 2.60 0.00 1.12 0.00 1.12 0.00 0.53 0.00 0.53 0.00 1631 0.00 0.78 0.00 0.78 0.00 3.1 1 0.00 3.11 0.00 12.1 1 0.00 12.1 1 0.00 9.90 0.00 9.90 0.00 1.81 0.00 I.SI 0.00 6.94 0.00 3.08 0.00 3.08 0.00 I.76 0.00 1.76 0.00 1.76 0.00 1.76 0.00 1.41 0.00 1.41 0.00 0.42 0.00 0.42 STMH- 0.00 0.00 0.00 3B1 STMH- 0.00 0.00 0.00 2BJ INLET- 0.00 0.00 0.00 3BA DI-3BA 0.00 0.00 0.00 STMH- 0.00 0.00 0.00 3QA STMH- 0.00 0.00 0.00 3QB STMH- 0.00 0.00 0.00 3QC STMH- 0.00 0.00 0.00 3QD STMH- 0.00 0.00 0.00 3QE INLET- 0.00 0.00 0.00 3UA D[-3UA 0.00 0.00 0.00 INLET- 0.00 0.00 0.00 3UB DI-3UB 0.00 0.00 0.00 INLET- 0.00 0.00 0.00 3SA DI-3SA 0.00 0.00 0.00 INLET- 0.00 0.00 0.00 30B DI-30B 0.00 0.00 0.00 INLET- 0.00 0.00 0.00 3IA DI-3IA 0.00 0.00 0.00 STMH- 0.00 0.00 0.00 3AA FES-3XA 0.00 0.00 0.00 STMH- 0.00 0.00 0.00 3AB INLET- 0.00 0.00 0.00 3AA DI-3AA 0.00 0.00 0.00 STMH- 0.00 0.00 0.00 3AC STMH- 0.00 0.00 0.00 3KA INLET- 0.00 0.00 0.00 3KA D[-3KA 0.00 0.00 0.00 INLET- 0.00 0.00 0.00 3MA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.38 0.00 1.38 0.00 1.38 0.00 1.38 0.00 4.21 0.00 4.21 0.00 4.21 0.00 2.73 0.00 2.73 0.00 0.71 0.00 0.71 0.00 2.10 0.00 2.10 0.00 1.86 0.00 1.86 0.00 1.34 0.00 1.34 0.00 2.91 0.00 2.91 0.00 11.28 0.00 l .67 0.00 9.94 0.00 9.94 0.00 0.72 0.00 9.43 0.00 3.72 0.00 1.60 0.00 1.60 0.00 2.24 DI-3MA STMH- 3LA INLET- 3LA DI-3LA INLET- 3NA DI-3NA INLET- 3AB INLET- 3AC DI-3AC DI-3AB INLET- 3DA DI-3DA INLET- 3DB DI-3DB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sewer Input Summary: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.24 0.00 3.45 0.00 1.08 0.00 1.08 0.00 2.54 0.00 2.54 0.00 2.44 0.00 1.72 0.00 I.72 0.00 0.72 0.00 0.56 0.00 0.56 0.00 0.77 0.00 0.77 Elevation Loss Coefficients Given Dimensions Element Sewer pownstream Slope Upstream Mannings Bend Lateral Cross Rise Span Length Invert o Invert Name (ft) (ft) ��O� (ft) n Loss Loss Section (ft or in) (ft or in) STMH-3A 74.43 4992.00 0.3 4992.22 0.012 0.03 0.00 ELLIPSE 58.00 in 91.00 in STH-3B 67.41 4992.23 0.3 4992.43 0.012 1.32 0.00 ELLIPSE 58.00 in 91.00 in STMH-3C 167.06 4992.43 0.3 4992.93 0.012 0.05 0.00 ELLIPSE 58.00 in 91.00 in STMH-3D 212.88 499293 0.3 4993.57 0.012 0.05 0.00 ELLIPSE 53.00 in 83.00 in INLET-3YA ] 3.00 4996.47 0.5 4996.53 0.013 132 0.00 CIRCULAR 18.00 in 18.00 in DI-3YA 1.00 4996.53 0.5 4996.53 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in INLET-3YB 23.00 4996.47 0.5 4996.58 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in DI-Y-3B 23.00 4996.47 0.5 4996.58 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in STMH-3E 48.65 4993.56 0.3 4993.71 0.012 0.05 0.00 ELLIPSE 53.00 in 83.00 in STMH-3F 20.62 4993.71 0.3 4993.77 0.013 0.08 0.00 CIRCULAR 48.00 in 48.00 in STMH-3G 99.00 4993.77 0.3 4994.07 0.013 0.07 0.00 CIRCULAR 48.00 in 48.00 in INLET-3FA 56.00 4995.12 0.5 4995.40 0.013 I.32 0.00 CIRCULAR 30.00 in 30.00 in DI-3FA 1.00 4995.40 0.5 4995.40 0.013 0.25 0.00 CIRCULAR 30.00 in 30.00 in STMH-3H 43.64 4994.07 0.3 4994.20 0.013 0.05 0.00 CIRCULAR 42.00 in 42.00 in STMH-3[ 198.58 4994.20 0.3 4994.80 0.013 0.05 0.00 CIRCULAR 24.00 in 24.00 in STMH-3J 19.75 4994.80 0.3 4994.86 0.013 0.05 0.00 CIRCULAR 18.00 in 18.00 in INLET-3GA 13.69 4994.85 0.5 4994.92 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in D[-3GA INLET-3GB DI-3GB STMH-3PA INLET-3PA DI-3PA INLET-3 EB DI-3EB INLET-3EA DI-3EA STMH-3BA INLET-3HB DI-3HB INLET-3HA DI-3HA STMH-3 BB STMH-3BC STMH-3BD STMH-3BE INLET-30A DI-OA STMH-3BF STMH-3BG STMH-3BH STMH-3CA STMH-3CB STMH-3CC STMH-3CD INLET-3JA DI-3JA INLET-3JB DI-3JB STMH-3BI STMH-2BJ INLET-3BA DI-3BA STMH-3QA STMH-3QB STMH-3QC STMH-3QD STMH-3QE INLET-3UA DI-3UA 1.00 22.31 1.00 134.06 29.99 1.00 27.05 1.00 8.95 i .00 146.46 8.00 I .00 28.00 1.00 39.75 223.78 65.23 18.23 28.00 1.00 68.03 22.28 10930 53.92 19834 30.38 119.31 39.10 1.00 36.31 1.00 17431 82.81 44.3 7 1.00 16.08 27.48 69.19 42.40 30.34 14.00 I .00 4994.92 4994.86 4994.94 4996.35 4999.03 4999.61 4994.20 4994.66 4994.2 i 4994.25 4993.71 4996.48 4996.52 4996.48 4996.62 4994.16 4994.27 4994.94 4995.27 4995.36 4995.63 4995.36 4995.70 4995.81 4997.86 499839 4999.98 5000. I 3 5000.73 5000.93 5000.73 500091 499736 4998.23 4998.64 4998.86 4995.70 499636 4997.14 4997.83 4998.25 4998.55 4998.62 0.5 0.5 0.5 2.0 2.0 2.0 0.5 0.5 0.5 0.5 0.3 0.5 0.5 0.5 0.5 0.3 0.3 0.5 0.5 1.0 I.0 0.5 0.5 0.5 I.0 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 l.0 1.0 I.0 1.0 0.5 0.5 4994.92 4994.97 4994.94 4999.03 4999.63 4999.63 499434 4994.66 4994.25 4994.25 4994.15 4996.52 4996.52 4996.62 4996.62 4994.28 499494 4995.27 4995.36 4995.64 4995.64 4995.70 4995.81 4996.36 4998.40 4999.98 5000.13 5000.73 5000.93 5000.93 5000.91 5000.91 4998.23 4998.64 4998.86 4998.86 4995.86 4996.63 4997.83 4998.25 4998.55 4998.62 4998.62 0.013 0.0 I 3 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.0 I 3 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.0 I 3 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.25 1.32 0.25 1.32 0.11 0.25 I .32 132 I .32 0.25 1.32 1.32 0.25 I .32 0.25 0.05 0.05 0.05 0.05 1.32 0.25 0.05 0.05 0.05 I .32 0.05 0.59 0.22 I .32 0.25 I .32 0.25 0.05 0.05 1.32 0.25 1.32 0.05 0.05 0.05 0.05 1.32 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 54.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 54.00 in CIRCULAR 48.00 in CIRCULAR 48.00 in CIRCULAR 36.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 36.00 in CIRCULAR 36.00 in CIRCULAR 36.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 36.00 in CIRCULAR 30.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 24.00 in 24.00 in 54.00 in 24.00 in 24.00 in 24.00 in 24.00 in 54.00 in 48.00 in 48.00 in 36.00 in 24.00 in 24.00 in 36.00 in 36.00 i�� 36.00 in 18.00 in 18.00 in 18.00 in I 8.00 in 18.00 in 18.00 in 18.00 in 18.00 in 24.00 in 24.00 in 24.00 in 24.00 in 36.00 in 30.00 in 24.00 in 24.00 in 24.00 in 18.00 in I 8.00 in INLET-3UB DI-3UB INLET-3SA DI-3SA INLET-30B DI-30B INLET-31A D[-3IA STMH-3AA FES-3XA STMH-3AB INLET-3AA DI-3AA STMH-3AC STM H-3 KA INLET-3KA DI-3KA INLET-3MA DI-3MA STMH-3LA INLET-3LA DI-3LA INLET-3NA DI-3NA [NLET-3AB INLET-3AC DI-3AC DI-3AB INLET-3DA DI-3DA INLET-3DB DI-3DB 14.00 1.00 22.98 1.00 8.00 8.00 50.00 1.00 361.00 34.03 110.00 70.50 I .00 10.00 122.53 4238 1.00 4238 I .00 84.47 42.38 1.00 4238 i .00 10.00 26.17 26.17 I .00 24.00 1.00 23.00 1.00 0.5 0.5 0.5 0.5 1.0 I.0 0.5 0.5 0.3 0.5 0.3 0.3 0.3 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 4998.62 4998.62 4998.44 4998.44 4995.44 4995.44 4997.02 4997.02 4994.01 4995.97 4994.34 4994.55 4994.55 4994.58 4995.69 4996.41 4996.41 4996.41 4996.41 4995.50 4996.21 4996.21 4996.21 4996.21 4994.63 4994.76 4994.76 4994.63 4995.38 4995.38 499537 4995.37 0.013 0.0 I 3 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.0 I 3 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.0 I 3 I .32 0.25 1.32 0.25 1.32 0.25 I .32 0.25 1.32 I .32 0.05 0.05 0.25 0.05 1.32 0.85 0.25 0.85 0.25 1.32 0.85 0.25 0.85 0.25 0.05 0.05 0.25 0.25 I .32 0.25 I .32 0.25 4998.55 4998.62 4998.33 4998.44 4995.36 4995.36 4996.77 4997.02 4992.93 4995.80 4994.01 4994.34 4994.55 4994.5 5 4995.08 4996.20 4996.41 4996.20 4996.41 4995.08 4996.00 4996.21 4996.00 4996.2 l 4994.5 8 4994.63 4994.63 4994.63 4995.26 4995.38 4995.26 4995 3 7 Sewer Flow Summary: Full Flow Critical Flow Normal Flow Capacity 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 54.00 in CIRCULAR 18.00 in CIRCULAR 48.00 in CIRCULAR 48.00 in CIRCULAR 48.00 in CIRCULAR 48.00 in CIRCULAR 30.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 30.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in Element Flow Velocity Depth Velocity Depth Velocity Froude Flow ��o�, Surcharged Name (cfs) (fps) (in) (fps) (in) (fps) Number Condition (cfs) Length (ft) STMH-3A 262.35 10.38 18.58 5.95 17.94 6.25 1.07 Supercritical 35.08 0.00 STH-3B 262.35 10.38 18.58 5.95 1794 6.25 1.07 Supercritical 35.08 0.00 STMH-3C 262.35 10.38 17.63 5.78 17.04 6.07 1.07 Supercritical 31.65 0.00 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 24.00 in 24.00 in 54.00 in 18.00 in 48.00 in 48.00 in 48.00 in 48.00 in 30.00 in 24.00 in 24.00 in 24.00 in 24.00 in 30.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in Comment STMH-3D 205.91 9.76 14.72 5.27 1437 5.45 INLET- �,45 4.21 1.71 1.76 1.77 1.67 3YA DI-3YA 7.45 4.21 1.71 1.76 1.77 1.67 INLET- �.45 4.21 3.08 2.39 3.10 2.37 3YB DI-Y-3B 7.45 4.21 3.08 239 3.10 237 STMH-3E 205.91 9.76 14.55 5.23 14.21 5.41 STMH-3F 78.89 6.28 7.99 3.85 8.43 3.57 STMH-3G 78.89 6.28 7.99 3.85 8.43 3.57 INLET- 29.08 5.92 4.19 2.78 4.09 2.89 3FA DI-3FA 29.08 5.92 4.19 2.78 4.09 2.89 STMH-3H 55.25 5.74 7.72 3.80 8.20 3.48 STMH-3I 12.42 3.95 7.25 3.75 8.03 3.26 STMH-3J 5.77 3.26 2.91 232 3.33 1.91 INLET- �.45 4.21 1.52 1.67 1.59 1.56 3GA DI-3GA 7.45 4.21 1.52 1.67 1.59 1.56 INLET- �.45 4.21 2.46 2.13 2.50 2.08 3GB DI-3GB 16.04 5.11 2.28 2.04 231 2.00 STMH- 32.08 10.21 6.74 3.60 4.62 6.14 3PA [NLET- 14.90 8.�43 7.33 3.84 5.09 6.33 3PA D[-3PA 14.90 8.43 733 3.84 5.09 633 [NLET- 16.04 5.11 4.38 2.86 4.29 2.94 3EB DI-3EB 16.04 5.11 4.38 2.86 4.29 2.94 INLET- � 6.04 5.1 1 2.99 235 2.99 235 3EA DI-3EA 16.04 S.11 2.99 2.35 2.99 2.35 STMH- � 08.00 6.79 13.74 5.12 14.18 4.89 3BA INLET- � 6.04 5.11 3.64 2.60 3.60 2.64 3HB DI-3HB 16.04 5.11 3.64 2.60 3.60 2.64 INLET- �6.04 5.11 739 3J9 7.16 3.95 3HA DI-3HA 16.04 5.11 7.39 3.79 � 716 3.95 STMH- 108.00 6.79 11.80 4.72 12.2I 4.49 3BB 1.05 Supercrirical 21.17 0.00 0.93 Subcritical 0.15 0.00 Velocity is Too Low 0.93 Subcritical 0.15 0.00 Velocity is Too Low 0.99 Subcritical 0.48 0.99 Subcritical 0.48 I.OS Supercritical 20.69 0.90 Subcritical 5.30 0.90 Subcritical 5.30 I.OS Supercritical 1.16 I.OS Supercritical 1.16 0.89 Subcritical 4.61 � 82 Subcritical 3.00 Surcharged 0.77 Pressurized 0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 145.25 0.92 Pressurized 0.12 0.92 Pressurized 0.12 0.97 Pressurized 0.31 0.97 Subcritica] 03l 2.09 Supercritical 2.60 2.02 Supercritical 2.60 2.02 Supercritical 2.60 1.04 Pressurized 1.12 1.04 Supercritical 1.12 1.00 Pressurized 0.53 1.00 Pressurized 0.53 0.94 Subcritical 1631 1.02 Supercritical 0.78 1.02 Supercritical 0.78 1.06 Supercrirical 3.11 1.06 Supercritical 3.11 0.93 Subcritical 12.11 19.75 Velocity is Too Low 13.69 Velocity is Too Low 1.00 Velocity is Too Low 22.31 0.00 0.00 0.00 0.00 27.05 0.00 8.95 1.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH- �� g� 6.28 12.19 4.82 12.71 4.55 3BC STMH- 101.84 8.10 I1.00 4.56 10.11 5.14 3BD STMH- 47.29 6.69 11.94 4.83 11.18 5.29 3BE INLET- 22 68 7.22 5.59 3.25 4.58 4.32 30A DI-OA 22.68 7.22 5.59 3.25 4.58 432 STMH- 47.29 6.69 9.94 4.37 9.32 4.78 3BF STMH- 47.29 6.69 6.56 3.50 6.23 3.77 3BG STMH- 47.29 6.69 6.56 3.50 6.23 3.77 3BH STMH- 10.53 5.96 5.99 3.42 4.98 4.42 3CA STMH- 9.42 5.33 5.99 3.42 5.27 4.08 3CB STMH- �.45 4.21 5.99 3.42 5.95 3.45 3CC STMH- �.45 4.21 5.99 3.42 5.95 3.45 3CD [NLET- �.45 4.21 5.34 3.21 531 3.24 3JA DI-3JA 7.45 4.21 534 3.21 531 3.24 INLET- �.45 4.21 2.87 231 2.90 2.28 3JB DI-3JB 7.45 4.21 2.87 231 2.90 2.28 STMH- � 6.04 5.11 4.87 3.02 4.76 3.12 3BI STMH- � 6.04 5.11 4.87 3.02 4J6 3.12 2BJ INLET- � 6.04 5.11 4.87 3.02 4.76 3.12 3BA DI-3BA 16.04 5.11 4.87 3.02 4.76 3.12 STMH- 66.88 9.46 7.69 3.81 6.12 5.28 3QA STMH- 41.13 8.38 8.10 3.94 6.48 5.39 3QB STMH- 22 68 7.22 8.64 4.13 7.00 5.52 3QC STMH- 22 68 7.22 6.91 3.65 5.62 4.87 3QD STMH- 22 68 7.22 6.91 3.65 5.62 4.87 3QE INLET- �.45 4.21 3J6 2.66 3J5 2.66 3UA DI-3UA 7.45 4.21 3.76 2.66 3.75 2.66 0.92 Subcritical 12.11 1.18 Supercritical 9.90 1.14 Supercritical 9.90 1.48 Supercritical 1.81 1.48 Supercritical 1.81 1.13 Supercritical 6.94 l.11 Supercritical 3.08 1.11 Supercritical 3.08 1.43 Supercritical 1.76 1.28 Supercritical 1.76 1.01 Supercritical 1.76 1.01 Supercritical 1.76 1.01 Supercritical 1.41 1.01 Supercritical 1.41 0.98 Subcritical 0.42 0.98 Subcritical 0.42 1.05 Supercrirical 1.38 1.05 Supercritical 1.38 1.05 Supercrirical 1.38 I.OS Supercritical 1.38 1.56 Supercritical 4.21 1.54 Supercritical 4.21 1.50 Supercrirical 4.21 1.49 Supercritical 2.73 1.49 Supercritical 2.73 1.00 Supercritical 0.71 1.00 Supercritical 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 16.04 5.11 6.04 3.39 5.86 3.53 3UB D[-3UB 16.04 5.11 6.04 339 5.86 3.53 INLET- �.45 4.21 6.16 3.48 6.13 3.50 3SA D[-3SA 7.45 4.21 6.16 3.48 6.13 3.50 INLET- 22 68 7.22 4.80 3.00 3.96 3.95 30B DI-30B 22.68 7.22 4.80 3.00 3.96 3.95 INLET- � 6.04 5.1 1 7.14 3.71 6.92 3.88 3IA DI-3IA 16.04 5.11 7.14 3.71 6.92 3.88 STMH- 108.00 6.79 1137 4.63 11.79 4.40 3AA FES-3XA 7.45 4.21 5.83 3.37 5.79 3.40 STMH- �g g9 6.28 I 1.02 4.57 1 I.S I 4.29 3AB INLET- �g g9 6.28 11.02 4.57 1].51 4.29 3AA DI-3AA 78.89 6.28 2.91 230 3.24 1.96 STMH- �g g9 6.28 10.73 4.50 1 I.21 4.23 3AC STMH- 29.08 5.92 7.60 3.80 7.25 4.07 3KA INLET- � 6.04 5.1 1 5.25 3.15 5.12 3.26 3KA DI-3KA 16.04 5.11 5.25 3.15 5.12 3.26 INLET- 1G.04 S.11 6.24 3.45 6.06 3.60 3MA DI-3MA 16.04 5.11 6.24 3.45 6.06 3.60 STMH- 29.08 5.92 7.31 3.73 6.98 3.98 3LA INLET- 1G.04 5.11 4.30 2.83 4.22 2.91 3LA DI-3LA 16.04 5.11 430 2.83 4.22 2.9] INLET- 16.04 5.11 6.66 3.57 6.46 3.73 3NA DI-3NA 16.04 5.11 6.66 3.57 6.46 3.73 INLET- 16.04 S.11 6.52 3.53 633 3.69 3AB INLET- 16.0�4 5.11 5.45 3.21 5.31 3.33 3AC DI-3AC 1G.04 5.11 5.45 3.21 5.31 3.33 DI-3AB 16.04 5.11 3.50 2.54 3.46 2.58 INLET- � 6.04 5.1 1 3.08 238 3.07 239 3DA DI-3DA 16.04 5.11 3.08 2.38 3.07 2.39 1.06 Supercritical 2.10 1.06 Supercritical 2.10 I.01 Supercritical 1.86 1.01 Supercrirical 1.86 1.46 Supercritical 1.34 1.46 Supercritical 1.34 1.06 Supercritical 2.91 1.06 Supercritical 2.91 0.93 Subcritical 11.28 I.01 Supercritical 1.67 0.92 Subcritical 9.94 0.92 Subcritical 9.94 0.81 Subcritical 0.72 0.92 Subcritical 9.43 1.10 Supercrirical 3.72 1.05 Supercritical 1.60 I.OS Supercritical 1.60 1.06 Supercritical 2.24 1.06 Supercritical 2.24 1.10 Supercritical 3.45 1.04 Supercritical 1.08 ] .04 Supercrirical 1.08 1.06 Supercritical 2.54 1.06 Supercrirical 2.54 1.06 Pressurized 2.44 1.05 Supercritical 1 �2 Jump 1.05 Supercritical 1 72 Jump 1.02 Pressurized 0.72 1.01 Supercritical 0.56 1.01 Supercritical 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Velocity is Too Low 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.00 4.00 4.28 1.00 0.00 0.00 INLET- 16.04 5.11 3.62 2.59 3.58 2.63 1.02 Supercritical 0.77 0.00 3DB D[-3DB 16.04 5.11 3.62 2.59 3.58 2.63 1.02 Supercritical 0.77 0.00 • A Froude nuinber of 0 indicates that pressured flow occurs (adverse slope or undersized pipe). • If the sewer is not pressurized, full flow represents the maximum graviry flow in the sewer. • If the sewer is pressurized, full flow represents the pressurized flow conditions. Sewer Sizing Summary: Existing Calculated Used Element Peak Cross Area Name ��f � Section Rise Span Rise Span Rise Span �ft�2� Comment STMH-3A 35.08 ELLIPSE 58.00 in 91.00 in 36.00 in 36.00 in 58.00 in 91.00 in 25.29 STH-3B 35.08 ELLIPSE 58.00 in 91.00 in 36.00 in 36.00 in 58.00 in 91.00 in 25.29 STMH-3C 31.65 ELLIPSE 58.00 in 91.00 in 36.00 in 36.00 in 58.00 in 91.00 iu 25.29 STMH-3D 21.17 ELLIPSE 53.00 in 83.00 in 30.00 in 30.00 in 53.00 in 83.00 in 21.09 INLET-3YA 0.15 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 D[-3YA 0.15 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-3YB 0.48 CIRCULAR ] 8.00 in 18.00 in l 8.00 in 18.00 in ] 8.00 in 18.00 in 1.77 DI-Y-3B 0.48 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 STMH-3E 20.69 ELL[PSE 53.00 in 83.00 in 30.00 in 30.00 in 53.00 in 83.00 in 21.09 STMH-3F 5.30 CIRCULAR 48.00 in 48.00 in 18.00 in 18.00 in 48.00 in 48.00 in 12.57 STMH-3G 5.30 CIRCULAR 48.00 in 48.00 in 18.00 in 18.00 in 48.00 in 48.00 in 12.57 INLET-3FA 1.16 CIRCULAR 30.00 in 30.00 in 18.00 in 18.00 in 30.00 in 30.00 in 4.91 DI-3FA 1.16 CIRCULAR 30.00 in 30.00 in 18.00 in 18.00 in 30.00 in 30.00 in 4.91 STMH-3H 4.61 CIRCULAR 42.00 in 42.00 in 18.00 in 18.00 in 42.00 in 42.00 in 9.62 STMH-31 3.00 C[RCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 STMH-3J 0.43 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-3GA 0.12 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-3GA 0.12 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 iu 1.77 INLET-3GB 0.31 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-3GB 0.31 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 STMH-3PA 2.60 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 INLET-3PA 2.60 CIRCULAR ] 8.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-3PA 2.60 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-3EB 1.12 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 DI-3EB 1.12 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 INLET-3EA 0.53 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 DI-3�A 0.53 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 STMH-3BA 16.31 CIRCULAR 54.00 in 54.00 in 27.00 in 27.00 in 54.00 in 54.00 in 15.90 INLET-3HB 0.78 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 DI-3HB 1NLET-3HA DI-3HA STMH-3BB STMH-3BC STMH-3BD STMH-3BE INLET-30A DI-OA STMH-3 BF STMH-3BG STMH-3BH STMH-3CA STMH-3CB STMH-3CC STMH-3CD INLET-3JA DI-3JA INL�T-3JB DI-3JB STMH-3BI STMH-2BJ INLET-3BA DI-3BA STMH-3QA STMH-3QB STMH-3QC STMH-3QD STMH-3QE INLET-3UA D[-3UA INLET-3UB DI-3UB INLET-3SA DI-3 SA INLET-30B DI-30B INLET-3IA DI-3IA STMH-3AA FES-3XA STMH-3AB INLET-3AA 0.78 3.11 3.11 12.11 12.11 9.90 9.90 1.81 1.81 6.94 3.08 3.08 1.76 1.76 1.76 1.76 1.41 1.41 0.42 0.42 1.38 1.38 1.38 1.38 4.2 I 4.2 I 4.21 2.73 2.73 0.71 0.7I 2.10 2.10 1.86 1.86 I .34 1.34 2.9 ] 29l 1 1.28 1.67 9.94 9.94 CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR C[RCULAR CIRCULAR C[RCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR C[RCULAR C[RCULAR C[RCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR C[RCULAR CIRCULAR C[RCULAR CIRCULAR CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 54.00 in 54.00 in 24.00 in 24.00 in 54.00 in 54.00 in 48.00 in 48.00 in 24.00 in 24.00 in 48.00 in 48.00 in 48.00 in 48.00 in 21.00 in 21.00 in 48.00 in 48.00 in 36.00 in 36.00 in 21.00 in 21.00 in 36.00 in 36.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 36.00 in 36.00 in 18.00 in 18.00 in 36.00 in 36.00 in 36.00 in 36.00 in 18.00 in 18.00 in 36.00 in 36.00 in 36.00 in 36.00 in 18.00 in 18.00 in 36.00 in 36.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 iu 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in ] 8.00 in 18.00 in 18.00 in 18.00 in ] 8.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 36.00 in 36.00 in 18.00 in 18.00 in 36.00 in 36.00 in 30.00 in 30.00 in 18.00 in 18.00 in 30.00 in 30.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 54.00 in 54.00 in 24.00 in 24.00 in 54.00 in 54.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 48.00 in 48.00 in 24.00 in 24.00 in 48.00 in 48.00 in 48.00 in 48.00 in 24.00 in 24.00 in 48.00 in 48.00 in 3.14 3.14 3.14 15.90 12.57 12.57 7.07 3.14 3.14 7.07 7.07 7.07 1.77 1.77 1.77 1.77 I .77 1.77 1.77 1.77 3.14 3.14 3.14 3.14 7.07 4.91 3.14 3.14 3.14 1.77 1.77 3.14 3.14 1.77 1.77 3.14 3.14 3.14 3.14 15 90 1.77 12.57 12.57 D[-3AA STMH-3AC STMH-3KA INLET-3KA DI-3KA INLET-3MA DI-3MA STMH-3LA INLET-3LA DI-3LA INLET-3NA DI-3NA INLET-3AB INLET-3AC DI-3AC DI-3AB 1NLET-3DA DI-3 DA INLET-3DB DI-3DB 48.00 in 48.00 in 18.00 in 18.00 in 48.00 in 48.00 in 24.00 in 24.00 in 30.00 in 30.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 30.00 in 30.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 48.00 in 48.00 in 48.00 in 48.00 in 30.00 in 30.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 30.00 in 30.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 iu 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 12.57 12.57 4.91 3.14 3.14 3.14 3.14 4.9 I 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 • Calculated diameter was deterinined by sewer hydraulic capacity rounded up to the nearest commercially available size. • Sewer sizes should not decrease downstream. • All hydraulics where calculated using the 'Used' parameters. Grade Line Summary: Tailwater Elevation (ft): 4996.50 lnvert Elev. 0.72 9.43 3.72 1.60 1.60 2.24 2.24 3.45 1.08 i .08 2.54 2.54 2.44 1.72 1.72 0.72 0.56 0.56 0.77 0.77 CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR C[RCULAR CIRCULAR C[RCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR Element DownsYream Upstream Name (ft) (ft) STMH-3A STH-3B STMH-3C STMH-3D INLET-3YA DI-3YA INLET-3YB DI-Y-3 B 4992.00 4992.23 4992.43 4992.93 4996.47 4996.53 4996.47 4996.47 4992.22 4992.43 4992.93 4993.57 4996.53 4996.53 4996.58 4996.58 �Downstream Manhole Losses Bend Lateral Loss Loss (ft) (ft) 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HGL EGL Downstream Upstream Downstream Friction Upstream (ft) (ft) (ft) Loss �ft) (ft) 4996.50 4996.50 4996.53 0.00 4996.54 4996.54 4996.54 4996.58 0.00 4996.58 4996.55 4996.55 4996.58 0.01 4996.60 4996.57 4996.57 4996.60 0.01 4996.61 4996.61 4996.68 4996.66 0.07 4996.72 4996.69 4996.69 4996.72 0.00 4996.73 4996.72 4996.84 4996.81 0.12 4996.93 4996.91 4996.91 4996.93 0.03 499695 STMH-3E STMH-3F STMH-3G INLET-3FA DI-3FA STMH-3H STMH-31 STMH-3J IN L ET-3 GA Dt-3GA INLET-3GB DI-3GB STMH-3PA INLET-3PA DI-3PA INLET-3EB D[-3EB [NLET-3EA DI-3 EA STMH-3BA INLET-3HB DI-3HB INLET-3HA D[-3HA STMH-3BB STMH-3BC STMH-3BD STMH-3B� INLET-30A DI-OA STMH-3BF STMH-3BG STMH-3BH STMH-3CA STMH-3CB STMH-3CC STMH-3CD INLET-3JA DI-3JA 1NLET-3JB DI-3JB STMH-3BI STMH-2BJ 4993.56 4993.71 4993.77 4995.12 4995.40 4994.07 4994.20 4994.80 4994.85 4994.92 4994.86 4994.94 4996.35 4999.03 4999.61 4994.20 4994.66 4994.21 4994.25 4993.71 4996.48 4996.52 4996.48 4996.62 4994.16 4994.27 4994.94 4995.27 4995.36 4995.63 499536 4995.70 4995.81 4997.86 4998.3 9 4999.98 5000.13 5000.73 5000.93 5000.73 5000.91 4997.3 6 4998.23 4993.71 4993.77 4994.07 4995.40 4995.40 4994.20 4994.80 4994.86 4994.92 4994.92 4994.97 4994.94 4999.03 4999.63 4999.63 499434 4994.66 4994.25 4994.25 4994.15 4996.52 4996.52 4996.62 4996.62 4994.28 4994.94 4995.27 4995.36 4995.64 4995.64 4995.70 4995.81 4996.3 6 4998.40 4999.98 5000.13 5000.73 5000.93 5000.93 5000.91 5000.91 4998.23 4998.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00 O.O l 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4996.58 4996.61 4996.61 4996.62 4996.62 4996.61 4996.61 4996.66 4996.66 4996.66 4996.66 4996.66 4996.73 4999.60 5000.25 4996.62 4996.62 4996.62 4996.62 4996.60 4996.78 4996.85 4997.08 4997.29 4996.63 4996.64 4996.69 4996.69 4996.86 4996.86 4996.79 4996.91 4996.91 4998.28 4998.90 5000.54 5000.63 500136 5001.41 5001.41 5001.41 4997.75 4998.66 4996.58 4996.61 4996.61 4996.62 4996.62 4996.61 4996.65 4996.66 4996.66 4996.66 4996.66 4996.66 4999.59 5000.24 5000.58 4996.62 4996.62 4996.62 4996.62 4996.61 4996.82 4996.85 4997.24 4997.29 4996.63 4996.66 4996.69 4996.69 4996.86 4996.86 4996.79 4996.91 4996.91 4998.90 5000.48 5000.63 5001.23 500137 5001.41 5001.41 5001.41 4998.64 4999.05 4996.61 4996.62 4996.62 4996.62 4996.62 4996.62 4996.63 4996.66 4996.66 4996.66 4996.66 4996.66 4997.32 5000.08 5000.66 4996.62 4996.63 4996.62 4996.62 4996.64 4996.89 4996.93 499732 4997.46 4996.66 4996.67 4996.75 4996.83 4996.86 4996.87 4996.86 4996.93 4996.94 4998.58 4999.09 5000.67 5000.81 5001.42 5001.54 5001.41 5001.42 4997.91 4998.78 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 2.47 0.39 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.00 0.14 0.00 0.00 0.07 0.04 0.03 0.00 0.00 0.07 0.01 0.16 0.50 1.57 0.14 0.60 0.11 0.00 0.01 0.00 0.87 0.41 4996.62 4996.62 4996.62 4996.62 4996.62 4996.62 4996.66 4996.66 4996.66 4996.66 4996.66 4996.66 4999.79 5000.47 5000.66 4996.62 4996.63 4996.62 4996.62 4996.66 499693 4996.93 4997.46 4997.47 4996.67 4996.75 4996.79 4996.86 4996.87 4996.87 4996.93 4996.94 4997.10 4999.08 5000.66 5000.81 5001.41 5001.54 5001.54 5001.42 5001.42 4998.78 4999.19 INLET-3BA DI-3BA STMH-3QA STMH-3QB STMH-3QC STMH-3QD STMH-3QE INLET-3UA D[-3UA INLET-3UB DI-3 UB INLET-3SA DI-3 SA INLET-30B DI-30B [NLET-3 [A DI-3[A STMH-3AA FES-3XA STMH-3AB INLET-3AA DI-3AA STMH-3AC STMH-3KA 1NLET-3KA D[-3KA INLET- 3MA DI-3MA STMH-3LA INLET-3LA DI-3LA INLET-3NA D[-3NA INLET-3AB INLET-3AC DI-3AC DI-3AB INLET-3DA DI-3DA INLET-3DB DI-3DB 4998.64 4998.86 4995.70 4996.36 4997.14 4997.83 4998.25 4998.55 4998.62 4998.55 4998.62 4998.33 4998.44 4995.36 4995.36 4996.77 4997.02 4992.93 4995.80 4994.01 4994.34 4994.55 4994.55 4995.08 4996.20 4996.41 4996.20 4996.41 4995.08 4996.00 4996.21 4996.00 4996.21 4994.58 4994.63 4994.63 4994.63 4995.26 499538 4995.26 4995.37 4998.86 4998.86 4995.86 4996.63 4997.83 4998.25 4998.55 4998.62 4998.62 4998.62 4998.62 4998.44 4998.44 4995.44 4995.44 4997.02 4997.02 4994.01 4995.97 4994.34 4994.55 4994.55 4994.58 4995.69 4996.41 4996.41 4996.41 4996.41 4995.50 4996.21 4996.21 4996.21 4996.21 4994.63 4994.76 4994.76 4994.63 4995.38 499538 4995.37 4995.37 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00 O.O l 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4999.08 499930 4996.90 4996.90 4997.72 4998.76 4998.83 499933 499933 4999.28 4999.28 4998.84 4999.00 4996.86 4996.86 499735 4997.66 4996.60 4996.62 4996.61 4996.61 4996.65 4996.62 4996.64 4996.65 4996.88 4996.70 4996.97 4996.64 4996.66 4996.67 4996.65 4996.81 4996.64 4996.65 4996.65 4996.65 4996.58 4996.58 4996.58 4996.58 4999.27 499930 4996.90 4997.30 4998.55 4998.83 4999.13 499933 499933 4999.28 4999.28 4998.95 4999.00 4996.86 4996.86 4997.61 4997.66 4996.60 4996.62 4996.61 4996.61 4996.65 4996.62 4996.64 4996.85 4996.88 4996.93 4996.97 4996.64 4996.66 4996.67 4996.76 4996.81 4996.64 4996.65 4996.65 4996.65 4996.58 4996.58 4996.58 4996.58 4999.19 4999.41 4996.94 4997.35 4998.19 4998.82 4999.08 499934 499934 499934 4999.36 4999.03 4999.15 4996.86 4996.86 4997.58 4997.83 4996.61 4996.67 4996.63 4996.64 4996.65 4996.65 4996.66 4996.79 4997.00 4996.90 4997.12 4996.66 4996.68 4996.73 4996.75 4996.97 4996.65 4996.65 4996.65 4996.65 4996.58 4996.58 4996.58 4996.58 0.22 0.00 0.02 0.20 0.62 0.22 0.25 0.00 0.00 0.02 0.00 0.11 0.00 0.00 0.00 0.25 0.00 0.02 0.04 0.01 0.01 0.00 0.00 0.05 0.21 0.00 0.21 0.00 0.02 0.04 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4999.41 4999.41 4996.96 4997.55 4998.82 4999.03 499933 499934 499934 4999.36 4999.37 4999.14 4999.15 4996.86 4996.86 4997.83 4997.84 4996.63 4996.70 4996.64 4996.65 4996.65 4996.65 4996.72 4997.00 4997.01 4997.1 1 4997.12 4996.68 4996.73 4996.73 4996.96 4996.97 4996.65 4996.65 4996.66 4996.65 4996.58 4996.58 4996.58 4996.58 • Bend and Lateral losses only apply wllen there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer. • Bend loss = Bend K* V_fi ^ 2/(2*g) • Lateral loss = V fo ^ 2/(2*g)- Junction Loss K* V_fi ^ 2/(2*g). • Friction loss is always Upstream EGL - Downstream EGL. ST-03 w w Ai;[ance IFi� ST 3Dl Dis[ance 1Ft'� ST-3D2 Di�[ance IF[j ST-3E l .�,, .,e rT'�I�G 74 .... ST�� STn'�t�.�Jr- ,STq,��d.3� �@ _ -- .-�e:. —>. _. _. _-_. ---.. Dis[ance IFt� 1. s��a� STM����rT.'e� .STi6f/ . F�.7C 3` 13�. HGL ...._...... EGL ---. aas : ST-3E2 'i.l 06 w 56 �=9- `6 � �.,_ ... _,; _"�"__" ____�._ ____"":�. _'_'___'__ N. .S'r��y, _so, � �sT�� c .5���/.3� ;@ Jo4J 96 .'.GJ ... ..... ._... � .:>:.e � 'S�TfJ. if1 ��� 7 � _.., ;a � co --__ . Y /n, s� s.�� s�,yE� � sr�'ia.�y��r,�pe i STil�r 7� y_3j, 3p HGL ......,.._. EGL .--. ..... _... ... . c:,SSf� �5:'v� rn:�,,,,t ir� i ST-3F .rTn�Fi..T�. !GS SJn,rff 1fJ ------------------------------------------ i;�,�,r I!e Sr� ,sT'�Fr..i�; ��:ij, �3F HGL ............ EGL -:-... .._.. .`:560 6":�0 ':6� Dis�ance !F[� ST 3Gl ,�o � � � f--- s��� r rr,�1F� J� � ., c .,�<<.� � �, �936�F'�_vvv-' __'v`u.u_vvvu:_.'__'.__'__. V- :;�; : c ..,,. ,SI;Ljf�,39 Srf� ;13 � S::E .... 9-_n .._ STI� ST�/i.Jf� S F� S' S�A,jf/`;�li,3�. J�: f,y�i?n S JMH. � . � _,,,. ..... _,. _ . ,._ e-e_. .. Di;�ancr IFt� ST 3G2 ST�f ,5•�L� /,3�� SP, �f. —r Sr`M/ _ ��h'3 7<' f; F S�'�H., J�� � N ,S'Tti��� 7�. Dis�ance fFtl ST �H.3I sp'y�t.`;/ .sr�`�/ ,`��„ HGL EGL S�1lH��� .i(��i HGL EGL ST-3Hl `�����_��,� � � � � STMjf_ STtiJt, 3j 3g� S f;�f f 30 �_ ST�i; -"sC, 7�'�fl`?q - B .._ _... .._.. .-... ... _ _. Di:ia„re fF[� _... __. ST-3H2 .:,; ," I ! �sf �'�'' �n ,s�,y� � , S _ sre. � < ��'�rr�.�q � Dis[ance fF[i. ... HGL EGL �-�t�,.:, �� ST^7ii.,;e s pMH.;,, � HCiL ............ EGL :sse,� F;,:; ST-3J1 ��;�,,,.z �� ST-3J2 I Fr. �,e Di'[ance fFti w F 99-:� � � �..r .............. :996^< -.._ .Sl'/I. .STti���.T� �� Di ��ancr l� ST-3L ���.,, ,��. :999 9! 19036! [+�. �'9i':� � �ur .......+........____' =9iE J` .9c:'� �99i:� .a�_ '�ii.; S'p�l� H �.�c. s= sry�i ��. ST-3K ST���i-J.V:; S�M�'T ;,t�f�'J,� �. I �� � 9 ,V � E !:'�h.R S�,�I�� ?j, � S' • S7�„';� ��<IT.;��fl.,j�C � HGL .........._ EGL _... ._.. _.,. .,_. ._ _ :s_.. Di'[vtct :F ST-3M � � w E,,, M.q � w �o- �` �NL�r� ''�%t :��::, � S�'�H.. S� Sjf� !j �� d1�� 1 �s» s� oi,r.,nce r� ST-3N � �����'.?��3 r r,yCpTSjMFI.,j �. 7,yff. ; t,{ a 7� /3 .S'T���t.3 9: { nis[ancz l� ------ HGL EGL sss;. =r; ST-30l � =1 � �ET3v �3g1, 9 Di-�ance fF�t ST-302 _�9:u SIM�f��h'O .S����� 3 :.e;.:. .s A� .. S�t�h.JQ`' ST�j`� �eH �� p . � ��.,1: I q�f/, iD .��,,, �, , S'��-� STtiE,,,� ''^��r.� �`� ' � ----- HGL ............ EGL =�-::Si ... .,_ _ _.., ___. ___. L._ .. ..- � Dis[ance I� .� _ ,.-. ST-3P rn;�:�„�t iF�i ST-3S rn„�„�z rF�i ST 3U l wi � �..s �: w � 99' `i �_ __ ____ ______________________________�----.......__,....._.._....._---•-____-_ ------= .99_ 69 ,u�; :. J'T.y�� ST�� /. � � ;F .s�,y� : �A9_':o Sf �Sr�f'fj �(� n�y33 nisiance �� ST 3U2 5'T Mf�'��B __ ;ae Distancz fft1 , ,s�,,;�Z r_3 � s, y� J(1�1�� Ue • ;__.��' ST`�f�'iPc � S�IAq ���f-3 S � � i.?M� �81,` r�F ��i HGL ............ EGL ST 3Y l � �.� �� fi :�_: +sso -------_ -----=- -------- ------_ --_-_=_ .................................... -------• _---• .,__.. _..- r<<�r��� sTti���.�� Srff.�� 5�:4,y J�. s�M�� �n _.... `6": ::.:� n�s��„�e rr�� ST 3Y2 HGL EGL F7: ? y13 Distance (Ft'� ST-03 100-YEAR Rainfall Parameters Rainfall Return Period: 100 Backwater Calculations: Tailwater Elevation (ft): 4998.69 Manhole Input Summary: Given Flow Sub Basin Information Total Ground Local Drainage Overland Overland Gutter Gutter Element Elevation Known Contribution Area Runoff Syr Length Slope Length Velocity Name (ft) ��f � (cfs) (Ac.) Coefficient Coefficient �ft) (%) (ft) (fps) FES-3A 4992.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3A 5000.94 151.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STH-3B 5001.06 151.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3C 5001.98 137.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3D 5002.33 91.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5001.95 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3UA Dl-3UA 5001.95 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1NLET-3UB 5001.95 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-3UB 5001.95 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3E 5001.92 89.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3F 5001.89 22.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3G 5001.01 22.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-3FA 5001.24 5.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-3FA 5001.24 5.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3H 5000.88 17.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3I 5001.96 11.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3J 5002.08 1.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5001.68 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3GA DI-3GA 5001.68 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-3GB 5001.68 1.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-3GB 5001.68 1.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3PA 5004.47 9.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 fNLET-3PA 5004.44 9.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-3PA 5004.44 9.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-3EB 5000.58 4.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-3EB 5000.58 4.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-3EA 5000.58 2.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-3EA 5000.58 2.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3BA 5001.74 70.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-3HB 5001.45 3.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-3HB 5001.45 3.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5001.45 13.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3HA DI-3HA 5001.45 13.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3BB 5002.97 52.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3BC 5003.20 52.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-3BD 5002.69 STMH-3BE 5002.62 STMH-3BF 5003.97 STMH-3CA 5004.55 STMH-3CB 5005.42 STME{-3CC 5005.99 TNLCT-3JA 5006.24 DI-3JA 5006.24 INLET-3JB 5006.20 DI-3JB 5006.20 STMH-3BI 5005.23 STMH-2BJ 5005.87 INLET-3BA 5006.03 DI-3BA 5006.03 INLET- 500231 30A Dl-OA 5002.31 INLET-30B 5002.31 DI-30B 5002.31 INL�T-3IA 500335 DI-3IA 500335 STMH-3AA 5003.54 STMH-3AB 5002.67 INLET- 5000.94 3AA DI-3AA 5000.94 STMH-3AC 5001.27 STMH-3KA 5002.19 INLET- 5002.23 3KA DI-3KA 5002.23 INLET- 5002.24 3MA DI-3MA 5002.24 STMH-3LA 5002.11 fNLET-3LA 5002.45 DI-3LA 5002.45 INLET- 5002.45 3NA DI-3NA 5002.45 INLET-3AB 5000.94 INLET-3AC 5001.82 DI-3AC 5001.82 DI-3AB 5000.94 INLET- 5000.46 3DA 42.57 42.57 13.42 7.69 7.69 7.69 6.14 6.14 1.84 1.84 6.02 6.02 6.02 6.02 19.23 19.23 5.85 5.85 12.70 12.70 48.77 48.77 48.77 10.90 40.87 16.21 6.98 6.98 9.76 9.76 15.01 4.7 ] 4.71 11.04 11.04 9.66 7.50 7.50 2.89 2.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Dl-3DA 5000.46 2.42 INLET-3DB 5000.68 3.17 DI-3DB 5000.68 3.17 Manhole Output Summary: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Local Conh•ibution Total Design Flow Overland Gutter Basin Local Manhole Peak Element Time Time Tc Intensity Contrib Coeff. Intensity Tc Flow Comment Name � � � � � � (in/hr) �cfs) Area (in/hr) �min) (cfs) min min min FES-3A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Surface Water Present (Upstrcain) STMH-3A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 151.48 Surface Water Present (Dowustream) STH-3B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 151.48 STMH-3C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 137.30 STMH-3D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 91.82 INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 3UA DI-3UA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 3UB Dl-3UB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.10 STMH-3E 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 89.57 STMH-3F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 22.07 STMH-3G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 22.07 INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.05 3FA DI-3 FA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.05 STMH-3H 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 17.23 STMH-3T 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.25 STMH-3J 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.86 INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 3GA DI-3GA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.36 3GB Dl-3GB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.36 STMH- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.76 3PA INLET- p.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.76 3PA DI-3PA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.76 INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.89 3EB DI-3EB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.89 Surface Water Present (Downstream) INLET- 0.00 3EA DI-3EA 0.00 STMH- 0.00 3BA INLET- 0.00 3HB DI-3HB 0.00 INLET- 0.00 3HA DI-3HA 0.00 STMH- 0.00 3BB STMH- p.00 3BC STMH- 0.00 3BD STMH- 0.00 3BE STMH- 0.00 3BF STMH- 0.00 3CA STMH- 0.00 3CB STMH- 0.00 3CC fNLET- 0.00 3JA D]-3JA 0.00 INLET- 0.00 3JB Dl-3JB 0.00 STMH-3BI 0.00 STMH-2BJ 0.00 INLET- 0.00 3BA DI-3BA 0.00 INLET- 0.00 30A DI-OA 0.00 INLET- 0.00 30B DI-30B 0.00 INLET- 0.00 3IA D]-31A 0.00 STMH- 0.00 3AA STMH- 0.00 3AB INLET- 0.00 3AA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.19 2.19 70.73 3.35 3.35 13.58 13.58 52.41 52.41 42.57 42.57 13.42 7.69 7.69 7.69 6.14 6.14 1.84 1.84 6.02 6.02 6.02 6.02 19.23 19.23 5.85 5.85 12.70 12.70 48.77 48.77 48.77 DI-3AA STMH- 3AC STMH- 3KA INLET- 3KA D]-3KA INLET- 3MA DI-3MA STMH- 3LA INLE T- 3LA DI-3LA INLET- 3NA D[-3NA INLET- 3AB INLET- 3AC DI-3AC DI-3AB INLET- 3DA DI-3DA INLET- 3DB DI-3DB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Sewer Input Summary: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.90 Surface Water Present (Downstream) 40.87 16.21 6.98 6.98 9.76 9.76 15.01 4.71 4.71 1 1.04 11.04 9.66 7.50 7.50 Z 89 Surface Water Present (Downstream) 2.42 2.42 3.17 3.17 Elevation Loss Coefficients Given Dimensions Element Sewer pownstream S�ape Upstream Mannings Bend Lateral Cross Rise Span Length Invert o Invert Name (ft) (ft) ��O� (ft) n Loss Loss Section (ft or in) (ft or in) STMH-3A 74.43 4992.00 0.3 4992.22 0.013 0.03 0.00 ELLIPSE 58.00 in 91.00 in STH-3B 67.41 4992.23 0.3 4992.43 0.013 1.32 0.00 ELLIPSE 58.00 in 91.00 in STMH-3C I67.06 4992.43 0.3 4992.93 0.013 0.05 0.00 ELLIPSE 58.00 in 91.00 in STMH-3D 212.88 4992.93 0.3 4993.57 0.013 0.05 0.00 CIRCULAR 66.00 in 66.00 in INLET-3UA 13.00 4997.22 0.5 4997.28 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in DI-3UA I.00 4997.28 0.5 4997.28 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in INLET-3UB 23.00 4997.22 0.5 4997.33 0.013 1.32 0.00 CIRCULAR 18.00 in 18.00 in DI-3UB 1.00 4997.33 0.5 4997.33 0.013 0.25 0.00 CIRCULAR 18.00 in 18.00 in STMH-3E STMH-3F STMH-3G INLET-3FA DI-3FA STMH-3H STMH-3I STMH-3J INLET-3GA DI-3GA INLET-3GB DI-3GB STMH-3PA INLET-3PA DI-3PA INLET-3 EB DI-3EB INLET-3EA DI-3EA STMH-3BA INLET-3HB DI-3HB INLET-3HA DI-3HA STMH-3BB STMH-3BC STMH-3BD STMH-3BE STMH-3BF STMH-3CA STMH-3CB STMH-3CC INLET-3JA DI-3JA INLET-3JB DI-3JB STMH-3BI STMH-2BJ INLET-36A D]-3BA INLET-30A DI-OA INLET-30B 48.65 20.62 99.00 56.00 1.00 43.64 I 98.58 19.75 13.69 1.00 22.31 I .00 134.06 29.99 1.00 27.05 1.00 8.95 1.00 146.46 8.00 1.00 28.00 i .00 181.78 81.76 65.23 18.23 I 99.62 53.92 228.73 11931 39.10 1.00 36.31 1.00 17431 82.81 4437 1.00 28.00 I .00 8.00 4993.56 4993.71 4993.77 4994.07 4995.40 4994.07 4994.20 4994.80 4994.85 4994.92 4994.86 4994.97 4996.35 4999.03 4999.6I 4994.20 499434 4994.21 4994.25 4993.71 4996.48 4996.52 4996.48 4996.62 4994.15 4994.69 4994.94 4995.27 4995.36 4997.86 4998.40 5000.13 5000.82 5001.02 5000.82 5001.00 4997.36 4998.23 4998.64 4998.86 499536 4995.50 4995.36 0.3 0.3 0.3 0.5 0.5 0.3 0.3 0.3 0.5 0.5 0.5 0.5 2.0 2.0 2.0 0.5 0.5 0.5 0.5 0.3 0.5 0.5 0.5 0.5 0.3 0.3 0.5 0.5 0.5 1.0 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 4993.71 4993.77 4994.07 4994.35 4995.40 4994.20 4994.80 4994.86 4994.92 4994.92 4994.97 4994.97 4999.03 4999.63 4999.63 499434 499434 4994.25 4994.25 4994.15 4996.52 4996.52 4996.62 4996.62 4994.70 4994.94 4995.27 4995.36 4996.36 4998.40 5000.23 5000.73 5001.02 5001.02 5001.00 5001.00 4998.23 4998.64 4998.86 4998.86 4995.50 4995.50 4995.40 0.012 0.0 I 3 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.0 I 3 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.0 I 3 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.05 0.08 0.07 1.32 0.25 0.05 0.05 0.05 I .32 0.25 1.32 0.25 1.32 0.11 0.25 I .32 1.32 1.32 0.25 1.32 1.32 0.25 ] .32 0.25 0.05 0.05 0.05 0.05 0.05 1.32 0.59 0.22 1.32 0.25 1.32 0.25 0.05 0.05 I .32 0.25 I .32 0.25 1.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CIRCULAR 66.00 in 66.00 in CIRCULAR 48.00 in 48.00 in CIRCULAR 48.00 in 48.00 in CIRCULAR 30.00 in 30.00 in CIRCULAR 30.00 in 30.00 in CIRCULAR 42.00 in 42.00 in CIRCULAR 24.00 in 24.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 24.00 in 24.00 in CIRCULAR 24.00 in 24.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 24.00 in 24.00 in CIRCULAR 24.00 in 24.00 in CIRCULAR 24.00 in 24.00 in CIRCULAR 24.00 in 24.00 in CIRCULAR 54.00 in 54.00 in CIRCULAR 24.00 in 24.00 in CIRCULAR 24.00 in 24.00 in CIRCULAR 24.00 in 24.00 i�� CIRCULAR 24.00 in 24.00 in CIRCULAR 48.00 in 48.00 in CIRCULAR 48.00 in 48.00 in CIRCULAR 48.00 in 48.00 in CIRCULAR 36.00 in 36.00 in CIRCULAR 36.00 in 36.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 24.00 in 24.00 in CIRCULAR 24.00 in 24.00 in CIRCULAR 24.00 in 24.00 in CIRCULAR 24.00 in 24.00 in CIRCULAR 30.00 in 30.00 in CIRCULAR 30.00 in 30.00 in CIRCULAR 24.00 in 24.00 in DI-30B 1.00 INLET-3IA 50.00 DI-3IA 1.00 STMH-3AA 344.63 STMH-3AB 121.06 INLET-3AA 75.80 DI-3AA 1.00 STMH-3AC 10.00 STMH-3KA 122.53 INLET-3KA 42.38 DI-3KA 1.00 INLET-3MA 42.38 DI-3MA I.00 STMH-3LA 84.47 INLET-3LA 4238 DI-3LA 1.00 INLET-3NA 4238 DI-3NA 1.00 INLET-3AB 10.00 INLET-3AC 26.17 DI-3AC 26.17 DI-3AB 1.00 INLET-3DA 24.00 DI-3DA 1.00 [NLET-3DB 23.00 DI-3DB 1.00 4995.40 4996.77 4997.02 499293 4993.98 4994.32 4994.55 4994.5 5 4994.5 8 4995.70 4995.91 4995.70 499591 4994.5 8 4995.5 I 4995.72 4995.50 4995.71 4994.58 4994.63 4994.63 4994.63 4995.26 4995 3 8 4995.26 499537 Sewer Flow Summary: 0.5 0.5 0.5 0.3 0.3 0.3 0.3 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 4995.40 4997.02 4997.02 4993.96 4994.34 4994.55 4994.55 4994.58 4995.19 4995.91 4995.91 4995.91 4995.91 4995.00 4995.72 4995.72 4995.71 4995.71 4994.63 4994.76 4994.76 4994.63 499538 4995.38 4995.37 4995.37 0.013 0.0 I 3 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.0 I 3 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.25 1.32 0.25 1.32 0.05 0.05 0.25 0.05 I .32 0.85 0.25 0.85 0.25 I .32 0.85 0.25 0.85 0.25 0.05 0.05 0.25 0.25 ] .32 0.25 1.32 0.25 Full Flow Capacity Critical Flow Normal Flow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 54.00 in CIRCULAR 54.00 in CIRCULAR 48.00 in CIRCULAR 48.00 in CIRCULAR 48.00 in CIRCULAR 30.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 30.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in 24.00 in 24.00 in 24.00 in 54.00 in 54.00 in 48.00 in 48.00 in 48.00 in 30.00 in 24.00 in 24.00 in 24.00 in 24.00 in 30.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in Element Flow Velocity Depth Velocity Depth Velocity Froude Flow Flow �Surcharged Name (cfs) (fps) (in) (fps) (in) (fps) Number Condition (cfs) LengYh Comment (ft) STMH-3A STH-3B STMH-3C STMH-3D INLET-3UA DI-3 UA INLET-3UB DI-3 UB STMH-3E STMH-3F 26235 26235 26235 199J9 7.45 7.45 7.45 7.45 199J9 78.89 1038 1038 1038 8.41 4.21 4.21 4.21 4.21 8.41 6.28 39.70 39.70 37.71 31.71 3.45 3.45 6.56 6.56 31.30 16.62 9.23 9.23 8.93 8.13 2.54 2.54 3.60 3.60 8.07 5.72 3938 3938 37.14 31.42 3.45 3.45 6.54 6.54 30.97 1736 933 9.33 9.1 1 8.23 2.53 2.53 3.62 3.62 8.18 5.38 1.02 1.02 1.03 1.02 0.99 0.99 1.01 1.01 1.02 0.92 Pressurized 151.48 74.43 Pressurized 151.48 67.41 Pressurized 13730 167.06 Pressurized 91.82 212.88 Pressurized 0.60 13.00 Pressurized 0.60 1.00 Pressurized 2.10 23.00 Pressurized 2.10 1.00 Pressurized 89.57 48.65 Pressurized 22.07 20.62 STMH-3G INLET-3FA DI-3FA STMH-3H STMH-3I STMH-3J INLET-3GA DI-3GA INLET-3GB DI-3GB STMH-3PA INLET-3PA DI-3PA INLET-3EB D[-3EB INLET-3EA D[-3 EA STMH-3BA INLET-3HB DI-3HB INLET-3HA DI-3HA STMH-3BB STMH-3BC STMH-3BD STMH-3BE STMH-3BF STMH-3CA STMH-3CB STMH-3CC [NLET-3JA DI-3JA INLET-3JB DI-3JB STMH-3BI STMH-2BJ INLET-3BA DI-3BA INLET-30A DLOA INLET-30B DI-30B INLET-3IA 78.89 29.08 29.08 55.25 12.42 5.77 7.45 7.45 7.45 16.04 32.08 14.90 14.90 I 6.04 16.04 16.04 16.04 108.00 16.04 16.04 16.04 16.04 78.89 78.89 IOI.84 47.29 47.29 10.53 9.42 7.45 7.45 7.45 7.45 7.45 16.04 16.04 16.04 16.04 29.08 29.08 16.04 16.04 I 6.04 6.28 5.92 5.92 5.74 3.95 3.26 4.21 4.21 4.21 S.l 1 10.21 8.43 8.43 5.11 5.1 I S.l l 5.11 6.79 5.11 5.11 5.11 5.11 6.28 6.28 8.10 6.69 6.69 5.96 5.33 4.21 4.21 4.21 4.21 4.2I 5.11 5.11 5.11 S.11 5.92 5.92 5.11 5.11 5.11 16.62 8.89 8.89 15.20 14.44 6.16 3.14 3.14 5.24 4.83 13.41 14.46 14.46 9.34 934 6.17 6.17 29.43 7.68 7.68 15.92 15.92 26.09 26.09 23.40 25.50 13.98 12.89 12.89 18.00 11.49 1 1.49 6.13 6.13 10.41 10.41 10.41 10.41 17.84 17.84 10.26 10.26 15.38 5.72 4.14 4.14 5.48 5.70 3.48 2.42 2.42 3.18 3.01 5.41 6.41 6.41 4.32 432 3.43 3.43 7.98 3.87 3.87 6.14 6.14 7.51 7.51 7.00 7.95 5.29 5.68 5.68 4.35 5.16 5.16 3.47 3.47 4.61 4.61 4.61 4.61 632 6.32 4.57 4.57 5.97 1736 8.46 8.46 16.11 17.89 7.03 3.16 3.16 5.21 4.72 9.08 10.63 10.63 9.09 9.09 5.99 5.99 31.87 7.44 7.44 16.95 16.95 28.59 28.59 21.64 26.71 13.12 11.42 12.36 18.00 12.45 12.45 6.10 6.10 10.19 10.19 10.19 10.19 17.81 17.81 10.03 10.03 16.12 538 4.44 4.44 5.07 4.48 2.91 2.40 2.40 3.21 3.11 8.96 8.99 8.99 4.48 4.48 3.57 3.57 7.24 4.04 4.04 5.73 5.73 6.72 6.72 7.74 7.57 5.76 6.51 5.94 4.35 4.71 4.71 3.49 3.49 4.74 4.74 4.74 4.74 6.33 633 4.70 4.70 5.66 0.92 1.10 1.10 0.90 0.66 0.78 0.99 0.99 1.01 1.OS 2.11 1.85 1.85 1.05 1.OS 1.06 1.06 0.86 1.06 1.06 0.88 0.88 0.84 0.84 1.16 0.91 1.13 1.27 1.09 0.00 0.85 0.85 1.01 1.O1 1.04 1.04 1.04 1.04 1.00 1.00 1.04 1.04 0.91 Pressurized 22.07 Pressurized 5.05 Pressurized 5.05 Pressurized 17.23 Pressurized 11.25 Pressurized 1.86 Pressurized 0.50 Pressurized 0.50 Pressurized 136 Pressurized 136 Pressurized 9J6 Pressurized 9.76 Pressurized 9.76 Pressurized 4.89 Pressurized 4.89 Pressurized 2.19 Pressurized 2.19 Pressurized 70.73 Pressurized 335 Pressurized 3.35 Pressurized 13.58 Pressurized 13.58 Pressurized 52.41 Pressurized 52.41 Pressurized 42.57 Pressurized 42.57 Pressurized 13.42 Pressurized 7.69 Pressurized 7.69 Pressurized 7.69 Pressurized 6.14 Pressurized 6.14 Pressurized 1.84 Pressurized 1.84 Pressurized 6.02 Pressurized 6.02 Pressurized 6.02 Pressurized 6.02 Pressurized 19.23 Pressurized 19.23 Pressurized 5.85 Pressurized 5.85 Pressurized 12.70 99.00 56.00 1.00 43.64 198.58 19.75 I 3.69 1.00 2231 1.00 134.06 29.99 1.00 27.05 1.00 8.95 1.00 146.46 8.00 1.00 28.00 1.00 181.78 81 J6 65.23 I 8.23 199.62 53.92 228.73 119.31 39.10 1.00 3631 1.00 174.31 82.81 44.3 7 1.00 28.00 1.00 8.00 1.00 50.00 D[-3IA STMH-3AA STMH-3AB INLET-3AA DI-3AA STMH-3AC STMH-3KA INLET-3KA DI-3KA INLET-3MA DI-3MA STMH-3LA INLET-3LA DI-3LA INLET-3NA DI-3NA 1NLET-3AB [NLET-3AC DI-3AC DI-3AB INLET-3DA DI-3DA INLET-3DB D[-3DB 16.04 108.00 108.00 78.89 78.89 78.89 29.08 16.04 ] 6.04 16.04 16.04 29.08 I 6.04 I 6.04 16.04 16.04 16.04 16.04 16.04 16.04 16.04 16.04 16.04 16.04 S.l l 6.79 6.79 6.28 6.28 6.28 5.92 S.11 5.11 5.1 I 5.11 5.92 5.11 5.11 5.1 I S.l l 5.11 5.l l 5.11 5.11 5.11 5.11 5.11 S.11 1538 24.23 24.23 25.12 11.55 22.90 1632 11.25 11.25 13.41 13.41 15.68 9.16 9.16 1430 1430 1333 11.68 11.68 7.11 6.49 6.49 7.46 7.46 5.97 7.05 7.05 7.33 4.68 6.91 5.94 4.83 4.83 5.41 5.41 5.78 4.27 4.27 5.66 5.66 5.39 4.94 4.94 3.71 3.53 3.53 3.81 3.81 16.12 25.45 25.45 27.30 12.05 24.51 16.01 11.07 11.07 13.52 13.52 15.28 8.91 8.91 14.63 14.63 13.43 11.54 11.54 6.90 6.30 6.30 7.23 7.23 5.66 6.62 6.62 6.61 4.41 6.33 6.08 493 4.93 535 5.35 5.97 4.44 4.44 5.50 5.50 5.34 5.02 5.02 3.87 3.68 3.68 397 3.97 0.91 0.91 0.91 0.85 0.92 0.88 1.04 1.03 1.03 0.98 0.98 1.05 1.05 1.05 0.96 0.96 0.99 1.02 1.02 1.06 1.06 1.06 1.06 1.06 Pressurized 12.70 Pressurized 48.77 Pressurized 48.77 Pressurized 48.77 Pressurized 10.90 Pressurized 40.87 Pressurized 16.21 Pressurized 6.98 Pressurized 6.98 Pressurized 9.76 Pressurized 9J6 Pressurized I5.01 Pressurized 4.71 Pressurized 4.71 Pressurized 11.04 Pressurized 11.04 Pressurized 9.66 Pressurized 7.50 Pressurized 7.50 Pressurized 2.89 Pressurized 2.42 Pressurized 2.42 Pressurized 3. ] 7 Pressiirized 3.17 1.00 344.63 121.06 75.80 1.00 I 0.00 122.53 4238 1.00 4238 1.00 84.47 42.3 8 1.00 4238 1.00 10.00 26.17 26.17 1.00 24.00 1.00 23.00 1.00 • A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe). • If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer. • If the sewer is pressurized, full flow represents the pressurized flow conditions. Sewer Sizing Summary: Existing Calculated Used Element Pea� Cross Area Name ��f � Section Rise Span Rise Span Rise Span �ft�2� Comment STMH-3A 151.48 ELLIPSE 58.00 in 91.00 in 60.00 in 60.00 in 58.00 in 91.00 in 25.29 Existing height is smaller than the suggested height. STH-3B 151.48 ELLIPSE 58.00 in 91.00 in 60.00 in 60.00 in 58.00 in 91.00 in 25.29 Existing height is smaller than the suggested lleight. STMH-3C 137.30 ELLIPSE 58.00 in 91.00 in 60.00 in 60.00 in 58.00 in 91.00 in 25.29 Existing height is smaller tllan the suggested height. STMH-3D 91.82 CIRCULAR 66.00 in 66.00 in 54.00 in 54.00 in 66.00 in 66.00 in 23J6 INLET-3UA 0.60 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-3UA 0.60 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-3UB 2.10 CIRCULAR 18.00 in 18.00 in 18.00 ii� 18.00 in 18.00 in 18.00 in 1.77 DI-3UB 2.10 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 STMH-3E 89.57 CIRCULAR 66.00 in 66.00 in 54.00 in 54.00 in 66.00 in 66.00 in 23.76 STMH-3F 22.07 CIRCULAR 48.00 in 48.00 in 30.00 in 30.00 in 48.00 in 48.00 in 12.57 STMH-3G INLET-3FA DI-3FA STMH-3H STMH-31 STMH-3J INLET-3GA DI-3GA INLET-3GB D[-3GB STMH-3PA 22.07 CIRCULAR 48.00 in 48.00 in 30.00 in 30.00 in 48.00 in 48.00 in 12.57 5.05 CIRCULAR 30.00 in 30.00 in 18.00 in 18.00 in 30.00 in 30.00 in 4.91 5.05 CIRCULAR 30.00 in 30.00 in 18.00 in 18.00 in 30.00 in 30.00 in 4.91 17.23 CIRCULAR 42.00 in 42.00 in 30.00 in 30.00 in 42.00 in 42.00 in 9.62 1 1.25 C�IRCULAR 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 3.14 1.86 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 0.50 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 0.50 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 1.36 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 1.36 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 9.76 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 INLET-3PA 9.76 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-3PA 9.76 CIRCULAR 18.00 in 18.00 in 18.00 i�� 18.00 in 18.00 in 18.00 in 1.77 INLET-3EB 4.89 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 DI-3EB 4.89 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 INLET-3EA 2.19 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 DI-3EA 2.19 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 STMH-3BA 70.73 CIRCULAR 54.00 in 54.00 in 48.00 in 48.00 in 54.00 in 54.00 in 1590 INLET-3HB 3.35 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 DI-3HB 3.35 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 INLET-3HA 13.58 CIRCULAR 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 3.14 DI-3HA 13.58 CIRCULAR 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 3.14 STMH-3BB 52.41 CIRCULAR 48.00 in 48.00 in 42.00 in 42.00 in 48.00 in 48.00 in 12.57 STMH-3BC 52.41 CIRCULAR 48.00 in 48.00 in 42.00 in 42.00 in 48.00 in 48.00 in 12.57 STMH-3BD 42.57 CIRCULAR 48.00 in 48.00 in 36.00 in 36.00 in 48.00 in 48.00 in 12.57 STMH-3BE 42.57 CIRCULAR 36.00 in 36.00 in 36.00 in 36.00 in 36.00 in 36.00 in 7.07 STMH-3BF 13.42 CIRCULAR 36.00 in 36.00 in 24.00 ii� 24.00 in 36.00 in 36.00 in 7.07 STMH-3CA 7.69 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 STMH-3CB 7.69 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 STMH-3CC 7.69 CIRCULAR 18.00 in 18.00 in 21.00 in 21.00 in 18.00 in 18.00 in 1.77 [NLET-3JA 6.14 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-3JA 6.14 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-3JB 1.84 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-3JB 1.84 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 STMH-3BI 6.02 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 Existin� height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise STMH-2BJ 6.02 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 INLET-3BA 6.02 CIRCULAR 24.00 in 24.00 in 18.00 ii� 18.00 in 24.00 in 24.00 in 3.14 DI-3BA 6.02 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 INL�T-30A 19.23 CIRCULAR 30.00 in 30.00 in 27.00 in 27.00 in 30.00 in 30.00 in 4.91 DI-OA 19.23 CIRCULAR 30.00 in 30.00 in 27.00 in 27.00 in 30.00 in 30.00 in 4.91 INLET-30B 5.85 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 D[-30B 5.85 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 INLET-3[A 12.70 CIRCULAR 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 3.14 DI-31A 12.70 CIRCULAR 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 3.14 STMH-3AA 48.77 C�IRCULAR 54.00 in 54.00 in 42.00 in 42.00 in 54.00 in 54.00 in 15.90 STMH-3AB 48.77 CIRCULAR 54.00 in 54.00 in 42.00 in 42.00 in 54.00 in 54.00 in 15.90 INLET-3AA 48.77 CIRGULAR 48.00 in 48.00 in 42.00 in 42.00 in 48.00 in 48.00 in 12.57 DI-3AA 10.90 CIRCULAR 48.00 in 48.00 in 24.00 in 24.00 in 48.00 in 48.00 in 12.57 STMH-3AC 40.87 CIRCULAR 48.00 in 48.00 in 42.00 in 42.00 in 48.00 in 48.00 in 12.57 STMH-3KA 16.21 CIRCULAR 30.00 in 30.00 in 27.00 in 27.00 in 30.00 in 30.00 in 4.91 INLET-3KA 6.98 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 DI-3KA 6.98 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3J4 INLET-3MA 9.76 CIRCULAR 24.00 in 24.00 in 2l .00 i�� 21.00 in 24.00 in 24.00 in 3.14 DI-3MA 9.76 CIRCULAR 24.00 in 24.00 in 21.00 in 21.00 in 24.00 in 24.00 in 3.14 STMH-3LA 15.01 CIRCULAR 30.00 in 30.00 in 24.00 in 24.00 in 30.00 in 30.00 in 4.91 iNLET-3LA DI-3LA INLET-3NA DI-3NA [NLET-3AB INLET-3AC DI-3AC DI-3AB INLET-3 DA DI-3DA INLET-3DB 4.71 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 4.71 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 11.04 CIRCULAR 24.00 in 24.00 in 21.00 in 21.00 in 24.00 in 24.00 i�� 3.14 11.04 CIRCULAR 24.00 in 24.00 in 21.00 in 21.00 in 24.00 in 24.00 in 3.14 9.66 C�IRCULAR 24.00 in 24.00 in 21.00 in 21.00 in 24.00 in 24.00 in 3.14 7.50 CIRCULAR 24.00 in 24.00 in 21.00 in 21.00 in 24.00 in 24.00 in 3.14 7.50 CIRGULAR 24.00 in 24.00 in 21.00 in 21.00 in 24.00 in 24.00 in 3.14 2.89 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 2.42 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 2.42 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 314 3.17 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 D[-3DB 3.17 CIRCULAR 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 24.00 in 3.14 • Calculated diaineter was detennined by sewer hydraulic capaciry rounded up to the nearest commercially available size. • Sewer sizes should not decrease downstream. • All hydraulics where calculated using the 'Used' parameters. Grade Line Summary: Tailwater Elevation (ft): 4998.69 Invert Elev. Downstream Manhole Losses Bend Lateral Loss Loss (ft) (ft) 0.00 0.00 0.74 0.00 0.02 0.00 O.OI 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.20 0.00 0.05 0.00 0.12 0.00 0.05 0.00 0.05 0.00 0.01 0.00 0.00 0.00 0.41 0.00 0.02 0.00 0.00 0.00 0.38 0.00 0.07 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.39 0.00 0.17 0.00 HGL EGL Downstream Upstream Downstream Friction Upstream (ft) (ft) (ft) �t°.t�s (ft) 4998.69 4998.76 4999.25 0.07 499932 4999.50 4999.57 5000.06 0.07 5000.12 4999.69 4999.83 5000.15 0.14 5000.28 5000.06 5000.20 5000.30 0.13 5000.43 5000.43 5000.43 5000.43 0.00 5000.43 5000.43 5000.43 5000.43 0.00 5000.43 5000.44 5000.45 5000.46 0.01 5000.47 5000.45 5000.45 5000.47 0.00 5000.48 5000.22 5000.25 5000.44 0.03 5000.47 5000.43 5000.43 5000.48 0.00 5000.48 5000.44 5000.46 5000.48 0.02 5000.51 5000.51 5000.52 5000.53 0.01 5000.54 5000.52 5000.52 5000.54 0.00 5000.54 5000.46 5000.47 5000.51 0.01 5000.52 5000.48 5000.97 5000.68 0.49 5001.17 5001.16 5001.16 5001.17 0.01 5001.18 5001.18 5001.18 5001.18 0.00 5001.18 5001.18 5001.18 5001.18 0.00 5001.18 5001.18 5001.19 5001.19 0.00 5001.19 5001.19 5001.19 5001.20 0.00 5001.20 5001.22 5001.47 5001.37 0.25 5001.62 5001.52 5001.78 5001.99 0.26 5002.25 5001.90 5001.90 5002.37 0.01 5002.38 5000.54 5000.55 5000.57 0.01 5000.59 5000.60 5000.60 5000.64 0.00 5000.64 5000.53 5000.53 5000.53 0.00 5000.53 5000.53 5000.53 5000.54 0.00 5000.54 5000.66 5000.84 500096 0.19 5001.15 5001.16 5001.16 5001.18 0.00 5001.18 5001.16 5001.16 5001.18 0.00 5001.18 5001.24 5001.35 5001.53 0.10 5001.64 5001.42 5001.42 5001.71 0.00 5001.71 5000.90 5001.14 5001.17 0.24 5001.41 5001.15 5001.26 5001.42 0.11 5001.53 500136 5001.42 5001.54 0.06 5001.59 5001.44 5001.52 5002.01 0.07 5002.08 5002.03 5002.11 5002.08 0.08 5002.16 5002.50 5002.78 5002.79 0.29 5003.08 5002.96 5004.18 5003.25 1.22 5004.47 Element Downstream Upstream Name (ft) (ft) STMH-3A STH-3 B STMH-3C STMH-3D INLET-3UA DI-3UA INLET-3UB DI-3UB STMH-3E STMH-3F STMH-3G INLET-3FA DI-3FA STMH-3H STMH-3I STMH-3J INLET-3GA DI-3GA INLET-3GB DI-3GB STMH-3PA INLET-3PA DI-3PA INLET-3EB DI-3 EB INLET-3EA DI-3EA STMH-3BA INLET-3HB DI-3HB INLET-3HA DI-3HA STMH-3BB STMH-3BC STMH-3BD STMH-3BE STMH-3BF STMH-3CA STMH-3CB 4992.00 4992.23 4992.43 4992.93 4997.22 4997.28 4997.22 4997.33 4993.56 4993.71 4993.77 4994.07 4995.40 4994.07 4994.20 4994.80 4994.85 4994.92 4994.86 4994.97 4996.35 4999.03 4999.61 4994.20 4994.34 4994.21 4994.25 4993.71 4996.48 4996.52 4996.48 4996.62 4994.15 4994.69 4994.94 4995.27 4995.3G 4997.86 4998.40 4992.22 4992.43 4992.93 4993.57 4997.28 4997.28 4997.3 3 4997.33 4993.71 4993.77 4994.07 499435 4995.40 4994.20 4994.80 4994.86 4994.92 4994.92 4994.97 4994.97 4999.03 4999.63 4999.63 4994.34 4994.34 4994.25 4994.25 4994.15 4996.52 4996.52 4996.62 4996.62 4994.70 499494 4995.27 4995.36 4996.3 G 4998.40 5000.23 STMH-3CC INLET-3JA DI-3JA INL�T-3JB DI-3JB STMH-3BI STMH-2BJ INLET-3BA DI-3BA INLET-30A DI-OA INLET-30B DI-30B INLET-3IA DI-3IA STMH-3AA STMH-3AB INLET-3AA DI-3AA STMH-3AC STMH-3KA INLET-3KA DI-3KA INLET- 3MA DI-3MA STMH-3LA [NLET-3LA DI-3 LA INLET-3NA DI-3NA INLET-3AB INLET-3AC DI-3AC D►-3AB INLET-3DA DI-3DA 1NLET-3DB DI-3DB 5000.13 5000.82 5001.02 5000.82 5001.00 4997.3 6 4998.23 4998.64 4998.86 4995.36 4995.50 4995.36 4995.40 4996.77 4997.02 4992.93 4993.98 4994.32 4994.55 4994.55 4994.58 4995.70 4995.91 4995.70 4995.91 4994.58 4995.51 4995.72 4995.50 4995.71 4994.58 4994.63 4994.63 4994.63 4995.26 4995.38 4995.26 4995.37 5000.73 5001.02 5001.02 5001.00 5001.00 4998.23 4998.64 4998.86 4998.86 4995.50 4995.50 4995.40 4995.40 4997.02 4997.02 4993.96 499434 4994.55 4994.55 4994.58 4995.19 4995.91 4995.91 4995.91 4995.91 4995.00 4995.72 4995.72 4995.71 4995.71 4994.63 4994.76 4994.76 4994.63 4995.38 4995.38 4995.37 4995.37 0.06 0.25 0.05 0.02 0.00 0.00 0.00 0.08 0.01 0.31 0.06 0.07 0.01 0.33 0.06 0.19 0.01 0.01 0.00 0.01 0.22 0.07 0.02 0.13 0.04 0.19 0.03 0.01 0.16 0.05 0.01 0.00 0.02 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5004.24 5005.23 5005.41 5005.18 5005.19 5002.11 5002.24 500237 5002.42 5002.16 5002.28 5002.10 5002.12 5001.61 5001.83 5000.33 5000.55 5000.64 5000.95 5000.80 5001.03 5001.38 5001.44 5001.37 5001.48 5001.02 5001.27 5001.30 5001.29 5001.44 5000.83 5000.91 500096 5000.99 5000.13 5000.13 5000.13 5000.14 5004.88 500536 5005.41 5005.19 5005.19 5002.23 5002.29 5002.40 5002.42 5002.22 5002.28 5002.10 5002.12 5001.77 5001.83 5000.54 5000.62 5000.72 5000.95 5000.81 5001.22 5001.42 5001.44 5001.45 5001.49 5001.13 5001.29 5001.30 5001.39 5001.45 5000.85 5000.94 5000.99 5000.99 5000.13 5000.13 5000.13 5000.14 5004.54 5005.42 5005.60 5005.19 5005.21 5002.17 5002.29 5002.43 5002.47 5002.40 5002.52 5002.15 5002.17 5001.86 5002.08 5000.48 5000.70 5000.87 5000.96 5000.96 5001.20 5001.46 5001.52 5001.52 5001.63 5001.16 5001.31 5001.33 5001.49 5001.63 5000.98 5001.00 5001.05 5001.00 5000.14 5000.14 5000.15 5000.15 0.64 O.13 0.00 0.01 0.00 0.12 0.06 0.03 0.00 0.06 0.00 0.01 0.00 0.16 0.00 0.21 0.07 0.09 0.00 0.01 0.19 0.04 0.00 0.08 0.00 0.11 0.02 0.00 0.10 0.00 0.02 0.03 0.03 0.00 0.00 0.00 0.00 0.00 5005.17 5005.55 5005.60 5005.20 5005.21 5002.29 500235 5002.46 5002.47 5002.46 5002.52 5002.16 5002.17 5002.02 5002.09 5000.69 5000.77 5000.96 5000.96 5000.97 5001.39 5001.50 5001.52 5001.60 5001.64 5001.28 5001.32 5001.33 5001.59 5001.64 5001.00 5001.03 5001.08 5001.00 5000.14 5000.14 5000.15 5000.15 • Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer. • Bend loss = Bend K* V_fi ^ 2/(2*g) • Lateral loss = V fo ^ 2/(2*g)- Juncrion Loss K* V_fi ^ 2/(2*g). • Friction loss is always Upstream EGL - Downstream EGL. ST-3A ��r. 3 '��f?3q � Dis[ance fFt� ST-3D1 Di;tance (Ft� ST-3D2 � � � ��6 4ti syS: '� S'Sl n����„�z rF�i ST-3E1 ���A rn.,�.,,,�e iF�i ST-3E2 Distance (� ST-3E2 �:,,, �-lJ Di;tance !� ST-3F 3F� Di;[ante (� ST-3H 1 (;),jf, l Di � cance ( Ft � ST-3H2 ��F�t:�Jt� Di;�arce (Ft) ST-3I �: � � � Di;cance fFti ST-3J1 `r.,�,� LE I:3jq Di�[ance IF[i ST-3J2 Di;[ance (FI � ST-3K � � � � 9S' L� � � � �r'�A Dis[anct (� ST-3L Discance (Ft� ST-3M 7 �:��- � '��:.;�n Dis[ance(F[� ST-3N D�s�ance (Ftj ST-301 �ET3 'JR� U�1 Di;tance (Ft i ST-302 ��,���� Di:tancr tFQ ST-3P Dis[ance /Ft � ST-3U 1 , �, , rn;���„•e r� ST-3U2 �f� . Gg Distance (Fti MHFD-Culvert, �ersion 4. 00 (May ZOZO) Project: MONTAVA SUBDIVISION PHASE D ID: ST-03 � "'�' � �..�� „ � �� i � �- I� � „, � L Lp � __ '�_ '_�_ _ �_ � __�=` -- � . _� _ - - =-- --- - --. Design Discharge �lar Culvert: Barrel Diameter in Inches Inlet Edge Type (Choose from pull-down list) OR: Culvert: Barrel Height (Rise) in Feet Barrel Width (Span) in Feet Inlet Edge Type (Choose from pull-down list) Number of Barrels Inlet Elevation Outlet Elevation OR Slope Culvert Length Manning's Roughness Bend Loss Coefficient Exit Loss Coeffcient Tailwater SurFace Elevation Max Allowable Channel Velocity Culvert Cross Sectional Area Available Culvert Normal Depth Culvert Critical Depth Froude Number Entrance Loss Coefficient Fridion Loss Coefficient Sum of All Loss Coefficients Inlet Control Headwater Outlet Control Headwater Design Headwater Elevation Headwater/Diameter OR Headwater/Rise Ratio Protection: Flow/(Diameter^2.5) Tailwater Surface Height Tailwater/Diameter Expansion Fador Flow Area at Max Channel Velocity Width of Equivalent Conduit for Multiple Barrels Length of Riprap Protection Width of Riprap Protedion at Downstream End Adjusted Diameter for Supercritical Flow Minimum Theoretical Riprap Size Nominal Riprap Size MHFD Riprap Type Soil Type: Choose One: � Sandy Q Non-Sandy Q = 151.48 cfs D = 72 inches Grooved Edge Projecting OR H (Rise) ft W (Span) = ft # Barrels = 1 Elev IN = 4992Z2 ft Elev OUT = 4992 ft L = 74.43 ft n = 0.013 ly, = 0 k, = 1 Y� Eie�a�;o„ = 4998.69 ft V - 5 ft/s A = 28.27 ftz Y„ = 2.22 ft Y� = 2.16 ft Fr = 0.95 ke = 0.20 kf = 0.21 ks = 1.41 ft HW� = 3.00 ft HWo = 6.11 ft HW = 4998.33 ft HW/D = 1.02 Q/D^2.5 = 1.72 fto s/s Yt = 6.69 ft Yt/D = 1.11 1/(2*tan(0)) = 6.70 A� = 30.30 {tz Wea = - ft LP = 17 ft T- 9 ft Da = - ft dso min= 2 in dso nominal= 6 in Type = VL ST-04 100-YEAR Rainfall Parameters rts a:1 Rainfall Return Period: 2 Backwater Calculations: Tailwater Elevation (ft): 4994.91 Manhole Input Summary: Given Flow Sub Basin Information Total Ground Local Drainage Overland Overland Gutter Gutter Element Elevation Known Contribution Area Runoff Syr Length Slope Length Velocity Name (ft) ��f � (cfs) (Ac.) Coefficient Coefficient �ft) (%) (ft) (fps) FES-4A 4991.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-4A 5000.25 20.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH- 4999.34 7.6G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4AA STMH- 4999.23 7.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4AB INLET- 4998.90 1.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4FB DI-4FB 4998.90 1.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 4998.90 2.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4FA DI-4FA 4998.90 2.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-4B 4999.86 10.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-4C 500 L 10 9.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-4D 5001.14 9.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-4E SOOl38 9.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-4F 5001.07 9.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-4G 5000.78 9.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5000.37 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4CB DI-4CB 5000.37 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-4H 5001.15 8.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-4I 5001.76 4.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-4J 5001.89 4.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-4K 500234 4.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5002.83 1.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4EA DI-4EA 5002.83 1.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-4A 5002.64 2.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 D[-4A 5002.64 295 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5001.60 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4GB DI-4GB 5001.60 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5001.60 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4GA DI-4GA 5001.60 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5000.74 2.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4DA DI-4DA 5000.74 2.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5000.74 2.45 4DB DI-4DB 5000.74 2.45 INLET- 5000.37 0.62 4CA DI-4CA 500037 0.62 INLET- 4999.25 0.14 4BA DI-4BA 4999.25 0.14 INLET- 4999.51 0.11 4BB DI-4BB 4999.28 0.11 Manhole Output Summary: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Local Contribution Total Design Flow Overland Gutter Basin Local Manhole Peak Element Intensity Coeff. Intensity Name Time Time� Tc (in/hr) Contrib Area (in/hr) Tc Flow Comment (min) (min) (min) (cfs) (min) (cfs) FES-4A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Surface Water Present (Upst��eam) STMH-4A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.99 Surface Water Present (Downst��eam) STMH- 0.00 4AA STMH- 0.00 4AB INLET- 0.00 4FB DI-4FB 0.00 INLET- 0.00 4FA DI-4FA 0.00 STMH-4B 0.00 STMH-4C 0.00 STMH-4D 0.00 STMH-4E 0.00 STMH-4F 0.00 STMH-4G 0.00 INLET- 0.00 4CB DI-4CB 0.00 STMH-4H 0.00 STMH-4I 0.00 STMH-4J 0.00 STMH-4K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.15 1.15 2.20 2.20 10.04 9.86 9.86 9.86 9.86 9.86 0.65 0.65 8.89 4.50 4.50 4.07 INLET- 4EA DI-4EA INLET-4A DI-4A INLET- 4GB DI-4GB INLET- 4GA DI-4GA INLET- 4DA DI-4DA INLET- 4DB DI-4DB INLET- 4CA DI-4CA INLET- 4BA DI-4BA INLET- 4BB DI-4BB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.17 1.17 295 2.95 0.29 0.29 0.26 0.26 2.26 2.26 2.45 2.45 0.62 0.62 0.14 0.14 0.11 0.11 Sewer Input Summary: Elevation Loss Coefficients Element Sewer pownstream Slope Upstream Mannings Bend Lateral Length Invert o Invert Name (ft) (ft) � �°� (ft) n Loss Loss STMH-4A 70.20 4991.09 0.5 4991.44 0.013 0.03 0.00 STMH-4AA 277.26 4991.44 0.5 4992.83 0.013 0.05 0.00 STMH-4AB 50.00 4992.83 0.5 4993.08 0.013 0.07 0.00 INLET-4FB 9.85 4993.58 0.5 4993.63 0.013 1.32 0.00 DI-4FB 1.00 4993.63 0.5 4993.63 0.013 0.25 0.00 INLET-4FA 28.15 4993.58 0.5 4993.72 0.013 1.32 0.00 DI-4FA 1.00 �1993.72 0.5 4993.72 0.013 0.25 0.00 STMH-4B 80.41 4991.44 0.4 4991.76 0.013 1.32 0.00 STMH-4C 226.79 4991 J6 0.4 4992.67 0.013 0.05 0.00 STMH-4D 226.79 4992.66 0.4 4993.57 0.013 0.05 0.00 STMH-4E 63.41 4993.57 03 4993.76 0.013 132 0.00 STMH-4F 26.11 4993.76 0.3 4993.84 0.013 0.16 0.00 Given Dimensions Cross Rise Span Section (it or in) (ft or in) CIRCULAR 54.00 in 54.00 in C[RCULAR 30.00 in 30.00 in CIRCULAR 30.00 in 30.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 24.00 in 24.00 in CIRCULAR 24.00 in 24.00 in CIRCULAR 48.00 in 48.00 in CIRCULAR 42.00 in 42.00 in CIRCULAR 42.00 in 42.00 in CIRCULAR 42.00 in 42.00 in CIRCULAR 42.00 in 42.00 in STMH-4G 64J2 INLET-4CB 14.50 DI-4CB 1.00 STMH-4H 273.91 STMH-4I 1 I 6.02 STMH-4J 54.91 STMH-4K 57.59 INLET-4EA 37.20 D[-4EA 1.00 INLET-4A 54.63 DI-4A 1.00 INLET-4GB 28.00 DI-4GB 1.00 INLET-4GA 8.00 DI-4GA I.00 INLET-4DA 14.50 DI-4DA 1.00 INLET-4DB 57.50 DI-4DB 1.00 INLET-4CA 57.50 DI-4CA 1.00 INLET-4BA 24.00 D[-4BA 1.00 INLET-4BB 24.40 DI-4BB 1.00 4993.84 4995.58 4995.65 4994.03 4995.85 4996.20 4996.47 4996J6 4996.95 4996.77 4997.04 4996.47 4996.61 4996.47 4996.51 4995.95 4996.02 4995.95 4996.24 4995.58 4995.87 4994.26 499438 4991.77 4991.89 Sewer Flow Summary: 0.3 0.5 0.5 03 03 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 4994.03 4995.65 4995.G5 4994.85 4996.20 4996.47 4996.76 4996.95 4996.95 4997.04 4997.04 4996.61 4996.61 4996.51 4996.51 4996.02 4996.02 4996.24 4996.24 4995.87 4995.87 4994.38 499438 4991.89 4991.89 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.16 I .32 0.25 0.05 0.05 1.32 0.05 0.85 0.25 0.75 0.25 1.32 0.25 1.32 0.25 1.32 0.25 1.32 0.25 1.32 0.25 1.32 0.25 0.83 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CIRCULAR 42.00 in 42.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 36.00 in 36.00 in CIRCULAR 24.00 in 24.00 in CIRCULAR 24.00 in 24.00 in CIRCULAR 24.00 in 24.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in C[RCULAR 24.00 in 24.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 18.00 in 18.00 in CIRCULAR 36.00 in 36.00 in C[RCULAR 18.00 in 18.00 in Full Flow Critical Flow Normal Flow Capacity Element Flow Velocity Depth Velocity Depth Velocity Froude Flow Flow Surcharged Name (cfs) (fps) (in) (fps) (in) (fps) Number Condition (cfs) Length (ft) STMH-4A 139.43 8.77 15.64 5.49 14.16 6.31 1.21 Supercritical 20.99 0.00 s4� 29.08 5.92 I I.03 4.68 10.51 5.00 �,� p SupJulcnritical � 66 208.44 P STMH- 29.08 5.92 I].03 4.68 10.51 5.00 1.10 Supercritical 7.66 0.00 4AB INLET- �.45 4.21 4.81 3.03 4.78 3.06 1.01 Supercritical 1.15 0.00 4FB DI-4FB 7.45 4.21 4.81 3.03 4.78 3.06 1.01 Supercritical 1.15 0.00 INLET- 16.04 5.11 6.18 3.43 6.00 3.58 1.06 Supercritical 2.20 0.00 4FA DI-4FA ] 6.04 5.1 1 6. ] 8 3.43 6.00 3.58 1.06 Supercritical 2.20 0.00 Comment STMH-4B 91.09 STMH-4C 63.80 STMH-4D 63.80 STMH-4E 55.25 STMH-4F 55.25 STMH-4G 55.25 INLET- �.45 4CB DI-4CB 7.45 STMH-4H 36.63 STMH-4I 12.42 STMH-4J 16.04 STMH-4K 16.04 INLET- �.45 4EA DI-4EA 7.45 INLET- � � 04 4A DI-4A 7.45 INLET- �.45 4GB DI-4GB 7.45 INLET- �.45 4GA DI-4GA 7.45 INLET- �,45 4DA DI-4DA 7.45 INLET- �.45 4DB DI-4DB 7.45 1NLET- �.45 4CA Dl-4CA 7.45 INLET- �.45 4BA DI-4BA 7.45 INLET- 47.29 4BB DI-4BB 7.45 7.25 11.08 4.58 ] 0.76 4.77 6.63 1 1.40 4.67 1 1.16 4.81 G.63 11.40 4.67 ll.16 4.81 5.74 ll.40 4.67 12.01 4.34 5.74 11.40 4.67 12.01 4.34 5.74 11.40 4.67 12.01 4.34 4.21 3.59 2.59 3.59 2.59 4.21 3.59 2.59 3.59 2.59 5.18 11.29 4.68 12.08 4.27 3.95 8.95 4.22 9.99 3.64 5.11 8.95 4.22 8.70 4.38 5.11 8.49 4.09 8.24 4.26 4.21 4.85 3.05 4.82 3.07 4.21 4.85 3.05 4.82 3.07 5.11 7.19 3.73 6.97 3.89 4.21 7.83 4.00 7.87 3.97 4.21 238 2.09 2.43 2.04 4.21 238 2.09 2.43 2.04 4.21 2.25 2.04 2.30 1.97 1.06 Supercritical 10.04 1.04 Supercritical 9.86 1.04 Supercritical 9.86 0.90 Subcritical 9.86 0.90 Subcritical 9.86 0.90 Subcritical 9.86 1.00 Subcritical 0.65 1.00 Subcritical 0.65 0.88 Subcritical 8.89 0.81 Subcritical 4.50 1.06 Supercritical 4.50 1.06 Supercritical 4.07 1.01 Supercritical 1.17 I.O1 Supercritical 1.17 1.06 Supercritical 295 0.99 Subcritical 2.95 0.96 Subcritical 0.29 0.96 Subcritical 0.29 0.96 Subcritical 0.26 4.21 2.25 2.04 2.30 1.97 0.96 Subcritical 0.26 4.21 4.21 4.21 4.21 4.21 4.21 4.21 6.82 3.68 6.80 3.70 6.82 3.68 6.80 3.70 7.11 3.77 7.11 3.78 7.11 3.77 7.11 3.78 3.50 2.56 3.51 2.55 3.50 2.56 3.51 2.55 1.65 1.73 1.71 1.64 I.00 Supercritical 2.26 1.00 Supercritical 2.26 1.00 Supercritical 2.45 1.00 Supercritical 2.45 1.00 Subcritical 0.62 1.00 Subcritical 0.62 093 Subcritical 0.14 4.21 6.69 4.21 1.65 1.73 1.71 1.64 0.93 Subcritical 0.14 1.22 1.48 1.28 1.38 1.46 1.63 1.53 1.52 0.91 Pressurized 0.11 0.91 Pressurized 0.11 0.00 � 0.00 � 0.00 � 0.00 �- 0.00 I- �- 0.00 0.00 0.00 0.00 I 0.00 � 0.00 � 0.00 � 0.00 � 0.00 � 0.00 0.00 0.00 � 0.00 0.00 Velocity is Too Low 0.00 Velocity is Too Low 0.00 I 0.00 0.00 0.00 0.00 0.00 0.00 Velocity is Too Low 0.00 Velocity is Too Low 24.40 Velocity is Too Low 1.00 Velocity is Too Low • A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe). • lf the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer. • If the sewer is pressurized, full flow represents the pressurized flow conditions. Sewer Sizing Summary: Element Name STMH-4A STMH-4AA STMH-4AB [NLET-4FB DI-4FB INLET-4FA DI-4FA STMH-4B STMH-4C STMH-4D STMH-4E STMH-4F STMH-4G INLET-4CB DI-4CB STMH-4H STMH-4I STMH-4J STMH-4K INLET-4EA DI-4EA INLET-4A DI-4A INLET-4GB DI-4GB INLET-4GA DI-4GA INLET-4DA DI-4DA INLET-4DB DI-4DB INLET-4CA DI-4CA INLET-4BA DI-4BA INLET-4BB Peak Flow (cfs) 20.99 7.66 7.66 1.15 1.15 2.20 2.20 10.04 9.86 9.86 9.86 9.86 9.86 0.65 0.65 8.89 4.50 4.50 4.07 1.17 1.17 2.95 2.95 0.29 0.29 0.26 0.26 2.26 2.26 2.45 2.45 0.62 0.62 0.14 0.14 0.11 Cross Section CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRGULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRGULAR Existing Calculated Used Rise Span Rise Span Rise Span �ft 2� Comment 54.00 in 54.00 in 27.00 in 30.00 in 30.00 in 2l .00 in 30.00 in 30.00 in 21.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 24.00 in 24.00 in 18.00 in 48.00 in 48.00 in 24.00 in 42.00 in 42.00 in 21.00 in 42.00 in 42.00 in 21.00 in 42.00 in 42.00 in 24.00 in 42.00 in 42.00 in 24.00 i�� 42.00 in 42.00 in 24.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 36.00 in 36.00 in 24.00 in 24.00 in 24.00 in 18.00 in 24.00 in 24.00 in 18.00 in 24.00 ii� 24.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 24.00 in 24.00 in � 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in I 8.00 in 18.00 in ] 8.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 i�� 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in I 8.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 36.00 in 36.00 in 18.00 in 27.00 in 54.00 in 54.00 in 21.00 in 30.00 in 30.00 in 21.00 in 30.00 in 30.00 in 18.00 in 18.00 in l 8.00 in 18.00 in 18.00 in 18.00 in I 8.00 in 24.00 in 24.00 in 18.00 in 24.00 in 24.00 in 24.00 in 48.00 in 48.00 in 21.00 in 42.00 in 42.00 in 21.00 in 42.00 in 42.00 in 24.00 in 42.00 in 42.00 in 24.00 in 42.00 in 42.00 in 24.00 in 42.00 in 42.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 24.00 in 36.00 in 36.00 in 18.00 in 24.00 in 24.00 in 18.00 in 24.00 in 24.00 in 18.00 i�� 24.00 in 24.00 in 18.00 in 18.00 in 18.00 in I 8.00 in 18.00 in 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in I 8.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in l 8.00 in 18.00 in 18.00 in 18.00 in 18.00 in 36.00 in 36.00 in 15.90 4.91 4.91 1.77 1.77 3.14 3.14 12.57 9.62 9.62 9.62 9.62 9.62 1.77 1.77 7.07 3.14 3.14 3.14 1.77 1.77 3.14 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 7.07 D[-4BB 0.11 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 ii� 18.00 in 18.00 ii� 1.77 • Galculated diameter was deterinined by sewer hydraulic capacity rounded up to the nearest commercially available size. • Sewer sizes should not decrease downstream. • All hydraulics where calculated using the 'Used' parameters. Grade Line Summary: Tailwater Elevation (ft): 4994.91 Invert Elev. Downstream Manhole Losses Bend Lateral Loss Loss (ft) (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HGL EGL Downstream Upstream Downstream Friction Upstream (ft) (ft) (ft) Loss (ft) (ft) 4994.91 4994.91 499494 0.01 499495 4994.91 499498 4994.95 0.07 4995.02 499498 4994.98 4995.03 0.01 4995.04 4995.04 4995.04 4995.05 0.00 4995.05 4995.04 4995.04 4995.05 0.00 4995.05 4995.04 4995.04 4995.05 0.00 4995.05 4995.04 4995.04 4995.05 0.00 4995.05 499495 4994.95 4994.96 0.00 4994.96 4994.95 499495 4994.97 0.02 4994.99 4994.95 4994.95 4994.99 0.09 4995.07 499498 4995.00 4995.10 0.07 4995.16 4995.00 4995.02 4995.17 0.04 4995.20 4995.02 4995.08 4995.21 0.13 4995.34 4995.88 4995.95 4995.98 0.07 4996.05 4995.98 4995.98 4996.05 0.00 4996.06 4995.10 4995.82 499534 0.80 4996.13 4996.60 4997.10 4996.87 0.39 4997.27 4997.17 4997.22 499731 0.18 4997.49 499734 4997.47 4997.49 0.23 4997.73 4997.72 4997.72 4997.73 0.01 4997.74 4997J2 4997.72 4997.75 0.00 4997.75 4997.67 4997.67 4997.74 0.12 4997.86 4997.69 4997.70 4997.94 0.01 4997.94 4997.49 4997.49 4997.49 0.00 4997.49 4997.49 4997.49 4997.49 0.00 4997.49 4997.49 4997.49 4997.49 0.00 4997.49 4997.49 4997.49 4997.49 0.00 4997.49 Element Downstream Upstream Name (ft) (ft) STMH-4A STMH-4AA STMH-4AB INLET-4FB DI-4FB INLET-4FA DI-4FA STMH-4B STMH-4C STMH-4D STMH-4E STMH-4F STMH-4G INL�T-4CB DI-4CB STMH-4H STMH-41 STMH-4J STMH-4K INLET-4EA DI-4EA INLET-4A DI-4A INLET-4GB DI-4GB INLET-4GA DI-4GA 499 I .09 499 I .44 4992.83 4993.58 4993.63 4993.58 4993.72 4991.44 4991 J6 4992.66 4993.57 4993.76 4993.84 4995.58 4995.65 4994.03 4995.85 4996.20 4996.47 4996.76 4996.95 4996.77 4997.04 4996.47 4996.6I 4996.47 4996.5 I 4991.44 4992.83 4993.08 4993.63 4993.63 4993.72 4993.72 4991.76 4992.67 4993.57 4993.76 4993.84 4994.03 4995.65 4995.65 4994.85 4996.20 4996.47 4996.76 4996.95 499695 4997.04 4997.04 4996.61 4996.61 4996.51 4996.51 INLET-4DA 4995.95 DI-4DA 4996.02 INLET-4DB 4995.95 DI-4DB 4996.24 INLET-4CA 4995.58 DI-4CA 4995.87 INLET-4BA 4994.26 D[-4BA 499438 [NLET-4BB 4991.77 DI-4BB 4991.89 4996.02 4996.02 4996.24 4996.24 4995.87 4995.87 499438 499438 4991.89 4991.89 0.03 0.01 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4996.5 I 4996.65 4996.54 4996.89 4995.87 4996.19 4994.96 499496 4994.96 4994.96 4996.59 4996.65 4996.83 4996.89 4996.16 4996.19 499496 4994.96 499496 4994.96 4996.73 4996.81 4996.77 4997.06 499598 4996.26 4994.96 4994.97 4994.96 4994.96 0.07 0.00 0.29 0.00 0.29 0.00 0.00 0.00 0.00 0.00 4996.80 4996.81 4997.05 4997.06 4996.26 4996.27 4994.97 4994.97 4994.96 499496 • Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer. • Bend loss - Bend K* V_fi ^ 2/(2*g) • Lateral loss = V_fo ^ 2/(2*g)- Junction Loss K* V_fi ^ 2/(2*g). • Friction loss is always Upstream EGL - Downstream EGL. ST-04 6Ty� Dis[aiice (Ftl ST-4B 1 Distance (Fti ST-4B2 � w Dis�ancr !� ST 4C 1 _;�h � � � •sss w i��; �c ST ���f"�U .n�.!e S r'�Fl.�r�, .,>. S'7�.���t aq r,���l'�13 '- rs� �.�-: S!E) :Ei._C :�SO �:E�9 J06W =S�.Fn Dib�ance (FQ 5•�� Sln1F�-4�, Llj�,�l. .�p 1�,L�T�c� --- HGL EGL ST 4C2 ::::_� :�., h �99E s� 4L C �Jh la' ` ___ ___'._.... .................... �5�- ;5 S'' 1jF� J C' s� s�'''k�e �'���-� .STtitf f`�!J 5'T,, ��(yF,SI ^9y'yC 1 � `�p .. .c, �.., ... ...... ._.. _-.. _... . _ . Dri�nce (F11 ...._ _..' __ ST 4D 1 HCiL EGL VLrr4�, n����„�z rFri ST 4D2 � � Disui�.ct (F!t ST-4E i E _�<, ;: spMf ��t s�• S�`'tiIE1.q�It'qF' �f �C � �����'¢IJ � ���1�� �FrQF� 5._T� �r^�y_�� "��k y a� � ST '_' _ 5?��J.q � �.913 ------ HGL ............ EGL ,:es s_ ... .::5 ._... :Sc_ ..... E:o. ""b.9 .... 'C-6' _'E6.. .... rn��,,,�z rFci ST 4F l ;;r :;��. � w _��, � � �'9i.` � � ni;,�iicr I Fi � ST-4F2 CF�7_��& n��-�,��e rF,� ST 4G 1 � �.. w J99: :99i l99'_ :u5o � _.;�,� Fi ,sy, - ,sv; s s;i ; ni;i�nc2 I� ST 4G2 ��,��<; ��,r 4r& J Di-[anCe (Fti ST-04 100-YEAR I ` v, y 'Y �'s �It i-;r a�, .. ���" Rainfall Parameters Rainfall Return Period: 100 Backwater Calculations: �� `� y, 1 r��s a:� ` ��i.s_•i �''� � � �� � � 4� � ti u�� Tailwater Elevation (ft): 4994.91 Manhole Input Summary: Given Flow Sub Basin Information Total Ground Local Drainage Overland Overland Gutter Gutter Element Elevation Known Contribution Area Runoff Syr Length Slope Length Velocity Name (ft) ��f � (cfs) (Ac.) Coefficient Coefficient �ft) (%) (ft) (fps) FES-4A 4991.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-4A 5000.25 88.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH- 4999.34 30.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4AA STMH- 4999.23 30.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4AB INLET- 4998.90 4.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4FB DI-4FB 4998.90 4.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 4998.90 27.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4FA DI-4FA 4998.90 27.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-4B 4999.86 62.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-4C 5001.06 43.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-4D 5001.14 42.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-4E SOOl38 42.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-4F 5001.07 4296 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-4G 5000.78 42.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5000.37 2.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4CB DI-4CB 5000.37 2.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-4H 5001.15 38.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-4I 5001.76 19.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-4J 5001.89 19.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 STMH-4K 500234 17.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5002.64 5.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4EA DI-4EA 5002.64 5.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET-4A 5002.64 12.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 D[-4A 5002.64 12.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5001.60 1.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4GB DI-4GB 5001.60 1.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5001.60 1.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4GA DI-4GA 5001.60 1.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5000.74 9.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4DA DI-4DA 5000.74 9.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 5000.74 10.71 4DB DI-4DB 5000.74 10.71 INLET- 5000.37 2.70 4CA DI-4CA 5000.37 2.70 INLET- 5000.68 0.40 4HB DI-4HB 5000.68 0.40 INLET- 5000.46 0.50 4HA DI-4HA 5000.46 0.50 INLET- 4999.25 338 4BA DI-4BA 4999.25 3.38 INLET- 4999.51 22.07 4BB DI-4BB 4999.51 22.07 Manhole Output Summary: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Local Contribution Total Design Flow Overland Cutter Basin Local Manhole Peak Element Time Time Tc [ntensity Contrib Coeff. Intensity Tc Flow Comment Name �min) (min) (min) �1°�hr� (cfs) Area (in/hr) �min) (cfs) FES-4A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Surface Water Present (Upstream) STMH-4A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 gg.p'7 Surface Water Present (Downstream) STMH- 0.00 4AA STMH- 0.00 4AB INLET- 0.00 4FB DI-4FB 0.00 INLET- 0.00 4FA DI-4FA 0.00 STMH-4B 0.00 STMH-4C 0.00 STMN-4D 0.00 STMH-4E 0.00 STMH-4F 0.00 STMH-4G 0.00 INLET- 0.00 4CB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 30.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 30.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.56 0.00 4.56 0.00 27.70 0.00 27.70 0.00 62.86 0.00 43.60 0.00 42.96 0.00 42.96 0.00 42.96 0.00 42.96 0.00 2.84 DI-4CB STMH-4H STMH-4I STMH-4J STMH-4K INLET- 4EA DI-4EA INLET-4A DI-4A INLET- 4GB DI-4GB INLET- 4GA D[-4GA INLET- 4DA DI-4DA INLET- 4DB DI-4DB INLET- 4CA DI-4CA INLET- 4HB DI-4HB INLET- 4HA DI-4HA INLET- 4BA DI-4BA INLET- 4BB DI-4BB o.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.84 38.72 19.55 19.55 17.77 5.10 5.10 12.86 12.86 1.19 1.19 1.09 1.09 9.89 9.89 10.7 l 10.71 2.70 2.70 0.40 0.40 0.50 0.50 3.38 338 22.07 22.07 Sewer Input Summary: Elevation Loss Coeffcients Element Sewer pownstream Slope Upstream Mannings Bend Lateral Name Length Invert „ Invert (ft) (ft) � �O� (ft) n Loss Loss STMH-4A 70.20 4991.09 0.5 4991.44 0.013 0.03 0.00 STMH-4AA 277.26 4991.44 0.5 4992.83 0.013 0.05 0.00 Given Dimensions Cross Rise Span Section (ft or in) (ft or in) CIRCULAR 54.00 in 54.00 in CIRCULAR 30.00 in 30.00 in STMH-4AB 1NLET-4FB DI-4FB INLET-4FA DI-4FA STMH-4B STMH-4C STMH-4D STMH-4E STMH-4F STMH-4G INLET-4CB DI-4CB STMH-4H STMH-41 STMH-4J STMH-4K INLET-4EA DI-4EA INLET-4A DI-4A INLET-4GB D[-4GB INLET-4GA DI-4GA INLET-4DA DI-4DA 1NLET-4DB DI-4DB INLET-4CA DI-4CA INLET-4HB DI-4HB ]NLET-4HA DI-4HA INLET-4BA DI-4BA INLET-4BB D[-4BB 50.00 9.85 1.00 28.15 1.00 80.41 3 76.64 76.95 63.41 26.1 1 64.72 14.50 1.00 273.91 I ] 6.02 54.91 57.59 54.63 1.00 54.63 1.00 28.00 1.00 8.00 1.00 14.50 1.00 57.50 1.00 57.50 1.00 23.00 1.00 24.00 1.00 24.00 1.00 24.40 1.00 4992.83 4993.58 4993.63 4993.08 4993.72 4991.44 4991.76 4993.27 4993.58 4993.76 4993.85 4995.58 4995.65 4994.04 4995.86 4996.21 4996.48 4996.78 4997.05 4996.77 4997.04 4996.47 4996.61 4996.47 4996.51 499595 4996.02 4995.95 4996.24 4995.58 4995.87 4995.27 499538 4995.26 499538 4994.26 4994.38 4992.77 4992.89 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 03 03 0.3 0.5 0.5 0.3 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 4993.08 4993.63 4993.G3 4993.22 4993.72 4991.7G 4993.27 4993.58 4993.77 4993.84 4994.04 4995.65 4995.65 4994.86 4996.21 4996.48 4996.77 4997.05 4997.05 4997.04 4997.04 4996.61 4996.61 4996.51 4996.51 4996.02 4996.02 4996.24 4996.24 4995.87 4995.87 499538 499538 499538 4995.38 4994.38 4994.38 4992.89 4992.89 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.0 I 3 0.013 0.013 0.013 0.013 0.013 0.07 I .32 0.25 1.32 0.25 1.32 0.05 0.05 132 0.16 0.16 1.32 0.25 0.05 0.05 1.32 0.05 0.85 0.25 0.75 0.25 1.32 0.25 1.32 0.25 1.32 0.25 1.32 0.25 1.32 0.25 I .32 0.25 132 0.25 1.32 0.25 0.83 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CIRCULAR 30.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 30.00 in CIRCULAR 24.00 in CIRCULAR 48.00 in CIRCULAR 42.00 in CIRCULAR 42.00 in CIRCULAR 42.00 in C[RCULAR 42.00 in CIRCULAR 42.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 36.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 24.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 24.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in C[RCULAR 18.00 in CIRCULAR l 8.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 18.00 in CIRCULAR 36.00 in CIRCULAR 18.00 in 30.00 in 18.00 in 18.00 in 30.00 in 24.00 in 48.00 in 42.00 in 42.00 in 42.00 in 42.00 in 42.00 in 18.00 in 18.00 in 36.00 in 24.00 in 24.00 in 24.00 in 18.00 in 18.00 in 24.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 36.00 in 18.00 in Sewer Flow Summary: Full Flow Capacity Critical Flow Normal Flow Element Flow Velocity Depth Velocity Depth Velocity Froude Flow Flow Surcharged Name (cfs) (fps) (in) (fps) (in) (fps) Number Condition (cfs) Length Comment (ft) STMH-4A 139.43 8.77 33.01 8.65 31.14 9.27 ].12 Supercritical 88.07 0.00 STMN-4AA 29.08 5.92 30.00 6.31 30.00 6.31 0.00 Pressurized 30.98 277.26 STMH-4AB 29.08 5.92 30.00 6.31 30.00 6.31 0.00 Pressurized 30.98 50.00 INLET-4FB 7.45 4.21 9.84 4.62 10.18 4.43 0.94 Pressurized 4.56 9.85 DI-4FB 7.45 4.21 9.84 4.62 10.18 4.43 0.94 Pressurized 4.56 1.00 INLET-4FA 29.08 5.92 21.53 7.35 23.40 6.74 0.84 Pressurized 27.70 28.15 DI-4FA 16.04 5.11 24.00 8.82 24.00 8.82 0.00 Pressurized 27.70 1.00 STMH-4B 91.09 7.25 28.69 8.02 2931 7.82 0.96 Pressurized 62.86 80.41 STMH-4C 63.80 6.63 24.69 7.41 25.48 7.14 0.94 Subcritical 43.60 330.74 Surcharged STMH-4D 63.80 6.63 24.50 7.37 25.24 7.12 0.94 Subcritical 42.96 0.00 STMH-4E 55.25 5.74 24.50 7.37 27.84 6.35 0.78 Pressurized 42.96 63.41 STMH-4F 55.25 SJ4 24.50 737 27.84 6.35 0.78 Pressurized 42.96 26.11 STMH-4G 55.25 5.74 24.50 7.37 27.84 6.35 0.78 Pressurized 42.96 64.72 INLET-4CB 7.45 4.21 7.68 3.95 7.71 3.93 0.99 Pressurized 2.84 14.50 DI-4CB 7.�45 �1.21 7.68 3.95 7.71 3.93 0.99 Pressurized 2.84 1.00 STMH-4H 36.63 5.18 36.00 5.48 36.00 5.48 0.00 Pressurized 38.72 273.91 STMH-41 12.42 3.95 24.00 6.22 24.00 6.22 0.00 Pressurized 19.55 116.02 STMH-4J 16.04 5.11 24.00 6.22 24.00 6.22 0.00 Pressurized 19.55 5491 STMH-4K 16.04 5.11 24.00 5.66 24.00 5.66 0.00 Pressurized 17.77 57.59 INLET-4EA 7.45 4.21 I0.43 4.80 10.94 4.54 091 Pressw•ized 5.10 54.63 DI-4EA 7.45 4.21 10.43 4.80 10.94 4.54 0.91 Pressurized 5.10 1.00 INLET-4A 16.04 5.11 15.48 6.00 16.26 5.67 0.91 Pressurized 12.86 54.63 DI-4A 7.45 4.21 18.00 7.28 18.00 7.28 0.00 Pressurized 12.86 1.00 INLET-4GB 7.45 4.21 4.89 3.06 4.87 3.09 1.01 Pressurized 1.19 28.00 DI-4GB 7.45 4.21 4.89 3.06 4.87 3.09 l.Ol Pressurized 1.19 1.00 INLET-4GA 7.45 4.21 4.68 2.99 4.65 3.01 1.01 Pressurized 1.09 8.00 D[-4GA 7.45 4.21 4.68 2.99 4.65 3.01 1.01 Pressurized 1.09 1.00 INLET-4DA 7.45 4.21 18.00 5.60 18.00 5.60 0.00 Pressurized 9.89 14.50 DI-4DA 7.45 4.21 18.00 5.60 18.00 5.60 0.00 Pressurized 9.89 1.00 INLET-4DB 7.45 4.21 18.00 6.06 18.00 6.06 0.00 Pressurized 10.71 57.50 DI-4DB 7.45 4.21 18.00 6.06 18.00 6.06 0.00 Pressurized 10.71 1.00 INLET-4CA 7.45 4.21 7.48 3.89 7.50 3.88 1.00 Pressurized 2.70 57.50 DI-4CA 7.45 4.21 7.48 3.89 7.50 3.88 L00 Pressurized 2.70 1.00 fNLET-4HB 7.45 4.21 2.80 2.28 2.83 2.24 0.98 Pressurized 0.40 23.00 DI-4HB 7.45 4.21 2.80 2.28 2.83 2.24 0.98 Pressw•ized 0.40 1.00 INLET-4HA 7.45 4.21 3.14 2.42 3.16 2.40 0.99 Pressurized 0.50 24.00 DI-4HA 7.45 4.21 3.14 2.42 3.16 2.40 0.99 Pressurized 0.50 1.00 INLET-4BA 7.45 4.21 8.41 4.17 8.51 4.11 0.98 Pressurized 338 24.00 DI-4BA 7.45 4.21 8.41 4.17 8.51 4.11 0.98 Pressurized 3.38 1.00 INLET-4BB 47.29 6.69 18.13 6.19 17.29 6.57 1.09 Pressw•ized 22.07 24.40 DI-4BB 7.45 4.21 18.00 12.49 18.00 12.49 0.00 Pressurized 22.07 1.00 • A Froude number of 0 indicates that pressured flow occurs (adverse slope or tmdersized pipe). • If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer. • If the sewer is pressurized, full flow represents the pressurized flow conditions. Sewer Sizing Summary: Existing Calculated Used Element Peak Cross Area Name Fcf ) Section Rise Span Rise Span Rise Span �ft^2) STMH-4A 88.07 CIRCULAR 54.00 in 54.00 in 48.00 in 48.00 in 54.00 in 54.00 in 15.90 STMH-4AA 30.98 CIRCULAR 30.00 in 30.00 in 33.00 ii� 33.00 in 30.00 in 30.00 in 4.91 �-��-����-�� STMH-4AB 30.98 CIRCULAR 30.00 in 30.00 in 33.00 in 33.00 in 30.00 in 30.00 in 4.91 INLET-4FB 4.56 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-4FB 4.56 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-4FA 27.70 CIRCULAR 30.00 in 30.00 in 30.00 in 30.00 in 30.00 in 30.00 in 4.91 DI-4FA 27.70 CIRCULAR 24.00 in 24.00 in 30.00 in 30.00 in 24.00 in 24.00 in 3.14 STMH-4B 62.86 CIRCULAR 48.00 in 48.00 in 42.00 in 42.00 in 48.00 in 48.00 in 12.57 STMH-4C 43.60 CIRCULAR 42.00 in 42.00 in 42.00 in 42.00 in 42.00 in 42.00 in 9.62 STMH-4D 42.96 CIRCULAR 42.00 in 42.00 in 42.00 in 42.00 in 42.00 in 42.00 in 9.62 STMH-4E 42.96 CIRCULAR 42.00 in 42.00 in 42.00 ii� 42.00 in 42.00 in 42.00 in 9.62 STMH-4F 42.96 CIRCULAR 42.00 in 42.00 in 42.00 in 42.00 in 42.00 in 42.00 in 9.62 STMH-4G 42.96 CIRCULAR 42.00 in 42.00 in 42.00 in 42.00 in 42.00 in 42.00 in 9.62 INLET-4CB 2.84 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-4CB 2.84 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 Comment Existing height is sinaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise Existing height is smaller than die suggested height. Existing width is smaller than the suggested widtl�. Exceeds max. DepYh/Rise Existing height is smaller than the suggested height. Existing width is sinaller than the suggested width. Exceeds max. Depth/Rise Existing height is smaller than the suggested height. STMH-4H 38.72 CIRCULAR 36.00 in 36.00 in 42.00 in 42.00 in 36.00 in 36.00 in 7.07 Existing width is smaller than the suggested width. Exceeds max. Deptl�/Rise Existing height is smaller STMH-4I 19.55 CIRCULAR 24.00 in 24.00 in 30.00 in 30.00 in 24.00 in 24.00 in 3.14 than the suggested height. Existing width is smaller � ������ STMH-4J 19.55 CIRCULAR 24.00 in 24.00 in 27.00 in 27.00 in 24.00 in 24.00 in 3.14 STMH-4K 17.77 CIRCULAR 24.00 in 24.00 in 27.00 in 27.00 in 24.00 in 24.00 in 3.14 INLET-4EA 5.10 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-4EA 5.10 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-4A 12.86 CIRCULAR 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 24.00 in 3.14 DI-4A 12.86 CIRCULAR 18.00 in 18.00 in 24.00 in 24.00 in 18.00 in 18.00 in 1.77 INLET-4GB 1.19 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-4GB 1.19 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-4GA 1.09 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-4GA 1.09 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-4DA 9.89 CIRCULAR 18.00 in 18.00 in 21.00 in 21.00 in 18.00 in 18.00 in 1.77 DI-4DA 9.89 CIRCULAR 18.00 in 18.00 in 21.00 in 21.00 in 18.00 in 18.00 in 1.77 I I �- � ����-�� INLET-4DB ] 0.71 CIRCULAR 18.00 in 18.00 in 21.00 in 21.00 ii� 18.00 in 18.00 in 1.77 DI-4DB 10.71 CIRCULAR 18.00 in 18.00 in 21.00 in 21.00 in 18.00 in 18.00 in 1.77 INLET-4CA 2.70 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-4CA 2.70 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-4HB 0.40 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-4HB 0.40 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 [NLET-4HA 0.50 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 DI-4HA 0.50 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 INLET-4BA 3.38 CIRCULAR 18.00 in 18.00 in 18.00 ii� 18.00 in 18.00 in 18.00 in 1.77 DI-4BA 3.38 CIRCULAR 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 18.00 in 1.77 than the suggested width. Exceeds max. Depth/Rise Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Dept1�/Rise Existing hcight is sinaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise Existing height is sinaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise Existing height is smaller than the suggested height. Existing widtl� is sinaller than the suggested width. Exceeds max. Deptl�/Rise Existing hcight is sinaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise Existing height is smaller than die suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise Existing height is smaller than thc suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise INLET-4BB 22.07 CIRCULAR 36.00 in 36.00 in 30.00 ii� 30.00 in 36.00 in 36.00 in 7.07 DI-4BB 22.07 CIRCULAR 18.00 in 18.00 in 30.00 in 30.00 in 18.00 in 18.00 in 1.77 Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. DepYh/Rise • Calculated diameter was detennined by sewer hydraulic capacity rounded up to the nearest commercially available size. • Sewer sizes should not decrease downstream. • All bydraulics where calculated using the 'Used' parameters. Grade Line Summary: Tailwater Elevation (ft): 499491 Invert Elev. Downstream Manhole Losses Bend Lateral Loss Loss (ft) (ft) 0.00 0.00 0.03 0.00 0.04 0.00 0.14 0.00 0.03 0.00 0.65 0.00 0.30 0.00 0.51 0.00 0.02 0.00 0.02 0.00 0.41 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.01 0.00 0.02 0.00 0.03 0.00 0.79 0.00 0.02 0.00 0.11 0.00 0.03 0.00 0.20 0.00 0.21 0.00 0.01 0.00 HGL EGL Downstream Upstream Downstream Friction Upstream (fY) (ft) (it) �ft�s (ft) 4994.91 4994.91 4995.49 0.11 4995.61 4995.02 4996.59 4995.64 1.57 4997.21 4996.63 499692 4997.25 0.28 4997.54 4997.57 4997.59 4997.67 0.02 4997.69 4997.61 4997.62 4997.72 0.00 4997.72 4997.69 4997.82 4998.19 0.13 499832 4998.12 4998.14 4999.33 0.01 4999.35 4995.73 4995.88 4996.12 0.15 4996.27 4995.97 4996.66 4996.29 0.70 4996.99 4996.69 4996.79 4997.00 0.12 4997.12 4997.22 499734 4997.53 0.1 ] 4997.65 499739 4997.43 4997.70 0.05 4997.74 4997.48 4997.60 4997.79 0.12 4997.91 4997.92 499793 4997.96 0.01 4997.97 499794 4997.95 4997.98 0.00 4997.99 4997.63 4998.54 4998.09 0.92 4999.01 4998.57 4999.44 4999.17 0.86 5000.04 5000.23 5000.64 5000.83 0.41 5001.24 5000.77 5001.12 5001.26 035 5001.62 5001.60 5001.73 5001.73 0.13 5001.85 SOOI.76 5001.76 5001.89 0.00 5001.89 5001.55 5001.73 5001.81 0.18 5001.99 5001.93 5001.95 5002.75 0.01 5002.77 5001.24 5001.24 5001.25 0.00 5001.25 Element Downstream Upstream Name (fY) (ft) STMH-4A STMH-4AA STMH-4AB INLET-4FB DI-4FB INLET-4FA DI-4FA STMH-4B STMH-4C STMH-4D STMH-4E STMH-4F STMH-4G INLET-4CB DI-4CB STMH-4H STMH-4I STMH-4J STMH-4K [NLET-4EA DI-4EA INLET-4A DI-4A INLET-4GB 4991.09 4991.44 4992.83 4993.58 4993.63 4993.08 4993J2 4991.44 4991.76 4993.27 4993.58 4993.76 4993.85 4995.58 4995.65 4994.04 4995.86 4996.21 4996.48 4996J8 4997.05 4996.77 4997.04 4996.47 4991.44 4992.83 4993.08 4993.63 4993.63 4993.22 4993.72 4991.76 4993.27 4993.58 4993.77 4993.84 4994.04 4995.65 4995.65 4994.86 4996.21 4996.48 4996.77 4997.05 4997.05 4997.04 4997.04 4996.61 D[-4GB INLET-4GA DI-4GA INL�T-4DA DI-4DA INL�T-4DB DI-4DB INLET-4CA DI-4CA IN LET-4HB DI-4HB INLET-4HA DI-4HA INLET-4BA DI-4BA [NLET-4BB DI-4BB 4996.61 4996.47 4996.51 499595 4996.02 4995.95 4996.24 4995.58 4995.87 4995.27 4995.38 4995.26 4995.38 4994.26 499438 4992.77 4992.89 4996.61 4996.51 4996.51 4996.02 4996.02 4996.24 4996.24 4995.87 4995.87 499538 4995.38 4995.38 4995.38 4994.38 499438 4992.89 4992.89 0.00 0.01 0.00 0.64 0.12 0.75 0.14 0.05 0.01 0.00 0.00 0.00 0.00 0.07 0.01 0.13 0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5001.25 5001.24 5001.24 4999.19 4999.43 4999.30 5000.03 499792 4997.97 4996.99 4996.99 4996.99 4996.99 4996.29 499633 4996.25 4996.88 5001.25 5001.24 5001.24 4999.31 4999.44 4999.89 5000.04 4997.96 4997.97 4996.99 4996.99 4996.99 4996.99 4996.3 I 499633 4996.27 4996.92 5001.25 5001.25 5001.25 4999.67 4999.92 4999.87 5000.60 4997.96 4998.01 499699 499699 4996.99 4996.99 4996.35 499639 4996.40 499930 0.00 0.00 0.00 0.13 0.01 0.59 0.01 0.04 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.03 0.04 5001.25 5001.25 5001.25 4999.80 4999.93 5000.46 5000.61 4998.00 4998.01 499699 4996.99 4996.99 4996.99 4996.37 499639 4996.42 499934 • Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer. • Bend loss - Bend K* V_fi ^ 2/(2*g) • Lateral loss = V_fo ^ 2/(2*g)- Junction Loss K* V_fi ^ 2/(2*g). • Friction loss is always Upstream EGL - Downstream EGL. ST-04 ��r4� Di;uncr IFc� ST-4B 1 Di;[ance (Fti ST-4B2 7 ��_. Di;�ance 1F�� ST-4C 1 �,�:a Dis�aiice (Ft� ST-4C2 ,LF.T�`� Dl;�ance f� ST-4D 1 Dis�ancr (F�t ST-4D2 T� p n� ��„�tiF�� ST-4E �;��,� i)i-[anc0 (Fti ST-4F 1 rn;���,�z_i� ST-4F2 Df;cance IFti ,'`r.n ST-4G 1 � 7 ` ., 4ti J59�' � � TiIDl:Illl'C' �� ST-4G2 �9g' ; G� ='J9! q Li _A_" �q93 : �999 9 v�r�, i..�.! 4C1 n��c�„�z rFc i ST-4H 1 Dis�ance (Fi� ST-4H2 7 F c .5.� V- � � �,:�,�� FT4�`� Di;[ance (Ft i MHFD-Culvert, �ersion 4. 00 (May ZOZO) Project: MONTAVA SUBDIVISION PHASE D ID: ST-04 � �,. �-:_� � / T � �� �1\ r � L L� - r X.•, --�___"_-_-___' �_11 � _ _'_ _' _ I 1 � � _'��-'--- - - - - -- Design Discharge �lar Culvert: Barrel Diameter in Inches Inlet Edge Type (Choose from pull-down list) OR: Culvert: Barrel Height (Rise) in Feet Barrel Width (Span) in Feet Inlet Edge Type (Choose from pull-down list) Number of Barrels Inlet Elevation Outlet Elevation OR Slope Culvert Length Manning's Roughness Bend Loss Coefficient Exit Loss Coeffcient Tailwater SurFace Elevation Max Allowable Channel Velocity Culvert Cross Sectional Area Available Culvert Normal Depth Culvert Critical Depth Froude Number Entrance Loss Coefficient Fridion Loss Coefficient Sum of All Loss Coefficients Inlet Control Headwater Outlet Control Headwater Design Headwater Elevation Headwater/Diameter OR Headwater/Rise Ratio Protection: Flow/(Diameter^2.5) Tailwater Surface Height Tailwater/Diameter Expansion Fador Flow Area at Max Channel Velocity Width of Equivalent Conduit for Multiple Barrels Length of Riprap Protection Width of Riprap Protedion at Downstream End Adjusted Diameter for Supercritical Flow Minimum Theoretical Riprap Size Nominal Riprap Size MHFD Riprap Type Soil Type: Choose One: � Sandy Q Non-Sandy Q = 88.07 cfs D = 54 inches Grooved Edge Projecting OR H (Rise) ft W (Span) = ft # Barrels = 1 Elev IN = 4991.44 ft Elev OUT = 4991.09 ft L = 70.2 ft n = 0.013 ly, = 0 k, = 1 Y� Eie�a�;o„ = 4994.91 ft V - 5 ft/s A = 15.90 ftz Y„ = 2.22 ft Y� = 2.16 ft Fr = 0.95 ke = 0.20 kf = 0.29 ks = 1.49 ft HW� = 3.00 ft HWo = 6.11 ft HW = 4997.55 ft HW/D = 1.36 Q/D^2.5 = 2.05 fto s/s Yt = 3.82 ft Yt/D = 0.85 1/(2*tan(0)) = 6.70 A� = 17.61 {tz Wea = - ft LP = 17 ft T- 8 ft Da = - ft dso min= 3 in dso nominal= 6 in Type = VL Crossing - Crossing 1, Design Discharge - 108.0 cfs Culvei-t - Culvert 1, Culvert Discharge - 108.0 cfs 5005 5004 5003 5002 � � 5001 � 0 � c� > w 5000 4999 4998 4997 4996 �---------------------- -40 -20 0 20 40 60 80 Station (ft) 100 120 140 160 HY-8 Culvert Analysis Report C��as���� Discha��� D�ta Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 0.00 cfs Design Flow: 108.00 cfs Maximum Flow: 500.00 cfs Table 1- Summary of Culvert Flows at Crossing: Crossing 1 Headwater Total Culvert 1 Roadway Iterations Elevation (ft) Discharge Discharge Discharge (cfs) (cfs) (cfs) 4997.00 0.00 0.00 0.00 1 4999.95 50.00 50.00 0.00 1 5001.86 108.00 108.00 0.00 1 5003.52 150.00 150.00 0.00 1 5005.10 200.00 � 180.96 18.94 � 15 � 5005.23 250.00 183.27 66.61 7 5005.33 300.00 � 185.00 114.94 � 6 � 5005.44 350.00 174.51 175.39 5 5005.54 400.00 163.14 236.82 5 5005.62 450.00 151.02 298.97 5 5005.71 500.00 138.09 361.87 4 5005.00 179.15 179.15 0.00 Overtonpin� Culvert Data: Culvert 1 Table 1- Culvert Summary Table: Culvert 1 Total Culve Head Inle Outl Fl Nor Criti Out Tailw Outl Tailw Disch rt water t et ow mal cal let ater et ater arge Disch Elevat Cont Cont Ty Dep Dep De Dept Velo Veloc (cfs) arge ion rol rol pe th th pth h(ft) city ity (cfs) (ft) Dep Dep (ft) (ft) (ft) (ft/s (ft/s) th th ) 0.00 0.00 cfs cfs 50.00 50.00 cfs cfs 108.0 108.0 0 cfs 0 cfs 4997.0 0.00 0.00 0- 0 0 NF 4999.9 2.95 1.35 1- 5 8 S2 n 5001.8 4.86 3.51 5- 6 3 S2 n 0.00 0.00 0.0 0 1.65 2.05 1.6 8 2.56 3.06 2.6 2 0.00 0.00 0.00 1.51 9.26 2.21 2.50 11.2 2.88 2 150.0 150.0 5003.5 6.52 5.85 5- 3.21 3.59 3.2 3.11 0 cfs 0 cfs 2 5 S2 6 n 200.0 180.9 5005.1 8.10 7.28 5- 3.86 3.89 3.8 3.79 0 cfs 6 cfs 0 5 S2 6 p 250.0 183.2 5005.2 8.23 7.62 6- 3.93 3.91 4.5 4.43 0 cfs 7 cfs 3 6 FFt 0 300.0 185.0 5005.3 8.33 8.31 4- 4.00 3.93 4.5 5.05 0 cfs 0 cfs 3 8 FFf 0 350.0 174.5 5005.4 7.74 8.43 4- 3.69 3.84 4.5 5.64 0 cfs 1 cfs 4 9 FFf 0 400.0 163.1 5005.5 7.15 8.53 4- 3.45 3.73 4.5 6.21 0 cfs 4 cfs 4 6 FFf 0 450.0 151.0 5005.6 6.57 8.62 4- 3.23 3.60 4.5 6.78 0 cfs 2 cfs 2 4 FFf 0 500.0 138.0 5005.7 6.00 8.71 4- 3.02 3.46 4.5 7.33 0 cfs 9 cfs 1 0 FFf 0 Culvert �arrel Data Culvert Barrel Type Straight Culvert Inlet Elevation (invert): 4997.00 ft, Outlet Elevation (invert): 4996.00 ft Culvert Length: 127.38 ft, Culvert Slope: 0.0079 Site Data � C�al�r�rt 1 Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 4997.00 ft Outlet Station: 127.38 ft Outlet Elevation: 4996.00 ft Number of Barrels: 1 �ulv��t Data Sa�rv�r�ary A C�Ivert 1 Barrel Shape: Circular Barrel Diameter: 4.50 ft Barrel Material: Concrete 12.1 3.21 6 12.4 3.52 7 11.5 3.76 6 11.6 3.96 3 10.9 4.14 7 10.2 4.29 6 9.50 4.43 E:�:��'�'� Embedment: 0.00 in Barrel Manning's n: 0.0130 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None iailv��t�r �at� for Crossin�: Cr�sso�g � Table 2- Downstream Channel Rating Curve (Crossing: Crossing 1) Flow (cfs) Water Velocity Depth (ft) Shear (ps� Surface (ft/s) Elev (ft) 0.00 4996.00 0.00 0.00 0.00 50.00 4997.51 1.51 2.21 0.19 108.00 4998.50 2.50 2.88 0.31 150.00 4999.11 3.11 3.21 0.39 200.00 4999.79 3.79 3.52 0.47 � Z50.00 5000.43 4.43 3.76 0.55 300.00 5001.05 5.05 3.96 0.63 * 350.00 5001.64 5.64 4.14 0.70 400.00 5002.21 6.21 4.29 0.78 450.00 5002.78 6.78 4.43 0.85 500.00 5003.33 7.33 4.55 0.91 Tailwater ChGo�n�l Data � Crossung 1 Tailwater Channel Option: Rectangular Channel Bottom Width: 15.00 ft Channel Slope: 0.0020 Channel Manning's n: 0.0350 Channel Invert Elevation: 4996.00 ft I�o�do��y ���� fi�r ��°�s�ir��a ���ssi�� � Roadway Profile Shape: Constant Roadway Elevation Crest Length: 200.00 ft Crest Elevation: 5005.00 ft Roadway Surface: Paved Froude Number 0.00 0.32 0.32 0.32 0.3 2 0.31 0.31 0.31 0.30 0.30 0.30 a � Roadway Top Width: 60.00 ft MHFD-Culvert, �ersion 4. 00 (May ZOZO) Project: MONTAVA SUBDIVISION PHASE D ID: ST-04 � �,. �-:_� � / T � �� �1\ r � L L� - r X.•, --�___"_-_-___' �_11 � _ _'_ _' _ I 1 � � _'��-'--- - - - - -- Design Discharge �lar Culvert: Barrel Diameter in Inches Inlet Edge Type (Choose from pull-down list) OR: Culvert: Barrel Height (Rise) in Feet Barrel Width (Span) in Feet Inlet Edge Type (Choose from pull-down list) Number of Barrels Inlet Elevation Outlet Elevation OR Slope Culvert Length Manning's Roughness Bend Loss Coefficient Exit Loss Coeffcient Tailwater SurFace Elevation Max Allowable Channel Velocity Culvert Cross Sectional Area Available Culvert Normal Depth Culvert Critical Depth Froude Number Entrance Loss Coefficient Fridion Loss Coefficient Sum of All Loss Coefficients Inlet Control Headwater Outlet Control Headwater Design Headwater Elevation Headwater/Diameter OR Headwater/Rise Ratio Protection: Flow/(Diameter^2.5) Tailwater Surface Height Tailwater/Diameter Expansion Fador Flow Area at Max Channel Velocity Width of Equivalent Conduit for Multiple Barrels Length of Riprap Protection Width of Riprap Protedion at Downstream End Adjusted Diameter for Supercritical Flow Minimum Theoretical Riprap Size Nominal Riprap Size MHFD Riprap Type Soil Type: Choose One: � Sandy Q Non-Sandy Q = 108 cfs D = 54 inches Grooved Edge Projecting OR H (Rise) ft W (Span) = ft # Barrels = 1 Elev IN = 4997 ft Elev OUT = 4996 ft L = 127.3 ft n = 0.013 ly, = 0 k, = 1 Yc, eie�ano� = ft V - 5 ft/s A = 15.90 ftz Y„ = 2.22 ft Y� = 2.16 ft Fr = 0.95 ke = 0.20 kf = 0.53 ks = 1.73 ft HW� = 3.00 ft HWo = 6.11 ft H W = 5003.11 ft HW/D = 1.36 Q/D^2.5 = 2.51 fto s/s Yt = 1.80 ft Yt/D = 0.40 1/(2*tan(0)) = 5.04 A� = 21.60 {tz Wea = - ft LP = 17 ft T- 8 ft Da = - ft dso min= 9 in dso nominal= 12 in Type = M ST-07 100-YEAR � r� r � � �r � Di�7B � � � � � b� � nl-�A � �� . . � � . FES-7A Rainfall Parameters Rainfall Return Period: l00 Backwater Calculations: Tailwater Elevation (ft): 4993.52 Manhole Input Summary: Given Flow Sub Basin Information Total Ground Local Drainage Overland Overland Gutter Gutter Element Elevation Known Contribution Area Runoff Syr Length Slope Length Velocity Name (ft) ��f � (cfs) (Ac.) Coefficient Coefficient �ft) (%) (ft) (fps) FES-7A 4994.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 4998.74 43.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7A [NLET-7B 4998.74 41.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-7B 4998.74 2.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FES-7B 4991.87 39.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 DI-7A 4998.74 2.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Manhole Output Summary: Local Contribution Total Design Flow Overland Gutter Basin Local Manhole Peak Element Time Time Tc Intensity Contrib Coeff. Intensity Tc Flow Name �min) (min) (min) �in/hr) �cfs) Area (in/hr) �min) (cfs) FES-7A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 43.60 7A INLET- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 41.51 7B DI-7B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.19 FES-7B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 39.32 DI-7A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.09 Sewer Input Summary: Elevation Loss Coefficients Element Sewer pownsYream Slope Upstream Mannings Bend Lateral Length Invert o Invert Name �.t� �ft� (/o) ��� n Losa Loss INLET-7A 57.07 4991.43 03 4991.60 0.013 0.03 0.00 [NLET-7B 38.00 4991.60 0.3 4991.71 0.013 0.05 0.00 DI-7B 1.00 4991.71 03 4991 J 1 0.013 0.25 0.00 F�S-7B 51.39 4991.72 0.3 4991.87 0.013 0.05 0.00 DI-7A 1.00 4991.60 0.3 4991.60 0.013 0.25 0.00 Comment Surface Water Present (Upstream) � Given Dimensions Cross Rise Span 8ection (ft or in) (it or in) CIRCULAR 36.00 in 36.00 in CIRCULAR 36.00 in 36.00 in CIRCULAR 36.00 in 36.00 in CIRCULAR 36.00 in 36.00 in CIRCULAR 36.00 in 36.00 in Sewer Flow Summary: Full Flow Capacity Critical Flow Normal Flow Element Flow Velocity Depth Velocity Depth Velocity Froude Flow Flow Surcharged Name (cfs) (fps) (in) (fps) (in) (fps) Number Condition (cfs) LengYh Comment (ft) INLET-7A 36.63 5.18 36.00 6.17 36.00 6.17 0.00 Pressiirized 43.60 57.07 INLET-7B 36.63 5.18 36.00 5.87 36.00 5.87 0.00 Pressurized 41.51 38.00 DI-7B 36.63 5.18 5.51 3.20 597 2.85 0.85 Pressurized 2.19 1.00 FES-7B 36.63 5.18 36.00 5.56 36.00 5.56 0.00 Pressurized 39.32 51.39 DI-7A 36.63 5.18 5.38 3.16 5.84 2.81 0.85 Pressurized 2.09 1.00 • A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe). • If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer. • If the sewer is pressurized, full flow represents the pressurized flow conditions. Sewer Sizing Summary: Existing Calculated Used Element Peak Cross Area Name ��f � Section �se Span Rise Span Rise Span �ft�2� Comment Existing height is sinaller than tl�e su�gestcd height. INLET-7A 43.60 CIRCULAR 36.00 in 36.00 in 42.00 in 42.00 in 36.00 in 36.00 in 7.07 Existing widtl� is smaller than the suggested width. Exceeds max. Depth/Rise Existing height is smaller than the suggested height. INLET-7B 41.S1 CIRCULAR 36.00 in 36.00 in 42.00 in 42.00 in 36.00 in 36.00 in 7.07 Existing width is smaller than the suggested width. Exceeds max. Depth/Rise D[-7B 2.19 CIRCULAR 36.00 in 36.00 in 18.00 in 18.00 in 36.00 in 36.00 in 7.07 FES-7B 3932 CIRCULAR 36.00 in 36.00 in 42.00 in 42.00 in 36.00 in 36.00 in 7.07 DI-7A 2.09 CIRCULAR 36.00 in 36.00 in 18.00 in 18.00 in 36.00 in 36.00 in 7.07 Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise • Calculated diameter was determined by sewer hydraulic capaciry rounded up to the nearest commercially available size. • Sewer sizes should not decrease downstream. • All hydraulics where calculated using the'Used' parameters. Grade Line Summary: Tailwater Elevation (ft): 4993.52 Invert Elev. Element Downstream Upstream Name (ft) (ft) INLET-7A 4991.43 [NLET-7B 4991.60 DI-7B 4991.71 FES-7B 4991.72 DI-7A 4991.60 4991.60 4991.71 4991.71 4991.87 4991.60 Downstream Manhole Losses Bend Lateral Loss Loss (ft) (ft) 0.00 0.00 0.03 0.00 0.00 0.00 0.02 0.00 0.00 0.00 HGL EGL Downstream Upstream Downstream Friction Upstream (ft) (ft) (ft) �f°.r�s (ft) 4994.43 4994.67 4995.02 0.24 4995.26 4994.75 4994.90 4995.29 0.15 4995.44 4995.43 4995.43 4995.44 0.00 4995.44 4994.98 4995.16 4995.46 0.18 4995.64 4995.26 4995.26 4995.26 0.00 4995.26 • Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer. • Bend loss - Bend K* V_fi ^ 2/(2*g) • Lateral loss = V fo ^ 2/(2*g)- Junction Loss K* V_fi ^ 2/(2*g). • Friction loss is always Upstream EGL - Downstream EGL. ST-a% � � a99! i- F = 99J lti Dic�ance iFu MHFD-Culvert, �ersion 4. 00 (May ZOZO) Project: MONTAVA SUBDIVISION PHASE D ID: ST-07 � �,. �-:_� � / T � �� �1\ r � L L� - r X.•, --�___"_-_-___' �_11 � _ _'_ _' _ I 1 � � _'��-'--- - - - - -- Design Discharge �lar Culvert: Barrel Diameter in Inches Inlet Edge Type (Choose from pull-down list) OR: Culvert: Barrel Height (Rise) in Feet Barrel Width (Span) in Feet Inlet Edge Type (Choose from pull-down list) Number of Barrels Inlet Elevation Outlet Elevation OR Slope Culvert Length Manning's Roughness Bend Loss Coefficient Exit Loss Coeffcient Tailwater SurFace Elevation Max Allowable Channel Velocity Culvert Cross Sectional Area Available Culvert Normal Depth Culvert Critical Depth Froude Number Entrance Loss Coefficient Fridion Loss Coefficient Sum of All Loss Coefficients Inlet Control Headwater Outlet Control Headwater Design Headwater Elevation Headwater/Diameter OR Headwater/Rise Ratio Protection: Flow/(Diameter^2.5) Tailwater Surface Height Tailwater/Diameter Expansion Fador Flow Area at Max Channel Velocity Width of Equivalent Conduit for Multiple Barrels Length of Riprap Protection Width of Riprap Protedion at Downstream End Adjusted Diameter for Supercritical Flow Minimum Theoretical Riprap Size Nominal Riprap Size MHFD Riprap Type Soil Type: Choose One: � Sandy Q Non-Sandy Q = 43.6 cfs D = 36 inches Grooved Edge Projecting OR H (Rise) ft W (Span) = ft # Barrels = 1 Elev IN = 4991.87 ft Elev OUT = 4991.41 ft L = 146.46 ft n = 0.013 ly, = 0 k, = 1 Y� Eie�a�;o„ = 4994.5 ft V - 5 ft/s A = 7.07 ftz Y„ = 2.22 ft Y� = 2.16 ft Fr = 0.95 ke = 0.20 kf = 1.05 ks = 2.25 ft HW� = 3.00 ft HWo = 6.11 ft H W = 4997.98 ft HW/D = 2.04 HW/D > 1.5! Q/D^2.5 = 2.80 fto s/s Yt = 3.09 ft Yt/D = 1.03 1/(2*tan(0)) = 6.70 A� = 8.72 {tz Wea = - ft LP = 17 ft T- 6 ft Da = - ft dso min= 2 in dso nominal= 6 in Type = VL APPENDIX H DRAINAGE SWALE ANALYSIS Channel Report Hydraflow Express Extension for Autodesk0 Civil 3D0 by Autodesk, Inc. SWALE A-A User-defined Highlighted Invert Elev (ft) = 1.00 Depth (ft) Slope (%) = 0.20 Q (cfs) N-Value = 0.035 Area (sqft) Velocity (ft/s) Calculations Wetted Perim (ft) Compute by: Known Q Crit Depth, Yc (ft) Known Q(cfs) = 250.00 Top Width (ft) EGL (ft) (Sta, EI, n)-(Sta, EI, n)... ( 0.00, 7.91)-(27.10, 1.14, 0.035)-(34.10, 1.00, 0.035)-(41.10, 1.14, 0.035)-(76.42, 8.99, 0.035) Monday, Jul 15 2024 = 3.16 = 250.00 = 82.03 = 3.05 = 40.38 = 1.89 = 39.68 = 3.30 Elev (ft) Section Depth (ft) 9.00 8.00 8.00 7.00 7.00 6.00 6.00 5.00 5.00 4.00 Q 4.00 3.00 3.00 2.00 2.00 1.00 1.00 0.00 0.00 1 00 -10 0 10 20 30 40 Sta (ft) 50 60 70 80 90 Channel Report Hydraflow Express Extension for Autodesk0 Civil 3D0 by Autodesk, Inc. SWALE B-B User-defined Invert Elev (ft) = 1.00 Slope (%) = 0.20 N-Value = 0.035 Calculations Compute by: Known Q Known Q (cfs) = 50.00 (Sta, EI, n)-(Sta, EI, n)... ( 0.00, 7.00)-(24.02, 1.00, 0.035)-(27.03, 1.00, 0.035)-(68.05, 11.20, 0.035) Highlighted Depth (ft) Q (cfs) Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft) EGL (ft) Monday, Jul 15 2024 = 2.09 = 50.00 = 23.80 = 2.10 = 20.29 = 1.26 = 19.78 = 2.16 Elev (ft) Section 13.00 11.00 • �� 7.00 5.00 3.00 1.00 -1.00 Depth (ft) 12.00 10.00 : �� . �� 4.00 2.00 � �� _� nn -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 vv Sta (ft) APPEN DIX I DETENTION & ROUTING ANALYSIS EPA STORM WATER MANAGEMENT MODEL - VERSION 5.2 (Build 5.2.4) ------------------------------------------------------------ **************** Analysis Options **************** Flow Units ............... Process Models: Rainfall/Runoff ........ RDII ................... Snowmelt ............... Groundwater ............ Flow Routing ........... Ponding Allowed ........ Water Quality .......... Infiltration Method ...... Flow Routing Method ...... Surcharge Method ......... Starting Date ............ Ending Date .............. Antecedent Dry Days ...... Report Time Step ......... Wet Time Step ............ Dry Time Step ............ Routing Time Step ........ Variable Time Step ....... Maximum Trials ........... Number of Threads ........ Head Tolerance ........... CFS YES NO NO NO YES YES NO MODIFIED_HORTON DYNWAVE EXTRAN 06/19/2024 05:30:00 06/25/2024 23:00:00 0.0 00:01:00 00:01:00 00:01:00 20.00 sec YES 8 1 0.005000 ft ************************** Runoff Quantity Continuity ************************** Total Precipitation ...... Evaporation Loss ......... Infiltration Loss ........ Surface Runoff ........... Final Storage ............ Continuity Error (%) ..... Volume acre-feet 60.795 0.000 25.852 34.669 0.280 -0.011 Depth inches 3.669 0.000 1.560 2.092 0.017 ************************** Flow Routing Continuity ************************** Dry Weather Inflow ....... Wet Weather Inflow ....... Groundwater Inflow ....... RDII Inflow .............. External Inflow .......... External Outflow ......... Flooding Loss ............ Evaporation Loss ......... Exfiltration Loss ........ Initial Stored Volume .... Final Stored Volume ...... Continuity Error (%) ..... . . o.. . ��. . c.. 0 000 . ... . , 0 0.0 . o00 a oao . . . o.� *************************** Time-Step Critical Elements *************************** Link STORM-1B (73.46%) Link POND-427-OUTFALLI (25.06%) Link POND-427-SWALE-B-INFALL (1.47%) ******************************** Highest Flow Instability Indexes ******************************** All links are stable. ********************************* Most Frequent Nonconverging Nodes ********************************* Convergence obtained at all time steps. ************************* Routing Time Step Summary ************************* Minimum Time Step . 0.50 sec Average Time Step . 4.56 sec . . . . ... .� . ..c 0 000 . .c. . • ;, . 0 000 . .co . o.o a a.• Maximum Time Step % of Time in Steady State Average Iterations per Step % of Steps Not Converging Time Step Frequencies 20.000 - 9.564 sec 9.564 - 4.573 sec 4.573 - 2.187 sec 2.187 - 1.046 sec 1.046 - 0.500 sec *************************** Subcatchment Runoff Summary *************************** . o. 0 00 .. 0 00 16.26 % 12.28 % 25.68 % 42.50 % 3.28 % ------------------------------------------------------------------------------------------------------------------------------ Total Total Total Total Impery Pery Total Total Peak Runoff Precip Runon Evap Infil Runoff Runoff Runoff Runoff Runoff Coeff Subcatchment in in in in in in in 10^6 gal CFS ------------------------------------------------------------------------------------------------------------------------------ STORM-1 STORM-2 STORM-3 STORM-4 OFFSITE-1 FUTURE-2 FUTURE-4 FUTURE-5 STORM-5 F-1-BASIN F-2-BASIN G-14-BASIN G-13-BASIN FUTURE-3 FUTURE-1 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 o .. . .. 0 00 . .. 0 0. . co . .o o c. a o. o .a . .. o .. o cc . o0 0 00 . o0 . .c 0 00 . .. . o0 o .. 0 00 . .c . aa a .. . .. . o0 c o0 o .. . .. 0.66 0.29 0.29 0.25 2.61 0.28 0.30 0.31 0.22 0.00 0.00 0.16 0.16 1.11 0.68 2.15 2.84 2.83 2.92 0.73 2.82 2.82 2.81 2.95 3.63 3.63 3.30 3.30 1.66 2.06 0.84 0.51 0.52 0.47 0.32 0.54 0.52 0.52 0.46 0.00 0.00 0.19 0.19 0.88 0.90 2.99 3.35 3.35 3.39 1.05 3.36 3.34 3.33 3.42 3.63 3.63 3.48 3.48 2.55 2.97 1.73 0.93 2.14 1.19 2.95 0.30 0.41 0.68 0.11 0.05 0.05 0.02 0.02 0.20 0.51 105.56 64.20 151.48 88.07 74.84 24.10 27.32 44.72 9.24 5.07 4.88 2.19 2.09 9.62 32.49 0.815 0.913 0.912 0.923 0.286 0.915 0.909 0.908 0.931 0.990 0.990 0.949 0.949 0.694 0.808 ****************** Node Depth Summary ****************** Average Maximum Maximum Time of Max Reported Depth Depth HGL Occurrence Max Depth Node Type Feet Feet Feet days hr:min Feet --------------------------------------------------------------------------------- POND-D-OUTFALL STORM-3-OUTFALL STORM-4-OUTFALL POND-427-INFALL FUTURE-2-OUTFALL FES-2 INLET-4 INLET-3 SWALEPOND-2-OUTFALL POND-427-OUTFALL FES-3 FES-4 FUTURE-3-OUTFALL INLET-1 INLET-2 FES-1 SITE-OUTFALL POND-D POND-427 SWALEPOND-1 SWALEPOND-2 ******************* Node Inflow Summary ******************* JUNCTION 7UNCTION JUNCTION 7UNCTION JUNCTION JUNCTION JUNCTION 7UNCTION JUNCTION 7UNCTION JUNCTION 7UNCTION JUNCTION 7UNCTION JUNCTION 7UNCTION OUTFALL STORAGE STORAGE STORAGE STORAGE 0.26 0.62 0.96 2.12 0.62 0.90 0.79 0.70 0.72 1.21 1.25 1.41 1.77 0.35 0.43 0.38 0.73 0.39 3.47 2.93 1.71 0.68 4.26 4.54 4.69 2.16 2.58 2.43 2.31 1.24 2.01 1.97 2.47 3.79 1.31 1.46 1.29 1.10 1.77 6.23 7.04 5.00 4996.87 4996.26 4995.54 4993.69 4994.03 4993.99 4994.01 4994.02 4995.73 4988.93 4988.66 4988.47 4993.23 4996.59 4996.52 4996.29 4986.10 5001.52 4993.23 5002.04 5002.00 . 0 . 0 . 0 . 0 . . . . . . . . . . . 02:05 00:54 00:54 01:19 01:00 01:02 01:01 01:01 07:09 05:42 05:44 05:45 05:33 00:39 00:39 01:00 05:45 02:32 05:34 01:48 01:44 0.68 4.26 4.54 4.69 2.16 2.58 2.43 2.31 1.24 2.01 1.97 2.47 3.79 1.26 1.38 1.29 1.10 1.77 6.23 7.04 5.00 ------------------------------------------------------------------------------------------------- Maximum Maximum Lateral Total Flow Lateral Total Time of Max Inflow Inflow Balance Inflow Inflow Occurrence Volume Volume Error Node Type CFS CFS days hr:min 10^6 gal 10^6 gal Percent ------------------------------------------------------------------------------------------------- POND-D-OUTFALL STORM-3-OUTFALL STORM-4-OUTFALL POND-427-INFALL FUTURE-2-OUTFALL FES-2 7UNCTION 0.00 5.00 JUNCTION 151.48 153.31 7UNCTION 88.07 117.04 JUNCTION 0.00 98.45 JUNCTION 27.32 27.78 JUNCTION 0.00 19.69 0 02:32 0 0 00:40 2.14 0 00:40 1.19 0 00:58 0 0 00:40 0.409 0 00:43 0 2.65 0.000 4.9 -0.427 6.08 -0.779 6.19 0.000 3.43 -0.240 3.48 -0.311 INLET-4 INLET-3 SWALEPOND-2-OUTFALL POND-427-OUTFALL FES-3 FES-4 FUTURE-3-OUTFALL INLET-1 INLET-2 FES-1 SITE-OUTFALL POND-D POND-427 SWALEPOND-1 SWALEPOND-2 JUNCTION 7UNCTION JUNCTION 7UNCTION JUNCTION 7UNCTION JUNCTION 7UNCTION JUNCTION JUNCTION OUTFALL STORAGE STORAGE STORAGE STORAGE ********************** Node Surcharge Summary ********************** . o• . .. . o0 . .. o co .. 0 . 0 00 . o. .• . o0 � •. .. .o 19.89 19.12 3.03 8.01 8.01 8.01 50.22 7.48 12.75 16.59 8.01 169.77 114.68 94.65 116.14 . 0 . 0 . 0 . 0 . 0 c 0 0 0 . .. � .. � . � 0 . • . .. �. 00 �o .. • o. c � .c �o c .• c. � ca •• 0.0208 0.0198 0 0 0 0 0.684 0.0503 0.0483 0 0 2.66 0 0.613 3.46 Surcharging occurs when water rises above the top of the highest conduit. --------------------------------------------------------------------- Max. Height Min. Depth Hours Above Crown Below Rim Node Type Surcharged Feet Feet --------------------------------------------------------------------- POND-427-OUTFALL JUNCTION 39.01 0.506 2.554 ********************* Node Flooding Summary ********************* Flooding refers to all water that overflows a node, whether it ponds or not. -------------------------------------------------------------------------- Total Maximum Maximum Time of Max Flood Ponded Hours Rate Occurrence Volume Depth Node Flooded CFS days hr:min 10^6 gal Feet -------------------------------------------------------------------------- SWALEPOND-2 3.19 50.21 0 01:50 1.048 0.000 3.48 3.46 3.03 10.2 10.2 10.2 4.62 2.7 2.75 2.78 10.2 2.66 10.7 3.31 3.74 . .. 0 oc. . c o00 . ... 0 0. . �: c o00 . .. o . . ..c o .o. c oo: a o c 0 00• ********************** Storage Volume Summary ********************** ------------------------------------------------------------------------------------------------ Average Avg Evap Exfil Maximum Max Time of Max Maximum Volume Pcnt Pcnt Pcnt Volume Pcnt Occurrence Outflow Storage Unit 1000 ft Full Loss Loss 1000 ft Full days hr:min CFS ------------------------------------------------------------------------------------------------ POND-D 67.722 16.8 0.0 0.0 314.803 78.1 0 02:32 5.00 POND-427 213.962 23.1 0.0 0.0 471.195 50.9 0 05:34 21.89 SWALEPOND-1 53.101 27.6 0.0 0.0 154.163 80.1 0 01:48 26.36 SWALEPOND-2 55.237 29.4 0.0 0.0 187.846 100.0 0 01:44 65.38 *********************** Outfall Loading Summary *********************** ----------------------------------------------------------- Flow Avg Max Total Freq Flow Flow Volume Outfall Node Pcnt CFS CFS 10^6 gal ----------------------------------------------------------- SITE-OUTFALL 99.85 4.89 8.01 10.238 ----------------------------------------------------------- System 99.85 4.89 8.01 10.238 ******************** Link Flow Summary ******************** ----------------------------------------------------------------------------- Maximum Time of Max Maximum Max/ Max/ �Flow� Occurrence �Veloc� Full Full Link Type CFS days hr:min ft/sec Flow Depth ----------------------------------------------------------------------------- SWALE-B1 CONDUIT 3.01 0 04:58 0.27 0.04 0.30 STORM-2A CONDUIT 18.23 0 00:43 4.14 0.60 0.75 STORM-2B CONDUIT 18.97 0 00:43 4.25 0.60 0.79 STORM-2C CONDUIT 19.69 0 00:43 4.66 0.67 0.83 SWALE-62 CONDUIT POND-427-SWALE-B-INFALL CONDUIT POND-427-SWALE-A-INFALL CONDUIT SWALE-A3 CONDUIT SWALE-A2 CONDUIT POND-427-OUTFALLI CONDUIT POND-427-OUTFALL2 CONDUIT POND-427-OUTFALL3 CONDUIT STORM-1A CONDUIT STORM-1B CONDUIT STORM-1C CONDUIT SWALE-A1 CONDUIT SWALEPOND CONDUIT POND-D-OUTFALL ORIFICE POND-427-OUTFALL ORIFICE SWALE-POND-OUTFALL ORIFICE *************************** Flow Classification Summary *************************** 13.66 46.92 76.64 98.45 59.20 8.01 8.01 8.01 5.00 7.87 16.59 7.47 65.38 5.00 8.01 3.03 c . . 0 . 0 . 0 . 0 . a . 01:15 0 00:42 0 01:08 00:58 01:00 05:29 05:35 05:45 02:32 00:39 00:39 01:07 00:46 02:32 05:29 01:47 0.48 11.80 10.84 0.89 0.45 4.54 0.54 4.93 5.20 5.08 9.03 0.21 6.75 0.11 0.47 1.13 0.27 0.31 1.08 0.02 1.52 0.40 0.92 0.94 0.07 0.45 0.47 1.00 1.00 0.54 0.63 1.00 0.28 0.87 0.58 0.92 0.43 0.55 1.00 ------------------------------------------------------------------------------------- Adjusted ---------- Fraction of Time in Flow Class ---------- /Actual Up Down Sub Sup Up Down Norm Inlet Conduit Length Dry Dry Dry Crit Crit Crit Crit Ltd Ctrl ------------------------------------------------------------------------------------- SWALE-61 STORM-2A STORM-2B STORM-2C SWALE-B2 POND-427-SWALE-B-INFALL POND-427-SWALE-A-INFALL SWALE-A3 SWALE-A2 POND-427-OUTFALLI POND-427-OUTFALL2 POND-427-OUTFALL3 STORM-1A STORM-16 STORM-1C SWALE-A1 .o 0 oc o o, o o, o0 0 oc o o, o a, o 0 0. .. c ., o oc . oo .c . ., o oc . oo . . . .. .a o.a o.o a.a oa o.. o 0o a.a ..: o.a .a , a. . .. a .o ., o a. , oc a .o a . , a. ., o ao 0 oc , oc .c o a, o oc , oc c o a. .o . .. . .c o o, o •• , o. . .o o .c o • , o. 00 0 0o c o0 o cc o . o.� o 00 0.c o 0 0 00 .. , o. . .o . .. .c , o. . .o . .. o .: , o. o, o 00 0 00 , co .o o.o 0 00 , oo ., o co oc o .. . ., c .c co . .. . ., c .c . . . .. 00 , oo c.o o co 00 , oo c.o o co . , o0 .. . .. . .. , a. .. . .. . .. , a. . .. . .. co 0 oc o 00 0 00 0�.. o 00 0 00 0•o , o0 .. . .. . .c . .. .. . .. . .c . .. . . .. 00 0.o 0 00 0 oc o0 0.o 0 00 0 00 . o0 0.o c. , oc c.c , c. .. , oc o.c , c. .. , oc �'� � ii i ii i ii i ii iG i ii i ii i ii i�G i ii ************************* Conduit Surcharge Summary ************************* ---------------------------------------------------------------------------- Hours Hours --------- Hours Full -------- Above Full Capacity Conduit Both Ends Upstream Dnstream Normal Flow Limited ---------------------------------------------------------------------------- POND-427-SWALE-B-INFALL 26.33 26.33 47.93 0.01 0.01 POND-427-SWALE-A-INFALL 32.20 32.20 47.93 0.52 0.48 POND-427-OUTFALLI 38.97 38.97 43.55 27.63 27.63 POND-427-OUTFALL3 0.01 41.91 0.01 47.57 0.01 SWALEPOND 13.71 13.71 30.29 0.01 0.01 Analysis begun on: Mon Jul 15 16:33:59 2024 Analysis ended on: Mon Jul 15 16:33:59 2024 Total elapsed time: < 1 sec O �W/ 6L L .� � v N 0 N � � T � � c 0 � U C � 0 � � � � � � �I�N�CO O�oON� II II II II II ��-. � .�-. � � � �... }' ^ � .`�.� .� "C � � �, � � �. cn .�... •>— � � �`�U> '= Q U � O Q 2�C'1Q>I� 0 0 Q- o � o ��oo o c� ��oo r �r� cn��� c�i o� c } ii ii ii ii ii Y ii Q � � L � '� v- � � a � � � � � � i� � �� N � U U >, � �� N p��`. Q N J Q p � 0�� a��� � �U� O� � � � � V •L � 0 a ��m�° n U�UY � � ..� � � � o � N 0 a � J J a � 0 � Z O a 0 0 0 0 �n o �n o � � O O 0 � � � � � � � J 0 0 N O � � O � � 0 � � 0 N � 0 0 r D �I � o � N Q Q� � 0 0 0 o p �n o �n o � � � o 0 0 � � � � 0 � O � N � 0 POND D HEA (FT) Q (CFS) 0 0.00 0.05 5.77 0.10 16.35 0.15 30.11 0.20 46.47 0.25 65.10 0.30 85.78 0.35 108.35 0.40 132.69 0.45 158.71 0.50 186.32 0.55 215.46 0.60 246.08 0.65 278.12 0.70 311.55 0.75 346.32 0.80 382.41 0.85 419.79 0.90 458.43 0.95 498.31 1.00 539.40 POND D SPILLWAY RATING CURVE 1.1 1 • • LL 0.9 • � • w 0.8 • � � } OJ • a • � 0.6 • J � N 0.5 • w � 0 0.4 • m • Q 03 • o � w 0.2 • x � 0.1 • �:� o �> 0.00 100.00 200.00 300.00 400.00 500.00 600.00 DISCHARGE (CFS) STAGE-STORAGE SIZING FOR DETENTION BASINS Project: MONTAVA PHASE D Basin ID: POND D n�, s� s�� z sae s� z �� Dam . SideSWpez /,� �" flow Dm" .����-�� 1 Fluw�� � � �� wi � !_�— w� �� �w � � _-r"_�� �'�,�s'�'�i � _� --' s� s� z '� L <--- - -- - -- ---� s:t�sw�z , i s�xs�e: <------r � y .. � Design Information (Input): Check Basin Sha e W idth of Basin Bottom, W= ft Right Triangle OR... Length of Basin Bottom, L=�ft Isosceles Triangle OR... Dam Side-slope (H:V), 7� ft/ft Rectangle OR... Circle / Ellipse OR... Irregular X (Use Overide values in cells G32:G52) Staqe-Storaqe Relationship: MINOR MAJOR Storage Requirementfrom Sheet'Modified FAA': � .lacre-ft. Storage Requirement from Sheet'Hydrograph': - � acre-ft. Storage Requirementfrom Sheet'Full-Spectrum': I � lacre-ft. Labels Water Side Basin Basin Surface Surface Volume Surface Volume TargetVolumes for WQCV, Minor, Surface Slope Width at Length at Area at Area at Below Area at Below for WQCV, Minor, & Major Storage Elevation (H:V) Stage Stage Stage Stage Stage Stage Stage & Major Storage Stages ft ft/ft ft ft ftZ ftZ User ft3 acres acre-ft Volumes Qn ut) (InpuU Below EI. out ut out ut (out ut) Overide (out ut) (outpuU (out ut) (for oal seek) 499875 (in ut) � 172,456 0 3.959 0.000 4999.00 4.00 0.00 � 0.00 � 173,026 43,185 3.972 �0.991 5000.00 4.00 0.00 0.00 180,032 219,714 4.133 5.044 5001.00 4.00 0.00 0.00 187,141 403,301 4296 9.259 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A I #N/A #N/A� I #N/A #N/A I I #N/A ___ ,. ..�.—.._-- #N/A j � #N/A #N/A I I #N/A #N/A � #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A � #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A I #N/A ,- #N/A � � #N/A #N/A � I #N/A I #N/A I I #N/A #N/A I, I #N/A Pond D.xlsm, Basin 7/15/2024, 4:57 PM RESTRICTOR PLATE SIZING FOR CIRCULAR VERTICAL ORIFICES Project: MONTAVA PHASE D Basin ID: POND D Sizinq the Restrictor Plate for Circular Vertical Orifices or Piqes (Inqut) Water Surface Elevation at Design Depth PipeNertical Orifice Entrance Invert Elevation Required Peak Flow through Orifice at Design Depth PipeNertical Orifice Diameter (inches) Orifice Coefficient Full-flow Caqacitv (Calculated) Full-flow area Half Central Angle in Radians Full-flow capacity Calculation of Orifice Flow Condition Half Central Angle (0<Theta<3.1416) Flow area Top width of Orifce (inches) Height from Invert of Orifice to Bottom of Plate (feet) Elevation of Bottom of Plate Resultant Peak Flow Through Orifice at Design Depth Width of Equivalent Rectangular Vertical Orifice Centroid Elevation of Equivalent Rectangular Vertical Orifice #1 Vertical #2 Vertical Orifice Orifice Elev: WS= 5,001.00 feet Elev: Invert = 4,998J5 feet Q = 5.00 cfs Dia = 18.0 inches Co = 0.65 Af =1 177 sq ft Theta = I 3.14 rad Qf=l_ 11.3 cfs Percent of Design Flow =� 226 % Theta =J 1.40 � �red Ao=J 0.69 sqft To =l 17J3 inches Yo=j 0.62 feet Elev Plate Bottom Edge =I 4,999.37 feet Qo=l � 5D � cfs Equivalent Width =� 1.11 � feet Equiv. Centroid EI. _� 4,999.06 � �feet Pond D.xlsm, Restrictor Plate 7/15/2024, 4:58 PM � O Nd L�L �L � � v N 0 N � � � T � � 0 � U C O O O O O O ��f")��M O N � N N II II II II II .-. �� � �� � �� ��� "C � � �, � � �. cn .�... •>— � � �`�U> '= Q U � O Q 2�C'1Q>I� a � o 0 � �- o � o � �000 o�o a c�N�d�-' ci oN � � �� �� �� �� �� Y �� ti N d' � L �� Z �- 'd .� � O � ��� � .-. "-'�N U�(� � a � � �..� � � V � � � Q Q 0 � � � O J N O � p�� W °�-�- p�� �U Q-� � a cn � � � c� .� � � Z HUml�cn U�UY � � ..� � � � o � N 0 Q � J J a N ti N � 0 Z O a � � w � Z 0 0 0 0 �n o �n o � � O O 0 � � ^ � � `i u�i +--' M � C � I � J � � � � N I � I I � N I �li N il i i IN � � � N I � i IN `% o � N Q Q� � 0 0 0 0 0 �n o �n o � � � o 0 0 0 0 M 0 � N 0 0 N 0 � � o� o�� 0 � .� � 0 INTERIM POND 427 HEAD (FT) Q (CFS) o.00 o.00 0.05 7.99 0.10 22.63 0.15 41.64 0.20 64.22 0.25 89.90 0.30 118.38 0.35 149.43 0.40 182.89 0.45 218.60 0.50 256.47 0.55 296.39 0.60 338.29 0.65 382.09 0.70 427.74 0.75 475.19 0.80 524.38 0.85 575.27 0.90 627.83 0.95 682.01 1.00 737.80 Z.Zo 1.00 � ="- 0.90 � � � o.so U > o.�o a � 0.60 J d 0.50 � > 0.40 0 Q o.30 0 a o.zo � w �� = o.so �1 <�, o.00 o.00 INTERIM POND 427 SPILLWAY RATING CURVE • • � � � - soo.00 zoo.00 • 300.00 400.00 500.00 600.00 700.00 800.00 DISCHARGE (CFS) I • STAGE-STORAGE SIZING FOR DETENTION BASINS Project: MONTAVA PHASE D Basin ID: INTERIM POND 427 n�, s� s�� z sae s� z �� Dam . SideSWpez /,� �" flow Dm" .����-�� 1 Fluw�� � � �� wi � !_�— w� �� �w � � _-r"_�� �'�,�s'�'�i � _� --' s� s� z '� L <--- - -- - -- ---� s:t�sw�z , i s�xs�e: <------r � y .. � Design Information (Input): Check Basin Sha e W idth of Basin Bottom, W= ft Right Triangle OR... Length of Basin Bottom, L=�ft Isosceles Triangle OR... Dam Side-slope (H:V), 7� ft/ft Rectangle OR... Circle / Ellipse OR... Irregular X (Use Overide values in cells G32:G52) Staqe-Storaqe Relationship: MINOR MAJOR Storage Requirementfrom Sheet'Modified FAA': � .lacre-ft. Storage Requirement from Sheet'Hydrograph': - � acre-ft. Storage Requirementfrom Sheet'Full-Spectrum': I � lacre-ft. Labels Water Side Basin Basin Surface Surface Volume Surface Volume TargetVolumes for WQCV, Minor, Surface Slope Width at Length at Area at Area at Below Area at Below for WQCV, Minor, & Major Storage Elevation (H:V) Stage Stage Stage Stage Stage Stage Stage & Major Storage Stages ft ft/ft ft ft ftZ ftZ User ft3 acres acre-ft Volumes Qn ut) (InpuU Below EI. out ut out ut) (out ut) Overide (out ut) (oulput) (out ut) (for oal seek) 4987.00 (in ut) � 173 0 0.004 0.000 4988.00 4.00 0.00 � 0.00 � 8,162 4,168 0.187 0.096 4989.00 4.00 0.00 0.00 35,772 26,135 0.821 0.600 4990.00 4.00 O.O�I 75,228 81,635 1727 1.874 4991.00 4.00 0.00 0 00 � 107,043 172,770 � 2.457 � 3.966 —_._ ,.. _._. ...:... ... 4992.00 4.00 0.00 � 0.00 � 133,704 293,144 � 3.069 6.730 4993.00 4.00 0.00 0.00 151,585 435,788 3.480 10.004 4994.00 4.00 0.00 0.00 160,821 591,991 3.692 13.590 4995.00 4.00 0.00 0.00 167,206 756,005 .. 3.839 �� 17.355 ...�.. ...._-- � #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A I #N/A I #N/A #N/A #N/A � #N/A #N/A I #N/A #N/A I � #N/A _.-- - -._ ._--- � #N/A #N/A #N/A I� - #N/A #N/A I #N/A #N/A I � #N/A ...-- - -._ ._-- � #N/A #N/A #N/A I� - #N/A #N/A I i #N/A #N/A I �I #N/A �#N/A I #N/A #N/A � � #N/A #N/A � #N/A #N/A � � #N/A �#N/A I #N/A #N/A � � #N/A #N/A � #N/A #N/A � � #N/A �#N/A I #N/A #N/A � � #N/A #N/A � #N/A #N/A � � #N/A �#N/A I #N/A #N/A � � #N/A #N/A � #N/A #N/A I I #N/A �#N/A . I #N/A - � #N/A I � #N/A INTERIM POND 427.x1sm, Basin 7/15/2024, 5:08 PM STAGE-DISCHARGE SIZING OF THE WATER QUALITY CAPTURE VOLUME (WQCV) OUTLET Project: MONTAVA PHASE D easin ID: INTERIM POND 427 W�CV Desiqn Volume Ilnoutl: Catchment Imperviousness, I, = 79.5 percent Catchment Area. A = 19.16 Depth at WQCV outlet above lowest perforation, H= 13 feet 5 Vertical distance between rows, h= 6.00 inches Number of rows. NL = 5.00 Orifice discharge coefficient, Co= 0.65 Slope of Basin Trickle Channel. S= 0.005 ft / ft Time to Drain the Pond = 40 hours Watershed Desiqn Information Ilnputl: Percent Soil Type A =� / Percent Soil Type B= 1 % Percent Soil Type C/D = 99 % Outlet Desiqn Information fOutputl: Diameter of holes. D= 1.916 inches Number of holes per row. N= 1 OR Height of slot, H =�inches W itlih of slot, W= inches W ater Quality Capture Volume, W QCV = 0.369 watershed inches WaterQualityCaptureVolume(WQCV)= 0.589acre-feet Design Volume (W�CV / 12'Area `11) Vol = 0.707 acre-feet Outlet area per row. Ao = 2.88 square inches Total opening area at each row based on user-input above, Ao = 2.88 square inches Total opening area at each row based on user-input above, Ao = OA20 square feet . � u O O o O o 0 O o 0 O O O �L.—.— � o 0 0 0 o O o O O O O O O � PerfoTated � o � Plate 0 Ezamples 0 0 0 — ol' °I 4.� O INTERIM POND 427.x1sm, W QCV 7/15/2024, 5:09 PM RESTRICTOR PLATE SIZING FOR CIRCULAR VERTICAL ORIFICES Project: MONTAVA PHASE D Basin ID: DETENTION POND D Sizinq the Restrictor Plate for Circular Vertical Orifices or Piqes (Inqut) Water Surface Elevation at Design Depth PipeNertical Orifice Entrance Invert Elevation Required Peak Flow through Orifice at Design Depth PipeNertical Orifice Diameter (inches) Orifice Coefficient Full-flow Caqacitv (Calculated) Full-flow area Half Central Angle in Radians Full-flow capacity Calculation of Orifice Flow Condition Half Central Angle (0<Theta<3.1416) Flow area Top width of Orifce (inches) Height from Invert of Orifice to Bottom of Plate (feet) Elevation of Bottom of Plate Resultant Peak Flow Through Orifice at Design Depth Width of Equivalent Rectangular Vertical Orifice Centroid Elevation of Equivalent Rectangular Vertical Orifice #1 Vertical #2 Vertical Orifice Orifice Elev: WS= 4,990.25 feet Elev: Invert = 4,987.00 feet Q = 8.00 cfs Dia = 18.0 inches Co = 0.65 Af =1 177 sq ft Theta = I 3.14 rad Qf = l 14.6 cfs Percent of Design Flow =� 182 % Theta =J� 1.59 � �red Ao=J 0.91 sqft To= 18.00 inches Yo = 0.77 feet Elev Plate Bottom Edge = 4,987.77 feet Qo = . 8D cfs Equivalent Width =� 1.18 � feet Equiv. Centroid EI. _� 4,987.39 � �feet INTERIM POND 427.x1sm, Restrictor Plate 7/15/2024, 5:24 PM INTERIM SWALE POND HEAD (FT) Q (CFS) o.00 o.00 0.05 3.48 0.10 9.88 0.15 18.23 0.20 28.17 0.25 39.53 0.30 52.16 0.35 65.99 0.40 80.93 0.45 96.95 0.50 113.99 0.55 132.01 0.60 150.99 0.65 170.90 0.70 191.72 0.75 213.43 0.80 236.01 0.85 259.45 0.90 283.74 0.95 308.86 1.00 334.80 i.10 Z.00 � � 0.90 � w 0.80 � U > o.�o a � 0.60 J N 0.50 w > 0.40 O Q 0.30 0 a o.zo W _ o.io _. o.00 o.00 INTERIM SWALE POND SPILLWAY RATING CURVE � � � ioo.00 zoo.00 300.00 400.00 500.00 600.00 700.00 800.00 DISCHARGE (CFS) • • • - • Weir Report Hydraflow Express Extension for Autodesk0 Civil 3D0 by Autodesk, Inc. INTERIM SWALE POND SPILLWAY Trapezoidal Weir Crest = Sharp Bottom Length (ft) = 100.00 Total Depth (ft) = 1.00 Side Slope (z:1) = 4.00 Calculations Weir Coeff. Cw = 3.10 Compute by: Known Q Known Q (cfs) = 108.00 Depth (ft) 2.00 1.50 1.00 0.50 � �� -0.50 Highlighted Depth (ft) Q (cfs) Area (sqft) Velocity (ft/s) Top Width (ft) INTERIM SWALE POND SPILLWAY Monday, Jul 15 2024 = 0.50 = 108.00 = 51.00 = 2.12 = 104.00 � Depth (ft) 2.00 1.50 1.00 0.50 � �� -0.50 0 10 20 30 40 50 60 70 80 90 100 110 120 130 Weir W.S. Length (ft) STAGE-STORAGE SIZING FOR DETENTION BASINS Project: Montava Phase E Basin ID: Pond A n�, s� s�� z sae s� z �� Dam . SideSWpez /,� �" flow Dm" .����-�� 1 Fluw�� � � �� wi � !_�— w� �� �w � � _-r"_�� �'�,�s'�'�i � _� --' s� s� z '� L <--- - -- - -- ---� s:t�sw�z , i s�xs�e: <------r � y .. � Design Information (Input): Check Basin Sha e W idth of Basin Bottom, W= ft Right Triangle OR... Length of Basin Bottom, L=�ft Isosceles Triangle OR... Dam Side-slope (H:V), 7� ft/ft Rectangle OR... Circle / Ellipse OR... Irregular X (Use Overide values in cells G32:G52) Staqe-Storaqe Relationship: MINOR MAJOR Storage Requirementfrom Sheet'Modified FAA': � .lacre-ft. Storage Requirement from Sheet'Hydrograph': - � acre-ft. Storage Requirementfrom Sheet'Full-Spectrum': I � lacre-ft. Labels Water Side Basin Basin Surface Surface Volume Surface Volume TargetVolumes for WQCV, Minor, Surface Slope Width at Length at Area at Area at Below Area at Below for WQCV, Minor, & Major Storage Elevation (H:V) Stage Stage Stage Stage Stage Stage Stage & Major Storage Stages ft ft/ft ft ft ftZ ftZ User ft3 acres acre-ft Volumes Qn ut) (InpuU Below EI. out ut out ut) (out ut) Overide (out ut) (outpui�.) (out ut) (for oal seek) 4995.00 (in ut) � 701 0 0.016 0.000 4996.00 4.00 0.00 � 0.00 � 11,628 6,165 0267 � 0.142 4997.00 4.00 0.00 0.00 25,213 24,585 0.579 � 0.564 4998.00 4.00 O.O�I 44,472 59,428 1 A21 1.364 4999.00 4.00 0.00 000 � 58,802 111,065 .. 1.350 � 2.550 —_._ ,.. _._. ...:... .__ .'.. 5000.00 4.00 0.00 � 0.00 71,619 176,275 1.644 �I 4.047 5001.00 4.00 0.00 0.00 84,530 254,350 1.941 � 5.839 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A I #N/A I #N/A #N/A #N/A � #N/A #N/A I #N/A #N/A I � #N/A _.-- - -._ ._--- � #N/A #N/A #N/A I� - #N/A #N/A I #N/A #N/A I � #N/A ...-- - -._ ._-- � #N/A #N/A #N/A I� - #N/A #N/A I i #N/A #N/A I �I #N/A �#N/A I #N/A #N/A � � #N/A #N/A � #N/A #N/A � � #N/A �#N/A I #N/A #N/A � � #N/A #N/A � #N/A #N/A � � #N/A �#N/A I #N/A #N/A � � #N/A #N/A � #N/A #N/A � � #N/A �#N/A I #N/A #N/A � � #N/A #N/A � #N/A #N/A I I #N/A �#N/A . I #N/A - � #N/A I � #N/A INTERIM SWALE POND .xlsm, Basin 7/15/2024, 525 PM STAGE-DISCHARGE SIZING OF THE WATER QUALITY CAPTURE VOLUME (WQCV) OUTLET Project: MONTAVA PHASE D easin ID: INTERIM POND 427 W�CV Desiqn Volume Ilnoutl: Catchment Imperviousness, I, = 24.9 percent Catchment Area. A = 29.34 Depth at WQCV outlet above lowest perforation, H= 13 feet 5 Vertical distance between rows, h= 4.00 inches Number of rows. NL = 4.00 Orifice discharge coefficient, Co= 0.65 Slope of Basin Trickle Channel. S= 0.005 ft / ft Time to Drain the Pond = 40 hours Watershed Desiqn Information Ilnputl: Percent Soil Type A =� / Percent Soil Type B= 1 % Percent Soil Type C/D = 99 % Outlet Desiqn Information fOutputl: Diameter of holes. D= 1.327 inches Number of holes per row. N= 1 OR Height of slot, H =�inches W itlih of slot, W= inches W ater Quality Capture Volume, W QCV = 0.169 watershed inches WaterQualityCaptureVolume(WQCV)= 0.414acre-feet Design Volume (W�CV / 12'Area `11) Vol = 0.496 acre-feet Outlet area per row. Ao = 1.38 square inches Total opening area at each row based on user-input above, Ao = 1.38 square inches Total opening area at each row based on user-input above, Ao = 0.010 square feet . � u O O o O o 0 O o 0 O O O �L.—.— � o 0 0 0 o O o O O O O O O � PerfoTated � o � Plate 0 Ezamples 0 0 0 — ol' °I 4.� O INTERIM SW ALE POND .xlsm, W QCV 7/15/2024, 525 PM RESTRICTOR PLATE SIZING FOR CIRCULAR VERTICAL ORIFICES Project: MONTAVA PHASE D Basin ID: DETENTION POND D Sizinq the Restrictor Plate for Circular Vertical Orifices or Piqes (Inqut) Water Surface Elevation at Design Depth PipeNertical Orifice Entrance Invert Elevation Required Peak Flow through Orifice at Design Depth PipeNertical Orifice Diameter (inches) Orifice Coefficient Full-flow Caqacitv (Calculated) Full-flow area Half Central Angle in Radians Full-flow capacity Calculation of Orifice Flow Condition Half Central Angle (0<Theta<3.1416) Flow area Top width of Orifce (inches) Height from Invert of Orifice to Bottom of Plate (feet) Elevation of Bottom of Plate Resultant Peak Flow Through Orifice at Design Depth Width of Equivalent Rectangular Vertical Orifice Centroid Elevation of Equivalent Rectangular Vertical Orifice #1 Vertical #2 Vertical Orifice Orifice Elev: WS= 5,000.00 feet Elev: Invert = 4,995.00 feet Q = 3.50 cfs Dia = 18.0 inches Co = 0.65 Af =1 177 sq ft Theta = I 3.14 rad Qf = l 19.0 cfs Percent of Design Flow =� 543 % Theta =J� 1.00 � �red Ao=J 0.31 sqft To=l 15.14 inches Yo=j 0.34 feet Elev Plate Bottom Edge =I 4,995.34 feet Qo =l 3S cfs Equivalent Width =� 0.91 � feet Equiv. Centroid EI. _� 4,995.17 � �feet INTERIM SWALE POND .xlsm, Restrictor Plate 7/15/2024, 5:26 PM APPENDIX J EXCERPTS FROM PREVIOUS DRAINAGE REPORT � � � � � � a � Q � �� � � I Z 0 U � � � 0 � �I � � a � / � � (� / � H m _ X w / � z � / � � w �- z � � � � � m Q � � m � � o I ; x a � � � � U � � g m � � � a �' � � °' N � � a � � � � � O � N � � � O �/ � w � w � � � g U = � � � � (� � � � � o � � a� Q � o �j J o� z �- � O � � � SCHEMATIC LEGEND SUB-CATCHMENT ODETENTION ELEMENT DESIGN POINT/DESIGN FLOW � CONVEYANCE ELEMENT OUTFALL ELEMENT ❑ DIVERSION ELEMENT BAS I N B 1 .2 50 AREA IN IMPERVIOUSNESS (%) ACRES BASIN BOUNDARY � � � � � IRRIGATION DITCH CONVEYANCE PATH NOTES: 1. STORM ROUTING IS BASED ON MONTAVA FULL BUILD-OUT WITH EXISTING OFF-SITE CONDITIONS. 2. STORM ROUTING WAS DEVELOPED FROM EXISTING CONDITIONS SWMM MODELING PROVIDED BY ICON ENGINEERING, INC. 3. EXISTING TOPOGRAPHY SHOWN IS BASED ON SURVEY TST INFRASTRUCTURE, INC. IN MAY 2018 WITH SUPPLEMENTAL USGS 1-METER RESOLUTION 2014 FLOOD LIDAR TOPOGRAPHY. ELEVATIONS ARE REFERENCED TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88), U.S. SURVEY FEET. 4. SEE SHEET D2 FOR SWMM SUMMARY TABLES. 500 250 0 500 1000 SCALE: 1 "=500' ALL DIMENSIONS SHOWN ARE U.S. SURVEY FEET . � � �L ,, . , . �. � .� �. �._ . .,:: � �., � . � _ ,: _ ,. _.. , � - , � � Ii,y � •.rr , ,. _. , ^ . r � � � � � t� ;, � � � � I I I �--� 1� ~ � _� -• � " ,�, . _ v, , J'� �,� r,/r 4l �, \L„'�' � ' �� ti �� -� � � SB38 � � �� . ; ,ti q ,� , , SOD � � '�1 W C_L�_��/ ` i ,� , �� � \ ~ �' �'t..._ � j I�,� � "-�.v y �..,.,� „` --' fir ��i� J.�. �r, ,..���'��; �� �"`�v�",�r�r,x �� I��. t � _ ��� � FARM � :�1 �'� -� � � ,1��� _ � � � .�. 291 5 _ "�- � ; � � v �' �.� ,.�' r. r r' d �,r• �; :� , ��� � �',, w �. ,,, � ", y� �ti, � . -� �� / , .,�` �4,, �\ ,` . �� � � Q �• � v.v��y ��v, d! ���� ,Jf r''N ,�^�"n� �'�+'1 q "' �..4 ti,,, � i,,✓h� y. V _ � �� -. �`� , , �!, �° `-�. SOD FARM � �Z� , �,� � '�, �,,,, .l, r`�r`` � r�r r �``�,�„� "'� t ti � '� . �q , `-^ � ' � ,� r �; � .�- ��^�� � `��. � r� \ �fa: z �` _ ..� INCIDENTAL �;'� 'a`� ,I , ,�,�� �, .���.� �. �,��.� 1�,..��.� �� � �,� .� ,��� �.. � �� � �� � ., ;. �` RETENTION ����� � ��o: ,,,���.�,�� �f ,� ,�,,• s` `�-� 3 '��� � '���'��,.`"n � �ew � ]�7 ;�,�;'r a�.��_ � 4 , � � � SB37 �� ��'�� ,� f .���r'� ,��'� a 4 6 �:� "��z,.,, `^�� �-���� �7 �.._ 435 / � /�Q � ; ' '� �-v t,-� � � � '� � �� -L/ I� �i ' '; `'F � U � ` y ' � ; -," � � "� rf JJ �` r `✓ r � �' ' S�.H.� �. �"'°"� � I � �. } n,b5l�;� � � d z �' � y �`'� d � � �' .u� '� �+ d� � - -� - �� �� _- �, `� . � • ,�... � ,� � � , ,F � �� ��� � � � '' ��\ • . � �C� i � ,\ i ` y ,� ' ) �� �% � ~ ^ �.�� � � $`.,� � ` j. yx• �' e , „ �� `' j , �Sr�;��`*' ` � 34 6 23 � - � •f - � - � . � y - - � �� �� r -. , y�5j � "�..�n.-�--.,- i�.� .-"" _ .. , -.• t ---.-p . . --- . z; . ,. _ . =t _-� . � � - -- �- �' i ,� 4 ' 7 �. V / ��.�1\ �\4�Y� � �� _� I1' �� ti, \I � '� � � � 1 �� .I,� ��...� �y ••rt1 . �, 1 II � A '� � ... ..� . .. . . � �7 - - - - - � �_. .. ✓ � � � �.: �� ,� � � � � �.. ��:- ..��� ' .. : ' 1 � ,. � . � . �. � M � - . M . ...,- :. .. . .. � ..��� � f . .f � I I I ' � ' ��_ - � • � „�s� ��-�, :;;i a�.,:� � -_ �� N0. 8 SIDE SPILL � �..,,,.a,, i �~ � � ,�„ � � � :_ f ^ - i� � � �� �. � r..:! � -ti �,.r � c•;.�� � �: .`';��_ � '�����!��+�'�.��� ,;�"�': ;���-��' �"��;`�`y`r:r �t �,�{'. �. TO SOD FARM POND � ,��-, �ry� � �"F-'� �,o,,,�„�,. ./� ` ��� �F ., H��, e. .�'a . �„�T�� � , , i' - � ��k � � . I �L. }��� � a. ��+y.c- - ,� . � ,.�•'� n �-- �� t� e ; .,t�� . ,,4c�,w.- �` rf' "`-��. �;��.'.•�','. .- � ,►� ��" =;���Lra���_�N �..� � ..��` ._ _ ..�\_ RICHARDS LAKE RD. (CR 52) - -;ti;,�;� ,, ��� ��*�=�i.�r � r•; ,;• , � s� - 43 4��• --u�...�..a__ ....��'--� ' -- ---- � _ _ - _ __" _ - - - - - - - �� _ __ _ � __�,_u.---- ---� _ 3 � - - - - - - -� •�= � - 't r • - � �.� r `.- . _ -..- _ _ _-_-.- - ' - _� �- � __- + ■ - .a _ . .. -- - ' _ ` _ - - - -- = ��-_;__ t i- - I��,�-- ... � i � _` � � [ ;�--�a�q : , 841 �- ; - -- - _ � - - - �-�--�, . �- - - �r , �_ �-- � ' � -a - � _ 4 237 _ s�r �7 p w 33��ee:: . ul . � � W '�� � �• ���I I .I�.�� '� � 1�'�,I�/��� � 1� ���.� ,�'��..'-���I��.�. r s-��I���I�J � i , � � 4 - I� , -, � , � . � � -- � 9 ..,� � . � , � � � . .._ � � �� r '�� i - !� Y - � ` • �� � ---�v_. ��• . `-.� ! 1' v' ^Ifi N •1� „1'� ! C!! �E " �•`.4 f1 P t _ i� � �1 834 I' -Si' � -� II �r �`�f�� ij �� I � '„�, � � t ' ' .- �i •. 15 . ; � ,�,�, ,� :� �. f,--�-� � rA� - � ,� :- _...�i� 'r•�j '��'+` - �.',�+ " � -- �� z ' ' B �- POND B 434 � j � "',� I , � ,, � � � �'� ' ^ r a C`��c r: � . - . , . ' � , , � r. .'■ .�! � � � - ,�r ;�! • ��.. _, -all� ��� --�,w��r.�l �✓ ,�,"��4L.� �.�lr �lVle � i,'I �� ,��, " , J ,, � _. _ I � �-- .. �t ' � .` � � --� , � .. ,�l" u_;� ��r��j��s� '�� ' I'f ; ( `+'-1 � ~�.11i�._r ��A';.a�' � • J ,!.y 'r�' if �F I�, G` 1 - 16.6 50 � � � I� i �� �` r' " ' rj , + , � _ _ ' �. ` i� ;' J„1�'�- `t. � �a ����t ���. �i, ��. � �il '��'^ V+..�._ ,�.�� '�A� 1 -- � - I _ �`�1`�y�. . . � i I!I _ - � Y. 11 , �'� i i • . _ � _ I �_ � ,-- .' -4i ,' . - `= . , - � : � - - � _ � i = � - - . � � Mt� � ., � .� . - ` T - - - - - {" •.� _}� � � � � � �. ����,'1� i1 s �b �� n .���, � ..T -�. - ` : �.�=a � ;' � . • . _ . > _ .- _ . . _ _ _ - _ ___ - - _- � � �I�.-. , ' . -. ♦ �I I . 1 � _ � � ^ , �� , . j� . � - - *. 27 6 50 �- , � .� � . - - - . � � JI � '� � q� � I ...,%"x�-.�{�'y'ir j``.�, � '� �r�',�• �-�.L ;lr'�. ti t' � � �1� � � k - �r.l ''�� � LF tl�' i , ,. �, . � ..a�.. _ ,�_..�' � �?� *` ' ' . -� \ ..., �--r� ,. ; � i L3� N.i.;lf..� .�.�i II�`� �� �����i...' �'i »� q '� t�ri.��'. , � .jr,� . \ �� c�°'� 1 � "'� . � - \\I �d+, � � _ ' i - � ' � .+� . �.�►. . ►�.�.� i : ��. - . . �.. . . ` � � , � � � �sr� - �`j's�:�' .;� �..n ��~�,�. � �� ,r z:; ��,�,_�••�_�- � ��.�'�� •� .��-�' r� I �-��" � `� ,i� ���� \ I 1 t � � � . �, �`� - � � 1 � � ,�-• f .�� _ ,� � �rr� �. _� 1 � _ '"°�, 'i I-` p' ' F � "I i�T... � +7},* �� w-.� . . . �'� i�,A „F' �':. -� j� .,• ,��' �,.r. 1�--..�•. �i.�=y� -�..,*r.J�... � ' �-�5. �� -. r� , �% ti; ..\ �L����\� _ ��. '�` v.,�,+�,..,.-e-.,..5-.� `_ �: �'�, ` � I ,. ��� l � � w :r r :.r.. ._. � 58.2 1 O ��,,� . ; * �, � � � � : j ,, .,�.a,_ .�� « � ,�;�•,r- - -'� � � � _Y :'�_� ,: , .��_ _ �� , ��, �, �, � � �� � _ �; �t �, , � H - -- _ � - • - ' . . ._ - �r. ' '. : . . ,,, � �- , ._ ..� � � . .. � � � 4 ',�..`]C, s: . F�►\ ' L.� �. _.�.! --� ��-'�u.'' .�i►"?!�_' 1'L, I �i _. � 4 `� \\ ✓+.nAe �N� I �II� `-- - u• t\ .1 . �+ � � � , "� P+ � , � ���'� � �4��.. ;�.�� MAPLE HILL � . �.,�.,�:_,; ���r ��.� � ��, ,- POND C ` 4 2. � � 45.6 10 �\ � . ,� • �' �a� � .. „� �� ,. . � � _ � . , _ � �-;, ,i � `;,; . , e - . - - ' .. � i� r _ ' �. � � , w.^ `� l � � r � ' • � � ��� � 's�11 ' ��,p�� ,1_ "9 r4ra i j^ , o , . . , r � � I � � + ..^ ,L ; .. .. ,.,, . 1/�/� ., '� . " ' � L I �' � r� �, w _ t^ !1 i� � �_' � ' s � � ° -� ' ! *� li� � �' � •� �� .a�d.�� �L.._IYSUBDIVISION '" -v , � ♦, T.r� I���. I` . I� .. :% ��� �U ' ��'. •'_�'.. VL '' v � � .. III T �'...1 . � � �' .. . � � • I _ � � � I F ,i � . , . � _ � i ' �_M� � i . �i � '' .,,r,- \ . �� � i �• ' � � � �lL. I � �, �.1; � ' � F .; ���'��IP� I� � I � T d ' ��' � ti = _ - - _' � , 4 � � f ,► - •; ,., � _ - _� � `` � .3�.,, �� � � ��i��►��'� •��_�.'_ t *�� �.�'C� . _ � ..= �� _ ..- 442 �I� '``� • , , .�1 . � v. .. .�. . � _ i � . �`p �� _ �rT-,� �_ .. . . - - - �, � : ' _ - : , � .,_ _ . . .t . � � . . - , ., _ ,ti , ' f . '' ' 82 0 50 � �� I� , . /� � � _ _ . j r r .�,r _ � A /' �1� ..�'' � -` N II � �4 �_ �.�' ''! "�'� s � �- I'� �(`� (� r� �. � ~`� �.1 � � / / - � ,j� ��' � � �' � � ti � � '��•� �: �EJ6.��� H�.���k,f �r���!_�� �Li�� 833.� �1 �' ,% `� \ \� �- �I `' "il,-•�- < `� �.` � J� i i, rl'� - � � ,�w, f ��` ��.,.. _ • , ,�,•,.., �� � '�_ �. � _ �il�+ �_�.°-,' r. Li7 t n � i'�. _ T'j• .�, r'_: '� �. � � � �_ - 1' �� �,, '�.� r- ' r �� �r- ' (� � ,, I, . �. _ ' q 'ti - - � �,I r � �\ � , ('7 � " ' T i'r. ;� _ �i 'I � �.� .. . - � w. -_ �_ �.�4, h �i � I� � i � • '� �+ � -� � -- � � � � .1 � . � � j � \�. ' ` f �n 'r�, � � : I . � ' ��I�,� �`� .;S-. � - � �� � •�. � ���� L -ti / �'°� "' �� � ;� � _ � � � � ����*h}�'n , ----- - _ . ,, , . � �� - `� � �� � � �" �� �' � � ��'� � `� ,�.-, -.,�, - __ h �� i� �� � �� � ' _ ��,, , = � _ . - : _ � , �; : ; ; _.t�F-= �F - , : J , � _ � � � � �� ,, _ . . ' . . - I � - F_ � • , � , �� � i • - _ �SB33 , `� � , .�. _ � , J 1 , ! � , • �r . r �.:, � .,-�:,- ,� ,. - � N 0. 8 S I D E � � .� �- ti v � , � � -� , � �i -� �- _ .. . �.����� � �'� � � �'�� '��'���°•- �'�j'� ���; � . � _; �� J'� ��� - � ; `, � � , �:, � � _�A �;��� 20.5 50 . ' � POND A _ - � � ,`-` �'�,��"' �:.. _ . . '��` , �,`', � ' • ; ,- ,. . �.,.. SPILL TO ; - -�` -� `` �. ��, � �`�. ,, ,,`',�� • �� , J �y��. -., � !� �. �. � s�.;.:r,. .��"�Z"'.�1��'�, `��:;x�� :�-{ . � � I PS MONTAVA 1 � `�' _�t � �� � ���, � ` �� - �,'_ �� � I �i � ;:,;� �°, ,�-��{-•_ ��--._��-. �4:-9:'�. �Qf� ' t; , ,�,--� �, •s- � , , � , . .a` �� ;� �� � � (/� �' x �'.;� \\�, � '� �, Q � '� I',� - - ' � ' � . < e � '' '�j S �. � ��.#� i �r- , ,� , � �i i� l� a? L � ._ , , � - �- ..g�. ,,�K�.•.,� � �-. �- ; f' �r-.- , 1 '�.`, , = (� , ! ` � , � II �/ _.+�. 't � � , ' ` �.;� ;,; �� �( _�-...��ar,-. �r��F��� ;,��,�a=r': ',T�' , - � � , y� \ .\ ` �:.. � I J2 , <,. '`� � . _ ANHEUSER - - � u , ; • ��� .: •. a��a�f"� `(' l� �- ., r= F f'i-�'- f�' •;�-i :•.) . � ' / � �� t� �`,�� :,� A z I ` ' ' � • - }� j�� • - � , -r ��r •rl�`.. i�, ��i ��� . �MS� ��7��_ �y: _ _- -"°"' � _;�'.- ���V� . � �� 22.2 �J� � ���� �:'! .� `� �� �-� �+ � �i4. �_ �i��' � i .,, „ -i F. r��al' r'9r�� :� � I ��: �'• \ \� - � B �""� . i t _ '�� .. ':� • . � _ UJC '� i+ � . - r► �r '�r- . � � . � - �'. _ � . _ w .t� � ,y . „P`'�' � � � / � - . ti - _ � • . • . - -- � � � �r� �� �,� „�, � .,.�.-��- :� ;�• ,', � �r�r�* f r� � _� - _ � __ � . _ � . `�� �_ ..•� � � - � � i�� -•.- �' *• � � ' - -- A - - _ -_ - . ��' � . _ _ , - _ - _ - = � � � , . ,� . . _ t , :.-. - �`r � � 1 1 ._ � . Q �.�' �. � � = ` , � !_. •� I ±: �� �r i � �r�. �;t ��r�,�..�� F ,w r: �� r , �r , I � , 47.3 60 ' , i, � / r-n r ��-, , --, , �'� � �"439 :;� ___ , � pr * ^r' _ _ __ _ . -- . . . _ � . � � r� �� g .. _ �i- ��' . ^I .. � ,is'I ��.:i�� � I ' � , . I I � I � �� � "('�{'�"1 �� �� �' � �� r � i � `� --�- - - ,� � �. V � � � \ ��.\ ��:.�i' - ' !, tt � , * iI� .-,M ,.-- �. ... . ,._._ __ _ .-._.� - - � - � -- w ; , , � . .ti,� - - ., - -..�. . , . , . .� .�, . `. . :- . . � , ... �/ ; . �`. . - - , �� + ■I [--� !' � • � �j � i ,�-i� .i. t: �--_-'.-�-'� � _ � �� '�N � .e_ �.. • �-� _� � _ ' � � -: / /� Jl 1 � � b,- - .. . . . � �� � r. _ � - L - - ---_ ... - - � - _ _ _ ��__ ; : _ ` - ,. 833 �� __ _- -- -�c- _: �/ 3 � e ,� . .:� -� . . . ,.. . � �� � , �, . � ��t � -- -� -� = ��_�_ .� _ •,�� �ea� . , � - _ - ; - :� - _ - e-- =i - - ,; • /t : ,�Tp � � _�_ _ _s� __ - - - --- - ,� -_,� .t_ ___ ,l _ \ �! I " 7 7 ti z ` � /f .- � � - j . L ,7. �� �� � i c � t� 29 � . _ _ �-� ' � . IJ- M. �+ . . �= __�.; ---� _,--..- . .. ,„I n . \. \^ \ . 4 ,- ��a� ._>�: � , _ . _ 1 �,v., '� � �'4 ti' .�. , ,� ,.-�--. .� -' ,., . � I � �,_X:i'� ' 'I - `'� . I � �. �;� �NOTE: BASINS SB24, OS-1 , A1, A2, AND E, ;.� , �� _-_- - --- - ``-� - ~� ' �, -�- � , �� ■ - �, , N , �P ; � . i ' ����, � .. � =� ,,_ _ '�_" 1 , . �. � '` " " �\ .� ,/ x,\� , CHANNEL N0. 1 _ . '. � � �: .-- DISCHARGE TO THE N0. 8 DITCH. PONDS A1, � . ~' � � ,;-. _ �� _ � POND D � _ � � �� I��' . �. `�. � -�-�.�- � � - � - , � OS � � � A2 AND E, AND ATTENUATE ON-SITE i I -,�� ; ` � -- ` `31 - - '•'� �-,� , -� ��,,,„.� M-� l - - '•� � . � . L'" `., � - - �. , _ , . - , J3 - - . . � � 45.0 20 ,z DEVELOPED 100 YEAR RELEASE RATES TO �,-. - _ _ '� az�. :� �\�\ ��, /F � i ��- � /�. �. �,w ,�; r � -� I �2 _ �� , , , ' `y ' PRE-DEVELOPED 2-YEAR RELEASE RATES. '�'r , / � ./j � - �, ' ' ' i ` � -_-. _ , ;�n � r ..�. 1 F �, _� .- _ ��\ ��:`�--L`�''�. _.,.,�, 44.5 50 ` 34.8 2 I ' I '`.�. �,��I��i _ � � , ��,..,C �� 100-YEAR FLOWS FROM BASIN OS-1 WERE , / a� , ; j �\\. �� 4 �; \� , . � .. ' i . 'u �= MODELED AS PASS THROUGH. .: ' • ' `. � . I�� _. ' ' ,f `�� '°` t..z � ; � ��, _ �� I I � ..., _ _ _.. : - :�' � ; � � . I - � � � 46.9 60 ; � SB3� �� ���� � r� , ' ' J � I � Y„r ' ( . 1 T • „ , f\ ' C � � � � � , � � 1 ' � \' ' ., � � � `� 3 , ��� � . I 33.5 49 _ _ _ - - ' � � �. �� � �IIY �r 1,1.�n., �.�1Ri� � � � � � � � CHANNEL N0. 2 _ � .!�` ; � � . � �� � � : � � � � ? - . ,; . ��% ' v �y� `� � \' � i ' �J � � , � I / �; -� ' C/� ` ...,r...._.r.-- .____._ _._._ "1Ti� ' � � � �� , � . / I , � � �� �d;� , _ ` `., 83.9 25 � � `�� � �� `l, - - .\•� � / "i� - \ � � o K � 4 Y`` '�}°. _�� /' �, k , .... _-• . �._..., _... � .�--• I� ' ` � _ � � �t �'�� F \i',;, _ � _ �.�-_� �' - . � � � ��� .J �' \ l�r � :�� . � � � � .._. .__ ��^ ` ;� i��a�� � / \� h'� _ _ LM+�'�V� 1 � ' � li i� a - �, _ �,, . . � � ( � _ � � -� N � � � �- 22.8 60 - � '� � - - -- -� ,� - � � �lM� �;�, ��� 3 � , � ., ', Po � F�, ; , s; ��, SB29 I I; . ; , � � . , , ,b ' '��i , ,�- � .,. ' � _ _; , � � ,�, _ _ . . ``�:... �� , �` '�/ ,, till� � i��-� � - , �". ;�^`- ..,... ��- � JJJ �' _� 269 29 p '�. 7 I \' _ "��' . �i° ' _ _- .�• � �.� I '.r ' �`Ar �4� . i � � . " � _ -___ ' �'' J� � r �:� � . � � ' ' 42�. � .. __._ . J ` ' 21 V `� � � POND E � � � �� � � ��� i � ,. _ �� y ♦: _7.,� � "����' �� , . �. , . ,+�• � _ � . `� - ..� . : ; I =. � � .. � � �� -' 3 � � � ' � ' ' . �; ,,�. a �- -+�_ �' � %' _ � : �� �� ,.� a��� �� v . �� '. ' ,� � /;' ���, ��I . �<' '; , � � 4 � �. _ . r � �.� �� �:- .�;l�.� _� , � �.' II I , �.-� L ({ r. LL ; 'H� � � �.; A ���so .. .:�' - - . ' � � • � i *:' �� �� � . .. � - - 831 � � \ �� ,- -�� ,' ' � - - _ �/ " � } �� � � ;. ;;� ,• ;1 ,�5:.�1`:. ��� . �� � � , ,� �..-�ti', ��i,; ,: ,, _ \. ..., '` � \� . - '"'"� i\� - ��3: . , �. J��' �,. . . . �• ��_�; •2� . a i � � �\ ��i rtST�. . ,.r ,r'.���'il�•i. , ��!t'rr��f��� / r � - � �, . .�� � \ � � - r�.:' � . -�- ' .-� _ `.�' ��i '.,r�'��r.�� h ti: a.P. ,�� � � - . _ . �i il '� � , i I, 1 ��i- '� l `�`� -� �; � `` : � �;- „_.-• � �p �1�. ..�s w_ - _ i � `� � JJ `I 1 - � �1!, I ,' �% ti ; �: `,4 �' � i ' / �� ,�� ., . ,, � �,�.. ..b ..� ;.YF , ��,�► • - - - A � . ll i ���_, _�_ ; P �1 , �`��� ��> � � � . so.o 60 � � � 429 �- � �, �����A . � p`�, �,;,. �. i4`Yls�'���:. `.1 H2 -�T� �1 �._�L � � ���.. /i- ��,(. � ,� /..':��� � ,•.� ��`, . :���'n - O . . � � 'l: . � � I� :� ; �i► �; . , .1hIYr-�?d.'r�* � � �r _ � � �' � /�. .:. .� �� / �..\ \\ � ' � . �i.l ��� o �.►' � � /" ` �� � , � , � „ �t„ � i�v�- � '..�. . SB`�4 . jr�. 13.3 80 - . '' � e ' � ` �; �' ;` � � . �ii. �I� ,� ::3� , . / � - ; I _ _, . , , ) � ✓ `•' ,,,, ,.,� : �. .�, - - ;, - , , N � � % 7 r �..; , . ,. - � • r�r r .�». . .�.(. � �� � G 1 r � ,' t� .� �r. g . 33.7 45 . ��N��►� 1 , -- � - \ �� , � � � 1� •,r --1 � � �i M �; �., y� �q��� ���') ■ �� '����� ►M. �� 1! '� T r ���� ..�.�,�. ��� � I � � � � `:s;�l� �a r,� - �� �, i �� ���, I� . � i oM � . ` t � i� �,t i - �y,...,.e,� a# :ti ` �i - \ � 1 , .. 1 POND A2 "�: € a_ � �`l�' . , ,- .i �, � � �'� � 80.4 80 sa�� / ' - ' III, ���_ �'�. F �... : �;i _� ; f�;' t G2 . � r� CHANNEL N0. 3 J g ' � . r � ,� / �►'�. .� , ' 4 -- -- ;: � � _'. _. ` - _ ; ` _ _ ��� � ; ' � ' � , .�.- �I; - 30 � . °� Ql;r' � ��.�� '-� � STORYBOOK . i� ,.�,' � r _ ,\\ _ \ ,,, , r_.- . � _ - _ t 10.0 80 �,� ___ . � � �� �� j ' � ���� � � � �d �r � - � . ��- � �.� �� ��;; �I .. _ > . � ,r .. 424 N. - _ -� � , � .�y_.r, '_ ._. � � ,� ��k - a �� � I���� � ..;U � a _ 3p � �� _�� �:�=z- ,� SUBDIVISION _, , , �.� , ; �� : � �� � �, � ,....,.,�.�... ;�y�--� ; � �:u. .-� ; � MOUNTAIN VISTA DR. CR 50 � :�; : �� � � �� , , ��� . • . . • t R_ - --- Np - -J � � � L 42 - 26 _ 43 � . . _ . : - � � - .•_ ---'' . . - " ' � - � - -- -- - - -- T . ..__ __- - - ��� � ,.-_ -- - - - - _ � - � ._., -- PO A1 16 � � $ �- - ,:- _ -. � .� � � � � �_ = I � � -- - - - - - - - - � - _ - - - - - "�':_ _� -- _ __� . r 822 ` .>,� R....... _ � .,__�_�.,_� :z. - - , - ',- - -- - - - -- ___ ;� .► ` � � ► • �• � , _ - - � .z.._ . --�_. � -- - - --- - --- - -�� ---- -1 - - � - - -- . -- - - � - - - - - - -- _ - -- � - - - �. .� - - -�, , � - . . _, _. �. �. � . �ry ,:'t�- - : � . _: .= -�. � i � .. .. I .. .. . _� . � \ _ . _ _ - �. -.. . - . �, . „ �" „ � .� :�, , A1 . _ � \ , � %� • � �� _ � � � �;,.,,�.r' � � ����, i' � � 1 - � - � � ll I . �. � ^ � i �. �. � �1 � R� - , . • � "�' ���. � �i �� �'� _ , , � ,�+� �, -� , � ,�,� . 1 �� ! � �• '_ .� i � �`�- I, � v �r: I z.. � ,� w•t� � �', /j�,a l���e� �,,;, �� L.�•�•� ���� � ;.�: . ; �,,, . l � �s`�;�� , f:�: . 200 � � � , � � � . . �- 33.6 5 ��' �\ , _ � � �., �� � EXISTING FLOW IN N0. 8 DITCH � W I N N 0. 8 D ITC H '"P .%' �. ��� '49 CFS �i � � \ \� � �� ,/ ' � \� ,_� � �` \ \ \ �; ' �.. ,�.� _ r..� \\� � �� �\ r � \�` �� ''� � �� � � , - - _ ;�� � �, ��� ��.\, ��� - \ ��� �; ___ �SG N11UDl� SCE��I��. . �� _ _ _ j �.��� �.� " r � � - ` ;; � � i - 4-� j ,f r � � . , � � 4L , � � ` � � � ,� � � � �,. t�i r L .� � ._ � : ,t �. � � �- � - � � � � ��� ' ���. � � ; � ��� � - � �`� � � fE - ° -1 � �. - - "t� L �+'u .� - _ s _m a�=�. a � le-� r � - ■ -�-; -- , � �, � w� � _ � . . � : � . ; „ `� � � � -_ _ �- ,> �� j .z,�,,� �, � � "t,, �" �y \���� � � � _._ , � _ -- - _ � - -.- -- s S - fi •`'1 r4 �1..� n� ` ��� \\1�=- � � �= i, - J--^�-J �r �'� _ . � �- � "�. '�� � `! � �\'��-� a ��/� =� � � -j �_�-�!' � v, 426 � �-i �,' � • "' r � � �.. � OVERFLOW � �� � �`� �� � i j � '�{''v°� P ��R'�,' �'�` i �'"n\' .. � "✓ �',.,- � �,-• , � �,�}• �� • �..-�� � ?����� � �, � �. � ,� �~��,,1,r � � �,�; / � \ � '�-ti,�n4 �..,� 1�.4`� �. �n„ �- �,� �, '"" lj � -, � �,, � ..�' ..�,- O �'£`�° �� . / �. � � � �,. , � a . ". .. �� � L - ��..,� �,�. I ;, � 60.8 10 � 9� , �� � � �� ,.. _ /� - �.-_ . & V�-CA � � ;' ��'-��� c AL _ , � �` � ' ; � � G� ' ��^ o � '� �.� _ ;`�, e �y,'Y�'� �o�'`"' f�� ' e'"''„A'� '� _ - V . . oo�. � \ [' ..,1 �s 9 y �' �� S� �:�, ` � � ,� � � � �� a�g � �� � �� � �,�� ^ ��\ � � � �� �� l / � n � / � �� �� � � � � - � � , ��3 TRAIL HEAD SUBDIVISION � r.n: i �� ,� . - �� �' �� j.r` � `ti� , "., \, ° ��i � N ,�,, \, � - " / �� � �I I .f y P 'v � ��.'. � I I � � .n� , � � � � ���� � , �� � i �;/s� � � � ���'`� �-, �r � � �� ' W � I � I � �� �.�, ' ,�,.. � I i �� �- � �^�� � f, � �''' , � f ,� N ���� � � i , � I ` �� ��� � -.�.� � � � ,� � � - � � I �r � , , I _, \ i' � r'�r � ':,.0 86.6 80 , o,���,� � m ^� I�z.;; i M� �,� �� � w � ,, _:: r le � �r.�;� :s�� ,. g � � � ' � . �,.. � ���,: � . .�,;�,,,.,,�,-..�... �--. :._ ,_,�, .r�. �l i,; „ i a��_ _ �' •�'��:�� � I� � t `� . ' . � i`: �: � , � I . � � ;:.;. l rn' I � .� �� . / �. ��. : � 1 _�� _.� N ' � � ' � � . � �i�;�_,� � i :� � - �, � �, �,� r---- w-- -- �I � .,�;°3� , � ��� �, - � .. ,. , i. � � - ��I J - __ _ � II � I, .- - �- -- - - � � ' _ P ' �� ,i _ ��� 425 � � � ;� a � �� ,= � 30.2 2 � � � _ 426 � � , � I� y f I . � 9 _ .- _ - - - _ - .:7i"=1r� ' - _ 07 =- - _ _ = -=_ " _' L&W CANAL _.�.' �, � : _:,,. � � ���i . • ' �_: � � ��:. . _ �,. ��ss;:-o��all:c��yitl,�r-�i���'���.��`'":`- . . 1 • ;�I(� ��., , .. . e� �i�C�`�.-►� �• 4 �. � -Py •tJ,u � � 9�.7 �� � ��_��� n.i-i � �r��� � G: . �h,_�,��: _ � �=��it . � `�" r;. r:%' �''` DISCHARGE TO L8cW �`'_ �' �l ,: _ �„�� '���'- �`, w a ����� (EXISTING 100YR=565 CFS) y _,{ � ■ ✓, _ �..,"__ _-___. _" . `-T'__'_���._;= . � a . _ ' .�. `����� I OVERFLOW DISCHARGE TO � �_ h , � f„�; ��, � � COOPER SLOUGH �t'�'1 �:r � � � l� � �� (EXISTING 100YR=734 CFS) r! � � !� �.� � � � � ,y ��; 1\ )� .� BOX CULVERT OR SIPHON °�� ��\`���i, �- CONNECTION TO POND 425 � 1 ��� .�V,, �, . � , l I_ /' "�� -� ` `" �' POND C OVERFLOW (DUE TO EXISTING UTILITIES) � I I POND C OVERFLOW DISCHARGE TO L&W DUE TO BOTTOM OF POND ELEVATION BEING BELOW POND C OUTFALL ELEVATION TO POND 425. `�WATERGLEN 0 SUBDIVISION � -- I1�,,��, �1111� � 1/ � �����I � ,��1 � ������ � � �11��� �� � Q i Q � Z � � z�^ `^ � � N � w � � Z Q Q � � � z w � 0 � � zz o 0 0~C � � � Q" Y° Z U f O a z U w � � Q Z � w z a � X Q a � � J 0 U � w o � � r-I � m � N O � m Z Q � w � Q z Q � 0 I..L w � (� Q ` � � � � � � � � � � � � � � � � � � z � � � � � ����� Qi CO OJ lf� N lf� � ����� � o 0 0 o c� � z w o � �j � 0 � � z � � � � O � � � � �n Z Z � Q � � � o o � � - � � m o � � m � \ o � � N cn w o 0 a� K o o � � � � � � � � � m���Z - (n � � � N z � N � � � O U � vl O � 0 O Z � G 2 � z � ° � 0 J > � vir�z ���w z�o� �wJ� ��a� � � o '1' v� � � Q d J W i � w zwQ�c� W � C� vaww z � J W 0 Q w o � Y z � J ~o�z� z = J W � Q� � � � O v ¢ w� J � � 0� m Y (n z�o� z � � � z � � w � S Q J � H ~ � � � i� i� � Z � (aj � N � m m � � � � � � � w�a�� � � � � � wo�� z � � � � U =�o� o Z cn � z�`�'Qc�i� � � � � � w O a � � -�-� � - = w " z w O C� ��w d � am� a� � � w o � Q ��ow z� � (n U � U o=zo .� w � U � � ���z Sheet Number: � � � � a� � a � � � I � � � � � z 0 U I � c �--� � O � � L � �--� � c� L � � � � / � � m _ x w / � Z g � / c a� � W �- Z � � a� � � m � � � � � m �n � o I ; x a � � � � � g m � � � Q �' � rn °' N � � a � � � � � O � N � � �ri � o / � � W �C w C � � g U = p U � a� a � � � a� z � o � � a� Q � U 0 �j J Q c� o z �- � o � � o _ „ BASIN SUMMARY BASIN ID AREA (AC) % IMP Q2 (CFS) Q100 (CFS) A1 12.1 80 11 70 A2 13.3 80 12 78 B 16.6 50 10 62 C1 27.6 50 17 107 C2 82.0 50 38 246 D 47.3 60 26 172 E 83.9 25 25 159 F 46.9 60 25 166 G1 80.4 80 36 249 G2 10.0 80 9 59 H 45.6 10 10 53 11 58.2 10 8 49 12 34.8 2 2 11 J 1 20.5 SO 9 58 J2 22.2 50 18 101 J3 44.5 50 25 158 K1 22.8 60 11 73 K2 60.0 60 27 180 L 110.5 60 55 361 M 42.0 2 2 14 N 86.6 80 61 400 O 60.8 10 12 65 P 30.2 2 2 12 OS-1 45.0 20 11 71 24 33.7 45 44 280 29 268.8 29 192 1000 30 33.5 49 44 231 37 34.6 23 22 148 38 290.7 5 42 469 200 33.6 5 S 46 - CONVEYANCE ELEMENT SUMMARY SWMM (�100 (CFS) ELEMENT 21 385 24 7 25 512 26 239 26.1 6 26.2 9 2� Z�OO 28 45 29 413 30 27 31 353 31.1 338 31.2 276 31.3 271 34 1043 35 468 72 224 73 139 74 125 74.1 396 75 391 77 1000 229 513 231 1310 237 310 242 493 426 760 426_OVERFLOW 167 Rating Curve for Trapezoidal Channel at 0.2% with 4:1 Side Slopes (n=0.035) 130 120 110 100 90 80 v 70 s � � 60 50 40 30 20 10 0 0 250 500 750 -Bottom Width (ft) 1000 1250 Flow (cfs) Top Width (ft) -Velocity (ft/s) OPEN CHANNEL RATING - DESIGN POINT SUMMARY SWMM ELEMENT Q100 (CFS) 16 15 21 385 31 355 31.1 338 31.2 277 427 319 427.1 6 427.2 9 431 1312 434 7 437 333 439 1043 442 53 725 513 729 415 730 28 822 249 829 513 831 224 833 138 834 1781 841 396 891 418 1500 � 4.5 4 3.5 3 � � 2.5 � v 0 > 2 1.5 1 0.5 0 1750 u POND SUMMARY SWMM ELEMENT Q100 IN (CFS) Q100 OUT (CFS) VOLUME (AC-FT) 425 883 819 47 426 1322 760 307 429 1000 390 13.6 430 231 29 5.5 435 468 415 30 436 1562 1548 25 438 732 0 88 426 OVERFLOW 167 138 59 POND A 1807 1042 123 POND A1 76 12 2.8 POND A2 78 3.5 3.0 POND B 62 7.2 2.3 POND C 107 7.1 4.6 POND D 172 8.6 9.0 POND E 174 91 3.2 POND F 166 6.4 11.4 DIVERSION SUMMARY SWMM Q100 INFLOW Q100 DIVERTED 4100 ELEMENT (CFS) (CFS) REMAINING (cFs) 833.1 408 279 125 842 1000 617 384 OUTFALL SUMMARY SWMM ELEMENT Q100 (CFS) 904 138 907 385 909 729 CULVERT SIZE BY DESIGN POINT SWMM gARRELS-SIZE Q100 (CFS) HEADWATER DEPTH ELEMENT (FT) 21 2-8x4 385 4.4 31 2-7x4 355 4.6 31.1 2-8x4 338 4.1 31.2 4-48" D 277 4.1 427 2-6x4 319 4.7 427.1 1-18"D 6 1.6 427.2 1-18"D 9 2.6 431 1-15x10 & 1-5x12 1312 7.6 434 1-18"D 7 1.9 437 3-6x3 333 4.2 822 3-48" D 249 4.6 831 3-48"D 224 4.3 833 2-48"D 138 4.1 834 4-10X5 1781 7.3 841 2-5X5 396 6.2 904 1-60" D 138 13.0 SCHEMATIC LEGEND O � ❑ SUB-CATCHMENT DETENTION ELEMENT DESIGN POINT/DESIGN FLOW CONVEYANCE ELEMENT OUTFALL ELEMENT DIVERSION ELEMENT NOTES: 1. STORM ROUTING IS BASED ON MONTAVA FULL BUILD-OUT WITH EXISTING OFF-SITE CONDITIONS. 2. STORM ROUTING WAS DEVELOPED FROM EXISTING CONDITIONS SWMM MODELING PROVIDED BY ICON ENGINEERING, INC. Q � Q � z 0 � z�^ `^ � � N � w � w � Z O Q c� a � z °C w o � � zz o 0 0~C � � � Q " Y° C Z U G � a z u LL; � � Q z � w z a � x � Q Q � � J 0 U � w � � � � � m rn � N O � m z Q J � L1J � Q z Q � 0 � W � � Q � a� � ����� � � � � � � z � � � � � ����� Qi CO OJ lf� N lf� �--� O � O N O � \ \ \ \ \ � O O O O N � Z w Q w Q � � � o � � z � � � � o � � � � cn Z Z � Q � � � o o � � - � � m � w w m c�i� � o � � N w o 0 N � � � � � � � � � � � � m �i �i c~n z - (n � � � N � � N �') � � z Z O � � � Cn Z O U O � O z U � Q � 2 � C� Z � � O � � � O J W � W � �r�z c���w z�o� �wJ� ��a� � � o '1' v� � � Q d J W �. � L-�--I Z W Q� U W � (.� vaww z � J W O Q w o � Y z � J ~o�z� Z = �`'�oQ� O � � 0 U Q�'�J� � 0� m Y (n z�o� z � � � Z � �wo= a J � H ~ � � � � � � z��� � � m m � �oo � � � w���� � � � � � �zo� z � � wo � � � � U =�o� o Z cn � z�`�'Qc�i� � a� � � owoa � � -�-� � - = w `� z w o � ��w-� � am� .� � zw�o o � ���w � (n U z� � U � = Z O .� wQ�� � ���z Sheet Number: