Loading...
HomeMy WebLinkAboutUPPER MEADOW AT MIRAMONT PUD, SECOND FILING - FINAL - 54-87I - SUBMITTAL DOCUMENTS - ROUND 1 - DRAINAGE REPORTt • • FINAL DRAINAGE AND -EROSION CONTROL STUDY FOR THE UPPER MEADOW AT MIRAMONT SECOND FILING FORT COLLINS, COLORADO February 1, 1993 Prepared for: Miramont Associates 309 West Harmony Road Fort Collins, Colorado 80526 b Prepared : p Y RBD, Inc. Engineering Consultants 11 � INC. Engineering Consultants 209 S. Meldrum Fort Collins, Colorado 80521 303/482-5922 FAX:303/482-6368 February 1, 1993 Ms. Kathy Malers City of Fort Collins Utility Services Stormwater 235 Mathews Fort Collins, Colorado 80522 RE: Final Drainage and Erosion Control Study for the Upper Meadow at Miramont Second Filing Dear Kathy: We are pleased to submit to you, for your review and approval, this Final Drainage and Erosion Control Study for the Upper Meadow at Miramont Second Filing. All computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. We appreciate your time and consideration in reviewing this submittal. Please call if you have any questions. Respectfully, RBD Inc. Engineering Consultants Roger A. Curtiss, P.E. Project Engineer 0 �RI EGlS����Gif• vOoO�t�� pl6EtU cf%r��`l� l ®o Jm o 27362 �o - ,"-PFF� TABLE OF CONTENTS DESCRIPTION PAGE I. GENERALLOCATION AND DESCRIPTION 1 A. LOCATION B. DESCRIPTION OF PROPERTY 1 1 IL DRAINAGE BASINS 1 A. MAJOR BASIN DESCRIPTION 1 B. SUB -BASIN DESCRIPTION 2 III. DRAINAGE DESIGN CRITERIA 2 A. REGULATIONS 2 B. DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS 2 C. HYDROLOGICAL CRITERIA. 2 D. HYDRAULIC CRITERIA 3 E. VARIANCES FROM CRITERIA 3 IV. DRAINAGE FACILITY DESIGN 3 A. GENERAL CONCEPT 3 B. SPECIFIC DETAILS 3 V. EROSION CONTROL 5 A. GENERAL CONCEPT 5 B. SPECIFIC DETAILS 5 VI. CONCLUSIONS 6 A. COMPLIANCE WITH STANDARDS 6 B. DRAINAGE CONCEPT 6 C. EROSION CONTROL CONCEPT 6 REFERENCES 7 S APPENDIX VICINITY MAP 1 HYDROLOGY 2 SWMM MODEL INPUT AND OUTPUT FILES 8 FINAL DRAINAGE AND EROSION CONTROL STUDY �. FOR THE UPPER MEADOW AT MIRAMONT P.U.D. SECOND FILING FORT COLLINS, COLORADO 1. GENERAL LOCATION AND DESCRIPTION A. Location ' The Upper Meadow at Miramont Second Filing development is located in the southeast part of Fort Collins, south of Harmony Road, and west of Lemay Avenue, The, Second Filing will be just to the south of Miramont First Filing. A vicinity map of the proposed site is included in the appendix. More particularly, the site is situated in the east half of Section 1, Township 6 North, Range 69 West, of the 6th P.M., City of Fort Collins, Larimer County, Colorado. IB. Description of Property The Upper Meadow at Miramont Second Filing contains 11.386 acres of which approximately 2 acres was developed with the First Filing as a detention pond. The area is currently undeveloped and is being proposed for single family residential construction, similar to that of the First Filing. The site currently consist of cultivated farmland and is a part of the Oak/Cottonwood Farm Development. The Mail Creek irrigation canal runs in a northwest to southeast direction immediately west of the Second Filing. Topography for the site is generally sloping from the west to the east at approximately 1 %. 111. DRAINAGE BASINS A. Major Basin Description 1 0 0 B. Sub -Basin Description Historic drainage patterns of the subject site are southeasterly across the Ssite to three existing 36" RCP's under Lemay Avenue which direct storm water runoff east through the existing Oakridge Development. DRAINAGE DESIGN CRITERIA A. Regulations The City of Fort Collins Storm Drainage Design Criteria is being used for the subject site. :i B. Development Criteria Reference and Constraints The Upper Meadow at Miramont First and Second Filings historically drains southeasterly under Lemay Avenue and through the adjacent Oakridge development. The McClellands Basin Master Drainage Plan criteria and constraints recommends on -site detention using a staged release rate of 0.20 cfs/acre for a 10 year design storm and 0.50 cfs/acre for a 100. year design storm. Downstream improvements have been completed within the Oakridge development to accept a maximum storm water runoff of 0.5 cfs/acre for all storm events from the Oak/Cottonwood Farm site per the report entitled "Master Drainage Study for the Oakridge Business Park". Portions of the Oak/Cottonwood Farm site contain existing developments which do release their respective storm water runoff at the 0.5 cfs/acre requirement. ' C. Hydrological Criteria The Rational method is being used to determine runoff peak flows from the site and surrounding off -site tributary areas. The 2 and 100 year rainfall criteria, which was obtained from the City of Fort Collins, is the criteria which was utilized. The criteria is included in the appendix. place. The SWMM model as developed was analyzed and found to accurately represent Miramont Second Filing. No modifications to the original model have been made with this project. D. Hydraulic Criteria All calculations within this study have been prepared in accordance with the City of Fort Collins Drainage Criteria. E. Variances from Criteria No variances are being sought for this project. IV. DRAINAGE FACILITY DESIGN A. General Concept The Upper Meadow at Miramont Second Filing is planned as a single family residential housing development. The Second Filing will consist of 28 lots. Storm water flows will be generally routed along historic drainage patterns. Included in the back pocket of this report is the drainage plan for the Second Filing. B. Specific Details Because of the location of Miramont First Filing, many of the adjacent and downstream improvements needed for conveyance of runoff for the Second Filing have been completed, and have been sized accordingly to accommodate the improvements in the Second Filing. Developed runoff from sub -basins 209A, 209B, and 209C (which coincide with basin 209 of the SWMM model) will go to the permanent detention pond located north of the Second Filing and south of the First Filing. This pond was sized from the SWMM model to accommodate developed runoff the detention pond by a small swale located between the back of the lots and the existing Mail Creek Ditch maintenance road. Approximately 2.70 acres of sub -basin 209C 'is west of the Mail Creek Ditch and runoff will almost always be intercepted by the Mail Creek Irrigation ditch and will not reach the detention pond. This area west of the Mail Creek ditch will not be disturbed with this development. Developed runoff from sub -basins 21.0 and 215 will be routed by a series of pipes and open channels to a temporary detention facility to be located at the northwest corner of Lemay Avenue and Boardwalk Drive. Runoff from sub -basin 210 will be collected in Sawgrass Court and Bulrush Court and conveyed in curb and gutter to Highcastle Drive, then conveyed east in curb and gutter to a proposed 30' sump inlet located at the corner of Boardwalk Drive and Highcastle. This sump inlet will also collect the flows being conveyed from the north along Boardwalk Drive. This curb inlet, along with the other curb inlets inthis area and the piping system has been sized to accommodate the 25 year storm event per the Overall Drainage Report for the Oak/Cottonwood Farm (Page 7 of the text). Flows for those conveyance elements was taken from the SWMM model for the 25 year storm included in the appendix of this report. Sub -basin 215 flows will be conveyed by curb and gutter to a 5' sump inlet located at the intersection of Boardwalk and Highcastle. ' The storm system started with the First Filing in this area will be completed with the second Filing. The outlet pipe from the permanent detention pond will be extended to the proposed 30' curb inlet. The existing curb inlet on the low point on the East side of Boardwalk will also be connected into the new 30' curb inlet. The system will be extended across Highcastle and eventually daylight into the existing channel adjacent to Boardwalk. The channel section that extended north of Highcastle will be filled in when the pipes are complete and in place. The temporary detention pond located at Boardwalk and Lemay will have to be enlarged to accommodate the increase in developed area upstream. The FAA method has been used in this study to determine the revised size of this pond. Calculations in this report are based on raising the berm height to accommodate an increased 100 year high water surface elevation. However , it is anticipated that the developer will; be constructing a permanent decorative water feature in this area, and that a new temporary V. EROSION CONTROL A. General Concept The Upper Meadow at Miramont Second Filing lies within the Moderate Rainfall and.Wind Erodibility Zone per the City of Fort Collins zone maps. The potential exists for erosion problems during construction, and after construction until the disturbed ground is again vegetated. It is anticipated that the Second .Filing construction will begin in the Spring of 1993, and be completed in the Fall of 1993. Per the City of Fort Collins Erosion Control Reference Manual for Construction Sites and related calculations in the appendix, the erosion control performance standard for this site is 77.0%. From the calculations in the appendix, the effectiveness of the proposed erosion control plan is 81.5% during the construction portion of this development. Therefore the erosion control plan as specifically detailed below, will meet the City of Fort Collins requirements. B. Specific Details After the overlot grading has been completed, all disturbed areas, not in a roadway, shall have a temporary vegetation seed applied per the City of Fort Collins specification. After seeding, a hay or straw mulch shall be applied over the seed at a rate of 2 tons/acre, minimum, and the mulch shall be adequately anchored, tacked or crimped into the soil per the methods shown on the Drainage and Erosion Control plan. After the utilities have been installed, the roadway surfaces should receive the pavement structure. After installation of the curb inlets, the inlets shall be filtered with a combination of concrete blocks, 1 /2 inch wire screen, and 3/4 inch course gravel, per the detail shown on the detail sheet. The straw bale check darns installed in the channel adjacent to Boardwalk Drive in conjunction with the First Filing project shall remain in place and be maintained until the temporary seed 'installed with the Second Filing has been established. 1 VI. CONCLUSIONS A. Compliance with Standards All computations within this report have been completed in compliance with the City of Fort Collins Storm Drainage Design Criteria. B. Drainage Concept ' The permanent detention and installed with the First Filing, and the P P modifications made to the. temporary detention pond at the intersection of Lemay and Boardwalk will adequately provide for the detention of developed storm water runoff. from the Upper Meadow at Miramont First and Second Filings, along with the improvements made to Boardwalk Drive. The street conveyance systems will adequately transport developed runoff from the various contributory points to sump inlets and storm sewer ' systems. The storm sewer systems and roadside channels will safely convey developed storm water runoff from this development to the existing culverts under Lemay Avenue. The developed storm water runoff has been controlled in order to eliminate off -site downstream damage from the 2 year and 100 year storm events ' The proposed drainage concepts presented in this report and shown on the drainage plan are in compliance with the City of Fort Collins drainage criteria. No variances are being sought for this project. C. Erosion Control Concept The proposed erosion control concepts adequately provide for the control of wind and rainfall erosion from the Upper Meadow at Miramont Second Filing. Through the construction of the proposed erosion control concepts, the City of Fort Collins performance standards will be most nearly met. The proposed erosion control concepts presented in this report and shown on the erosion control plan are in compliance with the City of Fort Collins erosion control criteria. Temporary vegetation seed and hay or straw mulch is being proposed as it has recently proven to be the most economical and efficient method available to control erosion REFERENCES 1. Storm Drainage Design Criteria and Construction Standards by the City of Fort Collins, Colorado, May 1984, Revised January 1992. 2. Erosion Control Reference Manual for Construction Sites by the City of Fort Collins, Colorado, January 1991. 3. Overall Drainage Study for Oak/Cottonwood Farm in Fort Collins, Colorado by RBD, Inc., May 1992. 4. Master Drainage Study for the Oakridge Business Park in Fort Collins, Colorado, by RBD, Inc., September 1990. 5. Final Drainage and Erosion Control Study for the Upper Meadow at Miramont First Filing, Fort Collins, Colorado, by RBD, Inc., November 10, 1992. HI, APPENDD( Fs CA hftftLAL 22t- e Warren 'Lake.. lz IN WiF2 p a Vt r ... -ROAD 4 ............ ............ .... ..... . :,.,:: THE UPPER MEA OW AT MIRAMONT:FIRS FILING NARMMf i Dt%A n 0 !Qqwlill N -OAKRIDGE W, 1,40,111, !V B� AREA 135 i LELLANDS ASIN g ID FARM COUNTY ROAD 36 . .......... . ... .... --ju .Al ER MEADOW oc 0 AT MIRAN ONT V- • Ic ziSECOND U RNG z 1 I -tri 0l I 1 m �; lflff� lNffSMN!!f,ml--4 , W-4 a HYDROLOGY p a a 01 IN eN N N n1 N Ocr- N N z c m �. z cu o n', o . W i 1� N .¢I v �o + U U oUl—, ! — Q; d ; o u1 cn o 0 w �- wCL� ��90 = �: N N r• �' CL J cd N Q a aOOipl� JA0q— N o qo CD .. �: Q p ,� S p tI? LIJ q N co co ov oe Jw N N— N N N N N nj N ~~ Z' zLA-� W 0 N' .Y N T N o N V z z ai w w z c� z w U 3 CC / � 7 N W NLl V �1 fj u uI O m� 3 ' a 0u �w Q —d: 4 c CCl N. Z w' 0 Q F 0 vLL 0 m � w > J r � � 0 _ Q S o O .. cn U kO O N GU N '.a0� �10 a UU to O O w � J to a- N, w _ >� W o kp cr- F- o co N w aQ �0 d In UJ p J d' — ,o tD 4 0 ate_ ~~Lb Z " �+ .r N' 0 N W U z z o� w w Z z w U C 1u1 e orv► o►.tr Z rid 1=1u NC= 628 `re - 1. l o) __�..�S1C�L..���?=O_2An - �lE.o~e ZS Ye . w+e;zE suv�✓s1> NORM .-DRAINAGE [ou-�1e-S Skc c,wo.._- are.__%a �n SYSTEM PRELIMINARY DESIGN DATA cur& CGPdc-,Tf uewca74 soas&Dsµ Ime c O o E c �•- •2 Wes. c .. r- oG0 r. o cr 0 y o �•- E E C in O Street Pipe ;Street Pipe Remarks m d C 0- of 0Q -- O3. y i Q . n O O. ci � YOf► o �, ) y % O• yi _� V y m a51 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 I , 3 0 . So 2 . So f . I .45 I.4S 1� i e.r�cr ��av 10 L>emsEw►'rt cmi 14.1 0,eD 2.I5 1,8-7 Z.Ot 2.01•. 0,4 2.-14 Z.01 2..09 2"T;S 0.31 1.55, 3.98 11.91 I.91 G�-+otousA- v--LcmL -rz> a1=rs,.m Ib.9 D.So 2,00 5.s3 S:S3 E)5s 0. 15.a3 5.53 ZAS �'1 vE�zr ZI.o 0,57 1.80 8.95 _ 9.1,5 ;?),50 14do13 va o•�a 3,�z t o.so s.s 9..a a:h3 3.45 PEAS Z7,27 '6.67 29.14 FLjcs1j 'To Lr4Jel3 tkjt ET S�E P.n,GsE i=o� S,7 S,4 o,99 -7. o.r=,i 4.z3 4.z3 �� ow TTD Vie$ I�1t.ET' 51.3 O.so 1.02 IZxz I 3r 1 A 3.7 o"'' B,39 3.1 Z9 Pa 2 M12G1.M.0►iT iSr FtU,jC.T D LC►1'1J�(�E �� �e-T 10.13 .95 z.4Z 0.96 Z,z 0:?9 '4,34- Z.2 3. -rb EK�sj- SVMP 1 N l.T'r'S 0 Sow 6� • ® 5c. 1 0 CLIENT JOB NO. �3 �1 NC PROJECT M I QA NQN-M 2-r%WA CALCULATIONS FOR Engineering Consultants MADE BY _ DATE ' 2% CHECKED BY DATE SHEET OF' H u SWIV M MODEL INPUT AND OUTPUT FILES FOR THE 2, 25, AND 100 YEAR STORM EVENTS fl Hl Hill ul I No Text '2 1 1 2 3 4 WATERSHED 0 COTTONWOOD FARMS OVERALL DRAINAGE PLAN 2 YEAR EVENT ' RBD 'FILE NO. 50400102.DAT 50 0 0 5.0 1. T.0 25 5 0.12 0.36 0.48 0.60-0.84 1.80 3.24 1.08 0.84 0.48 0.36 0.12 0.36 0.120.12 0.36 0.24 0.24 0.24 0.24 0.12 0.00 0.12 0.12 0..12 -2 .016 .250, 0.1 0.5 0.5 0.5 1 201 320 31514.75 14.5.0183 1 202 322 70022.90 50.0165 1 203 307 100032.25 80.0100 1 204 301 90019.00 80.0100 1 205 303 650 5.85 47.0105 1 206 306 650'7.70 70.0080 1 1 207 208 311 313 65013.80 57.0235 950411.30 55.0170 1 209 321 43523.40 40.0085' 1 210 324 400 8.90 40.0100 1 211 325 70010.90 40.0200 1 212 328 400 4.20 70.0380 1 213 340 700 9.15 70.0055 1 214 .330 2200 1.62 90.0110 1 215 331 35 0.70 90.0270 1 0 2,16 329 35 0.96 90,0060 0 0 301 302 0 2 2.47 96 0.0032 0 0 0.013 0 302 304 0 1 4.00 260 0.0021 2 2 0.035 0 303 304 0 2 1.25 10 0.0017 0 0 0.013 0 304 305 0 2 2.47 40 0.0070 0 0 0.013 0 305 309 0 1 4.00 460 0..0021 2 2 0.035 0 0 306 307 309 308 0 2 1.25 10 0 2 1.50 120 0.0038 '0.0033 0 0 0 0 0.013 0.013 0 308 310 0 1 0 1200 0.0050 4 4 0.035 0 309 310 0 2 2.25 75 0.0211 0 0 0.013 0 3.10 312 0 2 2.50 853 0.0123 0 0 0.013 0 311 312 0.2 1.00 315 0.0020 0 0 0.013 0 312 340 0 2 3.00 480 0.0100 0 0 0.013 0 313 312 0 2 2.25 680 0.0038 0 0 0.013 0 320 321 0 1 5.00 1350 0.0050 4 4 0.035 0 321 0.0 324 8 2 0.1 300 0.0 0.05 0.0053 0.0 0.31 0 0 2.6 0.013 0.79 1:.52 5.5 2.55 6.4 3.85 7.3. 5.40 0 322 323 0 2 1.25 10 0.0125' 0 0 0.013 0 323 324 0 1 0 1500 0.0142 50 0 0.016 0 324 331 0 2 3.00 120 0.0050 0 0 0.013 0 325' 326 0 1 COO 420 0.0050 3 3 0.035 0 326 327' 0 2 3.50 100 0.0050 0 0 0.013 0 327 329 0 1 4.00 750 0.0050 3' 3 0.035 0 0 328 329 329 340 0 2 1.75 100 0 1 5:00 240 0.0100 0.0050 0 4 0 4 0.013 0.035 0 330 324 0 2 1.50 80 0.0050 0 0, 0.013 0 331 325 0 2 3.00 80 0.0050 0 0 0.013 0 340 0 0 2 5.20 130 0.001" 0 0 0.013 .0018 2.47 5.00 1.25 2.47 5.00 1.25 1..50 1.10 2.25 2.50 1.00 3.00 2.25 5.00 0.10 1.25 1,.50 3.00 3.00 3.50 3.00 1.75 4.00 1.50 3.00 5.20 1 4.3 &0 0 ENVIRONMENTAL PROTECTION AGENCY -STORM WATER MANAGEMENT MODEL VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS -OF -ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) '1 OTAPE OR DISK ASSIGNMENTS I JIN(1) JIN(2) JIN(3) J1N(4) JIN(5) JIN(6) JIN(7) JIN(8) JIN(9) JINGO) ,1 2 JOUTM 1 JOUT(2) 0 JOUT(3) 0 JOUT(4) 0 JOUT(5) 0 JOUT(6) 0 JOUT(7) 0 JOUT(8) 0 JOUT(9) 0 JOUT(10) 1 2 0 0 0 0 0 0 0 0 NSCRAT(1T NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) 1 3 4 0 0 0. WATERSHED PROGRAM CALLED *** ENTRY MADE TO RUNOFF MODEL *** COTTONWOOD FARMS OVERALL DRAINAGE PLAN.2 YEAR EVENT RBD FILE NO. 50400102.DAT ONUMBER OF TIME STEPS '50 OINTEGRATION TIME INTERVAL (MINUTES) 5.00 1.0 PERCENT OF IMPERVIOUS AREA ,HAS ZERO DETENTION DEPTH OFOR 25 RAINFALL STEPS, THE TIME INTERVAL IS S O MINUTES OFOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR .12' .36 AS .60 A4 IXO 3.24 L.08 .84 .48 .36 .36 .36, .24: .24 .24 .24 .12 .12 .12 ® .12' .12 .12 .12.00 II 202 322 700. 22.9 50.0 203 307 1000. 32.3 80.0 204 301 900. 19.0 80.0 205 303 650. 5.8 47.0 206 306 650. 7.7 70.0 207 311 650. 13.8 57.0 208' 313 950. 41.3 55.0 209 321 435. 23.4 40.0 210 211 324 325 400. 700. 8.9 10.9 40.0 40.0 212 328 400. 4.2 70.0 213 340 700. 9.1 70.0 214 330 2200. 1.6 90.0 215 331 35. .7 90.0 216 329 35.. 1.0 90.0 OTOTAL NUMBER OF SUBCATCHMENTS, 16 OTOTAL TRIBUTARY AREA (ACRES), 217.38 I I ® I�L .0165 :016 .250 .100 .500 .% .50 :00180 .0100 .016 .250 .100 .500 .50 .50 .00180 .0100 .016 .250 .100 .500 .50 .50 :00180 .0105 .016 .250 .100 .500 .50 .50 :00180 .0080 .016 .250 .100 .500 .50 .50 .00180 .0235 .016 .250 .100 .500 .50 .50 :00180 .0170 .016 .250 .100 .500 .50 .50 .00180 .0085 .016 .250 .100 .500 .50 .50 .00180 .0100 .016 .250 .100 .500 .50 .50 .00180 .0200 .016 .250 .100 .500 .50 .50 .00180 .0380 .016 .250 .100 .500 .50 .50 .00180 .0055 .016 .250 .100 .500 .50 .50 .00180 .0110 .016 .250 .100 .500 .50 .50 .00180 .0270 .016 .250 .100 .500 .50 .50 .00180 .0060 .016 .250 .100 .500 .50 .50 .00180 COTTONWOOD FARMS OVERALL DRAINAGE PLAN 2 YEAR EVENT RBD FILE NO. 50400102.DAT *** CONTINUITY CHECK FOR SUBCATCHNENT ROUTING IN UDSWM2-PC NODEL *** WATERSHED AREA (ACRES) 217.380 TOTAL RAINFALL (INCHES) 1.060 TOTAL INFILTRATION (INCHES) .289 TOTAL WATERSHED OUTFLOW (INCHES) ..536 TOTAL SURFACE STORAGE AT END OP STROM CINCHES) .236 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .007 1 COTTONWOOD .FARMS OVERALL DRAINAGE PLAN 2 YEAR,EVENT RBD FILE NO. 50400102:DAT WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP NP OR DIAN LENGTH SLOPE HORIZ TO VERT MANNING DEPTH JK 'NUMBER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 301 302 0 2 PIPE 2.5 96. .0032 .0 .0 .013 2.47 0 302 304 0 1 CHANNEL 4.0 260. .0021 2.0 2.0 .035 5.00 0 303 304 0 2 304: 305' 0 2 PIPE PIPE 1.3 2.5 10. 40. .0017 .0070 .0 .0 .0 .0 .013 .013 1:.25 2.47 0 0 305 309 0 1 CHANNEL 4.0 460. .0021 2.0 2.0 .035 5.00 0 306 309 0 2 PIPE 1..3 10. .0038 .0 .0 .013 1.25 0 307 308 0 2 PIPE 1.5 120.. .0033 .0 .0 ;013 1.50 0 308 310 0 1 CHANNEL 1200. .0050 4.0 4.0 .035 1.10 0 309 310 0 2 PIPE _.0 2.3 75.. .0211 .0 .0 .013 2.25 0 325 326 0 1 CHANNEL 4.0 420. .0050 3.0 3.0 .035 3.00 0 326 327 0 2 PIPE 3.5 100. .0056 A .0 .013 3.50 0 327 329 0 1 CHANNEL 4.0 750. .0050 3.0 3.0 .035 3.00 0 328 329 0 2 PIPE 1.8 100. .0100 .0 .0 .013 1.75 0 329 340 0 1 CHANNEL 5.0 240. .0050 4.0 4.0 .035 4.00 0 330 324 0 2 PIPE 1.5 80. .0050 .0 .0 .013 1.50 0 331 325 0 2 PIPE 3.0 80. .0050 .0 .0 .013 3.00 0 340 0 0 2 PIPE 5.2 130. .0015 .0 .0 .013 5.20 0 OTOTAL NUMBER OF GUTTERS/PIPES, 26 1 COTTONYOOD FARMS OVERALL DRAINAGE PLAN 2 YEAR EVENT RBD FILE NO. 50400102.DAT ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(A( 301 0' 0 0 0 0 0 0 0 0 0 204 0 0 0 0 0 0 0 0 0 19. 302 301 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19. 303 0 0 0 0 0 0 0 0 0 0 205 0 0 0 0 0 0 0 0 0 5. 304 302 303 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24. 305 304 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24. 306 0 0 0 0 0 0 0 0 0 0 206 0 0 0 0 0 0 0 0 0 .7. 307 0 0 0 0 0 0 0 0 0 0 203 0 0 0 0 0 0 0 0 0 32. 308 309 307 0 0 305 306 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32. 0 0 0 0 0 0 0 0 0 0 32. 310 308 309 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64. 311 0 0 0 0 0 0 0 0 0 0 207 0 0 0 0 0 0 0 0 0 13. 312 310 311 313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 119. 313 0 0 0 0 0 0 0 0 0 0 208 0 0 0 0 0 0 0 0 0 41. 320 0 0 0 0 0 0 0 0 0 0 201 • 0. 0 0 0 0 0 0 0 0 14. 321 320 0 0 0 0 0 0 0 0 0 209 0 0 0 0 0 0 0 0 0 38. 322 0 0 0 ol 10 0 0 0 0 0 202 0 0 0 0 0 0 0 0 0 22. ' 323 324 322 0 0 32T 323 330 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22. 210 0 0 0 0 0 0 0 0 0 71. 325 331 0 0 0 0 0 0 0 0 0 211 0 0 0 0 0 0 0 0 0 83. 326 325 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 83. �1 COTTONWOOD FARMS OVERALL DRAINAGE PLAN 2 YEAR EVENT RBD FILE NO. 50400102.DAT HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 26 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE'INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENSION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTESSTORAGE 1N-AC-FT FOR SURCHARGED GUTTER TIME(HR/MIN) 301 302 303 304 305 306 307 308 309 310 311 312 313 340 320 321 322 323 324 325 326 327 328 329 330, 331 0 5. 0. 0. 0. 0. 0. -0. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .O( ) 0. 0. 0. 0. 0. 0. 0. 0. 0. Q. .0( ) .0( ) .0( 1 .0( ) .O( :) .O(S) .0( ) Z( ) .0( ) .0(, ) 0. 0: 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) 0 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0( ) .0( ). .0( ) .0( ) .0( ) .0( ) .0( ) :0( ) .0( ) .0( ) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) .0(_) .O(S) .0( ) .0( ) .0( ) .0( ) 0. 0. 0. 0. 0. 0. .0( ) .0( ) Z( ) .0( ) .0( ) .0( 0 15. 0. 0. 0. 0. 0. 0.. 0. 0. 0. 0. .0( ) .0( } .1( ) .0( ) .0( ) .0( ) .1( ) .0( ) .0( ) .0( ) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) .0( ) .0(S) .0( ) .0( ) .0( ). .0( ) 0. 0. 0. 0. 0. 0. .0( ) .0( ) .0(.) .0( ) .0( ) .0( ) 0 20. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .1( ) .0( ) .1( ) .1( ) .0( ) .1( ) .1( ) .1( ) .0( ) .0( ) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .1( ) .0( ) .1( ,) .1'( ) .0( ) .O(S) A( ) .0(. ) .1( ) .0( ) 0. 0. 0. 0. 0. 0. .0( ) .0( ) .1( ) .0( ? .1( ) .1( ) 0 25. 2. 1. 1:. 2. 0.---1. 2. 0. 2. 1. .0(0) 1.0( ) 1.1(') 1.6.( ) .1( ) .O(S) .0(0) .2(::) .9( ) .7( ) 9:. 2. 4. 4. 2. 9. .8( ) .3( ) .6(') .4( ) .6( ) .9( ) 0 35. 24. 27. 3. 28. 16. 4. 6. 4. 18. 20. .0(0) 1.7( ) .0(0) 1.8( ) 1.3( ) .0(0) AM .8( ) 1.0( ) 1.2( ) 2. 48. 21. 74. 1. 0. S. 6. 20. 26. AM 1:.9( ) AM 3.1( ) .2( ) .1(S) AM .3( ) 1.4( ) 1.3( } 25. 12. 9. 17. 6. 21. 1-4(' ) .9( ) 1':.0( ) .9( ) 1.0( ) 1.4( ) 0 .40. 24. 23. 3. 28. 27. 4. 6. 5. 34. 34. .0(0) 1:.6( ) AM 1.7( ) 1.8( ) AM .3(0) .9( ) 1.5( ) 1.6( ) 2. 50. 21. 91. 2. 1. 8. 7. 15. 29. .2(0) 1.9( ) .2(0) 3.6( ) .3( ) .2(S) AM .3( ) 1.2( ) 1.3( ) 29. 24. 4. 29. 0. 17. 1,.6( ) 1.2( ) .6( ) 1.2( ) .1( ) 1.2( ? 0 45. 21. 22. 3. 23. 26. 4. 6. 6. 28. 37. 1,.9( .) 1.6( ) AM 1.5( ) 1.7( ) AM .5(0) .9( ) 1.3( ) 1.7( ) 2. 63. 21. 96. 2. 2. 8. 7. 14. 20. .3(0) 2.3( ) .2(0) 3.7( ) .3( ) .3(S) .2(0) .3( ) 1.1( ) 1.1( ) 20. 25. 3. 29. 2. 14. 1.3( ) 1.2( ) .5(-) 1.2( ) .5( ) 1.1( ) 0 50. 12. 15. 3. 20. 22. 4. 6. 6. 28. 33. 1;.3( ) T.3( ) .0(0) 1.4( ) 1.6( ) AM .6(0) .9( ) 1.3( ) 1.6( ) 2. .3(0) 54. 2.0( ) 21.. .3(0) 88. 3.5( ) 2. .3( ) 3. .3(S) 8. .2(0) 8. .3( ) 15. 1.1( ) 18. 1.1( ) 18. 20. 2. 24. 0. 16. 1.2( ) 1;.1( ) .4( ) 1.1( ) .2( ) 1.2( ) 0 55. 12. 12. 3. 13. 17. 4. 6. 6. 19. 29. 1.3( ) 1.1( ) AM 1.1( ) I M ) .1(0) .7(0) .9( ) 1.0( ) 1.4( ) 2. .3(0) 52. 2.0( ) 21, .2(0) 75. 3.1( ) 2. .3( ) 3. .4(S) 8. .2(0) 8. .3( ) 12. 1.1( ) 16. 1.0( ) 17. 18. 1. 20. 1. 13. 1.2( ) 1.1( ) .3( ) 1.0( ) .3( ) 1:.1( ) 1 0. 8. 10. 3. 14. 14. 4. 6. 6. 20. 25. 1.0( ) 1.0( ) .0(0) 1.1( .) 1.2( ) .1(0) .8(0) .9( ) 1.0( ) 1.3( ) 2. 47. 21. 72. 2. 3. 8. 8. 14. 15. .3(0) 1.9( ) .2(0) 3.1( ) .3( ) .4(S) .2(0) .3( ) 1.1( ) I.N. 15. 16. 1. 19. 0. 14. 1.1( ) 1.0( ) .3( ) ..9( ) .2( ) 1.1( ) 1 '5. 9. 8. 3. 10. 12. 4. 6. 6. 15. 23. i S/ 0 0 AM 1.8( ) AM 2.9( ) .2(:) .5(s) .2(0) .3( ) 1..1( 14. 15. 1. 16. 0. 13. 1.1( ) 1.0( ) .3( ) .9( ) .2( ) 1.1( ) 1 15. 6. 6. 0. 5. 8. 4. 6. 6. 11:. 20. .9( ) .8( ) .0( .) .6( ) 1.0( ,) .0(0) .9(0) .9( ) .8( ) 1,.2( ) 2. .4M 42. 1.7( 21. ) .0(0) 59. 2.7( 1. ) .2( 3. ) .5(S) e. .2(0) 8. .3( ) 12. 1.0(.) 14.. .9( :14. 14.. 1. 16. 0. 12. 1.1( ) .9( ) .3( ) .9( ) .2( ) 1.0( 1 20. 5. 5.. 1. 8. 7. 4., 6. 6. 12. 18. .8( ) .7( ) .6( ) .8( ) .8( ) AM 1.0(0) 1.0( ) .8( ) 1.1( ) 2. AM 35. 1.5( 14. ) 1.4( ) 54. 2.6( 1'. ) .2( 3. ) .5(S) S. AM 8. .3( ) 13. 1.1( 14. ) .9( ) 14. 14. 1. 15. 0. 13. 1..0( ) .9(' ) .3( ) .9( ) .2( ) 1.1( T 1 25. S. 5. 0. 4. 6. 4. 6. 6. 9. 17. .8( ) .7( ) .1( ) .6( ) .8( ) AM 1.0(0) 1.0( ) M ) 1.1( ) 2. AM 26. 1;.3( 6. ) .9( ) 42. 2.2( 1. ) .2( 3. ) .501 8. AM 8. .3( ) 12. 1.0( 14. 14. 14. 1. 15. 0. 12. 1.0( ) .9( ) .3( ) A( ) .2( ) 1:0( ) 1 30. 4. 4. 1'. 6. ,5. 2. 6. 6. 8. 15. .7(.) .7( ) .6( ) .7( ) .7( ) .6( ) 1.0(.0) 1.0( ) .7( ) 1:0( ) 2. AM 23. 11.2( 7. ) .9( ) 40. 2.2( 1. ) .2( 3. ) S(S) 8. AM 8. .3( ) 12. 1.0( 13. ) .9( ) 13. 14. 1. 15. 0. 12. 1.0( ) .9( ) .2( ) .8( ) .2( ) 1.0( ) 1. 35. 4. 4. 0. 3. 5. 1. 6. 6. 4. 12. .7( ) .6( ) .0( ) :5( ) .7( ) .3( ) 11.0(0) 1.0( ) .5( ) .9( ) 2. AM 20. 1.1( 6. ) .8( ) 35. 2.0( 1. ) .1( 3. ) .5(S) 8. .0(0) 8. .3( ) 12. 1.0( 13. ) .9( ) 13. 13. 0. 14. 0. 12. 1.0( ) .9( ) .2( ) A( ) .2( ) 1.0( ) 1 40. 3. 3. 1. 5. 4. 1. 6. 6. 6. 12. .6( ) .6( ) .5( ) .6( ) .6( ) .5( ) 1.0(0) 1.0( ) .6( ) .9( ) 2. AM 18. 1.1( 5. ) .8( ) 33. 2.0( 1., ) .1( 3. ) .5(.S) 8. .0(0) 8. .3( ) 12. 1.0( 13. ) .9( ) 13. 13. 0. 14. 0. 12. 1.0( ) .9( ) .2( ) .8( ) .2( ) 1.0( ) 1 45. 3. 3. 0. 2. 4. 0. 6. 6. 3. 11. AM 1.0( ) .7( ) 1.8( ) .0 ) .5(S) .4(.) .2( ) .8( ) .8( ) 10. 11. 0. 12. 0. 8. .9( ) .8( ) .2( ) .8( ) .2( ) .8( ) 1 55. 2. 2. 0. 2. 3. 0. 6. 6. 3. 10. .6( ) .5( ) .1( ) .4(..) -Sc ) .2( ) 1.0(.0) 1.0( ) .4( ) .8( ) 2. 16. 4. 28. 0. 3. 2. 3. 7. 8. AM 1.0( ) .7( ) 1.8( ) .1'( ) .5(S) .4( ) .2( ) .8( ) .7( ) 8. 10. 0. 1:1. 0. 7. A( ) .8( ) .2( ) .7( ) .2( ) .8(, ) 2 0. 2. 2. 1. 3. 3. 1. 6. 6.: 4. 10. .5( ) .5( ) A( ) .5( ) .5( ) .5(_) 1.0(0) 1.0( ) .5( ) .8( ) 2. AM 15. 1.0( 4., ) .7( ) 26. 1.7( ) 0. .1( ) 3. .50) 1. .4( ) 2. .2( ) 6. .7( ) 7. .6( ) 7. 8. 0. 9. 0. 6. .7( ) .7( ) .2( ) M ) .2( ) .7( ) 2 5. 2. 2. 0. 2. 3. 0. 6. 6. 2. 10. .5( ) .4( ) .0( ) .4( ) ;5( ) .2( ) .9(0) 1.0( ) .4( ) .8( ) 2. AM 15. 1.0( 3. ) .6( ) 23. 1M ) 0. .1( ) 3. .50) 1. .4( ) 2. .2( ) 5. .7( ) 6. .6( ) 6. 7. 0. S. 0. 6. .7( ) .7( ) .1( ) .6( ) .1( ) .7( ) 2 10. 1. 2. 0. 2. 2. 1:. 6. 6. 3. 9. .4( ) .4( ) .3( ) .4( ) .5( ) .4( ) .9(0) 1.0( ) .4( ) .8( ) 2. AM 14. .9( 3. ) .6( ) 21. 1.6( ) 0. .1( ) 3. AM 1. .3( ) 2. .2( ) 5. .7( :) 6. .6( ) 6. 6. 0. 7. 0. 5. .7( ) .6( ) .1( ) .6( ) .1( ) .7( ) 2 15. 1. 1. 0. 11. 2. 0. 6. 6. 2. 9. .4( ) .3( ) .0( ) .3( ) .4( ) .0( ) .9(0) 1.0( ) .3( ) .8( ) 2. .3(0) 13. .9( 2. ) .5( ) 19. 11.5( ) 0. .1( ) 3. AM 1. .3( ) 1. .2( ) 4. .6( ) 5. .5( ) 5. 6. 0. 6. 0. 5. .6( ) .6( ) .1'( ) .5( ) .0(_) .6( ) 2 20. 1. 1. 0. 2. 2. T. 6. 6. 2. 8. .4( ) .3( ) .2( ) .4( ) M ) .3( ) .9(0) 1.0( ) .3( ) .7( ) 2. 12. 2. 18. 0. 3. 1. 1. 4. 5. .3(0) .9( ) ;5( ) 1,.4( ) .1( ) AM .2( ) .1( ) .6( ) .5( ) 5. 5. 0. 5. 0. 4. .6( ) .5( ) .1'( ) .5( ) M ) .6( ) 2 25. 1.,- - 1'_. 0` 1. 1... 0 8.- i .3(0) .8( ) .4( ) 1.3( ) .1(') AM .2( ) .1( ) .6( ) .5( ) 4. 4. 0. S. 0. 4. .6( ) .5( ) .1( ) .5( ) .O( ) .6( ) 2 35. 11. 1. 0. 1. 1. 0. 6. 6. 11. a. .3( ) .2( ) .0( ) .2( ) .3( J .0( ) .8(0) 1.0( ) .2( ) .7( ) 2. 11. 1. 15. 0. 3. 0. 1. 4. 4. .3(0) .8( ) .4( ) 1.3( ) .1( ) .4(S) .2( ) .1( ) .6( ) .5( ) 4. 4. 0. 4. 0. 4. .5( ) ..5( ) .1.( ) .4( ) .0( ) .6( ) 2 40. 1. 1. 0. 1. 1. 0. 6. .6. t. 7. .3( ) .2( ) .1( ) .3( ) .3( ) .2( ) .7(0) 1.0( ) .2( ) .:7( ) 2. 10. 1. 14. 0. 3. 0. 1. 3. 4. .3(0) .8( ) .3( ) 1.3( ) .1( ) .4(S) .2( T .1( ) .5( ) .4( ) 4. 4. 0. 4. 0. 3. .5O .5(T .1O .4O .0O .5O i2 45. 0. 1. 0. T. 1. 0. 6. 6. 1•. 7. .3( ) .2( } .0( ) .2( ) .2( ) .0( ) .7(0) 1.0( ) .2( ) .7( 2. 10. 1. 14. 0. 3. 0. 0. 3. 3. .3(0) .8( ) .3( ) 1.2( ) .1( ) .3(S) .2( ) .1( J .5( ) .4( ) 3. 4. 0. 4. 0. 3. .5( ) .5( ) .1( ) .4( ) .0( ) .5( ) 'i 2 50. 0. 0. 0. 1. 1. 0. 6. 6. 1. 7. .2( ) .2( ) .T( ) .2( ) .2t ) .2( ) .7(0) 1.0( ) .2( ) .7( ) 2. 10. 1. 14. 0. 3: 0. 0. 3. 3. i .3(0) A( ) .3( ) ti.2( ) .1( ) .3(S) .1( ) .1( ) .5( ) .4( ) 3. 3. O. 4. 0. 3. .5( ) .4( ) .0( ) AC ) .0( ) .5( ) 2 55. 0. 0. 0. 0. 1. 0. 6. 6. 1. 7. .2( ) .2( > ;0( ) .2( ) .2( ) .0( ) .6(0) 1.0( ) .2( ) .7C ) 2. .3(0) 10. .8( ) 1. .3( ) 13. 1.2( ) 0. .0( ) 3. .3(S) 0. .2( ) 0. .1( ) 3. .5( ) 3. .4( ) 3. 3. 0. 3. 0. 3. .5( ) .4( ) ;0( ) .4( ) .0( ) .5( ) 3 0. 0. 0. 0. 0. 0. 0. 6. 6. 1. 7. ..2( ) .2( ) .1( ) .2( ) .2( ) .2( ) .6(0) 1:.0( J .2( ) .:7( 2. 9. 1. 13. 0. 3. 0. 0. 3. 3. .2(0) A( ) .3( ) L U ) .0( ) .3(S) .1( ) .1( ) -.5( ) .4( ) 3. 3. 0. 3. 0. 3. .5( ) .4( ) .0( ) .4( ) .0( ) .5( ) 3 S. 0. 0.- 0.-- 0.-- 0.- 0.- 6.- - 6.- 0.- 7.- I-/ 0 0 .2(0) .8( ) .2( ) 1:.2( ) .0( ) .3(S) .1( ) .1(,) .5( ) .4( ) 3. 3. 0. 3. 0. 3. .5( ) M ) .0( ) M ) .0( ) .5(,) 0. 0. 0. 0. 0. 0. 6. 6. 0. 7. •.2( ) .1( ) .0( ) .2( ) .2( T .0( ) .5(0) 1.0( ) .2( ) .7( ) 2. 9. 0. 12. 0. 2. 0. 0. 2. 3. .2(0) .7( ) .2( ) 1.2( ) -0( ) .3(S) .2( ) .1( ) .5'( ) M ) 3. 3. 0. 3. 0. 2. .5( ) A( ) .0( ) .3( ) ;0( ) .5( ) 0. 0. 0. 0. 0. 0. S. 6. 0. 7. .2( ) .1( ) .1( ) .2( ) .11 ) AC ) AM 1.0( ? .11 ) M ) 2. 9. 0. 12. 0. 2. 0. 0. 2. 2. .2(0) M ) .2( ) 1.1( ) .0( ? .2(S) .1( ) .1( ) M ) M. ) 2. 3. 0. 3. 0. 2. .4( ) M ) .0( ) .3(_) .0( )' .4(: ) 0. 0. 0. 0. 0'. 0. 6: 6., 0. 7. .2( ) .1( ) .0( ) .1( ) .1( ) .0( ) .4(0) 1.0( ) .1( ) M ) 2. 9. 0. 12. 0. 2. 0. 0. 2. 2. .2(0) .7( ) .2( ) 1.1( ) .0( ) .2(S) .1( ) 1( ) .4( } .3( ) 2. 2. 0. 3. 0. 2. :4( ) M ) .0( ) .3( ) .0( ) M ) 0. 0. 0. 0. 0. 0. 6. 6. 0. 7. .2( ) 1 ( ) .1( ) .1( ) .1( ) .1( ) .3(0) 1.0( ) .1( ) .7( ) 2. 9. 0. 11. 0. 2. 0. 0. 2. 2. .2(0) M ) .2( ) 1.1( ) .0( ) .2(S) .1( ) .1( ) M ) .3( ) 2. 2. 0. 2. 0. 2. M ) .3(_) .0( ) .3( ) .0( ) AC ) 0. 0. 0. 0. 0. 0. 6. 6. 0. 7. .2( ) .1( ) .0( ) .1( ) .1( ) .0(„) .3(0) 1.0( ) .1( ) .7( ) 2. 9. 0. 11. 0. 2. 0. 0. 2. 2. .2(0) .7( ) .2( ) 1.1( ) .0( ) .2(S) .1( ) .t( ) .4( ) .3( ) 2. 2. 0. 2. 0. 2. M ) .3( ) .0( ) .3( ) .0( ) M ) 0. 0. 0. 0. 0. 0. 6. 6. 0. 7. .1( ) .1( ) .1( ) .1( ) .1( ) .1( ) .3(0) 1.0( ) -U } .7( ) 2. 9. 0. 11. 0. 2. 0. 0. 2. 2. .2(0) M ) .2( ) 1.1( ) .0( ) .2(S) .1( ) .1( ) M ) .3( ) 2. 2. 0. 2. 0. 2. M ) .3( ) .0( ) .3( ) .0( ) AC ) 0. 0. 0. 0. 0. 0. 6. 6. 0. 7. .1(0) .7( ? .2( ) 1.1( ) .0( ) .2(S) .0( ) .1( ) .4( ) .3( ) 2. 2. 0. 2. 0. 2. M ) .3( } .0( ) .3( ) .0( ) .4( ) 3 55. 0. 0. 0. 0. 0. .0. 6. 6. 0. 7. -I( ) .1( ) .0( ) . ( ) .1( ) .0( ) .1(0) 1.0( ) .1( ) .6( ) 2. 9. 0. 10. 0. t. 0. 0. 1. 2. .1(0) .7( ) .2( ) 1•.1( ) .0( ) .2(S) .1( ) .1( ) .4( ) .3( ) 2. 2. 0. 2. 0. 1,. .4( ) .3( Y .0( ) .3( ) .0(: ) .4( ) 4 0. 0. 0. 0. 0., 0. 0. 6. 6. .1( ) .11( ) .0(,) .1( ) .1( ) .1( ) .1(0) 1.0( ) .1(.) .6( ) 2. 9. 0. 10., 0. 1. 0. 0. T. t. .1(0) .7( ) .2( ) t.1( ) .0(..) .2(S) .0( ) .1( ) .3( ) .3( ) 1. 2. 0. 2. 0. 1. .3( ) .3( ) .0( ) .3( ) .0(:) .3( ) 4 S. 0. 0. 0. 0. 0. 0. 6. 6. 0. 7. .1( ) .1( } .0( ) .t( ) .1( ) .0( ) .t(0) 1.0( ) .1( ) .6( ) 2. 9. 0. 10. 0. 1. 0. 0. 1:. 1. .1(0) .7( ) .2( ) 1.11 ) .0(. ) .2(S) J( ) .1( ) .3( ) .3( ) 1. 1. 0. 2. Q. 1. .3( ) .3( ) .0( ) .2( ) .0( ) .3( ) 4 10.. 0. 0. 0. 0. Q. 0. 6. 6. 0. 7. .t( ) .1( ) .0( ) .1( ) .1( ,) .1( ) Mol 1,.0( ) .1( ) .6( ) 2. 9. 0. 10. 0. 1. 0. 0. 11. 1. .1(0) M ) .2( ) 1.1( ) .0( ) .2(S) .0( ) .1( ) .3( ) .2( ) 1. 1. 0. 1. 0. 1. .3( ) .3( ) M ) .2( ) .0( ) .3( ) COTTONWOOD :FARMS OVERALL DRAINAGE PLAN 2 YEAR EVENT RBD FILE NO. 50400102.DAT *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND;DETENSION DAMS *** CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) 322 8. 1.3 .2 0 55. 320 2. .3 0 45. 330 6. 1.0 0 35. 323 8. .3 1 40. 321 3. _J .5 1 30. 301 24. 2.5 .0 0 40. 328 9. 1.0 327 25. 1.2 313 21. 2.3 311 2, 1.0 310 37. 1.7 329 29. 1.2 312 63. 2.3 340 96. 3.7 1 ENDPROGRAM PROGRAM CALLED i 1 1 i 1 1 0 35. 0 45. .3 0 50. .4 1 30. 0 45. 0 45. 0 45. 0 45. 2 1 , 2 3 4 WATERSHED 0 COTTONWOOD FARMS OVERALL DRAINAGE PLAN 25 TEAR EVENT RBD FILE NO. 50400125.DAT �. 50 0 0 5.0 1 1.0 1 25 5 0.48 0.72 0.96 1.32 2.28 3.72 6.84 2.88 1.56 1.08 0.84 0.12 0.72 0.12 0.48 0.12 0.36 0.36 0.36 0.36 0.36 0.24 0.12 0.00 0.12 -2 .016 .250 0.1 0.5 0.5 0.5 .0018 1 201 320 31514.75 14.5.0183 1 202 322 70022.90 50.0165 1 203 307 100032.25 80.0100 1 204 301 90019.00 84.0100 1 265 303 650 5.85 47.0105 1 206 306 650 7.70 70.0080 1 1 207 208 311 313 65013,80 57.0235' 95041.30 55.0170 1 209 321 43523.40 40.0085 1 210 324 400 8.90 40.0100 1 211 325 70010.90 40.0200 1 212 '328 400 4.20 70.0380 1 213 340 700 9.15 70.0055 1 214 330 2200 1.62 90.01,10 1 215 331 35 0.70 90.0270 1 0 216 329 35' 0.96 90.0060 0 0 301 302 0 2 2.47 96 0.0032 0 0 0.013 2.47 0 302 304 0 1 4.00 260 0.0021 2 2 0.035 5.00 0 303 304 0 2 1.25 10 0.0017 0 0 0.013 1.25 0 304 305 0 2 2.47 40 0.0070 0 0 0.013 2.47 0 305 309 0 1 4.00 460 0.0021 2 2 0.035 5.00 0 0 306 307 300 308 0 2 1.25 10 0 2 1.50 120 0.0038 0.0033 0 0 0 0 0.013 0.013 1.25 1.50 0 308 310 0 1 0 1200 0.0050 4 4 0.035 1.10 0 309 310 0 2 2.25 75 0.0211 0 0 0.013 2.25 0 310 312 0 2 2.50 853 0.0123 0 0 0.013 2.50 0 311 312 0 2 1.00 315 0.0020 0 0 0.013 1.00 0 312 340 0 2 3.00 480 0.0100 0 0 0.013 3.00 0 313 312 0 2 2.25 680 0.0038 0 0 0.013 2.25 0 320 321 0 1 5.00 .1350 0.0050 4 4 0.035 5.00 0 321 :324 8'2 0.1 300 0.0053 0 0 0.013 0.10 0.0 Ow0 0.05 0.0 0.31 2.6 0.79 4.3 1.52 5.5 2.55 6.4 3.85 7.3 5.40 8.0 0 322 323 0.2 1.25 10 0.0125 0 0 0.013 1.25 0 323 324 0 t 0 1500 0.0142 50 0 0.016 1.50 0 324 331 0 2 3.00 120 0.0050 0 0 0.013 3.00 0 325 326 0 1 4.00 420 0.0050 3 3 0.035 3.00 0 326 327 0 2 3.50, 100 0.0050 0 0 0.013 3.50 0 327 329 0 1 4.00 750 0.0050 3 3 0.035 3.00 0 0 328 329 329 340 0 2 1.75 106 0 1 5.00 240 0.0100 0.0050 0 4 0 4 0.013 0.035 1.75 4.00 0 330 324 0 2 1.50 80 0.0050 0 0 0.013. 1.50 0 331 325 0-2 3.00 80 0.0050 0 0 0.013 3.00 0 340 0 0 2 5.20 130 0.001" 0 0 0.013 5.20 0 zX ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1 DEVELOPED BY 14ETCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER: 1970) UPDATED BY OTAPE OR DISK ASSIGNMENTS JINO) IIN121 JIN(3) 2 1 0 JOUT(1) JOUT(2) JOUT(3) 1 2 0 NSCRAT(1) 3 1 WATERSHED PROGRAM CALLED *** ENTRY MADE TO RUNOFF MODEL *** UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) J1N(9) JINGO.) 0 0 O 0 0 0 0 JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT(1O) 0 0 0 0 0 0 0 NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) 4 0 0 0 COTTONWOOD FARMS OVERALL DRAINAGE PLAN 25 YEAR EVENT RBD FILE NO. 50400125.DAT IONUMBER OF'TIKE STEPS 50 OINTEGRATION TIME: INTERVAL (MINUTES) 5.00 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH OFOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES OFOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR ® .48 .72: .96 1.32 2.28 3.72 6.84 2.88 1.56 1.08 .84 .72 .48 .36 .36 .36 .36 .36 .24. ..12 11 is 201 320 315. 14.8 14.5 202 322 700. 22.9 50.0 263 307 1000. 32.3 80.0 204 301 900. 19.0 80.0 205 303 650. 5.8 47:0 206 306 650. 7.7 70.0 207 311 650. 13.8 57.0 208 313 950. 41.3 55.0 209 321 435. 23.4 40.0 210 324 400. 8.9 40:0 211 325 700. 10.9 40:0 212 328 400. 4.2 70.0 213 340 700. 9.1 70.0 214 330 2200. 1.6 90v0 215 331 35. .7 90.0 216 329 35., 1.0 90.0 OTOTAL.NUMBER OF SUBCATCHMENTS, 16 OTOTAL TRIBUTARY AREA (ACRES), 217.38 1 .0183 .016 .250 .100 .500 .50 .50 .00180 .0165 .016 .250 .100 .500 .50 .50 .00180 .0100 .016 .250 .100 .500 .50 .50 .00180 .0100 .016 .250 .100 .500 .50 .50 .00180 .0105 .016 .250 .100 .500 .50 .50 .00180 .0080 .016 .250 .100 .500 .50 .50 .00180 .0235 .016 .250 .100 .500 .50 .50 .00180 .0170 .016 .250 .100 .500 .50 .50 .00180 .0085 .016 .250 .100 .500 .50 .50 .00180 .0100 .016 .250 .100 .500 .50 .50 .00180 .0200 .016 .250 .100 .500 .50 .50 .00180 .0380 .016 .250 .100 .500 .50, .50 .00180 .0055 .016 .250 .100 .500 .50 .50 .00180 .0110 .916 .250 .100 .500 .50 .50 .00180 .0270 .016 .250 .100 .500 .50 .50 .00180 .0060 .016 .250, .100 .500 .50 .50 .00180 COTTONWOOD FARMS OVERALL DRAINAGE PLAN 25 YEAR EVENT RBD FILE NO. 50400125.DAT *** CONTINUITY CHECK FOR SUBCATCH14ENT ROUTING IN UDSWM2-PC MODEL *** WATERSHED AREA (ACRES) 217.380 TOTAL RAINFALL (INCHES) 2.210 TOTAL INFILTRATION ('INCHES) .353 TOTAL WATERSHED OUTFLOW (INCHES) 1.484 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .373 FALL .003 I1 ERROR IN CONTINUITY, PERCENTAGE, OF RAIN- COTTONWOOD FARMS OVERALL DRAINAGE PLAN 25 YEAR EVENT RBD FILE NO. 50400125.DAT WIDTH INVERT SIDE SLOPES OVERSANK/SURCHARGE GUTTER NDP NP OR DIM LENGTH SLOPE HORI2 TO VERT MANNING DEPTH JK 'GUTTER NUMBER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 301 302 0 2 PIPE 2.5 96. .0032 .0 .0 .013 2.47 0 304 0 1 CHANNEL 4.0 260. .062:1 2.0 2.0 .035 5.00 0 '302 303 304 0 2 PIPE 1.3 10. .0017 .0 .0 .013 1.25 0 304 305 0 2 PIPE 2.5 40. .0070 .0 .0 .013 2.47 0 305 309 0 1 CHANNEL 4.0 460. .0021 2.0 2.0 .035 5.00 0 309 0 2 PIPE 1.3 10. .0038 .0 .0 .013 1.25 0 307 308 0 2 PIPE 1.5 120. .0033 .0 .0 .013 1.50 0 '306 308 310 0 11 CHANNEL .0 1200. .0050 4.0 4.0 .035 1.10 0 r J 324 331 0 325 326 0 326 327 0 327 329 0 328 329 0 329 340 0 330 324 0 331 325 0 340 0 0 OTOTAL NUMBER OF GUTTERS/PIPES, 26 1 2 PIPE 3.0 120. .0050 .0 .0 .013 3.00 0 1 CHANNEL 4.0 420. .0050 3.0 3.0 .035 3.00 0 2 PIPE 3.5 100. .0050 .0 .0 .013 3.50 0 1 CHANNEL 4.0 750. ..0050 3.0 3.0 .635 3.00 0 2 PIPE 1.8 100. .0100 .0 .0 .013 1.75 10 1 CHANNEL 5.0 240. .0050 4.0 4.0 .035 4.00 0 2 PIPE 1.5 80. .0050 .0 .0 .013 1.50 0 2 PIPE 3.0 80. .0050 .0 40 .013 3.00 0 2 PIPE 5.2 130. .0015 .0 .0 .013 5.20 0 COTTONWOOD FARMS OVERALL DRAINAGE PLAN 25 YEAR EVENT RBD FILE NO. 50400125.DAT ARRANGEMENT OF'SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA 301 0 0 0 0 0 0 01 0 0 0 204 0 0 0 0 0 0 0 0 302 301 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 303 0 302 0 303 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 205 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 304 305 304 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 306 0 0 0 0 0 0 0 0 0 0 206 0 0 0 0 0 0 0 0 307 0 0 0 0 0 0 0 0 0 0 203 0 0 0 0 0 0 0 0 308 307 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 309 305 306 0 0 0 0, 0 0 0 0 0 0 0 0 0 0 0 0 0 310 308 309 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 311 0 0 0 0 0 0 0 0 0 0 207 0 0 0 0 0 0 0 0 312 310 0 311 0 313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 208 0 0 0 '0 0 0 0 0 0 0 0 0 0 0 0 0 313 320 0 0 0 0 0 0 0 0 0 0 201 0 0 0 0 0 0 0 0 321 320 0 0 0 0 0, 0 0 0 0 209 0 0 0 0 0 0 0 0 322 0 0 0 0 0 0 0 0 0 0 202 0 0 0 0 0 0 0 0 323 322 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 324 321 323 '330 0 0 0 0 0 0 0 210 0 .0 0 0 0 0 0 0 325 331 0 0 0 w 0 w 0 w 0 0 0 0 211 w 0 w 0 w 0 w 0 0 0 0 0 Zb 1 340 312 329 0 0 0 0 0 0 0 0 213 0 0 0 0 0 0 0 0 0 217.4 COTTONWOOD FARMS OVERALL DRAINAGE PLAN 25 YEAR EVENT RBO FILE NO. 50400125.DAT 1 HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 26 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENSION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HTDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 301 302 303 304 305 306 307 308 309 310 311 312 313 340 320 321 322 323 324 325 326 327 328 329 330 331 0 5. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ,) .0( ) .0(S) .0( ) .0( ) .0( ) .0( ) 0. 0. 0. 0. 0: 0. .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) 0 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0( ) .0(-) .1( ) .O( ) .0( ) .1( ) .1( ) .0( ) .0( ) .0( ) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0( ) .0( ) .0( ) ;Oc ) .0( ) :0(S) .1( ) .0( ) .0( ) .0( ) 0. 0. 0. 0. 0. 0. .0( ) .0( ) .0( ) .0( ) .0( ) A( ) 0 15. 1. 0. 1. 1. 0. 1. 1.. 0. 1. 0. .3( ) .1( ) .4( ) .3( ) .1( ) .4( ) .4(, ) .2( ) .2( ) .1( ) 1. 11. 1. 1. 0. 0. T. 0. 1.. 1. .4( ) .2( ) .3( ) .4( ) .0( ) AM .3(, ) .1( ) .3( ) .1( ) 0. 0. 1!. D. 1. 1. .2( ) .0( ) .3( ) .1( ) .4( ) .3( ) 0 20. 6. 3. .3. 8. 2. 4. 6. 2. 6. S. .9( ) .5( ) .0(0) .8( ) .5( ) 1.0( ) .0(0.) .6( ) .5( ) .5( ) 2. 10. 6. 14. 0. 0. 6. 11. 6. 6. .0(0) .8( ) .8( ) 1.2( ) .1( ) :O(S) .9( ) .2( ) .7( ) .6( ) 5. 1:. 3. 3. 3. 6. 2. 49. 21. 91. 2. 1. 8. 6. 24. 34. .2(0) 1.9( ) AM 3.6( ) .3( ) .2(S) .1(0) .3(_) 1,.5( ) IM ) 33. 20. 11. 27. 7. 26. 1.6( ) 0 35. 24. 24. 3. 25. 28. 4. 6. 6. 32. 36.. .3(0) 1.6( ) AM 1.6( ) 1.8( ) .2(0) .7(0) .9( ) 1.4( ) 1..7( ) 2. 55. 21. 119. 6. 3. 8. 7. 41. 65. AM 2.1( ) .5(0) AM .5( ) .4(S) .4(0) .3( ) 2.2( ) 2.0( ) 63. 44. 17. 62. 8. 44. 2.6( ) 1.6( ) .0(0) 1.7( ) .0(0) 2.3( ) 0 40. 24. 24. 3. 28. 27. 4. 6. 6. 31. 38. .6(0) 1.6( ) .2(0) 1.8( ) 1.7( ) AM 1..4(0) .9( ) 1.4( ) 1.7( ) 2. 61, 21.. 119. 9. 4. 8. 8. 35. 68. .:7(0) 2.3( ) T.1(0) AM .6( ) .7(S) .7(0) .X ) 1.9( ) 2.0( ) 68. 64. 17. 80. 8. 38. 2.8( ) - 2.0( ) .0(0) 1.9( ) AM 2.11 ) 0 45. 24. 24. 3. 26. 27. 4. 6. 6. 32. 37. .8(0) 1_.6( ) .3(0) 1.6( ) 1.7( ) .5(0) 2.0(0) .9( ) 1.4( ) 1.7( ) 2. 59. 21:. 119. 8. 5. 8. 8. 25. 44. .9(0) 2.2( ) 1,.5(0) .7(0) .6( ) .9(S) LOW) .3( ) 1.6( ) 1.6( ) 44. 57. 10. 75. 3. 26. 2.0( ) 1.8( ) 1:.0( ) 1.8( ) .6( ) 1.6( ) 0 50. 24. 24. 3. 28. 27. 4. 6. 6. 31. 38. .9(0) 1.6( ) .3(0) 1.7( ) 1.7( ) .5(0) 2.4(0) .9( ) 1.4( ) 1.7( ) 2. 60. 21. 119. 7. 5. 8. 8. 22. 36. 1.0(0) 2.2( ) 1.8(0) AM .6( ) 1.1(S) 1.1(0.) .3( ) 1.4( ) 1.5( ) 35.. 41. 3. 50. 1. 24. 1.7( ) 1.6( ) .5( ) 1.5( ) .5( ) 1.5( ) 0 55. 24. 24. 3. - 26. 27. 4. 6. 6. 32. 38. .9(0) 1.6( ) Am 1.6E ) 1.7( ) .6(0) 2.7(0) .9( ) 1.4( ) 1.7( ) 2.• 60. 21. 119: 7. 5. 8. 8. 20. 31.. 1:.1(0) 2.2( ) 1.9(0) .8(0) .5( ) 1.3(S) 1:.2(0) .3( ) 1.4( ) 1.4( ) 32. 35. 6. 42. 11. 21. 1.6( ) 1.5( ) .7( ) I M ) .4( ) 1.4( ) 1 0. 24. 24. 3. 28. 27. 4. 6. 6. 31. 38. .9(0) 1.6( ) .3(0) 1.7( ) 1.7( ) .6(0) 2.9(0) .9( ) 1.4( ) 1.7( ) 2. 60. 21. 119. 6. 5. B. 8. 20. 29. 1:.2(0) 2.2( ) 2.1(0) .7(0) .5( ) 1.4(S) 1.3(0) .3( ) 1-.4( ) 1.3( ) 29. 31, 2. 36, 1:. 21. _ w1.5( ) w1..4( ) '.4O w1.3( ) ^'.4( ) 1.4( ) �. .... Z7/ `t.�Ce �11 1 15. 1 20. ' 1 25. t 1 30. 35. 1 40. 2. 60. 21. - 119. S. 1.3(0) 2.2( ) 2.1(0) .5(0) .5( ) 24. 26. 1. 29. 1. 1.4( ) 1.3( ) .3( ). 1.2( ) .3( ) 24. 24. 3. 26. 27. .7(0) 1.6( ) .3(0) 1.7( ) 1.7( ) 2. 60. 21. 119. 4. 1.3(0) 2.2( ) 2.2(0) .3(0) .4( ) 23. 24. 2. 26. 1. 1.4( ) 1.2( ) .5( ) 1.1( ) .3( ) 24. 24. 3. 28. 27. .6(0) 1.6( ) .3(0) 1'.7( ) 1.7( ) 2. 60. 21. 119. 4. 1.3(0) 2.2( ) 2.1(0) AM .4(') 22. 23. 1. 25. 1'. 1.3( ) 1.2( ) .3( ) 1..1( ) .3( ) 24. 24. 3. 26. 27. .5(0) 1.6( ) .3(0) 1:.7( ) 1.7( ) 2. 60. 21. 93. 4. 1.4(0) 2.2( ) 2.1(0) 3.7( ) .4( ) 22. 22. 2. 24. 1s 1.3( ) 1.2( ) .4( ) 1.1( ) .3( ) 24. 24. 3. 28. 27. .3(0) 1.6( ) .3(0) 1.7( ) I'M ) 2. 60. 21. 83. 4. 1.4(0) 2.2( ) 2.1(0) 3.4( ) .4( ) 21. 21. 1. 23. 1. 1:.3( ) 1.1( ) .3( ) 1.1( ) .3(' ') 24. 24. 3. 26. 27. .2(0) 1.6( ) .3(0) 1.7( ) 1:.7( ) 2. 60. 21. 89. 3. 1:.4(0)' 2.2( ) 2.0(0) 3.5( ) .4( ) 20. 21. 1. 22. 0. 1..3( ) 1.1( ) .3( ) 1.0( ) .2( ) 24. 24. 3. 28. 27. AM 1.6( ) .3(0) 1.7( ) 1.7( ) 2. 60. 21, 81. 3. 1-4(0) 2.2( ) 2.0(0) 3.3( ) .4( ) 19. 20. 1. 21. 0. Y.2f ) 1.1( ) .2( ) 1.0( ) .2( ) 6. 8. 8. 18. 24. 1.5(S) 1.4(0) .3( ) 1.3( ) 1.2( ) 18. 1.3( ) 4. 6. 6.. 32. 38. .6(0) 3.3(0) 1.0( ) 1.4( ) 1.7( ) 6. 8. 8. 17. 23. 1.6(S) 1.4(0) .3( ) 1.3( ) 1.2( ) 18. 1.3( ) 4. 6. 6. 31. 38. .6(0) 3.4(0) 1.0( ) 1.4( ) 1.7( ) 6. 8. 8. 17. 22. 1.6(S) 1.4(0) .3( ) 1.3( ) 1.2( ) 18. 1.3( ) 4. 6. 6. 32. 38. .6(0) 3.5(0) 1.0( ) 1.4( ) 1.7( :) 6. 8. 8. 17. 21. 1.7(S) 1.4(0) .3( ) 1.2( ) 1.1( ) 17. 1.3( ) 4. 6. 6. 31. 38. .6(0) 33(0) 1.0( ) 1.4( ) 1.7( ) 6. 8. 8. 17. 21. 1.7.(S) 1.4(0) .3( ) 1.2( ) Mc ) 17. 1.3( ) 4. 6. 6. 32. 38. .6(0) 3.6(0) 1.0( ) 1.4( ,) 1.7( ) 6. 8. 8. 16. 20. 1.80) 1.4(0) .3( ) 1.2(,,) 1..1( ) 17. 1.2( ) 4. 6. 6. 31. 38. .5(0) 3.6(0) 1.0( ) 1.4( ) 1.7( ) 6. 8. 8. 16. 19. 1.8(S) 1.4(0) .3( .) 1.2( ) t.1( ) 16. 1.2( ) 2. 53., 21. 73. 3. 6. 8. 8. 16. 18. 1.4(0) 2.0( ) 1.8(0) 3.1( ) .3( ) 1.8(S) 1.4(0) .3( ) 1..2( ) 1.0( ) 18. 18. 0. 19. 0. 16. 1.2( ) 1.1( ) .2( ) 1.0( ) .2( ) 1.2( ) 1 55. 7. 3. 3. 5. 9. 4. 6. 6. 13. 21. .9( ) .6( ) .3(0) .7( ) 1.0( ) .5(0) 3.7(0) 1.0( ) .8( ) 1-2( ) 2. 45. 21. 67. 3. 6. 8. B. 15. 18. 1.4(0) 1.8( ) 1.8(0) 2.9( ) .3( ) LIM 1.3(0) .3( ) 1:.2( ) 1.0( ) 18. 18. 1. 19. 0. .15. 1.2( ) 1.0( ) .2( ) .9( ) .2( ) 1.2C } 2 0. 1. 4. 3. 7. 7. 4. 6. 6. 1 T. 18. .4( ) .6( ) .3(0) .8C ) .8( ) .5(0) 3.7(0) 1.0( ) .8( ) 1.1( ) 2. 40. 21. 59. 3. 6. 8. 8. 15. 17. 1.4(0) 1.7( ) 1.7(0) 2.7( ) .3C ) 1.8(S) 1.3(0) .3( ) 1.2( ) 1.0C ) 17. 17. 0. 18. 0. 15. 1.2( ) 1.0( ) .2( ) .9( ) .2( ) 1.2( ) 2 5. 4. 3. 3. 5. 6. 4. 6. 6. 11. 17. .7( ) .5( ) .2(0) .7( ) .8C ) AM 3.7(0) TM ) .7( ) 1.1( ) 2. 39. 21.. 59. 2. 6. 8. 8. 15. 17. 1.4(0) 1.7( ). LOW 2.7C ) .3C ) 1.8(S) 1.3(0) .3( ) 1.2( ) 1.0( ) 17. 17. 0. 18. 0. 15. 1.2( ) 1.0(') .2( ) .9( ) .1( ) 1.2( ) 2 10. 1. 3. 3. 6. 6. 4. 6. 6. 10. 17. .3( ) .5( ) .2(0) .7( ) .8( ) AM 3.7(0) 1.0( ) .7C ) 1.0( ) 2. 39. 21. 57. 2. 6. 8. 8. 15. U. 1-.4(0) 1:.6( ') 1.5(0) 2.6( ) .3( ) 1.8(S) 1.3(0) .3( ) 1.2( ) 1.0( ) 16. 17. 0. 17. 0. 15. 1.1( ) 1-0( ) .1( ) .9( ) .1( ) 1.2( ) 2 15. 3. 2. 3. 4. 5.. 4. 6. 6. 10. 16. .6( ) .4( ) .2(0) .6( ) .7( ) AM 3.6(0) 1.0( ) .7( ) 1.0( ) 2. 38. 2T. 56. 2. 6. 8. 8. 15. 16. 1.4(0) 1:.6(') 1.4(0) 2.6( ) .3( ) 1.8(S) 1:.2(0) .3( ) 1.1( ) 1.0( ) 16. 16. 0. 17, 0, 15. 11.1( ) Y.0( ) .1( ) .9( ) .0( ) 1.1( ) 2 20. T. 2. 3. S. 5. 4. b. 6. 9. 16. .3( ) .4( ) .2(0) .7( ) .7( ) AM 3.6(0) 1.0( ) .7( ) 1.0( ) 2. 38. 21. 55. 2. 6. 8. 8. 15. 16. TAM 1.6( ) 1:.3(0) 2.6( ) .3( ) 1.8(S) 1.2(0) .3( ) 1.1( ) 1.0( ) 16. 16. 0, 16, 0. 15. 0 0 2. 37. 21. 53. 2. 6. 8. 8. 14. 15. 1.4(0) 1.6( ) 1.0(0) 2.5( ) .3( ) 11.8(S) 1.1(0) .3( ) 1.1( ) 1.0( ) 15. 15. 0. 16. 0. 14. 1.1( ) 1.0( ) .1( ) .9( ) .0( ) 1.1( ) 1. 1'. 3.. 4. 4. 4. 6. 6. S. 15. .4( ) .3( ) AM .6( ) .6( ) .3(0) 3.6(0) 1.0( ) .7( ) 1.0( ) 2. 37. 21. 53. 2. 6. 8. 8. 14. 15. 1.4(0) 1.6( ) .9(0) 2.5( ) .3( ) 1.8(S) 1.:I M .3( ) 1.:1:( ) 1.0( 15. 15. 0. 15. 0. 14. 1.1( ) 1.0( ) .1(, ) .9( ) .0( ) 1.1( ) 1. 1:. 3. 4. 4. 4. 6. 6. 8. 15. ..3( ) .3( ) .1(0) .6( ) .6( ) .3(0) 3.5(0) 1.0( ) .6( ) 1.0( ) 2. 37. 21. 52. 2. 6. 8. 8. 14. 15. 1.4(0) t.6( ) .8(0) 2.5( ) .3( ) 1.8(S) 1.0(0) .3( ) 1.1( } 1.0( ) 15. 15. 0. 15. 0. 14. 1.1( ) 1.0( ) :1( ) .9( ) .0( ) 1.1( ) 1:. 1. 3. 3. 4. 4. 6. 6. B. 15. .3( ) .3( ) .1(0) .5( ) .6( ) .2(0) 3.5(0) 1.0( ) .6( ) 1.0( ) 2. 37. 2:1:. 52. 2. 6. 8. 8. 14. 15. 1.4(.0) 1..6( ) .7(0) 2.5( ) .3( ) 1.8(S) 1.0(0) .3( ) 1.1( ) 1.0( ) 15. 15. 0. 15. 0. 14. 1.1( ) 1.0( ) .1( ) .8( ) .0( ) 1.1( ) 1. 1. .3. 4. 4. 4. 6. 6. 8. 14. .3( .) .2( ) .1(0) .6( ) .6( ) .2(0) 3.5(0) 1:.0( ) .6( ) t.0( ) 2. 37. 21:. 52. 2. 6. 8. 8. 14.. 15. 1.4(0) 1.6( ) .6(0) 2.5( ) .2( ) 1.7(S) 1.0(0) .3( ) 1.1f ) t.0( ) 15. :15. 0. 15. 0. 14. 1.1( ) 1.0( ) .1( ) .8( ) .0( ) 1.1( ) 1. T. ' 3. 3. 4. 4. 6. 6. 8. 14. .3( ) .2( ) .1(0) .5( ) .6( ) .2(0) 3.4(0) 1':..0( ) .6( ) 1.0( ) 2. 37. 21. 52. 2.. 6. 8. 8. 14. 15. 1.4(o) 1.6( ) .5(0) 2.5( ) .2( ) 1.7(S) .9(o) .3( ) 1.1( ) .9( ) 15. 15. 0. 15. 0. 14. 1.1( ) 1.0( ) .1( ) .8( ) .0( ) 1.1( ) 0. 1. 3. 4. 4. 4. 6. 6. S. 14. .3( ) .2( ) .0(0) .6( ) .6( ) .1(0) 3.4(0) 1.0( ) .6( ) 1.0( ) 2. 37. 21. 51. 1. 6. 8. 8. 14. 14. 1.4(0) 1.6( ) .3(0) 2:5( ) .2( ) 1.7(S) .9(0) .3( ) 1.1( ) .9( ) 14. 151. 0.: 15. 0. 14. 1.1( ) .9( ) .1( ) .8( ) .0( ) I.1( ) �e� 2. 36. 21. 51. 11. 6. S. 8. 14. 14. 1.4(0) 1.6(') AM 2.5( } .2( ) 1.7(S) .8(0) .3( ) 1.1( ) .9( ) 14. 14. 0. 14. 0. 14. 1.1( ) .9( ) .0( ) .8( T .0( ) 1.1( ) 3 15. 0. 0. 1. 1. 3. 4. 6. 6. 7. 14. .2( ) .2( ) .5( ) .3( > .5( ) AM 3.3(0) 1.0( ) .6( ) .9( ) 2. 30. 13. 45. 1. 6. 8. 8. 14. 14. 1:.3(0) 1:.4( ) 1.4( ) 2.3( ) .2( ) 1.7(S) .7(0) .3( ) 1.1.( ) .9( ) 14. 14. 0. 14. 0. 14. 1.1( ) .9( ) .0( ) A( ) .0( ) 1.1( ) 3 20. 0. 0. 0. 0. 2. 4. 6. 6. 6. 13. .2( ) .2( ) .0( ) .2( ) .4( ) AM 3.2(0) 1.0( ) .5( ) .9( ) ' 2. 17. 1. 33. 1. 6. 8. S. 14. 14. 1.3(0) t.0( ) .3( ) 1.9( ) .2( ) 1.6(S) .7(0) .3( ) 1.1( ) .9( ) 14. 14. 0. 14. 0. 14. 1•.1( ) .9( ) .0( ) .8( ) .0( ) 1.1( ) 3 25. 0. 0. 0. 0. 1. 4. 6. 6. S. 12. .2( ) .2( ) .2( ) .2( ) .3( ) .0(0) 3.2(0) 1..0( ) .5( ) .9( ) 2. 14. 2. 28. 1. 6. 8. 8. 14. 14.. 1.3(0) .9( ) .5( ) 1.8( ) .2( ) 1.6(S) .6(0) .3( ) LU ) .9( ) 14. 14. 0. 14. 0. 14. 1.1( ) .9( ) .0( ) .8( ) M ) 1.1( 3 30. 0. 0. 0. 0. 1. 0. 6. 6. 1,. 9. .2( ) .1( ) .0( ) .2( ) .2( ) .2( ) 3.2(0) 1,.0( ) .2( ) .8( ) 2. 14. 2. 28. 1. 6. 8. 8. 14. 14. 1.3(0) .9( ) .5( ) 1.8( ) .2( ) 1.6(S) .6(0) .3( ) 1.1( ) .9( ) 14. 14. 0. 14. 0. 14. 1..1( ) .9( ) .0( ) .8( ) .0( ) 1.1( ) 3 35. 0. 0. 0. 0. 1. 0. 6. 6. 0. 7. .2( ) .1( ) .2( ) .2( ) .2( ) .0( ) 3.1(0) 1.0( ) .1( ) .6( ) 2. 10. 2. 24. 1. 6. 8. 8. 14. 14. 1.3(0) .8( ) .4( ) 1.7( ) .2( ) LAM .5(0) .3( ) Li( ) .9( ) 14. 14. 0. 14. 0. 14. 1.1( ) .9( ) .0( ) .8( ). .0( ) 1.1( ) 3 40. 0. 0. 0. 0- 0. 0. 6. 6. 1- 7. .2( ) .1( ) .0( ) .2( ) .2( ) .2( ) 3.1(0) 1.0( ) .2( ) .7( ) 2. 10. 2. 24. 1. 6. S. 8. 14. 14. 1,.3(0) .8( ) .4( ) 1.7( ) .2( ) 1.60) .5(0) .3( ) t.i( ) .9( ) 14. 14. 0. 14. -0. 14. 3� 2. 10. 1. 24. 1. 5. 8. 8. 14. 14. 1.3(0) .8( ) .4( ) 1.6( ) .2( ) 1-.5(S) .4(0) .3( ) 1.1( ) .9( ) 14. 14. 0. 14. 0. 14. 1.0( ) .9( ) .0( ) .8( ) .0( ) 11.1( ) 3 55. 0. 0. 0. 0. 0. 0. 6. 6. 0. 7.. .2( ) .t( ) .2( ) .1( > .1( ) .0( ) 3.0(0) 1.0( ) .1( ) .7( ) 2. 10. 1. 24. 1. 5. 8. 8. 14. 14. 1.3(0) .8( ) .4( ) 1-6( ) .2( > 1.5(S) .3(0) .3( ) 1.1( ) .9( ) 14. 14. 0. 14. 0. 14. 1.0( ) .9( ) .0( T .8( ) .0( > 1.1(, ) 4 0. 0. 0. 0. 0. 0. 0. 6. 6. 0. 7. .2( ) .1( ) .0( ) .2( ) .1( ) .1(.) 2.9(0) 1.0( ) .It ) .7( ) 2. 10. 1. 24. 1. 5.. 8. 8., 13. 14. 1.3(0) .8( ) A( ) 1.6( ) .2( ) 1.5(S) .3(0) .3( ) 1.1( ) .9( ) 14. 14. 0. 14. 0. 13. 1.0( ) .9( ) .0( ) .8( ) A( ) 1.1( ) 4 5. 0. 0. 0. 0. 0. 0. 6. 6. 0. 7. .1{ ) .1( ) .1( ) .1( ) .1( ) .0( ) 2.9(0) 1.0( ) .1( ) .7( ) 2. 10. 1. 24. 1. 5. 8. 8. 13. 14. 1.2(0) .8( ) .4( ) 1.6( ) .2( ) 1.4(S) .2(0) .3( ). 1.1( ) .9( ) 14. 14. 0. 14. 0. 13. 1.0( ) .9( ) .0( ) .8( ) .0( ) 1.1( ) 4 10. 0. 0. 0. 0. 0. 0. 6. 6. 0. 7. .1( ) .1( ) .0( ) .1( ) .A( ) .1( ) 2.8(0) 1.0( ) .1( ) .7( ) 2. 10. 1. 23. 1. 5. 8. 8. -13. 14. 1.2(0) .8( ) .4( ) 1.6( ) .2( ) 1.4(S) .2(0) .3( ) 1.1( ) .9( ) 14. U. 0. 14. 0. 13. 1 1.0( ) .9( ) .0( ) .8( ) .0( ) 1.1( ) COTTONWOOD FARMS OVERALL DRAINAGE PLAN 25 YEAR EVENT RBD FILE NO. 50400125.DAT PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS *** CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (HR/MIN) 322 8. 1.3 IA 1 30. 320 9. .6 0 40. 330 8. 1..5 .0 0 35. ® 323 321 8. 6. .3 .1 1.8 1 45. 2 5.LP._-�5---- 2 1 1 2 3 4 WATERSHED 0 COTTONWOOD FARMS OVERALL DRAINAGE PLAN 101,YEAR EVENT RBD FILE NO. 50400100.DAT' 50 0 0 5.0 1 1.0 25 5 0.60 0.% 1.." 1.68 3.00 5.40 9.00 3.72 2.16 1.56 1.20 0.84 0.60 0.48 0.36 0.36 0.24 0.24 0.24 0.24 0.24 0.24 0.12 0.12 0.00 -2 .016 .250 0.1 0.5 0,.5 0.5 1 201 320 31514.75 14.5.0183 1 202 322 70022.90 50.0165 1 203 307 100032.25 .80.0100 1 204 301 90019.00 80.0100 1 205 303 650 5.85 47.0105' 1 206 306 650 7.70 70.0080 1,207 311 65013.80 .57,0235 1 208 313 95041.30 55.0170 1 209 321 43523.40 40.0085 1 210 324 400 8.90 40.0100 1 211 325 70010.90 40.0200 1 '212 328 400 4.20 70.0380 1 213 346 700 9.15 70.0055 1 214 330 2200 1.62 90.0110 1 215 331 35 0.70 90.0270 1 216 329 35 0.% 90.0060 0 0 0 301 302 0 2 0 302 304 0 1 0 303 304 0 2 0 304 305 0 2 0 305 309 0 1 0 306 309 0 2 0 307 308 0 2 0 308 310 0 1 0 309 310 0 2 0 310 312 0 2 0 31:1 312 0 2 0 312 340 0 2 0 313 312 0 2 0 320 321 0 1 0 321 324 8 2 0.0 0.0 1.52 5.5 0 322 323 0 2 0 323 324 0 1 0 324 331 0 2 0 325 326 01 0 326 327 0 2 0 327 .329 0 1 0 328 329 0 2 0 329 340 0 1 0 330 324 0 2 0 331 325 0 2 0 340 0 0 2 1 .0018 2.47 96 0.0032 0 0 0.013 2.47 4.00 260 0.0021 2 2 0.035 5.00 1.25 10 0.0017 0 0 0.013 1.25 2.47 40 �0.0070 0 0 0.013 2.47 4.00 460 0.0021 2 2 0.035 5.00 1.25 10 0.0038 0 0 0.013 1.25 1.50 120 0.0033 0 0 0.013 1.50 0 1200 0.0050 4 4 0.035 1.10 2.25 75 0.0211 0 0 0.013 2.25 2.50 853 0.0123 0 0 0..013 2.50 1.00 315 0.0020 0 0 0.013 1.00 3.00 480 -0.0100 0 0 0.013 3.00 2.25 680 0.0038 0 0 0.013 2.25 5.00 MO 0.0050 4 4 0.035 5.00 0.1 300 0.0053 0 0 0.013 0.10 0.05 0.0 0.31 2.6 0.79 4.3 2.55 6.4 3.85 7.3 5.40 8.0 1.50 10 0.0100 0 0 0.013 1.50 0 1500 0.0142 50 0 0.016 1.50 3.00 120 0.0050 0 0 0.013 3.00 4.00 420 0.0050 3 3 0.035 3:00 3.50 100 0.0050 0 0 0.013 3.50 4.00 750 0.0050 3 3 0.035 3.00 1.75 100 0.0100 0 0 0.013 1.75 5.00 240 0.0050 4 4 0.035 4.00 1.50 SO 0.0050 0 0 0.013 1.50 3.00 80 0.0050 0 0 0.013 3.00 5.20 130 0.001" 0 0 0.013 5.20 0 1 308 6. 328 17. 327 64.: 313 21. 311 2. 310 38. 329 80. 312 61. 1 340 119. ENDPROGRAM PROGRAM CALLED r r r r r r r r r 1.0 2 25. 1.8 .0 0 35. 2.0 0 40. 2:3 2.2 1 15. 1.0 1.4 2 5. 1.7 1 20. 1.9 0 40. 2.3 0 40. 5.2 .8 0 50. 0 ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL —VERSION PC.1 DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA WATER, RESOURCES ENGINEEERS,, INC. (SEPTEMBER 1970) UPDATED BY OTAPE OR 'DISK ASSIGNMENTS C UNIVERSITY OF FLORIDA (JUNE 1973) HYDROLOGIC ENGINEERINGCENTER, CORPS -OF ENGINEERS MISSOURI'RI,VER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) JIN(T) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) J1N(7) JIN(8) JIN(9) JIN0 0) 2 JOUT0) 1 0 JOUT(2) JOUTM 0 JOUT(4) 0 JOUT(5) 0 JOUT(6) D JOUT(7) 0 JOUT(8) 0 JOUT(9). 0 JOUT0 0) 1 2 0 0 !0 0 0 ol 0 0 NSCRAT O ) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5) '1 3 4 0 0 0 WATERSHED PROGRAM CALLED ** ENTRY NOE TO RUNOFF MODEL *** COTTONWOOD FARMS OVERALL DRAINAGE PLAN 100 YEAR EVENT RBD FILE NO. 50400100.DAT ONUMBER OF TIME' STEPS 50 OINTEGRATION TIME INTERVAL (MINUTES) 5.00 1 1:0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH OFOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES OFOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR .60 .96 1." 1.68 3.00 5.40 9.00 3.72 2.16 1.56 1.20 .84 .60 .48 .36 .36 .24 .24 .24 .24 �. .24 .24 .12 .12 .00 202 .322 700. 22.9 50.0 .0165 .016 .250 .100 .500 .50 .50 .00180 1 203 307 1000. 32.3 80.0 .0100 .016 .250 .100 .500 .50 :50 .00180 1 204 301 900. 19.0 80.0 .0100 .016 .250 .100 .500 .50 .50 .00180 1 205 303 650. 5.8 47.0 .0105 .016 .250 .100 .500 .50 .50 .00180 1 206 306 650. 7..7 70.0 .0080 .016 .250 .100 .500 .50 .50 .00180 1 207 311 650. 13.8 57.0 .0235 .016 .250 .100. .500 .50 .50 .00180 1 208 313 950. 411.3 55.0 .0170 .016 .250 .100 .500 .50 .50 .00180 1 209 321 435. 23..4. 40.0 .0085 .016 .250 .100 .500 .50 .50 .00180 1 210 324 400. 8.9 40.0 .0100 .016 .250 .100 .500 .50 .50 .00180 1 1 211 325 700. 10.9 40.0 .0200 .016 .250 .100 .500 .50 .50 .00180 1 212 328 400. 4.2 70.0 .0380 .016 .250 .100 .500 .50 50 .00180 1 213 340 700. 9.1 70.0 .0055 .0.16 .250 .100 .500 .50 .50 .00180 1 214 330 2200. U.6 90.0 .01`10 .016 .250 .100 .500 .50 .50 .00180 1 215 331 35. .7 90.0 .0270 .016 .250 .100 .500 .50 .50 .00180 1 216 329 35. 1.0 90.0 .0060 .016 .250 .100 .500 .50 .50 .00180 1 OTOTAL NUMBER OF SUBCATCHMENTS, 16 OTOTAL TRIBUTARY AREA (ACRES), 217.38 ,1 COTTONWOOD FARMS OVERALL DRAINAGE PLAN 100 YEAR EVENT RBD FILE NO. 50400100.DAT *** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL *** WATERSHED AREA (ACRES) 217.380 TOTAL RAINFALL (INCHES) 2.920 TOTAL INFILTRATION (INCHES) .363 TOTAL WATERSHED OUTFLOW (INCHES) 2.154 TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .403 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .003 1 r COTTONWOOD FARMS OVERALL DRAINAGE PLAN 100 YEAR EVENT RBD FILE NO. 50400100.DAT WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER GUTTER NDP MP OR DIM LENGTH SLOPE HORI2 TO VERT MANNING DEPTH JK ' NUMBER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 301 302 0 2 PIPE 2.5 96. .0032 .0 .0 .013 2.47 0 302 304 0 1 CHANNEL 4.0 260. .0021 2.0 2.0 .035 5.00 0 303 304 0 2 PIPE 1.3 10. .0017 .0 .0 .013 1.25 0 304 305 0 2 PIPE 2.5 40. .0070 .0 .0 .013 2.47 0 305 309 0 1 CHANNEL 4.0 460. .0021 2:0 2.0 .035 5.00 0 306 309 0 2 PIPE 1.3 10. .0038 .0 .0 .013 1.25 0 307 308 0 2 PIPE 1.5 120. .0033 .0 .0 .013 11.50 0 308 310 0 1 CHANNEL .0 1200. .0050 4.0 4..0 .035' 1.10 0 309 310 0 2 PIPE 2.3 75. .0211 .0 .0 .013 2.25 0 ® 37/86 325 326 0 1 326 327 0 2 327 329 0 T 328 329 0 2 329 340 0 1 330 324 0 2 331 325 0 2 340 0 0 2 OTOTAL NUMBER OF GUTTERS/PIPES, 26 r 1 CHANNEL 4.0 420. .0050 3.0 3.0 .035 3.00 0 PIPE 3.5 100. .0050 .0 .0 .013 3.50 0 CHANNEL 4.0 750. .0050 3.0 3.0 .035 3.00 0 PIPE 1.8 100. :0100 .0 .0 .013 1.75 0 CHANNEL m 240. .0050 4.0 4.0 .035 4.00 0 PIPE 1.5 80. .0050 .0 .0 .013 1.50 0 PIPE 3.0 80. .0050 .0 .0 .013 3.00 0 PIPE 5.2 130. .0015 .0 .0 .013 5.20 0 COTTONUM FARMS OVERALL DRAINAGE PLAN 100 YEAR EVENT RBD FILE NO. 50400100.DAT r ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES GUTTER TRIBUTARY GUTTER/PIPE TRIBUTARY SUBAREA D.A.(AC) 301 0 0 0 0 0 0 0 0 0 0 204 0 0 0 0 0 0 0 0 0 19.0 302 301 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19.0 303 0 0 0 0 0 0 0 0 0 0 205 0 0 0 0 0 0 0 0 0 5.& 304 302 303 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24.9 305 304 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24.9 306 0 0 0 0 0 0 0 0 0 0 206 0 0 0 0 0 0 0 0 0 7.7 307 0 0 0 0 0 0 0 0 0 0 203 0 0 0 0 0 0 0 0 0 32.3 308 309 307 305 0 306 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 32.3 0 0 0 0 0 0 0 0 32.5 310 308 309 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64.8 311 0 0 0 0 0 0 0 0 0 0 207 0 0 0 0 0 0 0 0 0 13.8 312 310 311 313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 119.9 313 0 0 0 0 0 0 0 0 0 0 208 0 0 0 0 0 0 0 0 0 41.3 320 0 0 0 0 0 0 0 0 0 0 201 0 0 0 0 0 0 0 0 0 14.8 321 320 0 0 0 0 0 0 0 0 0 209 0 0 0 0 0 0 0 0 0 38.2 322 0 0 0 0 0 0 0 0 0 0 202 0 0 0 0 0 0 0 0 0 22.9 323 324 322 321 0 323 0 330 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 210 0 0 0 0 0 0 0 0 0 0 0 0 22.9 0 �O 0 0 0 0 71.6 325 331 0 0 0 0 0 0 0 0 0 211 0 0 0 0 0 0 0 0 0 83.2 326 325 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 83.2 u 1 COTTONWOOD FARMS OVERALL DRAINAGE PLAN 100 YEAR EVENT RBD FILE NO. 50400100.DAT ' HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 26 CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DETENSION DAN. DISCHARGE INCLUDES SPILLWAY OUTFLOW'. (1) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER TIME(HR/MIN) (0) 301 DENOTES 302 STORAGE IN 303 AC -FT FOR SURCHARGED GUTTER 304 305 306 307 308 309 311 312 313 340 320 321 322 323 324 326 327 328 329 330 331 r 0 5. 0. 0. 0. 0. 0. 0. 0. 0. 0. -0( ) -0( ) .0( ) -0( ) -0( ) -0( ? -0( ) -0( ) -0( ) 0. -0( ) 0. -0( 0. ) -0( 0. - ) -0( ) 0. -0( ) 0. .0(S) 0. .0( ) 0. -0( 0. ) -0( ) 0. 0. 0. 0. 0. 0. -0( ) -0( ) -0( ) -0( ) -0( ) A( ) 0 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. -1( ) -0( ) -1( ) -0( ) -0( ) -1( ) .1( ) -0( ) -0( ) 0. .1( ) 0. -0( 0. ) -0( 0. ) -0( ) 0. -0( ) 0. .O(S) -1( ) 0; 0. -0( 0.. ) .1( ) 0. O. 0. 0. 0. 0. .O( ) 'O( ) .0( ) .0( ) "0( ) 0 15. 4. 1. 2. 3. 1. 3. 4. 0. 3. .7( ) .3( ) -9( ) -5( ) .2( ) .7( ) -9( ) .3( ) .4( ) 2. .0(0) 5. -5( 3. ) .6( 6. ) -8( ) 0. -0( ) 0. .O(S) 4. .7( ) 1. -1( S. ) .6( ) 2. 0. 2. 1. 3. 4. M ) -1( ) 45( ) .2( ) -7( ) .6( ) 0 20. 12. 8. 3. 11. 5. 4. 6. 2. 11. 1.3( ) -9( ) .0(0) 1.0( ) -7( ) .0(0) .0(0) -7( ) -7( ) 2. 20. 13. 30. 0. 0. 11. 4. 10. .O(0) 1.1( ) 1.3( ) 1.9( ) .1( ) .O(S) 1.3( ) -2( ) .9( ) 12. 4. 5. 6. 2. 11. 1.0(_) -5( ) -7( ) -5( ) -5( ) 1.0( - 0 25. 24.- - 27.- 3.- - 29.- 18. 4.- - 6.- - 4.- 20.- 310 325 22. 3f3` .3(0) 2.0( ) .3(0) .0(0) .4(,;) .3(S) .2(0) .3( ) 2.1( ) 1.8( ) , 53. 35. 17. 46. 8. 42. 2.2( ) 1.5( ) 1.5(_) 1.5( ) AM 2.2( ) 0 35. 24. 24. 3. 26. 27. 4. 6. 6. 30. 38. .6(0) 1.6( ) .2(0) 1.7( ) 1.7( ) .4(0) 1.3(0) .9( ) 1.3( ) 1.7( ) 2. 63. 21. 119. 10. 4. 1'1. 11. 51. 96. ' .7(0) 2.3( ) 1.1(0) .4(0) .7( ) .6(S) .6(0) M. ) .0(0) 2.4( ) 76. 73. 17. Be. 8. 51. .1(0) 2.1( ) .1(0) 2.0( ) .0(0) .1(0) i0 40. 24. 24. 3. 28. 27. 4. 6. 6. 33. 37. 1.1(0) 1.6( ) AM 1.7( ) 1.7( ) .6(0) 2.3(0) .9( ) 1.4( ) 1.7( ) 2. 58. 21. 119. 14. 5. 11. 11. 51. 86. 1.1(0) 2.2( ) 2.0(0) .9(0) .8( ) 1.1(S) 1.1(0.) .4( ) .0(0) 2.2( ) 76. 76. 17. 101. 8. 51. .2(0) 2.1( ) .1(0) 2.1( ) .0(0) .1(0) r0 45. 24. 24. 3. 26. 27. 4. 6. 6. 30. 38. 1.4(0) 1.6( ) .5(0) 1.7( ) 1.7( ) AM 3.1(0) .9( ) 1.3( ) 1.7( ) 2. 61.. 21. 119. 13. S. 1.1. 11. 43, 72. 1.4(0) 2.2( ) 2.6(0) 1.4(0) .8( ) 1.4(S) 1.4(0) .4( ) 2.3( ) 2.1( ) 76. 76. 17. 95. 8. 51. .2(0) 2.1( ) .1(0) 2.1( ) AM .1(0) 0 50. 24. 24. 3. 28. 27. 4. 6. 6. 32. 37. 1..6(0) 1.6( ) .5(0) 1.7( ) 1.7( ) .8(0) 3.7(0) .9( ) 1.4( ) 1.7( ) 2. 1.5(0) 59. 2.2( 21. ) 3.0(0) 119. 1.8(0) 12. .8( ), 6. 1.7(S) 11. 1.6(0) 11. .4( ) 31. 1.8( ) 70. 2.0( ) 76. 76. 17. 97. 3. 51. .2(0) 2.1( ) .0(0) 2.1( ) ..7( ) AM 0 55. 24. 24. 3. 26. 27. 4. 6. 6. 30. 38. 1.7(0) 1.6( ) .6(0) 1.7( ) 1.7( ) .9(0) 4.1(0) .9( ) 1.4( ) 1.7( ) 2. 1,.7(0) 60. 2.2( 21. ) 3.3(0) 119. 2.1(0) 11. .7( ) 6. 2.00), 11. 1.8(0) 11. .4( ) 31. 1.8( ) 56. 1.8( ) 76. 76. 7. 88. 1. 33. .1(.0) 2.1( ) .8( ) 2.0( ) .3( ) 1.9( ) 1 0. 24. 24. 3. 28. 27. 4. 6. 6. 32'. 38. 1.7(0) 1.6( ) .6(0) 1.7( ) 1.7( ) 1.0(0) 4.4(0) .9( ) 1.4( ) 1.7( ) 2. 60. 21. 119. 11. 6. 11. 11. 27. 41. 11.8(0) 2.2( ) 3.6(0) 2.4(0), ..7( ) 2.2(S) 1.9(0) .4( ) 1.6( ) 1.6( ) 51. 64.. 3. 72. 2. 26. 2.2( ') 1:.9( ) .5( ) 1.8( ) .5( ) 1.6( ) ® 1 5. 24. 24. 3. 26. 27. 4. 6. 6. 30. 38. 2.0(0) 2.2( ) 3.8(0) 2.4(0) .6( ) 2.5(S) 2.0(0) AC ) 1.5( ) 1.5( ) 42. 37. 1. 40. 1. 24. 1.9( ) 1.5( ) AC ) 1.4( ) M ) 1.5( ) 1 15. 24. 24. 3. 26. 27. 4. 6. 6. 30. 38. 1.6(0) IM ) .6(0) 1.7( ) 1.7( ) 1:0(0) 5.0(0) b.0( ) 1.4( ) 1.7( ) 2. 60. 21. 119. 8. 6. 11:. 11. 25.: 32. 2.0(0) 2.2( ) 3.9(0) 2.3(0) .6( ) 2.6CS) 2.1(0) AC ) 1.6( ) 1.4( ) 26. 34. 3. 38. 0. 26. 1.5( ) Lk ) .5( ) 1.3( ) .1( ) 1.6( ) 1 20. 24. 24. 3. 28. 27. 4. 6. 6. 32. 38. 1.5(0) 1.6C ) .6(0) 1.7( ) 1.7( ) 1:0(0) 5.1(0) 1.0( ) 1.4( ) 1.7( ) 2. 2.1(0) 60. 2.2( 211. ) 3.9(0) 119. 2.2(0) S. .6( 6. ) 2.7(S) 11. 2.1(0) 11. AC ) 22. 1.5( 30. ) 1.4( } 36. 31.. 1.. 34. 1. 22. 1.8( ) TAC ) .3( ) 1.3( ) .3( ) 1.5( ) ' 1 25. 24. 24. 3. 26. 27. 4. 6. 6. 31. 38. 1.4(0) 1.6( ) .6(0) 1.7( ) 1.7( ) 1:0(0) 5.2(0) 1.0( ) 1.4( ) 1.7( ) 2. 2.140) 60. 2.2( 21. ) 3.9(0) 119. 2.1(0) 7. .6( 7. ) 2.7(S) 11. 2.1(0) 11. AC ) 24. 1.5( 29. ) 1.3( ) 24. 30. 2. 32. 0. 24. 1.4( ) L.4( ) AC ) 1.2( ) .2( ) 1.5( ) 1 .30. 24. 24. 3. 28. 27. 4. 6. 6. 32. 38. 1.3(0) 1.6(_) .6(0) 1.7( ) 1.7( ). 1.0(0) 5.3(0) 1.0( ) 1.4( ) 1.7( ) 2. 2.1(0) 60. 2.2C 21. ) 3.9(0) 119. 1.9(0) 7. .6( 7. ) 2.8(S) 11•. 2.1(0) 11., AC ) 21. 1.4( 27. ) 1.3(.) 32. 28. 1. 30. 0. 22. 1•.6( ) 1.3( ) .2( ) 1.2( ) .3( ) MC ) 1 35. 24. 24. 3. 27. 27. 4. 6. 6. 31. 38. 1.2(0) 1..6( ) .6(0) 1.7( ) 1.7( ) 1.0(0) 5.3(0) 1.0( ) 1.4( ) 1.7( ) 2. 2.1(0) 60. 2.2( 21. ) 3.9(0) 119. 1.7(0) 6. .5( 7. ) 2.9(S) 1 T. 2.1(0) 11., .4( ) 23. 1.5( 26. ) 1.3( ) 23. 27. 1�. 29. 0., 23. TAC) 1.3( ,) .3( ) 1.2( ) .2( ) 1.5( ) 1 40. 24. 24. 3. 27. 27. 4. 6. 6.. 32. M. 1.1(0) 1'M ) .6(0) 1.7( ) 1.7( ) 1:0(0) 5.4(0) 1.0( ) 1.4( ) 1.7( ) 2. 60. 211. 119. 6. 7. 11:. 11. 21. 26. 2.2(0) 2.2(. ) 3.9(0) 1.5(0) .5( ) 2.9(S) 2.1(0) AC ) 1.4( ) 1.3( ) 29. 26. 1. 28. 0. 21. 1.6( ) 1,.3( ) .2( ) 1.2( > .2( ) 1.4( ) 1 45.. 24.---- 24.1- 3.,--- 27.-- 27.-- 4.---- 6.•--- 6.-- - 31.-- 38.-- 40/ TZ 2.2(0) 2.2( ) 3.8(0) 1.1(0) .5( ) 3.0(S) 2.0(0) M ) 1.4( ) 1.2( ) 27. 25. 1. 26. 0. 21. LU ) 1:.2() .3( ) 1.1( ) .2( ) 1.4E 24. 24. 3. 27. 27. 4. 6. 6. 31. 38. .7(0) 1'.6( ) .6(0) 1.7( ) 1.:7( ) .9(0) 5.5(0) 1,.0( ) IM ) 1.7( ) 2. 60. 21. 119. 5. 7. 11. 11. 21. 24. 2.2(0) 2.2( ) 3.8(0) .9(0) .5( ) LI M 2.0(0) M ) 1.4( ) 1.2( 22. 25. 1. 26. 0. 21. 1.3( ) 1,2( ) .3( ) 1.11( ) .2( ) 1.4( ) 24. 24. 3. 27. 27. 4. 6. 6. 32. 38. .5(0) 1i.6( ) .6(0) 1.7( ) 1.7( ) .9(0) 5.5(0) 1.0( ) 1.4( ) 1.7( ) 2. 60. 21. 119. 5. 7. 11. 11. 20. 23. 2.2(0) 2.2( ) 3.7(0) .7(0) .5( ) LI M 2.0(0) M ) 1.4( ) 1.2( ) 25. 24. 0. 25. 0. 21. 1.4( ) 1..2(') .2( ) 1.1( ) .2( ) 1.4( ) 24. 24. 3. 27. 27. 4. 6. 6. 31. 38. AM 1,.6( ) .6(0) 1.7( ) 1.:7( ) .9(0) 5.5(0) 1,.0( ) 1.4( ) 1.7( ) 2. 60. 21. 119. - 5. 7. 1:1. 11. 21. 23. 2.2(0) 2.2( ) 3.6(0) .5(0) M ) 3 1(S) 1:.9(0) AC ) 1.4( ) 1.2( ) 21. 23. 0. 24. 0. 20. 1..3( ) 1.,2( ) .2(' ') 1.1( ) .1( ) 1.4( ) 24. 24. 3. 27. 27. 4. b,. 6. 32. 38. .2(0) 1:.6(' ) .5(0) 1.7( ) 1.7( ) .8(0) 5..5(0) 1.0( ) 1.4( ) 1.7( ) 2. 60. 21. 119. 4. 7. 11. 11. 20. 22. 2.2(0) 2.2( ) 3.5(0) .3(0) M ) 3 1(S) 1.9(0) M ) 1.4( ) 1.2( ) 23. 22. 0. 23. 0. 20. 1:.4O 1.2O .1O 11O 1O 1.4O 24. 24. 3. 27. 27. 4. 6. 6. 31. 38. AM IM ) .540) 1.7( ) 1.7( ) AM 5.5(0) 1.0( ) 1.4( ) 1.7( ) 2. 60. 21. 119. 4. 7. 1.1. 11. 20. 21. 2.2(0) 2.2( ) 3.5(0) .0(0) M ) 3.2(S) 1.8(0) .4( ) 1.4( ) 1.1( ) 20. 22. 0. 22. 0. 20. 11.3(' ') 1.2( ) .1( ) 1.0( ) .0( ) IM ) 8. 14. 3. 18. 22. 4. 6. 6. 27. 35. 1.0( ) 1..3( ) .5(0) 1.3( ) 1..6( ) .8(0) 5..5(0) 1.0( ) 1.3( ) 1.6( ) 2. 58. 21. 87. 4. 7. 11. 11. 19. 21. 2.2(0) 2.2(') 3.4(0) 3.5( ) M ) 3.2(S) 1.8(0) M ) 1.3.( ) 1.1( ) 22. 21. 0. 22. 0. 20. U.3( ) t1 ( ) .1( ) 1.0( ) .0( ) 1.4( ) 0. 3. 3. 6. 13. 4. 6. 6. 17. 26. 1 1 2.2(0) 1.7( ) 3.2(0) 2.9( ) .4( ) 3.2(S) 1.7(0) M ) 1.3( ) 1.1( 21. 21. 0. 21. 0. 20. 1.3( ) 1.1( ) .1( ) 1.0( ) -0( ) 1.3( ) 1 2 35. 0. 1. 3. 4. 5. 4. 6. 6. 9. 16. .2( ) .3( ) .5(0) .6:( ) .7( ) .7(0) 5.4(0) 1.0( ) M ) 1.0( ) 2. 38. 21. 56. 3. 7. 11. 11. 19. 20. ' 2.2(0) 1.6( ) 3.1(0) 2.6( ) M ) 3.2(S) LUO) M ) 1.3( ) 1.1( ) 20. 21. 0. 21. 0. 19. 1.3( ) 1.1( ) .1( ) 1..0( ) .0( ) 1.3( ) ' 2 40. 1. 1. 3. 4. 4. 4. 6. 6. 9. 15. .4( ) .3( ) AM .6( ) .6( ) .7(0) 5.4(0) 1.0( ) .7( ) 1.0( ) 2. 37. 21. 61. 3. 7. 11. 11. 19. 20. 2.2(0) 1.6( ) 3.0(0) 2.8( ) M ) 3.2(S) 1.6(0) .4( ) 1.3( ) 1.1( ) 21. 20. 0. 20. 0. 19. 1.3( ) 1.1( ) .1( ) 1.0( ) .0( ) 1.3( ) 1 2 45.. 1. 1. 3. 4. 4. 4. 6. 6. 8. 15. .3( ) .3( ) AM .6( ) .6( ) .7(0) 5.3(0) 1.0( ) .6( ) 1.0( ) 2. 2.2(0) 37. 1.6( 21. ) 2.9(0) 56. 2.6( 3. ) M 7. ) 3.2(S) 11. 1.5(0) 11. M ) 19. 1.3( 20. ) 1.1( ) 20. 20. 0. 20. 0. 19. 1.3( ) 1.1( ) .1( ) 1.0( ) .0( ) 1.3( ') 1 2 50. 1. 1. 3. 4. 4. 4. 6. 6. 8. 15. .3( ) .2( ) .4(0) .6( ) .6( } .6(0) 5.3(0) 1.0.( ) M ) 1.0( ) 1 2. 2.2(0) 37. 1.6( 21. ) 2.7(0) '59. 2.7( 3. ) .3( 7. ) 3.2(S) 11. 1.4(0) 11. .4.( ) 19. 1.3( 20. ) 1.1( ) 20. 20. 0. 20. 0. 19. 1.3( ) 1.1( ) .1( ) 1.0( ) .0( ) 1.3( ) 1 2 55. 1. 1. 3. 3. 4. 4. 6. 6. 8. 15. .3( ) .2( ) AM .5( ) .6( ) .6(0) 5.3(0) 1.0( ) .6( ) 1.0( ) 2. 2.2(0) 37. 1.6( 21. ) 2.6(0) 56. 2.6( 3. ) .3( 7. ) 3.2(S) 11. 1.4(0) 11. M ) 19.. 1.3( 20. ) 1.1( ) 19. 20. 0. 20. 0. 19. 1.2( ) 1.1( ) .1( ) 1.0( ) .0( ) Y.3( ) 1 3 0. 1. 1. 3. 4. 4. 4. 6. 6. 8. 14. .3( ) .2( ) AM .6( ) .6( ) .6(0) 5.2(0) 1.0( ) .6( .) 1.0( ) 2. 37. 21. 58. 3. 7. 11. 1l1. 19. 20. ,. 2.2(0) 1.6( ) 2.5(0) 2.7( ) .3( ) 3.2(S) 1.3(0) .4( ) 1.3( ) 1.1( ) W. 20. 0. 20. 0. 19. 1.3( ) 1.1( ) A( ) 1.0( ) -0( ) 1.3( ) ' 3 S. 0._. 1.-- - 3.•--- 3.-- 4.- 4.^-- 6.- - 66- 8.- 14.- 0 2.1(0) 1.6( ) 2.3(0) 2.6( ) :3( ) 3.1(.S) 1.2(0) .4( ) 1.3( ) 1.1( ) 20. 19. 0. 20. 0. 19. 1.3( ) 1. T( ) .0( ) 11.0( ) A( ) 1.3( ) 3 15. 0. 0. 3. 3. 3. 4. 6. 6. S. 14. .2( ) .2( ) .3(0) .5( ) .6( ) .5(0) 5.1(0) 1.0( ) .6( } 1.0( ) 2. 36. 21. 56. 2. 7. 11. 11. 19. 19. 2.1(0) 1.6( ) 2.2(0) 2.6( ) .3( ) 3.1(S) 1.1(0) .4( ) 1.3( ) 1.1( ) 19. 19. 0. 19. 0. 19. 1.2( ) 1.11( ) .0( ) 1.0( ) .0( ) 1.3( ) 3 20. 0. 0. 3. 3. 3. 4. 6. 6. B. 14. .2( ) .2( ) .3(0) .5( ) .6( ) .5(0) 5.1(0) 1.0( ) .6( ) 1.0( ) 2. 2.1(0), 36. 1.6( 21. ) 2.0(0) 56. 2.6( 2. ) .3( 7. ) 3.1(S) 11. 1.0(0) 11. .4( ) 19. 1.3( 19. ) 1.1( ) 19. 19. 0. 19. 0. 19. 1.2( ) 1.T( ) .0( ) 1.0( ) .0( ) 1.3( ) 3 25. 0. 0. 3. 3. 3. 4. 6. 6. 7. 14. .2( ) .2( ) .3(0) .5( ) .6( ) AM 5.1(0) 1.0( ) .6( ) 1.0( ) 2. 2.1(0) 36. 1.6( 21. ) 1.9(0) 56. 2.6( 2. ) .3( 7. ) 3.1(S) 11. 1.0(0) 11'. .4( ) 19. 1.3( 19. ) 1.1( 19. 19. 0. 19. 0. 19. 1.2( ) 1.1( ) .0(') 1.0( ) .0( ) 1.3( ) 3 30. 0. 0. 3. 3. 3. 4. 6. 6. S. 14. .2( ) .2( ) .3(0) .5( ) .6( ) AM 5.0(0) 1.0( ) .6( ) 1.0( ) 2. 2.1(0) 36. 1.6( 21. ) 1.8(0) 56. 2.6( 2. ) .3( 7. ) 3.10) 11. .9(0) 11. .4( ) 19. 1.3( 19. ) 1.1( ) 19. 19. 0. 19. 0. 19. 1.2( ) 1.1( ) .0( ) 1.0( ) .0( ) 1.3( ) 3 35. 0. 0. 3. 3. 3. 4. 6. 6. 7. 14. .2( ) .1( ) :2(0) .5( ) .6( ) AM 5.0(0) 1.0( ) .6( ) 1.0( ) 2. 2.1(0) 36. 1.6( 21. ) t.7(0) 55. 2.6( 2. ) .3( 7. ) 3.1(S) 11. ,8(0) 11. .4( ) 19. 1.3( 19. ) 1.1( ) 19. 19. 0. 19. 0. 19. 1.2( ) 1.1( ) .0( ) 1.0( ) .0( ) 1.3( ) 3 40. 0. 0. 3. 3. 3. 4. 6. 6. 8. 14. .2( ) .1( ) .2(0) .5( ) .6( ) .3(0) 4.9(0) 1.0( ) .6( ) 1.0( ) 2. 2.1(0) 36. 1M 21. ) 1:.5(0) 55. 2.6( 2. ) .3( 7. ) 3.10) 11. .8(0) 11. .4( ) 19. 1.3( 19. ) 1.1( ) 19. 19. 0. 19. 0. 19. 1.2( ) 1,.1( ) .0( ) 1.0.( ) .0( ) 1.3( ) 3 45. 0.w. 0'.. - 3'..._- 3. - 3.- 4.- - - - 6.-. 7..- 14.- 4�/ems 1 • • 2.1(0) 1.6( ) 1.3(0) 2.6( ) .3( ) 3.00) .6(0) M ) 1,.3( ) 1.1( ) 19. 19. 0. 19. 0.: 19. 1.2( ) 1.1( ) -0( ) 1.0( ) -0( ) 1.3( ) 3 55. 0. 0. 3. 3. 3. 4. 6. 6. 7. 14. .2( ) -1c ) .2CO) .5( .) -5( ) .3(0) 4.8(0) I'M ) .6( ) -9( 2. 36. 21. 55. 2. 7. 11. 11. 18. 19. 2.1CO) 1.6( ) 1.1(0) 2.6( ) .3( ) 3.0(S) .5(0) M ) 1.3( ) 1.1( ) 19. 19. 0. 19. 0. 18. 1.2( ) 1.1( ) -0( ) -9( ) -0( ) 1.3( ) 4 0. 0., 0. 3. 3. 3. 4. 6. 6. 7. 14.. .2( ) -1( ) .1(0) .5( ) .5( ) .2(0) 4.8(0) 1.0( ) .6( ) -9( ) 2. 2.1(0) 36. 1.6( 21- ) 1.0(0) 55. 2.6( ) 2- .3( 7. ) 3.00) 11:. .5(0) IT* M 18. ) 1.3( 19, ) 1.1( 19. 19. 0. 19. 0- 18. 1.2( ) 1.1( ) -0( ) -9( ) -0( ) 1.3( ) 4 5. 0. 0. 3. 3. 3., 4. 6. 6. 7. 14. .2( ) -1( ) .1(0) .5( .) .5( ) .2(0) 4.7(0) 1.0( ) .6( ) -9( ) 2. 2.0(0) 36. 1.6(_) 21. .9(0) 55. 2.6( ) 2. .2( 7. ) 3.0(S) 1t. MO) 11. M 18.: ) 1.3( 19. ) 1.1( ) 19. 19. 0. 19. 0. 18. 1.2( ) 1.1( ) -0( ) .9( ) -0( ) 1.3( ) 4 10. 0. 0. 3. 3. 3. 4. 6. 6. 7. 14. -1( ) -1( ') .1(0) .5( ) .5( ) .2(0) CAD) 1.0( ) .6( ) .9( ) 2. 2.0(0) 36. 1-U, 21. ) .8(0) 55. 2.6( ) 2. .2( 7. ) 2.9(S) 11'. .3(0) 11. M 18. ) 1.3( 19. ) 1.1( ) 19. 19. 0. 19. 0. 18. 1.2( ) 1.1( ) -0( ) -9( ) M ) 1.3( ) 1 COTTONWOOD FARMS OVERALL DRAINAGE PLAN 100 RBD FILE NO. 50400100.DAT YEAR 'EVENT *** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION DAMS *** CONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (MR/MIN) 322 11. 1.5 2.1 1 25. 320 14. .8' O 40. 330 8. 1.5 .0 0 40. 323 11. .4 1 40. 321 7. .1 3.2 2 40. 301 24. 2.5 1.7 1 _0. 328 17. 1.8 3V 76. 2.1 313 21. 2.3 311 2. 1.0 310 38. 1.7 329 101. 2.1 312 63. 2.3 340 119. 5.2 '1 ENDPROGRAN PROGRAM -CALLED r L�J .1 0 40., 0 55. 3.9 1 25. 2.2 2 10. 1 15. 0 40. 0 35. 2.5 1 S. 4GS/8;v ��I lill� -1 DESIGN OF CDR® INLETS, CHANNELS, AND STORM SEWERS 4 �/gam ® CLIENT K /� I I F', %AC3, JT SS G_ JOB NO.EfM- INC PROJECT t >zOMOt.1T Zr',A CALCULATIONS'.FOR � 1 11 F-= ' �!. Engineering Consultants MADE BY IOL'� DATE '93GHECKEDBY DATE: SHEET OF CLIENT JOB NO:Nfm INC PROJECT I p-,n mc:* ►r ZN. CALCULATIONS FOR UDS \I!=)z Ll>=nnoTtL+ Engineering Consultants QQKA MADESYJN—DATE • I CHECKED BY DATE —SHEET —OF I v, - Pt nE= C A-7rL. E.r IS" MC.P O6 321 O ; Q i�^�.�IL-HIV PANT C-� LOB Gu�g ItJL.rET 0 F� �I. If...1V = iC7C7.g'O Cz.4,) 3 Gl-.oWvJ 6B.4o I a3n izC Q 2' x 4' ca�►a . 324 - r.�x C= o Sal O ' _ 4 '— c.um6 ,ii.FUET 8 O E 49/ REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEWER-MODEL VERSION 4 'DEVELOPED BY JAMES C.Y. MUD ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO esaasaa__aaa_� aaaaaaaaaaaaaaaaaaaaasssasaasaaasaaaaaaasa_aaaaaaaaeaaaasaaaaaaa *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................. ON DATA 01-28-1993 AT TIME 14:12:" *°* PROJECT TITLE : MIRAMONT SECOND - BOARDWALK AND HIGHCASTLE;DRIVE ***'RETURN'PERIOD OF FLOOD IS 25 YEARS 1 RAINFALL -INTENSITY TABLE IS GIVEN *** SUMMARY OF HYDRAULICS AT MANHOLES------------------------------------------------------------------------------- MANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS ID * NUMBER AREA C DURATION INTENSITY PEAK- FLOW ELEVATION ELEVATION - ---- MINUTES INCH/HR - CFS - FEET FEET 1.00 N/A N/A N/A 44.00 69.05 67.76 OK 2.00 N/A N/A N/A 44.00 69.88 68.45' OK: 3.00 M/A N/A N/A 41.00 69.66 68.75 OK 4.00 N/A N/A N/A 6.00 74.50 71.81 OK 5.00 N/A N/A N/A 8.00 69.82 69.88 NO 6.00 N/A N/A N/A 8.00 69.82 69.93 NO OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS - SEWER DESIGN FLOW NORMAL NORAAL CRITIC CRITIC FULL FROUDE COMMENT ID FLOW 0 FULL 0 DEPTH VLCITY DEPTH VLCITY VLCITY NO. NUMBER CFS CFS FEET FPS FEET FPS FPS 56.0 8.0 7.4 U.50 4.53 1.06 32.89 4.53 D.00 V-OK 331.0 44.0 48.7 .2.23 7.80 2.12 8.22 6.22 0.94 V-OK 324.0 41.0 50.9 1,..40 7.34 1.48 6.91 5.13 1.09 V-OK 321.0 & 0 4.7 1.25 4.89 0.99 5.76 4.89 0.00 V-OK 330.0 8.0 7.4 14.50 4.53 1.06 5.98 4.53 0.00 V-OK. FROUDE NUMBER=0 INDICATES THAT A PRESSURED FLOW OCCURS -------------------------------------- ----------------------------- SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAN UPSTREAM DNSTREAM % (FT) (FT) (FT) -(FT)--_------- 56.00 0.50 66.84 66.84 1.48 1.48 NO 331.00 .0.53 65.21 65.05 1.67 1.00 NO 324.00 0.53 .66.40 66.21 1.26 1.67 NO 321.00 0.53 68v00 66.41 5.25 2.00 OK 330.00 0.50 66:84 66.44 1,.48 1.72 NO OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET [*** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS SEWER ' SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW 'ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM-CONDITION ---------------FEET FEET FEET FEET FEET FEET 56.00 0.10 0.00 68.34 68.34 69:93 69.88 PRSSIED 331.00 30.00 0.00 68.21 68.05 68.45 67.76 SUSCR 324.00 36.00 36.00 68.40 68.21 68.75 68.45 PRSSIED 321.00 300v00 300.00 69.25 67.66 71.81 68.75 PRSSlED 330.00 80.00. 80.00 68.34 67.94 69.88 68.75 PRSSIED PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS ------------------------------------------------------------------------------- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE, SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT------------------------------------------------------------------------------- '56.0 6.00 70.25 0.05 0.00 0.00 0.00 0.00 5.00 70.20 331.0 2.00 69.39 1.03 1:00 0.60 0.00 0.00 1.00 67 76 324.0 3.00 69.59 0.07 0.30 0.12 0.00 0.00 2.00 69.39 321.0 4.00 72.18 2.57 OvO5 0.02 0.00 0.00 3.00 .69.59 '330.0 .5.00 701.20 0.46 0.48 0.15 0.00 0.00 3.00 69.59 BEND LOSS =BEND K* VHEAD IN SEWER. LATERAL LOSS= OUTFLOW VHEAD-JCT LOSS K*INFLOW VHEAD FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION LOSS INCLUDES SEWER INVERT DROP AT-NANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. RBD INC. ENGINEERING CONSULTANTS CHANNEL RATING INFORMATION WESTERLY ROADSIDE CHANNEL ALONG BOARDWALK DRIVE STA ELEV 0.00 20.00 20.00 15.00 22.00 14.75 24.00 15.00 44.00 20.00 'N' VALUE .......... SLOPE ...........•. (ft/ft) 0.035 0:0050 ELEVATION AREA VELOCITY -DISCHARGE FROUDE (feet) (sq ft) (fps) (cfs) NO. 15.25 1.8 1.3 2.30 0.43 15.75 5.8 2.1 11.80 0.48 I 16.25 11.8 2.6 30.98 0.51 16.75 19.8 3.1 62.18 0.53 17.25 29.8 3.6 107.59 0.55 17.75 41.8 4.1 169.23 0..56 18.25 55.8 4.5 248.99 0.58 18.75 71.8 4.9 348.68 0.59 19.25 89.8 5.2 470.04 0.60 19.75 109.8 5.6 614.,72 0.61 9INC Engineering Consultants ® CLIENT JOS NO. ' 4 - QC PROJECT QQM 12A11C1�hIT CALCULATIONSFOR U7S �u� SCJ�Ldnd- MADE BYB-O- DATE 1.2a CHECKED BY DATE SHEET SZ OF 56 REPORT OF STORM SEWER SYSTEM DESIGN USING UDSEYER-MODEL VERSION 4 DEVELOPED BY JAMES C.Y. GUO ,PHD, PE DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER IN COOPERATION WITH URBAN DRAINAGE AND FLOOD CONTROL DISTRICT DENVER, COLORADO _____aaaaeoaaaaaaaaaaaeeaaaaaaaaa=ae=�aaaaaaaaaaaaaaaaaaaeaaoeae==aaaaaoaaaaa *** EXECUTED BY DENVER CITY/COUNTY USE ONLY ............................................... ON DATA 01-29-1993 AT TIME 06:21:38 ***PROJECT TITLE SAWGRASS COURT STORM SEWER TO DETENTION POND *°* RETURN PERIOD OF FLOOD IS 2 YEARS 1 *** SUMMARY OF HYDRAULICS AT MANHOLES UIMANHOLE CNTRBTING RAINFALL RAINFALL DESIGN GROUND WATER COMMENTS D NUMBER AREA * C DURATION INTENSITY PEAK FLOW ELEVATION ELEVATION MINUTES 1NCH/HR CFS FEET FEET ', ------------------------•-----•---•---------------•-------------------•-------- 1.00 N/A N/A N/A 2.01 75.00 70.40 OK 2.00 N/A N/A N/A 2.01 76.05 72.89 OK 3.00 N/A N/A N/A 2.01 76.05 73.08 OK 'OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION *** SUMMARY OF SEWER HYDRAULICS NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8 ------------------------------------------------------------------------------- SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(H1GH) D1A(HIGH) WIDTH 1D-NO. - ID NO.(IN) (FT) (IN) (FT) (IN) (FT) (FT) ------- 12.00 2.00 1.00 ROUND 9.68 15.00 15.00 0.00 23.00 3.00 2.00 ROUND 11.03 15.00 15.00 0.00 'DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES DIMENSION UNITS FOR BOX SEWER ARE IN FEET REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY. SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE. FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE, SEWER SLOPE--INVERT-ELEVATION BURIED DEPTH COMMENTS ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM % (FT) (FT) ('FT) (FT) �1 12:00 1:00 72.32 71.00 2.48 2.75 OK 23.00 0.50 72.32 72.32 2.48 2.48 OK OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET e*** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW 1D NUMBER LENGTH LENGTH UPSTREAM ONSTREAMUPSTREAM DNSTREAM CONDITION -FEE T_---- FEET FEET FEET FEET FEET ----- 12:00 132.00 0.00 73.57 72.25 72.89 70.40 JUMP 23:00 0.10 0.00 73.57 73.57 73.08 72.89 SUBCR PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW 'f *** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS -------------- .:.- UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST I4ANHOLE SEWER MANHOLE ENERGY FRCTION. BEND ' BEND LATERAL LATERAL MANHOLE ENERGY ID_-NOID NO. ELEV 'FT FT K COEF LOSS FT K COEF'LOSS FT 1D FT -- 12.0 2.00 73.22 2.78 1.00 0.04 0.00 0.00 1.00 70.40 23.0 3.00 73.29 0.05 0.25 0.01 0.00 0.00 2.00 73.22 BEND LOSS =BEND K* VHEAD IN SEWER. LATERAL LOSS= OUTFLOW VHEAD-JCT LOSS K*INFLOW VHEAD FRICTION LOSS=0 MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP. FRICTION L'OS& INCLUDES SEWER INVERT DROP.AT MANHOLE NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION. A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O. FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS. RBD INC. ENGINEERING CONSULTANTS CHANNEL RATING INFORMATION OVERFLOW SWALE - SAWGRASS COURT TO DETENTION POND STA ELEV 0.00 20.00 20.00 15.00 40.00 20.00 'N' VALUE SLOPE (ft/ft) 0.035 1.0000 ELEVATION AREA VELOCITY DISCHARGE FROUDE (feet) (sq ft) (fps) (cfs) NO. ......... ------- ........ --------- ...... - (� 15.50 1.0 16.6 16.57 5.84 16.00 4.0 26.3 105.18 6.55 16.50 9.0 34.4 310.02 7.01 17.00 16.0 41.7 667.53 7.35 17.50 25.0 48.4 1210.13 7.63 18.00 36.0 54.7 1967.57 7.86 18.50 49.0 60.6 2967.63 8.07_ 19.00 ".0 66.2 4236.59 8.25 19.50 81.0 71.6 5799.48 8.41 20.00, 100.0 76.8 7680.31 8.56 i �CAI coc= o• Z3 ��m ?,�,/ TEMPORARY DETENTOOW POND AT BOARDWALK AND LEMAY 1 ' ® CLIENT JOB NO:EfS INC PROJECT Zd"CAA V,'4r CALCULATIONS FOR MM M'P I*CC�--T. PpJIo 1 Engineering Consultants MADEBY DATE LL''Z,9�.CHECKEDBY DATE SHEETOF 7�u_3TI otJ 0 f1 V F LAPEt9 �-I- O�'VELt7P1=D 2_-,0h.SIh1S (, ZLO Z1S v.Jlt.l.. ► 1EED.. "TLC'. �� o�Tdl►.,E� � �3vd.e.au.e;�.L� � L>=+v��Y � >z�s _ ._ _ �T .� _ :►Y10KLMUM__ 2oTt= . GAF �:, �u :..e}S./n� P P�2...:'L�+� .. , cx4w-/Carr= %4 %L1C=D ZS 2 is o, 6 _ 1 _ o ► . zs s. t9 _ .. s. 3 :Ito s�n< :. C_...= 1�>nano.I.a�.t0 : SII ►.fc� CbMPC��'�@. R2.ovPan� -`za SIB b.�s TrT.oL, . 1 r`1- l.0 1 C� Lam:. I .rY,;+�► _ �3 I oW. '._ a::tea. , ...5.: S_Z:64 cf .__ aaaa_ aaaaaaaaaaxaaaaaaaaaaaaaaaaaaaaaa�eaaaaaaapaa�ac=aaaaaaaaaaaaaaaaaaaaa DETENTION POND SIZING BY FAA METHOD DEVELOPED BY JANES C.Y. GUO, PHD,:P.E. DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF COLORADO AT DENVER anaaxaaaaaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa EXECUTED ON 01-29-IM AT TIME 09:41:25 PROJECT TITLE: TEMPORARY DETENTION POND AT BOARDWALK AND LEMAY **** DRAINAGE BASIN DESCRIPTION BASIN ID NUMBER = 1.00 BASIN AREA (acre) 13.10 RUNOFF COEF = 0.80 ***** DESIGN RAINFALL STATISTICS DESIGN RETURN PERIOD (YEARS) = 100.00 INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN: DURATION 5 10 20 30 40 50 60 80 100 120 150 180 INTENSITY 9.0 7.3 5.2 4.2 3.5 3.0 2.6 2.1 1.7 1:5 1.2 1.0 ***** POND OUTFLOW CHARACTERISTICS:: MAXIMUM ALLOWABLE RELEASE RATE = 6.55 CFS OUTFLOW ADJUSTMENT FACTOR = .965 AVERAGE RELEASE RATE: = 6.32075 CFS 1 AVERAGE RELEASE RATE'= MAXIMUM RELEASE'RATE * ADJUSTMENT FACTOR. ***** COMPUTATION OF POND SIZE ----------------------------------------------------- RAINFALL RAINFALL INFLOW OUTFLOW REQUIRED DURATION INTENSITY VOLUME VOLUME STORAGE' MINUTE INCH/HR ACRE -FT ACRE -FT ACRE -FT 0.00 5.00 0.00 9.00 0.00 0.66 0.00 0.04 0.00 0.61 10.00 7.30 1:06 0.09 0.98 15.00 6.25 136 0.13 1i.23' 20.00 5.20 1.51 0.17 1.34 25.00 4.70 1.71 0.22 1.49 30.00 4.20 1.83 0.26 t.57 35.00 3.65 1.96 0.30 t.66 40:00 3.50 2:04 0.35 t.69 45.00 50.00 3.25 3.00 2.13 2.18 0.39 0." 1.74 11.75' 55 A0 2.80 2.24 0:48 1.76 60.00 2.60 2.27' 0.52 1.75' 65.00 2.47 2.34 0.57 1.:78 70.00 2.35 2.39 0.61 t..78 75:00 2.22 2.43 0.65 1.78 b O W P4 3 c o ..� 44 w 41 N O O h", r ® CLIENT LA I Ranh-KA = SM JOB NO. INC PROJECT M 1 Q �M—Y.A-r 2r%A CALCULATIONS FOR T`_MP P-- >P AC:, Engineering Consultants MADEBY��DATE 1 .�Q CHECKED BY DATE SHEET//,, �OF �2 <L.� rnoy- -. . Z°j 1`�C • ;fir POND `/ OL;u M'E l►•!/ 1= i L� ti,1G> Z - 1.. -7.8 d�C.. ; �T IV O?' ICI QCr1-I t zz=e2- f= l u U T 1>= 1 t..1 ►J r IS Ta P 2 C7\l 1 -�.D D 1TI o1�1p.L� _ E, e m NGs . TO `. P 1=2. it PI..J 1.LC� dN.� � PO �.aa Gpll�lL-,V eD.T7pt�l ,__.C�n1'rr�ulz.. ___ __ _. dit�a. ---.. -. .. .�lp>,..L.�Mr3_ .._ .._.C:yc_Y►�rtUE:: __._..�d.�:FT 1cD 77 Ze Cal. _. _ _ I" J.4b� _ : _ _ ,._ ZoC�3 _ _..:_ - C�z za 974 e Ta-1�c srl u noel A 1-os . ] coo Y e 1 u 1s�L : Z _ 3 Tad aF . $I:2M 1.�71T�.1 Ta-i ;^.D17)T.o►.1 .�>_ KII:'IZOMOf�.iT• : _ Z, 1=11.11.LC�• _ i t14-E L p RIPRAP DESIGN IF L i1 ■INC Engineering Consultants ® CLIENT "I eL\ Mc=)b Iw I ®G JOB NO. 504'cXx17. PROJECT KA I RA ML%J'r 2t,d CALCULATIONS FOR MADE BY 5A DATE L21 Z - CHECKED BY DATE SNEET.G7OF g� VS� 12" Gl.dsS L1, 1: ki ,I 0 Fii I CLIENT e4+MQWjr A ' JOB NO. C 4 _CXZ0; INC PROJECT ��/ I I R fOONIr Zr1Ci CALCULATIONS FOR I P 2-N P yiL�PdSs Engineering, Consultants MADE BYMCI- DATE 124A8 CHECKED'BY DATE SHEETLVZ.', OF n DESIGN, OF EROSION CONTROL PLAN Ll HI rl"� Fl� RAINFALL PERFORMANCE STANDARD EVALUATION PROJECT.: A ,� STANDARD FORM A COMPLETED .BY: g . DATE: " Z-799 DEVELOPED'ERODIBILITY SUBBA§IN ZONE As'b (ac) Lsb (ft) Ssb 00 Lb (feet) Sb M PS (�) .......... 1�,IS 1 1 EFFECTIVENESS CALCULATIONS PROJECT: STANDARD FORM B KA%0.n,r,1c,s-m COMPLETED BY: C.L>r--m Ss DATE: JAhj z--7, 1993 Erosion Control Method C-Factor Value P-Factor Value Comiftent -4,-r e-,,A2-6 I ki Lars m,0L.C-"- LU/-.sjF-.s-0 ------ . ..... -.4-5 '. MAJOR PS SUB 1, AREA BASIN BASINI. (Ac) CALCULATIONS '-/ I I J E U hj LE:r . ..... Z144. I.-V4 .... .......... .... ,. 0 EFFECTIVENESS CALCULATIONS PROJECT: STANDARD FORM B COMPLETED BY: 3. Cv e nss DATE; JaIQ Z-'7. 1993 Erosion controlC-Factor P-Factor Method Value Value Coipjnent MAJOR PS BASIN (-%) I I BASINS (Ac) I CALCULATIONS ---- LU /--s7rc-4k tj F-r - ---- -- -fumes_— CONSTRUCTION SEQUENCE ' PROJECT: 'v, ' �o Z* u►.►� STANDARD FORM C SEQUENCE FOR 19 93 ONLY COMPLETED BY: DATE: J O ►J 7-7 , 93 Indicate by use of a bar line or symbols when: erosion control measures will be installed. Major modifications town approved schedule may require submitting a new schedule for e approval by the City Engineer. YEAR MONTH 0 OVERLOT GRADING K WIND EROSION CONTROL Soil Roughening Perimeter Barrier Additional Barriers Vegetative Methods Soil Sealant Other RAINFALL EROSION CONTROL STRUCTURAL:: Sediment Trap/Basin Inlet Filters Straw Barriers Silt Fence Barriers Sand Bags Bare Soil Preparation Contour Furrows Terracing Asphalt/Concrete Paving Other VEGETATIVE: Permanent Seed Planting; Mulching/Sealant Temporary Seed Planting Sod Installat°ion Nettings/Mats/Blankets Other 'I I CHARTS, TABLES AND FIGURES I j DRAINAGE CRITERIA MANUAL® 30 20 z W U W. 10, Z W a 5 W 3 U 2 ,. cc W w 3 ' 1 .s RUNOFF S■■„'■ FA FA I •I : I :: ,1 .1 .2 .3 • .5 1 2 3 5 --10 20 VELOCITY IN FEET PER 'SECOND FIGURE 3-2. ESTIMATE OF AVERAGE FLOW VELOCITY FOR USE WITH THE RATIONAL FORMULA. No Text 0 1.0 12 5 I 10 4 .9 8 3 10 6. .8 o ►- 2 9 04 � ,� .7 a '3 i U- _ 8 w 1.5 CL '., .6 7 1.0 e: 'Past a -- I.0 Z z . 9 .5 W 5.5 0 -. a . 8 w 5 N W x 0 .6 z o .7 U .4 z w .4 z 4.5 z a..6 ao .3 w � _ r o 0 .5 4 x .2 t- z c� z o a'3 3.5 w w '• .4 0 a 0 o u- 0 o .08 .25 3 o .06 .3 x7 c� c� U-, ? w x w x x .04 Q: .25 2.5 Uj °` w a .2 .03 U .02 a. 0 .2 a '2 a � x F- a. .15 .01 0 .15 L u. .1 - STORM DRAINAGE DESIGN AND TECHNICAL CRITE'RIAl TABLE 803 MANHOLE AND JUNCTION LOSSES - . E=Rmt:= UJL LWUA I IUN IJUJ IL= K _� k= a'f USE EQUATION 005 .11 AIL. o"V, o/ LAN ►aJf rotAnyTaw % PLAN of 'IwIM. o, A SECTION CASE I T ON MAIN LINE or I+tfc 0.1 /Na:HCinz AN SECTION I- w c wr USE EQUATION 005 z N =—k 0„r, VI V� o,,n SECTION. CASE II INLET ON MAIN LINE WITH BRANCH LATERAL o/ PLAN USE EQUATION 001 a�- 't k-1.2S SECTION CA INLET OR MANHOLE AT BEGINNING OF -LINE E, STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA' TABLE s O a C STORM SEWER ENERGY LOSS COEFFOCOENT (SENDS AT MANHOLES) 1.4 01 13-1 1.2 I,I z 1.0 �S rr,�s•I Y 0.0 d o d,Q U s v6Y -' 0.6 OSG CS 0,grs 0•y'� 0.4 v 0•SZ d.lg oj%q 0.2 I I I i I �I I I Bond at Manhole; no Special Shaping Deflector Curved I Y I I I I I Bond e1 Manhole. Curved or Do(leclorl I I I I I Manhole I I- I t I TABLE 12 - ENTRANCE LOSS COEFFICIENTS Outlet Control, Full or Partly Full Entrance head loss He = ke V2 2g Type of Structure and Design of Entrance Coefficient _ Pine. Concrete Projecting from fill, socket end .(groove -end) . . . . . . . 0.2 'Projecting from fill, sq. cut end . . . . . . . . . . 0.5 Headwall or headwall and wingwalls Socket end of pipe (groove -end) . . . . . . . . . . . 0.2 Square -edge . . . . . . . . . . . . . . . 0.5 Rounded (radius _. 1/12D) . . . . . . . . . . . 0.2 Mitered to conform. to fill slope . . . . . . . . . . . 0.7 *End -Section conforming to fill slope . . . . . . . . 0.5 Beveled edges, 33.7° or, 450 bevels . . . . . . . .. . . . 0.2 Side -or slope -tapered inlet . . . . . . . . . . . 0.2 Pine. or Pine -Arch. Corrugated Metal Projecting from fill (no headwall) . . . . . . . . . . . 0.9 Headwall or headwall and wingwalls square -edge . . . . . . . 0.5 Mitered to conform to fin slope, paved or unpaved slope . . . 0.7 'End -Section conforming to fill slope . . . . . . . . . 0.5 Beveled edges, 33.70 or 450 bevels . . . . . . ... . . . 0.2 Side -or slope -tapered inlet . . . . . . . . . . . . . 0.2 Box. Reinforced Concrete Headwall parallel to embankment (no wingwalls) Square -edged on 3 edges . . . . . . . . . 0.5 Rounded on:3 edges to radius of 1/12 barrel dimension, or beveled edges on 3 sides . . . . . . . 0.2 Wingwalls at 300 to 750 to barrel Square -edged at crown . . . . . . . . . .. .. . . . 0.4 Crown .edge rounded to radius of 1,/12 barrel dimension, or beveled top edge . . . . . . . . . . 0.2 Wingwall at 100 to 250 to barrel Calculations for Curb Capacities and Velocities Major and Minor Storms per City of Fort Collins Storm Drainage Design Criteria RESIDENTIAL with drive over curb and gutter Prepared by: RBD, Inc. 0 is for one side of the road only February_ 28, 1992 V is based on theoretical capacities Area = 2.63 sq.ft. Area - 20.11 sq.ft. Minor Storm . Major Storm Slope Red. . Minor . 0 V . Major . 0 V (X) :Factor : X : (cfs) : (fps) : X : (cfs) : (fps) 0.40 0.50 86.71 . 2.74 . 2.09 : 696.73 : 22.03 2.19 : 0.50 0.65 :• 86.71 : 3.99 : 2.33 : 696.73 : '32.02 : 2.45 : 0.60 0.80 86.71 . 5.37 : 2.55 : 696.73 : 43.17 : 2.68 : 0.70 0.80 86.71 . 5.80 2.76 : 696.73 : 46.63 2:90 . 0.80::: 0.80 86.71 : 6.20 2.95 :: 696.73 : 49.85 : 3.:10 : 0.90". 0.80 86.71 . 6.58 3.13 : 696.73 : '52.88 3.29 1.00 0.80 86.71 : 6.94 3.30 : 696.73 : 55.74 : - 1.46 1.25 0.80 86.71 : 7.76 : 3.69 : 696.73 : 62.32 : 3.87 1.50 0.80 . 86.71 . 8.50 4.04 : 696.73 : 68.27 : 4.24 1.75 0.80 . 86.71 . 9.18 : 4.36 : 696.73 : 73.73 . 4.58 2.00 0.80 . 86.71 . 9.81 . 4.66 : 696.73 : 78.83 : 4.90 2.25 0.78 : 86.71 10.15 : 4.95 : 696.73 : 81.52 : 5.20 2.50 0.76 . 86..71 . 10.42 . 5.21 . 696.73 83.72 : 5.48 2.75 0.74 . 86.71 10.64 . 5.47 : 696.73 : 85.50 5.75 . 3.00 0.72 : 86.71 10.81 : 5.71 : 696.73 : 86.89 : 6.00 : 3.25 : 0.69 . 86.71.: 10.79 : 5.94 . 696.73 : 86.67 : 6.25 . 3.50 0.66 . 86.71 10.71 . 6.17 : 696.73 : 86.03 . 6.48 : 3.75 : 0.63 : 86.71 10.58 : 6.38 : 696.73 : 85.00 6.71 : 4.00 0.60 : 86.71 10.41 : 6.59 : 696.73 : 83.61 6.93 : 4.25': 0.58 : 86.71 10.37 : 6.80 : 696.73 : 83.31 7.14 : 4.50 : 0.54 . 86.71 9.93 . 6.99 : 696.73 : 79.81 7.35-: 4.75 . 0.52 . 86.71:: 9.83 . 7.19 : 696.73 : 78.96 : 7.55 . 5.00 . 0.49 : 86.71 9.50 : 7.37 : 696.73 : 76.34 . 7..75 . 5.25'. 0.46 . 86.71 9.14 . 7.55 696.73 : 73.43 : 7.94 : '5.50 : 0.44 : 86.71 8.95 : 7.73 : 696.73 : 71.89 : 8.13 : 5.75 : 0.42 : 86.71 8..73 : 7.91' 696.73 : 70.17 : 8.31 : 6.00 : 0.40 : 86.71 8.50 : 8.08 : 696.73 : 68.27 : :8.49 : CLIENT JOB NO. %DINC PROJECT CALCULATIONS FOR LTTTSP- F _011 Engineering Consultants MADE BY-ik-'-DATE 2'9Z CHECKEDBY DATESHEET I 'OF �_ No Text Calculations for Curb Capacities and Velocities Major and Minor Storms per City of Fort Collins Storm Drainage Design Criteria COLLECTOR w/ 6" Vertical curb and gutter Prepared by: RBD, Inc. Q is for one side of the road only February 28, 1992 V is based on theoretical capacities Area = 3.55 sq.ft. Area = 28.96 sq.:ft. Minor Storm . Major Storm Slope Red. Minor Q V Major' Q V M :factor X : (cfs) : : (fps) X (cfs) (:fps) 0.40 : 0.50 135.32 : 4.28 : 2.41 :: 1129.59 : 35..72 2.47 : 0.50 : 0.65 135.32 : 6.22 : 2..70-: 1129.59 : 51.92 2.76 : 0.60-: 0.80 135.32 : •8.39 : :2.95 1129.59 : 70.00 3.02 : 0.70 0.80 135.32 9.06 : 3.19 1129.59 : 75.61; 0 3.26 : ' 0.80 : 0.80 : 135.32 : 9.68 : 3.41 1129.59 : 80.83 : : 3.49 : 0.90 : 0.80 : 135.32 10.27 : 3.62 : 1129.59 :: 85.73 .: 3.70 : 1.00 0.80 : 135.32 10.83 : 3.81 1129.59 ; 90.37 : 3.90 : 1.25 !0.80 : 135.32 12.10 : 4.26 1129.59 : 101.03 4.36 : 1.50 0.80 : 135.32 13.26 : 4.67 : 1129.59 : 110.68 : 4.78 : 1.75 0.80 : 135.32 14.32 : 5.04 : 1129.59 : 119.54 : 5.16 : 2.00 2.25 0.80 : 0.78 : 135.32 :: 135.32 : 15.31 : 15.83 :• 5.39 1129.59 : 127.80 : 5.72 1129.59 : 132.16 : 5.52 : 5.85 : 2.50 0.76 : 135.32 : 16.26 : 6.03 : 1129.59 : 135.74 6.17 : 2.75 0.74 : 135.32 16.61 6.32 : 1129.59 : 138.62 : 6.47 : 3.00 : 0.72 : 135.32 : 16.88 : 6.60 : 1129.59 : 140.87 : 6.76 : 3.25 0.69 : 135.32 16.83 6.87 : 1129.59 : 140.51 .7.03 3.50 0.66 : 135.32 : 16.71 7.13 1129.59 : 139.48 . 7.30 3.75 0.63 : 135.32 : 16.51 7.38 : 1129.59 : 137.81 : 7.55 4.00 0.60 : 135.32 : 16.24 7.62 1129.59 : 135.55 : 7.80 4.25 0.58 : 135.32 : 16.18 : 7.86 : 1129.59 : 135.07 : 8.04 4.50 0.54 : 135,32 •: 15.50 : 8.09 : 112959 : 129.40 : 8.27 4..75 0..52 : 135.32 15.34 : 8.31 : 1129'59 : 128.02 : 8.50 5.00 0.49 : 135.32 14.83 : 8.52 : 1129.59 : 123.77 : 8.72 5'.25 0.46 : 135.32 14.26 : 8.73 : 1129.59 : 1.19.06 : 8.94 5.50 0.44 : 135.32 13.96 : 8.94 : 1129.59 : 116.56 q 9.15 5.75 : 0.42 : 135.32 : 13.63 : 9.14 : 1129.59 : 113.76 : 9.35 6.00 : 0.40 : 135.32 : 13.26 : 9.34 : 1129.59 : 110.68 : 9.55 L� INC Engineering Consultants 1 /�� ® �e CLIENT TY OF F-A== 50--C=X_L_1*4G JOB NO. PROJECT CALCULATIONS FOR 42t TIT�1Z 1=L�L / MADE BY 150- DATE Z -97 CHECKED BY DATE SHEET I_ OF 7- CLIENT 1`1 OF F—C>CM (21fll l 1 A1S JOB NO. RINC PROJECT CALCULATIONS FOR L<`msy-- P4— k/ Engineering Consultants MADE BY _fa0_ DATE 7 -97 CHECKED'BY DATE —SHEET Z_OF _�� DRAINAGE CRITERIA MANUAL a 0 ® �a RIPRAP Yt/D Use Do instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream. DRAINAGE CRITERIA MANUAL RIPRAP 9 = Expansion Angle TAILWATER DEPTHY CONDUIT HEIGHT, Yt / D 0 a 0 u N z H a a 0 u FI 0 0 in 0 0 lw O O M 0 0 N O 0 ri O O 0 O 1D 0 Ln to 4 O to c4 O M 00 . .0 . -' d' to to to O O 0o 0o co mmmm000000 d' v v d' to to to to to to co co 0o 0o 0 0o .o cD co C0 CDCAC►0%ChChCho%CAC►0rn000 . . . .. . 444 . . . . . . . . . d' eM sf' er d' d' st' 4 4 .4 .4 1; Ln Un Ul co co 00 0 OD OD 0o co 0o CD .OD 0o Co 0o 0o r- 0 O c0 m m 0 O 0 Ci 0% 01 0% C1 C► CA C1 C1 C% (ti . . . .. .. . . .. . . . . . . . . . . . 0o 0o 0o co co 00 0o o co co co 0o 0o CD co 00 0 0o co co 0 M l' In %D %0 %0 w t` !` t- t` t` t` r- t` t` r- t` t` 00 co O CD 0o 00 . . . . . . 44 . . . . . . . . . . . . 44 . . . . O 00 00 00 OD 00 00 CO O 00 O OD CD OD CO 00 CD O O 00 00,00 00 00 00 O0 co N M v to Ln to %o %o %D %0 %0 %o t` t` t` t` r- t- t` t` t` t` CO 00 00 A44........................... .rsr�rd'•a'd'�a'epd'd'd'd'd'd'd'd'd'eYsr`r4q;4 00 00 00 OD OD CO-00 00 00 00 OD 00 00 0 00 OD 00 00 00 00 00 OD 00 00 00 00 �O O N M v "o to to in to %o %o 10 to %a%o %o %o %o %D t` t` t` r- t` t` . . . . . 44 . . . . . . . . . . . . . . . . . . . CO 00 O 00 00 00 {D 00 00 00 CO 00 00 00 00 00 00 O CO *00 00 DO 00 00 CO 00 ,wC1e-1NMM wvvvtoLntotototototoLn%o%o%010%o%ot` .......................... MMst'd'd'd'd'�d'd'd'd'd'�'d'd'd'd'd'srsrsr.e'd'd'd' 00 O O 00 O O O OD CO O O 00 O CW O 00 CO 00 CO CO OD 00 CO 00 00.00 O w O O rf rt N N M e" 1 M M v v -o v v -wv v to tn' in to %o� Ml'1Md'd'd'd'd'd'd'd!d"d'd'd"d'd'eR40led'sMd'41'd'd' 00 00 OD O O CO W 00 00 00 OO CO 00 W 00 CO O0 00 00 C0 CD CD,CD O CO 00 to N In � 00 01 O O P rl rl N N N N N M M M M M sl' d' sf' d' d' . . • . . . • . • .. . . . . . . . . . . . . . . • . . N M r') M M M 'd' ai' d' d' eY v V qw V V 10 V qw V -0 lot q' qw 40 v OD 00 O O 00 00 00 00 00 O 0 CD '00 OD O 00 00 CD C0 00 O 00 00 CO 00 00 H OD rt M d' to in %o %o t- N t- w OD 00 00 OD 00 (A 0% M 0 0 0 0 0 NNMMMMMMMM MMMC4MMM14MMMd leoIwo Vo d' O000DC000CID -CID OCOCDCD, CID 00ODCID, '00000000CDCO00OD OD- 00 w to 0o O rt N M v %r to to to %o %o %o w:%o t` r- t- t` 0 CO 00 aN C1 • • .. . . . ♦ . . • . .f . . . . . . . • • • 1 . . 1-1 N N M M M M M M M M M M M M M M M M M M M Mtn men C0 00 00 CD OD OD CO 00 00 CO Co 00 00 CD 00 00 CO CO CO 00 OD 00 C0 O0 00 00 rt H to t` OD O O rt N N M M M V V V et' V to to to %D %D to (` t- rl N N N N M M M M M M M M M c4 M M. M M M M r4 M M M M 00 00 CO O 00 00 O 00-00 00 00 00 00 0 00 00 C0 00 OD CO CO 00 00 00 OD CO f"1NwOmOrlNNMMMd'vv wd'd'totototo%o%D%o%o • • • . . . • . . . . . . . . . . . • • • • • • . . O rt rt H rt N N N N N N N N N N N N N N N N N N N N N O O O CO O O O O 00 O CD 00 O O O O O CD 00 O CO CO Co 00 CO O to In to C. N M i 9 1O 1` r. t` 0 00 CO C1 C. C. C► C. C. O O O O O O N 0%00rfrtr4rte-49-4r41-4Hr41-4rt1-1.-4.-4rtr4NNNNN N l� 00 O OO 00 00 OO OD OO 00 OO 00 00 00 O O 00 00 CD OD O 00 DD CO O OD O etLn0MtnW0000C1000rgrl:rle-iNNNNco) MMM MM N co C1 O O O O O O O H rt H rt ri r♦ r♦ r1 rt rt H rt rl rt rt H rq r t- 00 00 O0 CO OD 00 00 00 00 CO OD 00 00 00 CO CO 00 OD 00 CO OD CO O O Table 813 C-Factors and P-Factors for Evaluating EFF Values. ' Treatment C-Factor P-Factor BARE SOIL Packed and smooth .... .... . 1.00 1.00 Freshlydisked ........ ........................................................ 1.00 0.90 Roughirregular surface.........,..................................................... 1.00 0.90 SEDIMENT BASINfTRAP.................................................................. 1.00 0.50111 STRAW BALE BARRIER, GRAVEL FILTER, SAND BAG .......I ................. 1.00 0.80 SILTFENCE BARRIER....................................................................... 1.00 0.50 ASPHALT/CONCRETE PAVEMENT ................................................... 0.01 1.00 ESTABLISHED DRY LAND (NATIVE) GRASS .......................... See Fig. 8-A 1.00. SODGRASS ............................................................................... 0.01, 1.00 TEMPORARY VEGETATION/COVER CROPS .................................... 0.45121. 1.00 HYDRAULIC MULCH @ 2 TONS/ACRE........................................... 0.10131 1.00 SOIL SEALANT ......................................... ........ .......... ............ 0.01=0.60141 1.00 EROSION CONTROL MATS/BLANKETS............................................ 0.10 GRAVEL MULCH 1.00 Mulch shall consist of gravel having a diameter of approximately 1:/4" to 1 1 /2" and applied at a rate of at least 135 tons/acre.............. 0.05 HAY OR STRAW DRY MULCH 1.00 After olantinsa orass seed, apply mulch at a rate of 2 tons/acre (minimum) and adequately anchor, tack or crimp material into the soil. Slope M) 1 to 05..............................................................................0.06 1.00 o to 10 ........ . .......... 0.06 11 to 15 ......... . ,. ..... ...... ....... ........ • • ..... .............. 0.07 1.00 1.00 16 to 20............................................................................. 0.11 1.00 21 to 25.............................:................................................ 0.14 25 to 33.............. .... .0.17 1;00 1.00 > 33 ...................................................................... 0.20 1.00 NOTE: Use of other-C+actor or P-Factor values reported in this table must be substantiated by documentation. (1) Must be constructed as the first step in overlot grading. (2) Assumes planting by dates identified in Table 11-4, thus dry or hydraulic mulches are not required. (3) Hydraulic mulches shall 'be used only between March 15 and May 15 unless irrigated. (4) Value used must be substantiated by documentation. Table 8-13 C-Factors and P-Factors for Evaluating EFF Values (continued from previous page). Treatment C-Factor P-Factor CONTOUR FURROWED :SURFACE Must be maintained throughout the construction period, otherwise P-Factor = 1.00. Maximum length refers to the down slope length. Basin Maximum Slope Length M (feet) 1 to 2 400.......................................................................... '1.00 0.60 3 to 5 300.............................................. ......... .......1.00 0.50 6 to 8 200..........................................................................1.00 0.50 9 to 12 120 ............. :..................................................,..........1..00 0.60 13 to 16 80..........................................................................1..00 0.70 17 to 20 60...................................,.............................:........1.00 0.80 > 20 50......................................................., ................ 1.00 0.90 TERRACING, !Must contain 10-year runoff volumes, without overflowing, as determined by applicable hydrologic methods, otherwise P-Factor = 1.00. Basin Slope (%) 1 to 2..................................................................................... 1.00 0.12 3 to 8....... ...............:......................................................... 1.00 0.10 9 to 12.............. .... . ..................1.00 0.12 13 to 16......................... ................................ 1.00 0.14 17 to 20.....................................................................................1.00 0.16 > 20........................:.............................................................. 1.00 0.18 NOTE: Use of' other C-Factor or P-Factor values reported in this table must be substantiated by documentation.