Press Alt + R to read the document text or Alt + P to download or print.
This document contains no pages.
HomeMy WebLinkAboutUPPER MEADOW AT MIRAMONT PUD, SECOND FILING - FINAL - 54-87I - SUBMITTAL DOCUMENTS - ROUND 1 - DRAINAGE REPORTt • •
FINAL DRAINAGE AND
-EROSION CONTROL STUDY FOR
THE UPPER MEADOW AT MIRAMONT
SECOND FILING
FORT COLLINS, COLORADO
February 1, 1993
Prepared for:
Miramont Associates
309 West Harmony Road
Fort Collins, Colorado 80526
b Prepared :
p Y
RBD, Inc. Engineering Consultants
11
� INC.
Engineering Consultants
209 S. Meldrum
Fort Collins, Colorado 80521
303/482-5922
FAX:303/482-6368
February 1, 1993
Ms. Kathy Malers
City of Fort Collins
Utility Services Stormwater
235 Mathews
Fort Collins, Colorado 80522
RE: Final Drainage and Erosion Control Study
for the Upper Meadow at Miramont Second Filing
Dear Kathy:
We are pleased to submit to you, for your review and approval, this Final Drainage and
Erosion Control Study for the Upper Meadow at Miramont Second Filing. All
computations within this report have been completed in compliance with the City of Fort
Collins Storm Drainage Design Criteria.
We appreciate your time and consideration in reviewing this submittal. Please call if you
have any questions.
Respectfully,
RBD Inc. Engineering Consultants
Roger A. Curtiss, P.E.
Project Engineer
0 �RI EGlS����Gif•
vOoO�t�� pl6EtU cf%r��`l� l
®o Jm
o
27362 �o -
,"-PFF�
TABLE OF CONTENTS
DESCRIPTION
PAGE
I. GENERALLOCATION AND DESCRIPTION
1
A. LOCATION
B. DESCRIPTION OF PROPERTY
1
1
IL DRAINAGE BASINS
1
A. MAJOR BASIN DESCRIPTION
1
B. SUB -BASIN DESCRIPTION
2
III. DRAINAGE DESIGN CRITERIA
2
A. REGULATIONS
2
B. DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS
2
C. HYDROLOGICAL CRITERIA.
2
D. HYDRAULIC CRITERIA
3
E. VARIANCES FROM CRITERIA
3
IV. DRAINAGE FACILITY DESIGN
3
A. GENERAL CONCEPT
3
B. SPECIFIC DETAILS
3
V. EROSION CONTROL
5
A. GENERAL CONCEPT
5
B. SPECIFIC DETAILS
5
VI. CONCLUSIONS
6
A. COMPLIANCE WITH STANDARDS
6
B. DRAINAGE CONCEPT
6
C. EROSION CONTROL CONCEPT
6
REFERENCES
7
S
APPENDIX
VICINITY MAP
1
HYDROLOGY
2
SWMM MODEL INPUT AND OUTPUT FILES
8
FINAL DRAINAGE AND
EROSION CONTROL STUDY
�.
FOR THE UPPER MEADOW AT MIRAMONT P.U.D.
SECOND FILING
FORT COLLINS, COLORADO
1. GENERAL LOCATION AND DESCRIPTION
A. Location
'
The Upper Meadow at Miramont Second Filing development is located in
the southeast part of Fort Collins, south of Harmony Road, and west of
Lemay Avenue, The, Second Filing will be just to the south of Miramont First
Filing. A vicinity map of the proposed site is included in the appendix. More
particularly, the site is situated in the east half of Section 1, Township 6
North, Range 69 West, of the 6th P.M., City of Fort Collins, Larimer County,
Colorado.
IB. Description of Property
The Upper Meadow at Miramont Second Filing contains 11.386 acres of
which approximately 2 acres was developed with the First Filing as a
detention pond. The area is currently undeveloped and is being proposed
for single family residential construction, similar to that of the First Filing.
The site currently consist of cultivated farmland and is a part of the
Oak/Cottonwood Farm Development. The Mail Creek irrigation canal runs
in a northwest to southeast direction immediately west of the Second Filing.
Topography for the site is generally sloping from the west to the east at
approximately 1 %.
111. DRAINAGE BASINS
A. Major Basin Description
1 0 0
B. Sub -Basin Description
Historic drainage patterns of the subject site are southeasterly across the
Ssite to three existing 36" RCP's under Lemay Avenue which direct storm
water runoff east through the existing Oakridge Development.
DRAINAGE DESIGN CRITERIA
A. Regulations
The City of Fort Collins Storm Drainage Design Criteria is being used for the
subject site.
:i
B. Development Criteria Reference and Constraints
The Upper Meadow at Miramont First and Second Filings historically drains
southeasterly under Lemay Avenue and through the adjacent Oakridge
development. The McClellands Basin Master Drainage Plan criteria and
constraints recommends on -site detention using a staged release rate of
0.20 cfs/acre for a 10 year design storm and 0.50 cfs/acre for a 100. year
design storm. Downstream improvements have been completed within the
Oakridge development to accept a maximum storm water runoff of 0.5
cfs/acre for all storm events from the Oak/Cottonwood Farm site per the
report entitled "Master Drainage Study for the Oakridge Business Park".
Portions of the Oak/Cottonwood Farm site contain existing developments
which do release their respective storm water runoff at the 0.5 cfs/acre
requirement.
' C. Hydrological Criteria
The Rational method is being used to determine runoff peak flows from the
site and surrounding off -site tributary areas. The 2 and 100 year rainfall
criteria, which was obtained from the City of Fort Collins, is the criteria
which was utilized. The criteria is included in the appendix.
place. The SWMM model as developed was analyzed and found to
accurately represent Miramont Second Filing. No modifications to the
original model have been made with this project.
D. Hydraulic Criteria
All calculations within this study have been prepared in accordance with the
City of Fort Collins Drainage Criteria.
E. Variances from Criteria
No variances are being sought for this project.
IV. DRAINAGE FACILITY DESIGN
A. General Concept
The Upper Meadow at Miramont Second Filing is planned as a single family
residential housing development. The Second Filing will consist of 28 lots.
Storm water flows will be generally routed along historic drainage patterns.
Included in the back pocket of this report is the drainage plan for the
Second Filing.
B. Specific Details
Because of the location of Miramont First Filing, many of the adjacent and
downstream improvements needed for conveyance of runoff for the Second
Filing have been completed, and have been sized accordingly to
accommodate the improvements in the Second Filing.
Developed runoff from sub -basins 209A, 209B, and 209C (which coincide
with basin 209 of the SWMM model) will go to the permanent detention
pond located north of the Second Filing and south of the First Filing. This
pond was sized from the SWMM model to accommodate developed runoff
the detention pond by a small swale located between the back of the lots
and the existing Mail Creek Ditch maintenance road. Approximately 2.70
acres of sub -basin 209C 'is west of the Mail Creek Ditch and runoff will
almost always be intercepted by the Mail Creek Irrigation ditch and will not
reach the detention pond. This area west of the Mail Creek ditch will not be
disturbed with this development.
Developed runoff from sub -basins 21.0 and 215 will be routed by a series of
pipes and open channels to a temporary detention facility to be located at
the northwest corner of Lemay Avenue and Boardwalk Drive. Runoff from
sub -basin 210 will be collected in Sawgrass Court and Bulrush Court and
conveyed in curb and gutter to Highcastle Drive, then conveyed east in curb
and gutter to a proposed 30' sump inlet located at the corner of Boardwalk
Drive and Highcastle. This sump inlet will also collect the flows being
conveyed from the north along Boardwalk Drive. This curb inlet, along with
the other curb inlets inthis area and the piping system has been sized to
accommodate the 25 year storm event per the Overall Drainage Report for
the Oak/Cottonwood Farm (Page 7 of the text). Flows for those conveyance
elements was taken from the SWMM model for the 25 year storm included
in the appendix of this report. Sub -basin 215 flows will be conveyed by curb
and gutter to a 5' sump inlet located at the intersection of Boardwalk and
Highcastle.
' The storm system started with the First Filing in this area will be completed
with the second Filing. The outlet pipe from the permanent detention pond
will be extended to the proposed 30' curb inlet. The existing curb inlet on
the low point on the East side of Boardwalk will also be connected into the
new 30' curb inlet. The system will be extended across Highcastle and
eventually daylight into the existing channel adjacent to Boardwalk. The
channel section that extended north of Highcastle will be filled in when the
pipes are complete and in place.
The temporary detention pond located at Boardwalk and Lemay will have
to be enlarged to accommodate the increase in developed area upstream.
The FAA method has been used in this study to determine the revised size
of this pond. Calculations in this report are based on raising the berm height
to accommodate an increased 100 year high water surface elevation.
However , it is anticipated that the developer will; be constructing a
permanent decorative water feature in this area, and that a new temporary
V. EROSION CONTROL
A. General Concept
The Upper Meadow at Miramont Second Filing lies within the Moderate
Rainfall and.Wind Erodibility Zone per the City of Fort Collins zone maps.
The potential exists for erosion problems during construction, and after
construction until the disturbed ground is again vegetated. It is anticipated
that the Second .Filing construction will begin in the Spring of 1993, and be
completed in the Fall of 1993.
Per the City of Fort Collins Erosion Control Reference Manual for
Construction Sites and related calculations in the appendix, the erosion
control performance standard for this site is 77.0%. From the calculations
in the appendix, the effectiveness of the proposed erosion control plan is
81.5% during the construction portion of this development. Therefore the
erosion control plan as specifically detailed below, will meet the City of Fort
Collins requirements.
B. Specific Details
After the overlot grading has been completed, all disturbed areas, not in a
roadway, shall have a temporary vegetation seed applied per the City of Fort
Collins specification. After seeding, a hay or straw mulch shall be applied
over the seed at a rate of 2 tons/acre, minimum, and the mulch shall be
adequately anchored, tacked or crimped into the soil per the methods
shown on the Drainage and Erosion Control plan. After the utilities have
been installed, the roadway surfaces should receive the pavement structure.
After installation of the curb inlets, the inlets shall be filtered with a
combination of concrete blocks, 1 /2 inch wire screen, and 3/4 inch course
gravel, per the detail shown on the detail sheet.
The straw bale check darns installed in the channel adjacent to Boardwalk
Drive in conjunction with the First Filing project shall remain in place and be
maintained until the temporary seed 'installed with the Second Filing has
been established.
1 VI.
CONCLUSIONS
A. Compliance with Standards
All computations within this report have been completed in compliance with
the City of Fort Collins Storm Drainage Design Criteria.
B. Drainage Concept
' The permanent detention and installed with the First Filing, and the
P P
modifications made to the. temporary detention pond at the intersection of
Lemay and Boardwalk will adequately provide for the detention of
developed storm water runoff. from the Upper Meadow at Miramont First
and Second Filings, along with the improvements made to Boardwalk Drive.
The street conveyance systems will adequately transport developed runoff
from the various contributory points to sump inlets and storm sewer
' systems. The storm sewer systems and roadside channels will safely
convey developed storm water runoff from this development to the existing
culverts under Lemay Avenue. The developed storm water runoff has been
controlled in order to eliminate off -site downstream damage from the 2 year
and 100 year storm events
' The proposed drainage concepts presented in this report and shown on the
drainage plan are in compliance with the City of Fort Collins drainage
criteria. No variances are being sought for this project.
C. Erosion Control Concept
The proposed erosion control concepts adequately provide for the control
of wind and rainfall erosion from the Upper Meadow at Miramont Second
Filing. Through the construction of the proposed erosion control concepts,
the City of Fort Collins performance standards will be most nearly met. The
proposed erosion control concepts presented in this report and shown on
the erosion control plan are in compliance with the City of Fort Collins
erosion control criteria. Temporary vegetation seed and hay or straw mulch
is being proposed as it has recently proven to be the most economical and
efficient method available to control erosion
REFERENCES
1. Storm Drainage Design Criteria and Construction Standards by the City of Fort
Collins, Colorado, May 1984, Revised January 1992.
2. Erosion Control Reference Manual for Construction Sites by the City of Fort Collins,
Colorado, January 1991.
3. Overall Drainage Study for Oak/Cottonwood Farm in Fort Collins, Colorado by
RBD, Inc., May 1992.
4. Master Drainage Study for the Oakridge Business Park in Fort Collins, Colorado,
by RBD, Inc., September 1990.
5. Final Drainage and Erosion Control Study for the Upper Meadow at Miramont First
Filing, Fort Collins, Colorado, by RBD, Inc., November 10, 1992.
HI,
APPENDD(
Fs
CA
hftftLAL
22t-
e
Warren
'Lake..
lz
IN WiF2 p
a
Vt
r
... -ROAD
4
............
............
.... ..... . :,.,::
THE UPPER MEA OW AT
MIRAMONT:FIRS FILING
NARMMf i Dt%A n
0 !Qqwlill N -OAKRIDGE
W,
1,40,111, !V B� AREA
135 i
LELLANDS ASIN
g
ID FARM
COUNTY ROAD 36
. .......... . ...
.... --ju .Al
ER MEADOW
oc
0
AT MIRAN
ONT
V-
•
Ic
ziSECOND
U
RNG z
1
I -tri
0l
I 1
m
�; lflff�
lNffSMN!!f,ml--4
, W-4 a
HYDROLOGY
p
a
a
01
IN
eN
N
N
n1
N
Ocr-
N
N
z
c
m
�.
z cu
o
n',
o
.
W
i
1�
N
.¢I v
�o
+
U U
oUl—,
!
—
Q;
d ;
o
u1
cn
o
0
w
�-
wCL�
��90
=
�:
N
N
r•
�'
CL
J
cd
N
Q
a
aOOipl�
JA0q—
N
o
qo
CD .. �:
Q
p
,�
S
p
tI?
LIJ
q
N
co
co
ov
oe
Jw
N
N—
N
N
N
N
N
nj
N
~~
Z'
zLA-�
W
0
N'
.Y
N
T
N
o
N
V
z
z
ai
w
w
z
c�
z
w
U
3
CC
/ �
7
N W
NLl
V
�1
fj
u
uI
O
m�
3
'
a
0u
�w
Q —d: 4
c
CCl N.
Z
w'
0 Q F
0
vLL
0
m
� w
> J
r � �
0 _
Q
S
o
O
..
cn U
kO
O
N
GU
N
'.a0�
�10
a
UU
to
O
O
w
�
J to
a-
N,
w
_
>�
W
o
kp
cr-
F-
o
co
N
w
aQ �0
d
In
UJ
p
J
d'
—
,o
tD
4
0
ate_
~~Lb
Z
" �+ .r
N'
0
N
W
U
z
z
o�
w
w
Z
z
w
U
C
1u1 e orv► o►.tr Z rid 1=1u NC=
628 `re - 1. l o) __�..�S1C�L..���?=O_2An - �lE.o~e ZS Ye . w+e;zE suv�✓s1>
NORM .-DRAINAGE
[ou-�1e-S Skc c,wo.._- are.__%a �n
SYSTEM PRELIMINARY DESIGN DATA cur& CGPdc-,Tf uewca74 soas&Dsµ
Ime
c
O
o
E c
�•-
•2
Wes.
c
..
r-
oG0
r.
o cr 0
y
o �•-
E
E
C
in O
Street
Pipe
;Street
Pipe
Remarks
m
d
C
0-
of 0Q
--
O3. y
i Q
.
n
O
O.
ci �
YOf►
o
�,
)
y
%
O•
yi
_�
V
y
m a51
6
7
8
9
10
II
12
13
14
15
16
17
18
19
20
21
22
23
I , 3
0 . So
2 . So
f . I
.45
I.4S
1� i e.r�cr ��av 10 L>emsEw►'rt cmi
14.1
0,eD
2.I5
1,8-7
Z.Ot
2.01•.
0,4
2.-14
Z.01
2..09
2"T;S
0.31
1.55,
3.98
11.91
I.91
G�-+otousA- v--LcmL -rz> a1=rs,.m
Ib.9
D.So
2,00
5.s3
S:S3
E)5s
0.
15.a3
5.53
ZAS
�'1 vE�zr
ZI.o
0,57
1.80
8.95
_
9.1,5
;?),50
14do13
va
o•�a 3,�z t o.so s.s
9..a
a:h3
3.45
PEAS
Z7,27
'6.67
29.14
FLjcs1j 'To Lr4Jel3 tkjt ET
S�E P.n,GsE i=o�
S,7
S,4
o,99
-7.
o.r=,i
4.z3
4.z3
�� ow TTD Vie$ I�1t.ET'
51.3
O.so
1.02
IZxz
I 3r 1
A
3.7
o"''
B,39
3.1
Z9
Pa 2 M12G1.M.0►iT iSr FtU,jC.T
D LC►1'1J�(�E �� �e-T
10.13
.95
z.4Z
0.96
Z,z
0:?9
'4,34-
Z.2
3.
-rb EK�sj- SVMP
1 N l.T'r'S
0
Sow
6�
•
® 5c.
1 0 CLIENT JOB NO. �3
�1 NC PROJECT M I QA NQN-M 2-r%WA CALCULATIONS FOR
Engineering Consultants MADE BY _ DATE ' 2% CHECKED BY DATE SHEET OF'
H
u
SWIV M MODEL INPUT AND OUTPUT FILES
FOR THE 2, 25, AND 100 YEAR STORM EVENTS
fl
Hl
Hill
ul
I
No Text
'2 1 1 2
3 4
WATERSHED 0
COTTONWOOD FARMS OVERALL DRAINAGE PLAN 2 YEAR EVENT
' RBD 'FILE NO. 50400102.DAT
50 0 0 5.0 1. T.0
25
5
0.12
0.36
0.48
0.60-0.84 1.80 3.24
1.08 0.84
0.48
0.36
0.12
0.36
0.120.12
0.36
0.24 0.24 0.24 0.24
0.12 0.00
0.12 0.12
0..12
-2
.016 .250,
0.1
0.5
0.5
0.5
1
201
320
31514.75 14.5.0183
1
202
322
70022.90 50.0165
1
203
307
100032.25 80.0100
1
204
301
90019.00 80.0100
1
205
303
650 5.85 47.0105
1
206
306
650'7.70 70.0080
1
1
207
208
311
313
65013.80 57.0235
950411.30 55.0170
1
209
321
43523.40 40.0085'
1
210
324
400 8.90 40.0100
1
211
325
70010.90 40.0200
1
212
328
400 4.20 70.0380
1
213
340
700 9.15 70.0055
1
214
.330
2200 1.62 90.0110
1
215
331
35 0.70 90.0270
1
0
2,16
329
35 0.96 90,0060
0
0
301
302
0 2 2.47 96
0.0032
0
0
0.013
0
302
304
0 1 4.00 260
0.0021
2
2
0.035
0
303
304
0 2 1.25 10
0.0017
0
0
0.013
0
304
305
0 2 2.47 40
0.0070
0
0
0.013
0
305
309
0 1 4.00 460
0..0021
2
2
0.035
0
0
306
307
309
308
0 2 1.25 10
0 2 1.50 120
0.0038
'0.0033
0
0
0
0
0.013
0.013
0
308
310
0 1 0 1200
0.0050
4
4
0.035
0
309
310
0 2 2.25 75
0.0211
0
0
0.013
0
3.10
312
0 2 2.50 853
0.0123
0
0
0.013
0
311
312
0.2 1.00 315
0.0020
0
0
0.013
0
312
340
0 2 3.00 480
0.0100
0
0
0.013
0
313
312
0 2 2.25 680
0.0038
0
0
0.013
0
320
321
0 1 5.00 1350
0.0050
4
4
0.035
0
321
0.0
324
8 2 0.1 300
0.0 0.05
0.0053
0.0
0.31
0
0
2.6
0.013
0.79
1:.52
5.5 2.55
6.4
3.85
7.3.
5.40
0
322
323
0 2 1.25 10
0.0125'
0
0
0.013
0
323
324
0 1 0 1500
0.0142
50
0
0.016
0
324
331
0 2 3.00 120
0.0050
0
0
0.013
0
325'
326
0 1 COO 420
0.0050
3
3
0.035
0
326
327'
0 2 3.50 100
0.0050
0
0
0.013
0
327
329
0 1 4.00 750
0.0050
3'
3
0.035
0
0
328
329
329
340
0 2 1.75 100
0 1 5:00 240
0.0100
0.0050
0
4
0
4
0.013
0.035
0
330
324
0 2 1.50 80
0.0050
0
0,
0.013
0
331
325
0 2 3.00 80
0.0050
0
0
0.013
0
340
0
0 2 5.20 130
0.001"
0
0
0.013
.0018
2.47
5.00
1.25
2.47
5.00
1.25
1..50
1.10
2.25
2.50
1.00
3.00
2.25
5.00
0.10
1.25
1,.50
3.00
3.00
3.50
3.00
1.75
4.00
1.50
3.00
5.20
1
4.3
&0
0
ENVIRONMENTAL PROTECTION AGENCY -STORM WATER MANAGEMENT MODEL VERSION PC.1
DEVELOPED BY METCALF + EDDY, INC.
UNIVERSITY OF FLORIDA
WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970)
UPDATED BY UNIVERSITY OF FLORIDA (JUNE 1973)
HYDROLOGIC ENGINEERING CENTER, CORPS -OF -ENGINEERS
MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974)
BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985)
'1 OTAPE OR DISK ASSIGNMENTS
I
JIN(1)
JIN(2)
JIN(3)
J1N(4)
JIN(5)
JIN(6)
JIN(7)
JIN(8)
JIN(9)
JINGO)
,1
2
JOUTM
1
JOUT(2)
0
JOUT(3)
0
JOUT(4)
0
JOUT(5)
0
JOUT(6)
0
JOUT(7)
0
JOUT(8)
0
JOUT(9)
0
JOUT(10)
1
2
0
0
0
0
0
0
0
0
NSCRAT(1T
NSCRAT(2)
NSCRAT(3)
NSCRAT(4)
NSCRAT(5)
1
3
4
0
0
0.
WATERSHED PROGRAM CALLED
*** ENTRY MADE TO RUNOFF MODEL ***
COTTONWOOD FARMS OVERALL DRAINAGE PLAN.2 YEAR EVENT
RBD FILE NO. 50400102.DAT
ONUMBER OF TIME STEPS '50
OINTEGRATION TIME INTERVAL (MINUTES) 5.00
1.0 PERCENT OF IMPERVIOUS AREA ,HAS ZERO DETENTION DEPTH
OFOR 25 RAINFALL STEPS, THE TIME INTERVAL IS S O MINUTES
OFOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR
.12' .36 AS .60 A4 IXO 3.24 L.08 .84 .48
.36 .36 .36, .24: .24 .24 .24 .12 .12 .12
® .12' .12 .12 .12.00
II
202
322
700.
22.9
50.0
203
307
1000.
32.3
80.0
204
301
900.
19.0
80.0
205
303
650.
5.8
47.0
206
306
650.
7.7
70.0
207
311
650.
13.8
57.0
208'
313
950.
41.3
55.0
209
321
435.
23.4
40.0
210
211
324
325
400.
700.
8.9
10.9
40.0
40.0
212
328
400.
4.2
70.0
213
340
700.
9.1
70.0
214
330
2200.
1.6
90.0
215
331
35.
.7
90.0
216
329
35..
1.0
90.0
OTOTAL NUMBER OF
SUBCATCHMENTS,
16
OTOTAL TRIBUTARY
AREA (ACRES),
217.38
I I
® I�L
.0165
:016
.250
.100
.500
.%
.50
:00180
.0100
.016
.250
.100
.500
.50
.50
.00180
.0100
.016
.250
.100
.500
.50
.50
:00180
.0105
.016
.250
.100
.500
.50
.50
:00180
.0080
.016
.250
.100
.500
.50
.50
.00180
.0235
.016
.250
.100
.500
.50
.50
:00180
.0170
.016
.250
.100
.500
.50
.50
.00180
.0085
.016
.250
.100
.500
.50
.50
.00180
.0100
.016
.250
.100
.500
.50
.50
.00180
.0200
.016
.250
.100
.500
.50
.50
.00180
.0380
.016
.250
.100
.500
.50
.50
.00180
.0055
.016
.250
.100
.500
.50
.50
.00180
.0110
.016
.250
.100
.500
.50
.50
.00180
.0270
.016
.250
.100
.500
.50
.50
.00180
.0060
.016
.250
.100
.500
.50
.50
.00180
COTTONWOOD FARMS OVERALL DRAINAGE PLAN 2 YEAR EVENT
RBD FILE NO. 50400102.DAT
*** CONTINUITY CHECK FOR SUBCATCHNENT ROUTING IN UDSWM2-PC NODEL
***
WATERSHED AREA (ACRES)
217.380
TOTAL RAINFALL (INCHES)
1.060
TOTAL INFILTRATION (INCHES)
.289
TOTAL WATERSHED OUTFLOW (INCHES)
..536
TOTAL SURFACE STORAGE AT END OP STROM CINCHES) .236
ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL
.007
1
COTTONWOOD .FARMS OVERALL DRAINAGE PLAN 2 YEAR,EVENT
RBD FILE NO. 50400102:DAT
WIDTH
INVERT
SIDE
SLOPES
OVERBANK/SURCHARGE
GUTTER GUTTER NDP NP
OR DIAN
LENGTH
SLOPE
HORIZ
TO VERT
MANNING
DEPTH
JK
'NUMBER
CONNECTION
(FT)
(FT)
(FT/FT)
L
R
N
(FT)
301 302 0 2
PIPE
2.5
96.
.0032
.0
.0
.013
2.47
0
302 304 0 1
CHANNEL
4.0
260.
.0021
2.0
2.0
.035
5.00
0
303 304 0 2
304: 305' 0 2
PIPE
PIPE
1.3
2.5
10.
40.
.0017
.0070
.0
.0
.0
.0
.013
.013
1:.25
2.47
0
0
305 309 0 1
CHANNEL
4.0
460.
.0021
2.0
2.0
.035
5.00
0
306 309 0 2
PIPE
1..3
10.
.0038
.0
.0
.013
1.25
0
307 308 0 2
PIPE
1.5
120..
.0033
.0
.0
;013
1.50
0
308 310 0 1
CHANNEL
1200.
.0050
4.0
4.0
.035
1.10
0
309 310 0 2
PIPE
_.0
2.3
75..
.0211
.0
.0
.013
2.25
0
325
326 0
1
CHANNEL
4.0
420.
.0050
3.0
3.0
.035
3.00
0
326
327 0
2
PIPE
3.5
100.
.0056
A
.0
.013
3.50
0
327
329 0
1
CHANNEL
4.0
750.
.0050
3.0
3.0
.035
3.00
0
328
329 0
2
PIPE
1.8
100.
.0100
.0
.0
.013
1.75
0
329
340 0
1
CHANNEL
5.0
240.
.0050
4.0
4.0
.035
4.00
0
330
324 0
2
PIPE
1.5
80.
.0050
.0
.0
.013
1.50
0
331
325 0
2
PIPE
3.0
80.
.0050
.0
.0
.013
3.00
0
340
0 0
2
PIPE
5.2
130.
.0015
.0
.0
.013
5.20
0
OTOTAL NUMBER
OF GUTTERS/PIPES,
26
1
COTTONYOOD FARMS OVERALL DRAINAGE PLAN
2 YEAR EVENT
RBD FILE NO. 50400102.DAT
ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES
GUTTER
TRIBUTARY GUTTER/PIPE
TRIBUTARY SUBAREA
D.A.(A(
301
0' 0 0
0
0
0 0
0
0
0
204 0
0
0
0
0
0
0
0
0
19.
302
301 0 0
0
0
0 0
0
0
0
0 0
0
0
0
0
0
0
0
0
19.
303
0 0 0
0
0
0 0
0
0
0
205 0
0
0
0
0
0
0
0
0
5.
304
302 303 0
0
0
0 0
0
0
0
0 0
0
0
0
0
0
0
0
0
24.
305
304 0 0
0
0
0 0
0
0
0
0 0
0
0
0
0
0
0
0
0
24.
306
0 0 0
0
0
0 0
0
0
0
206 0
0
0
0
0
0
0
0
0
.7.
307
0 0 0
0
0
0 0
0
0
0
203 0
0
0
0
0
0
0
0
0
32.
308
309
307 0 0
305 306 0
0
0
0
0
0 0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
32.
0 0
0
0
0
0
0
0
0
0
32.
310
308 309 0
0
0
0 0
0
0
0
0 0
0
0
0
0
0
0
0
0
64.
311
0 0 0
0
0
0 0
0
0
0
207 0
0
0
0
0
0
0
0
0
13.
312
310 311 313
0
0
0 0
0
0
0
0 0
0
0
0
0
0
0
0
0
119.
313
0 0 0
0
0
0 0
0
0
0
208 0
0
0
0
0
0
0
0
0
41.
320
0 0 0
0
0
0 0
0
0
0
201 • 0.
0
0
0
0
0
0
0
0
14.
321
320 0 0
0
0
0 0
0
0
0
209 0
0
0
0
0
0
0
0
0
38.
322
0 0 0
ol
10
0 0
0
0
0
202 0
0
0
0
0
0
0
0
0
22.
'
323
324
322 0 0
32T 323 330
0
0
0
0
0 0
0 0
0
0
0
0
0
0
0 0
0
0
0
0
0
0
0
0
22.
210 0
0
0
0
0
0
0
0
0
71.
325
331 0 0
0
0
0 0
0
0
0
211 0
0
0
0
0
0
0
0
0
83.
326
325 0 0
0
0
0 0
0
0
0
0 0
0
0
0
0
0
0
0
0
83.
�1
COTTONWOOD FARMS OVERALL DRAINAGE PLAN 2 YEAR EVENT
RBD FILE NO. 50400102.DAT
HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 26 CONVEYANCE ELEMENTS
THE UPPER NUMBER IS DISCHARGE IN CFS
THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES:
( ) DENOTES DEPTH ABOVE'INVERT IN FEET
(S) DENOTES STORAGE IN AC -FT FOR DETENSION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW.
(I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH
(D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER
(0) DENOTESSTORAGE 1N-AC-FT FOR SURCHARGED GUTTER
TIME(HR/MIN) 301 302 303 304 305 306 307 308 309 310
311 312 313 340 320 321 322 323 324 325
326 327 328 329 330, 331
0 5. 0. 0. 0. 0. 0. -0. 0. 0. 0. 0.
.0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .0( ) .O( )
0. 0. 0. 0. 0. 0. 0. 0. 0. Q.
.0( ) .0( ) .0( 1 .0( ) .O( :) .O(S) .0( ) Z( ) .0( ) .0(, )
0. 0: 0. 0. 0. 0.
.0( ) .0( ) .0( ) .0( ) .0( ) .0( )
0 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
.0( ) .0( ). .0( ) .0( ) .0( ) .0( ) .0( ) :0( ) .0( ) .0( )
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
.0( ) .0( ) .0( ) .0( ) .0(_) .O(S) .0( ) .0( ) .0( ) .0( )
0. 0. 0. 0. 0. 0.
.0( ) .0( ) Z( ) .0( ) .0( ) .0(
0 15. 0. 0. 0. 0. 0. 0.. 0. 0. 0. 0.
.0( ) .0( } .1( ) .0( ) .0( ) .0( ) .1( ) .0( ) .0( ) .0( )
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
.0( ) .0( ) .0( ) .0( ) .0( ) .0(S) .0( ) .0( ) .0( ). .0( )
0. 0. 0. 0. 0. 0.
.0( ) .0( ) .0(.) .0( ) .0( ) .0( )
0 20. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
.1( ) .0( ) .1( ) .1( ) .0( ) .1( ) .1( ) .1( ) .0( ) .0( )
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
.1( ) .0( ) .1( ,) .1'( ) .0( ) .O(S) A( ) .0(. ) .1( ) .0( )
0. 0. 0. 0. 0. 0.
.0( ) .0( ) .1( ) .0( ? .1( ) .1( )
0 25. 2. 1. 1:. 2. 0.---1. 2. 0. 2. 1.
.0(0)
1.0( )
1.1(')
1.6.( )
.1( )
.O(S)
.0(0)
.2(::)
.9( )
.7( )
9:.
2.
4.
4.
2.
9.
.8( )
.3( )
.6(')
.4( )
.6( )
.9( )
0
35.
24.
27.
3.
28.
16.
4.
6.
4.
18.
20.
.0(0)
1.7( )
.0(0)
1.8( )
1.3( )
.0(0)
AM
.8( )
1.0( )
1.2( )
2.
48.
21.
74.
1.
0.
S.
6.
20.
26.
AM
1:.9( )
AM
3.1( )
.2( )
.1(S)
AM
.3( )
1.4( )
1.3( }
25.
12.
9.
17.
6.
21.
1-4(' )
.9( )
1':.0( )
.9( )
1.0( )
1.4( )
0
.40.
24.
23.
3.
28.
27.
4.
6.
5.
34.
34.
.0(0)
1:.6( )
AM
1.7( )
1.8( )
AM
.3(0)
.9( )
1.5( )
1.6( )
2.
50.
21.
91.
2.
1.
8.
7.
15.
29.
.2(0)
1.9( )
.2(0)
3.6( )
.3( )
.2(S)
AM
.3( )
1.2( )
1.3( )
29.
24.
4.
29.
0.
17.
1,.6( )
1.2( )
.6( )
1.2( )
.1( )
1.2( ?
0
45.
21.
22.
3.
23.
26.
4.
6.
6.
28.
37.
1,.9( .)
1.6( )
AM
1.5( )
1.7( )
AM
.5(0)
.9( )
1.3( )
1.7( )
2.
63.
21.
96.
2.
2.
8.
7.
14.
20.
.3(0)
2.3( )
.2(0)
3.7( )
.3( )
.3(S)
.2(0)
.3( )
1.1( )
1.1( )
20.
25.
3.
29.
2.
14.
1.3( )
1.2( )
.5(-)
1.2( )
.5( )
1.1( )
0
50.
12.
15.
3.
20.
22.
4.
6.
6.
28.
33.
1;.3( )
T.3( )
.0(0)
1.4( )
1.6( )
AM
.6(0)
.9( )
1.3( )
1.6( )
2.
.3(0)
54.
2.0( )
21..
.3(0)
88.
3.5( )
2.
.3( )
3.
.3(S)
8.
.2(0)
8.
.3( )
15.
1.1( )
18.
1.1( )
18.
20.
2.
24.
0.
16.
1.2( )
1;.1( )
.4( )
1.1( )
.2( )
1.2( )
0
55.
12.
12.
3.
13.
17.
4.
6.
6.
19.
29.
1.3( )
1.1( )
AM
1.1( )
I M )
.1(0)
.7(0)
.9( )
1.0( )
1.4( )
2.
.3(0)
52.
2.0( )
21,
.2(0)
75.
3.1( )
2.
.3( )
3.
.4(S)
8.
.2(0)
8.
.3( )
12.
1.1( )
16.
1.0( )
17.
18.
1.
20.
1.
13.
1.2( )
1.1( )
.3( )
1.0( )
.3( )
1:.1( )
1
0.
8.
10.
3.
14.
14.
4.
6.
6.
20.
25.
1.0( )
1.0( )
.0(0)
1.1( .)
1.2( )
.1(0)
.8(0)
.9( )
1.0( )
1.3( )
2.
47.
21.
72.
2.
3.
8.
8.
14.
15.
.3(0)
1.9( )
.2(0)
3.1( )
.3( )
.4(S)
.2(0)
.3( )
1.1( )
I.N.
15.
16.
1.
19.
0.
14.
1.1( )
1.0( )
.3( )
..9( )
.2( )
1.1( )
1
'5.
9.
8.
3.
10.
12.
4.
6.
6.
15.
23.
i S/
0
0
AM
1.8(
) AM
2.9(
) .2(:)
.5(s)
.2(0)
.3(
)
1..1(
14.
15.
1.
16.
0.
13.
1.1( )
1.0(
) .3( )
.9(
) .2(
) 1.1( )
1
15.
6.
6.
0.
5.
8.
4.
6.
6.
11:.
20.
.9( )
.8(
) .0( .)
.6(
) 1.0(
,) .0(0)
.9(0)
.9(
)
.8(
) 1,.2( )
2.
.4M
42.
1.7(
21.
) .0(0)
59.
2.7(
1.
) .2(
3.
) .5(S)
e.
.2(0)
8.
.3(
)
12.
1.0(.)
14..
.9(
:14.
14..
1.
16.
0.
12.
1.1( )
.9(
) .3( )
.9(
) .2(
) 1.0(
1
20.
5.
5..
1.
8.
7.
4.,
6.
6.
12.
18.
.8( )
.7(
) .6( )
.8(
) .8(
) AM
1.0(0)
1.0(
)
.8(
) 1.1( )
2.
AM
35.
1.5(
14.
) 1.4( )
54.
2.6(
1'.
) .2(
3.
) .5(S)
S.
AM
8.
.3(
)
13.
1.1(
14.
) .9( )
14.
14.
1.
15.
0.
13.
1..0( )
.9('
) .3( )
.9(
) .2(
) 1.1( T
1
25.
S.
5.
0.
4.
6.
4.
6.
6.
9.
17.
.8( )
.7(
) .1( )
.6(
) .8(
) AM
1.0(0)
1.0(
)
M
) 1.1( )
2.
AM
26.
1;.3(
6.
) .9( )
42.
2.2(
1.
) .2(
3.
) .501
8.
AM
8.
.3(
)
12.
1.0(
14.
14.
14.
1.
15.
0.
12.
1.0( )
.9(
) .3( )
A(
) .2(
) 1:0( )
1
30.
4.
4.
1'.
6.
,5.
2.
6.
6.
8.
15.
.7(.)
.7(
) .6( )
.7(
) .7(
) .6( )
1.0(.0)
1.0(
)
.7(
) 1:0( )
2.
AM
23.
11.2(
7.
) .9( )
40.
2.2(
1.
) .2(
3.
) S(S)
8.
AM
8.
.3(
)
12.
1.0(
13.
) .9( )
13.
14.
1.
15.
0.
12.
1.0( )
.9(
) .2( )
.8(
) .2(
) 1.0( )
1.
35.
4.
4.
0.
3.
5.
1.
6.
6.
4.
12.
.7( )
.6(
) .0( )
:5(
) .7(
) .3( )
11.0(0)
1.0(
)
.5(
) .9( )
2.
AM
20.
1.1(
6.
) .8( )
35.
2.0(
1.
) .1(
3.
) .5(S)
8.
.0(0)
8.
.3(
)
12.
1.0(
13.
) .9( )
13.
13.
0.
14.
0.
12.
1.0( )
.9(
) .2( )
A(
) .2(
) 1.0( )
1
40.
3.
3.
1.
5.
4.
1.
6.
6.
6.
12.
.6( )
.6(
) .5( )
.6(
) .6(
) .5( )
1.0(0)
1.0(
)
.6(
) .9( )
2.
AM
18.
1.1(
5.
) .8( )
33.
2.0(
1.,
) .1(
3.
) .5(.S)
8.
.0(0)
8.
.3(
)
12.
1.0(
13.
) .9( )
13.
13.
0.
14.
0.
12.
1.0( )
.9(
) .2( )
.8(
) .2(
) 1.0( )
1
45.
3.
3.
0.
2.
4.
0.
6.
6.
3.
11.
AM
1.0(
) .7( )
1.8( )
.0 )
.5(S)
.4(.)
.2( )
.8( )
.8( )
10.
11.
0.
12.
0.
8.
.9( )
.8(
) .2( )
.8( )
.2( )
.8( )
1
55.
2.
2.
0.
2.
3.
0.
6.
6.
3.
10.
.6( )
.5(
) .1( )
.4(..)
-Sc )
.2( )
1.0(.0)
1.0( )
.4( )
.8( )
2.
16.
4.
28.
0.
3.
2.
3.
7.
8.
AM
1.0(
) .7( )
1.8( )
.1'( )
.5(S)
.4( )
.2( )
.8( )
.7( )
8.
10.
0.
1:1.
0.
7.
A( )
.8(
) .2( )
.7( )
.2( )
.8(, )
2
0.
2.
2.
1.
3.
3.
1.
6.
6.:
4.
10.
.5( )
.5(
) A( )
.5( )
.5( )
.5(_)
1.0(0)
1.0( )
.5( )
.8( )
2.
AM
15.
1.0(
4.,
) .7( )
26.
1.7( )
0.
.1( )
3.
.50)
1.
.4( )
2.
.2( )
6.
.7( )
7.
.6( )
7.
8.
0.
9.
0.
6.
.7( )
.7(
) .2( )
M )
.2( )
.7( )
2
5.
2.
2.
0.
2.
3.
0.
6.
6.
2.
10.
.5( )
.4(
) .0( )
.4( )
;5( )
.2( )
.9(0)
1.0( )
.4( )
.8( )
2.
AM
15.
1.0(
3.
) .6( )
23.
1M )
0.
.1( )
3.
.50)
1.
.4( )
2.
.2( )
5.
.7( )
6.
.6( )
6.
7.
0.
S.
0.
6.
.7( )
.7(
) .1( )
.6( )
.1( )
.7( )
2
10.
1.
2.
0.
2.
2.
1:.
6.
6.
3.
9.
.4( )
.4(
) .3( )
.4( )
.5( )
.4( )
.9(0)
1.0( )
.4( )
.8( )
2.
AM
14.
.9(
3.
) .6( )
21.
1.6( )
0.
.1( )
3.
AM
1.
.3( )
2.
.2( )
5.
.7( :)
6.
.6( )
6.
6.
0.
7.
0.
5.
.7( )
.6(
) .1( )
.6( )
.1( )
.7( )
2
15.
1.
1.
0.
11.
2.
0.
6.
6.
2.
9.
.4( )
.3(
) .0( )
.3( )
.4( )
.0( )
.9(0)
1.0( )
.3( )
.8( )
2.
.3(0)
13.
.9(
2.
) .5( )
19.
11.5( )
0.
.1( )
3.
AM
1.
.3( )
1.
.2( )
4.
.6( )
5.
.5( )
5.
6.
0.
6.
0.
5.
.6( )
.6(
) .1'( )
.5( )
.0(_)
.6( )
2
20.
1.
1.
0.
2.
2.
T.
6.
6.
2.
8.
.4( )
.3(
) .2( )
.4( )
M )
.3( )
.9(0)
1.0( )
.3( )
.7( )
2.
12.
2.
18.
0.
3.
1.
1.
4.
5.
.3(0)
.9(
) ;5( )
1,.4( )
.1( )
AM
.2( )
.1( )
.6( )
.5( )
5.
5.
0.
5.
0.
4.
.6( )
.5(
) .1'( )
.5( )
M )
.6( )
2
25.
1.,- -
1'_.
0`
1.
1...
0
8.-
i
.3(0)
.8( )
.4( )
1.3( )
.1(')
AM
.2( )
.1( )
.6( )
.5( )
4.
4.
0.
S.
0.
4.
.6( )
.5( )
.1( )
.5( )
.O( )
.6( )
2
35.
11.
1.
0.
1.
1.
0.
6.
6.
11.
a.
.3( )
.2( )
.0( )
.2( )
.3( J
.0( )
.8(0)
1.0( )
.2( )
.7( )
2.
11.
1.
15.
0.
3.
0.
1.
4.
4.
.3(0)
.8( )
.4( )
1.3( )
.1( )
.4(S)
.2( )
.1( )
.6( )
.5( )
4.
4.
0.
4.
0.
4.
.5( )
..5( )
.1.( )
.4( )
.0( )
.6( )
2
40.
1.
1.
0.
1.
1.
0.
6.
.6.
t.
7.
.3( )
.2( )
.1( )
.3( )
.3( )
.2( )
.7(0)
1.0( )
.2( )
.:7( )
2.
10.
1.
14.
0.
3.
0.
1.
3.
4.
.3(0)
.8( )
.3( )
1.3( )
.1( )
.4(S)
.2( T
.1( )
.5( )
.4( )
4.
4.
0.
4.
0.
3.
.5O
.5(T
.1O
.4O
.0O
.5O
i2
45.
0.
1.
0.
T.
1.
0.
6.
6.
1•.
7.
.3( )
.2( }
.0( )
.2( )
.2( )
.0( )
.7(0)
1.0( )
.2( )
.7(
2.
10.
1.
14.
0.
3.
0.
0.
3.
3.
.3(0)
.8( )
.3( )
1.2( )
.1( )
.3(S)
.2( )
.1( J
.5( )
.4( )
3.
4.
0.
4.
0.
3.
.5( )
.5( )
.1( )
.4( )
.0( )
.5( )
'i 2
50.
0.
0.
0.
1.
1.
0.
6.
6.
1.
7.
.2( )
.2( )
.T( )
.2( )
.2t )
.2( )
.7(0)
1.0( )
.2( )
.7( )
2.
10.
1.
14.
0.
3:
0.
0.
3.
3.
i
.3(0)
A( )
.3( )
ti.2( )
.1( )
.3(S)
.1( )
.1( )
.5( )
.4( )
3.
3.
O.
4.
0.
3.
.5( )
.4( )
.0( )
AC )
.0( )
.5( )
2
55.
0.
0.
0.
0.
1.
0.
6.
6.
1.
7.
.2( )
.2( >
;0( )
.2( )
.2( )
.0( )
.6(0)
1.0( )
.2( )
.7C )
2.
.3(0)
10.
.8( )
1.
.3( )
13.
1.2( )
0.
.0( )
3.
.3(S)
0.
.2( )
0.
.1( )
3.
.5( )
3.
.4( )
3.
3.
0.
3.
0.
3.
.5( )
.4( )
;0( )
.4( )
.0( )
.5( )
3
0.
0.
0.
0.
0.
0.
0.
6.
6.
1.
7.
..2( )
.2( )
.1( )
.2( )
.2( )
.2( )
.6(0)
1:.0( J
.2( )
.:7(
2.
9.
1.
13.
0.
3.
0.
0.
3.
3.
.2(0)
A( )
.3( )
L U )
.0( )
.3(S)
.1( )
.1( )
-.5( )
.4( )
3.
3.
0.
3.
0.
3.
.5( )
.4( )
.0( )
.4( )
.0( )
.5( )
3
S.
0.
0.-
0.--
0.--
0.-
0.-
6.- -
6.-
0.-
7.-
I-/
0 0
.2(0)
.8( )
.2( )
1:.2( )
.0( )
.3(S)
.1( )
.1(,)
.5( )
.4( )
3.
3.
0.
3.
0.
3.
.5( )
M )
.0( )
M )
.0( )
.5(,)
0.
0.
0.
0.
0.
0.
6.
6.
0.
7.
•.2( )
.1( )
.0( )
.2( )
.2( T
.0( )
.5(0)
1.0( )
.2( )
.7( )
2.
9.
0.
12.
0.
2.
0.
0.
2.
3.
.2(0)
.7( )
.2( )
1.2( )
-0( )
.3(S)
.2( )
.1( )
.5'( )
M )
3.
3.
0.
3.
0.
2.
.5( )
A( )
.0( )
.3( )
;0( )
.5( )
0.
0.
0.
0.
0.
0.
S.
6.
0.
7.
.2( )
.1( )
.1( )
.2( )
.11 )
AC )
AM
1.0( ?
.11 )
M )
2.
9.
0.
12.
0.
2.
0.
0.
2.
2.
.2(0)
M )
.2( )
1.1( )
.0( ?
.2(S)
.1( )
.1( )
M )
M. )
2.
3.
0.
3.
0.
2.
.4( )
M )
.0( )
.3(_)
.0( )'
.4(: )
0.
0.
0.
0.
0'.
0.
6:
6.,
0.
7.
.2( )
.1( )
.0( )
.1( )
.1( )
.0( )
.4(0)
1.0( )
.1( )
M )
2.
9.
0.
12.
0.
2.
0.
0.
2.
2.
.2(0)
.7( )
.2( )
1.1( )
.0( )
.2(S)
.1( )
1( )
.4( }
.3( )
2.
2.
0.
3.
0.
2.
:4( )
M )
.0( )
.3( )
.0( )
M )
0.
0.
0.
0.
0.
0.
6.
6.
0.
7.
.2( )
1 ( )
.1( )
.1( )
.1( )
.1( )
.3(0)
1.0( )
.1( )
.7( )
2.
9.
0.
11.
0.
2.
0.
0.
2.
2.
.2(0)
M )
.2( )
1.1( )
.0( )
.2(S)
.1( )
.1( )
M )
.3( )
2.
2.
0.
2.
0.
2.
M )
.3(_)
.0( )
.3( )
.0( )
AC )
0.
0.
0.
0.
0.
0.
6.
6.
0.
7.
.2( )
.1( )
.0( )
.1( )
.1( )
.0(„)
.3(0)
1.0( )
.1( )
.7( )
2.
9.
0.
11.
0.
2.
0.
0.
2.
2.
.2(0)
.7( )
.2( )
1.1( )
.0( )
.2(S)
.1( )
.t( )
.4( )
.3( )
2.
2.
0.
2.
0.
2.
M )
.3( )
.0( )
.3( )
.0( )
M )
0.
0.
0.
0.
0.
0.
6.
6.
0.
7.
.1( )
.1( )
.1( )
.1( )
.1( )
.1( )
.3(0)
1.0( )
-U }
.7( )
2.
9.
0.
11.
0.
2.
0.
0.
2.
2.
.2(0)
M )
.2( )
1.1( )
.0( )
.2(S)
.1( )
.1( )
M )
.3( )
2.
2.
0.
2.
0.
2.
M )
.3( )
.0( )
.3( )
.0( )
AC )
0.
0.
0.
0.
0.
0.
6.
6.
0.
7.
.1(0)
.7( ?
.2( )
1.1( )
.0( )
.2(S)
.0( )
.1( )
.4( )
.3( )
2.
2.
0.
2.
0.
2.
M )
.3( }
.0( )
.3( )
.0( )
.4( )
3
55.
0.
0.
0.
0.
0.
.0.
6.
6.
0.
7.
-I( )
.1( )
.0( )
. ( )
.1( )
.0( )
.1(0)
1.0( )
.1( )
.6( )
2.
9.
0.
10.
0.
t.
0.
0.
1.
2.
.1(0)
.7( )
.2( )
1•.1( )
.0( )
.2(S)
.1( )
.1( )
.4( )
.3( )
2.
2.
0.
2.
0.
1,.
.4( )
.3( Y
.0( )
.3( )
.0(: )
.4( )
4
0.
0.
0.
0.
0.,
0.
0.
6.
6.
.1( )
.11( )
.0(,)
.1( )
.1( )
.1( )
.1(0)
1.0( )
.1(.)
.6( )
2.
9.
0.
10.,
0.
1.
0.
0.
T.
t.
.1(0)
.7( )
.2( )
t.1( )
.0(..)
.2(S)
.0( )
.1( )
.3( )
.3( )
1.
2.
0.
2.
0.
1.
.3( )
.3( )
.0( )
.3( )
.0(:)
.3( )
4
S.
0.
0.
0.
0.
0.
0.
6.
6.
0.
7.
.1( )
.1( }
.0( )
.t( )
.1( )
.0( )
.t(0)
1.0( )
.1( )
.6( )
2.
9.
0.
10.
0.
1.
0.
0.
1:.
1.
.1(0)
.7( )
.2( )
1.11 )
.0(. )
.2(S)
J( )
.1( )
.3( )
.3( )
1.
1.
0.
2.
Q.
1.
.3( )
.3( )
.0( )
.2( )
.0( )
.3( )
4
10..
0.
0.
0.
0.
Q.
0.
6.
6.
0.
7.
.t( )
.1( )
.0( )
.1( )
.1( ,)
.1( )
Mol
1,.0( )
.1( )
.6( )
2.
9.
0.
10.
0.
1.
0.
0.
11.
1.
.1(0)
M )
.2( )
1.1( )
.0( )
.2(S)
.0( )
.1( )
.3( )
.2( )
1.
1.
0.
1.
0.
1.
.3( )
.3( )
M )
.2( )
.0( )
.3( )
COTTONWOOD :FARMS OVERALL DRAINAGE PLAN 2 YEAR EVENT
RBD FILE NO. 50400102.DAT
*** PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND;DETENSION DAMS ***
CONVEYANCE PEAK STAGE STORAGE TIME
ELEMENT (CFS) (FT) (AC -FT) (HR/MIN)
322 8. 1.3 .2 0 55.
320 2. .3 0 45.
330 6. 1.0 0 35.
323 8. .3 1 40.
321 3. _J .5 1 30.
301 24. 2.5 .0 0 40.
328
9.
1.0
327
25.
1.2
313
21.
2.3
311
2,
1.0
310
37.
1.7
329
29.
1.2
312
63.
2.3
340
96.
3.7
1
ENDPROGRAM
PROGRAM CALLED
i
1
1
i
1
1
0 35.
0 45.
.3 0 50.
.4 1 30.
0 45.
0 45.
0 45.
0 45.
2
1
, 2
3
4
WATERSHED
0
COTTONWOOD FARMS OVERALL
DRAINAGE PLAN 25
TEAR EVENT
RBD FILE NO. 50400125.DAT
�.
50
0 0
5.0 1 1.0
1
25
5
0.48
0.72
0.96
1.32 2.28 3.72 6.84 2.88
1.56
1.08
0.84
0.12
0.72
0.12
0.48
0.12
0.36 0.36 0.36 0.36 0.36 0.24
0.12 0.00
0.12
-2
.016
.250
0.1
0.5
0.5
0.5
.0018
1
201
320
31514.75 14.5.0183
1
202
322
70022.90 50.0165
1
203
307
100032.25 80.0100
1
204
301
90019.00 84.0100
1
265
303
650 5.85 47.0105
1
206
306
650 7.70 70.0080
1
1
207
208
311
313
65013,80 57.0235'
95041.30 55.0170
1
209
321
43523.40 40.0085
1
210
324
400 8.90 40.0100
1
211
325
70010.90 40.0200
1
212
'328
400 4.20 70.0380
1
213
340
700 9.15 70.0055
1
214
330
2200 1.62 90.01,10
1
215
331
35 0.70 90.0270
1
0
216
329
35' 0.96 90.0060
0
0
301
302
0 2 2.47 96
0.0032
0
0
0.013
2.47
0
302
304
0 1 4.00 260
0.0021
2
2
0.035
5.00
0
303
304
0 2 1.25 10
0.0017
0
0
0.013
1.25
0
304
305
0 2 2.47 40
0.0070
0
0
0.013
2.47
0
305
309
0 1 4.00 460
0.0021
2
2
0.035
5.00
0
0
306
307
300
308
0 2 1.25 10
0 2 1.50 120
0.0038
0.0033
0
0
0
0
0.013
0.013
1.25
1.50
0
308
310
0 1 0 1200
0.0050
4
4
0.035
1.10
0
309
310
0 2 2.25 75
0.0211
0
0
0.013
2.25
0
310
312
0 2 2.50 853
0.0123
0
0
0.013
2.50
0
311
312
0 2 1.00 315
0.0020
0
0
0.013
1.00
0
312
340
0 2 3.00 480
0.0100
0
0
0.013
3.00
0
313
312
0 2 2.25 680
0.0038
0
0
0.013
2.25
0
320
321
0 1 5.00 .1350
0.0050
4
4
0.035
5.00
0
321
:324
8'2 0.1 300
0.0053
0
0
0.013
0.10
0.0
Ow0 0.05
0.0
0.31
2.6
0.79
4.3
1.52
5.5 2.55
6.4
3.85
7.3
5.40
8.0
0
322
323
0.2 1.25 10
0.0125
0
0
0.013
1.25
0
323
324
0 t 0 1500
0.0142
50
0
0.016
1.50
0
324
331
0 2 3.00 120
0.0050
0
0
0.013
3.00
0
325
326
0 1 4.00 420
0.0050
3
3
0.035
3.00
0
326
327
0 2 3.50, 100
0.0050
0
0
0.013
3.50
0
327
329
0 1 4.00 750
0.0050
3
3
0.035
3.00
0
0
328
329
329
340
0 2 1.75 106
0 1 5.00 240
0.0100
0.0050
0
4
0
4
0.013
0.035
1.75
4.00
0
330
324
0 2 1.50 80
0.0050
0
0
0.013.
1.50
0
331
325
0-2 3.00 80
0.0050
0
0
0.013
3.00
0
340
0
0 2 5.20 130
0.001"
0
0
0.013
5.20
0
zX
ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.1
DEVELOPED BY 14ETCALF + EDDY, INC.
UNIVERSITY OF FLORIDA
WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER: 1970)
UPDATED BY
OTAPE
OR DISK ASSIGNMENTS
JINO) IIN121 JIN(3)
2 1 0
JOUT(1) JOUT(2) JOUT(3)
1 2 0
NSCRAT(1)
3
1
WATERSHED PROGRAM CALLED
*** ENTRY MADE TO RUNOFF MODEL ***
UNIVERSITY OF FLORIDA (JUNE 1973)
HYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS
MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974)
BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985)
JIN(4) JIN(5) JIN(6) JIN(7) JIN(8) J1N(9) JINGO.)
0 0 O 0 0 0 0
JOUT(4) JOUT(5) JOUT(6) JOUT(7) JOUT(8) JOUT(9) JOUT(1O)
0 0 0 0 0 0 0
NSCRAT(2) NSCRAT(3) NSCRAT(4) NSCRAT(5)
4 0 0 0
COTTONWOOD FARMS OVERALL DRAINAGE PLAN 25 YEAR EVENT
RBD FILE NO. 50400125.DAT
IONUMBER OF'TIKE STEPS 50
OINTEGRATION TIME: INTERVAL (MINUTES) 5.00
1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH
OFOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES
OFOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR
® .48 .72: .96 1.32 2.28 3.72 6.84 2.88 1.56 1.08
.84 .72 .48 .36 .36 .36 .36 .36 .24. ..12
11
is
201
320
315.
14.8
14.5
202
322
700.
22.9
50.0
263
307
1000.
32.3
80.0
204
301
900.
19.0
80.0
205
303
650.
5.8
47:0
206
306
650.
7.7
70.0
207
311
650.
13.8
57.0
208
313
950.
41.3
55.0
209
321
435.
23.4
40.0
210
324
400.
8.9
40:0
211
325
700.
10.9
40:0
212
328
400.
4.2
70.0
213
340
700.
9.1
70.0
214
330
2200.
1.6
90v0
215
331
35.
.7
90.0
216
329
35.,
1.0
90.0
OTOTAL.NUMBER OF SUBCATCHMENTS, 16
OTOTAL TRIBUTARY AREA (ACRES), 217.38
1
.0183
.016
.250
.100
.500
.50
.50
.00180
.0165
.016
.250
.100
.500
.50
.50
.00180
.0100
.016
.250
.100
.500
.50
.50
.00180
.0100
.016
.250
.100
.500
.50
.50
.00180
.0105
.016
.250
.100
.500
.50
.50
.00180
.0080
.016
.250
.100
.500
.50
.50
.00180
.0235
.016
.250
.100
.500
.50
.50
.00180
.0170
.016
.250
.100
.500
.50
.50
.00180
.0085
.016
.250
.100
.500
.50
.50
.00180
.0100
.016
.250
.100
.500
.50
.50
.00180
.0200
.016
.250
.100
.500
.50
.50
.00180
.0380
.016
.250
.100
.500
.50,
.50
.00180
.0055
.016
.250
.100
.500
.50
.50
.00180
.0110
.916
.250
.100
.500
.50
.50
.00180
.0270
.016
.250
.100
.500
.50
.50
.00180
.0060
.016
.250,
.100
.500
.50
.50
.00180
COTTONWOOD FARMS OVERALL DRAINAGE PLAN 25 YEAR EVENT
RBD FILE NO. 50400125.DAT
*** CONTINUITY CHECK FOR SUBCATCH14ENT ROUTING IN UDSWM2-PC MODEL ***
WATERSHED AREA (ACRES) 217.380
TOTAL RAINFALL (INCHES) 2.210
TOTAL INFILTRATION ('INCHES) .353
TOTAL WATERSHED OUTFLOW (INCHES) 1.484
TOTAL SURFACE STORAGE AT END OF STROM (INCHES) .373
FALL .003
I1
ERROR IN CONTINUITY, PERCENTAGE, OF RAIN-
COTTONWOOD FARMS OVERALL DRAINAGE PLAN 25 YEAR EVENT
RBD FILE NO. 50400125.DAT
WIDTH
INVERT
SIDE SLOPES
OVERSANK/SURCHARGE
GUTTER
NDP
NP
OR DIM
LENGTH
SLOPE
HORI2 TO VERT
MANNING
DEPTH
JK
'GUTTER
NUMBER
CONNECTION
(FT)
(FT)
(FT/FT)
L R
N
(FT)
301
302
0
2
PIPE
2.5
96.
.0032
.0 .0
.013
2.47
0
304
0
1
CHANNEL
4.0
260.
.062:1
2.0 2.0
.035
5.00
0
'302
303
304
0
2
PIPE
1.3
10.
.0017
.0 .0
.013
1.25
0
304
305
0
2
PIPE
2.5
40.
.0070
.0 .0
.013
2.47
0
305
309
0
1
CHANNEL
4.0
460.
.0021
2.0 2.0
.035
5.00
0
309
0
2
PIPE
1.3
10.
.0038
.0 .0
.013
1.25
0
307
308
0
2
PIPE
1.5
120.
.0033
.0 .0
.013
1.50
0
'306
308
310
0
11
CHANNEL
.0
1200.
.0050
4.0 4.0
.035
1.10
0
r J
324
331
0
325
326
0
326
327
0
327
329
0
328
329
0
329
340
0
330
324
0
331
325
0
340
0
0
OTOTAL NUMBER OF GUTTERS/PIPES, 26
1
2 PIPE
3.0
120.
.0050
.0
.0
.013
3.00 0
1 CHANNEL
4.0
420.
.0050
3.0
3.0
.035
3.00 0
2 PIPE
3.5
100.
.0050
.0
.0
.013
3.50 0
1 CHANNEL
4.0
750.
..0050
3.0
3.0
.635
3.00 0
2 PIPE
1.8
100.
.0100
.0
.0
.013
1.75 10
1 CHANNEL
5.0
240.
.0050
4.0
4.0
.035
4.00 0
2 PIPE
1.5
80.
.0050
.0
.0
.013
1.50 0
2 PIPE
3.0
80.
.0050
.0
40
.013
3.00 0
2 PIPE
5.2
130.
.0015
.0
.0
.013
5.20 0
COTTONWOOD FARMS OVERALL DRAINAGE PLAN 25 YEAR EVENT
RBD FILE NO. 50400125.DAT
ARRANGEMENT OF'SUBCATCHMENTS AND GUTTERS/PIPES
GUTTER
TRIBUTARY
GUTTER/PIPE
TRIBUTARY
SUBAREA
301
0
0
0
0
0
0
01
0
0
0
204
0
0
0
0
0
0
0 0
302
301
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
303
0
302
0
303
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
205
0.
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0 0
304
305
304
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
306
0
0
0
0
0
0
0
0
0
0
206
0
0
0
0
0
0
0 0
307
0
0
0
0
0
0
0
0
0
0
203
0
0
0
0
0
0
0 0
308
307
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
309
305
306
0
0
0
0,
0
0
0
0
0
0
0
0
0
0
0
0 0
310
308
309
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
311
0
0
0
0
0
0
0
0
0
0
207
0
0
0
0
0
0
0 0
312
310
0
311
0
313
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
208
0
0
0
'0
0
0
0
0
0
0
0
0
0 0
0 0
313
320
0
0
0
0
0
0
0
0
0
0
201
0
0
0
0
0
0
0 0
321
320
0
0
0
0
0,
0
0
0
0
209
0
0
0
0
0
0
0 0
322
0
0
0
0
0
0
0
0
0
0
202
0
0
0
0
0
0
0 0
323
322
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
324
321
323
'330
0
0
0
0
0
0
0
210
0
.0
0
0
0
0
0 0
325
331
0
0
0
w
0
w
0
w
0
0
0
0
211
w
0
w
0
w
0
w
0
0
0
0 0
Zb
1
340 312 329 0 0 0 0 0 0 0 0
213 0
0 0
0
0
0 0
0 0 217.4
COTTONWOOD FARMS OVERALL DRAINAGE PLAN 25 YEAR EVENT
RBO FILE NO. 50400125.DAT
1
HYDROGRAPHS ARE LISTED FOR THE FOLLOWING 26 CONVEYANCE ELEMENTS
THE UPPER NUMBER IS DISCHARGE IN CFS
THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES:
( ) DENOTES DEPTH ABOVE INVERT IN FEET
(S) DENOTES STORAGE IN AC -FT FOR DETENSION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW.
(I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW
HTDROGRAPH
(D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER
(0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER
TIME(HR/MIN) 301 302 303 304 305
306
307
308
309
310
311 312 313 340 320
321
322
323
324
325
326 327 328 329 330
331
0 5. 0. 0. 0. 0. 0.
0.
0.
0.
0.
0.
.0( ) .0( ) .0( ) .0( ) .0( )
.0( )
.0( )
.0( )
.0(
)
.0( )
0. 0. 0. 0. 0.
0.
0.
0.
0.
0.
.0( ) .0( ) .0( ) .0( ,) .0( )
.0(S)
.0( )
.0( )
.0(
)
.0( )
0. 0. 0. 0. 0:
0.
.0( ) .0( ) .0( ) .0( ) .0( )
.0( )
0 10. 0. 0. 0. 0. 0.
0.
0.
0.
0.
0.
.0( ) .0(-) .1( ) .O( ) .0( )
.1( )
.1( )
.0( )
.0(
)
.0( )
0. 0. 0. 0. 0.
0.
0.
0.
0.
0.
.0( ) .0( ) .0( ) ;Oc ) .0( )
:0(S)
.1( )
.0( )
.0(
)
.0( )
0. 0. 0. 0. 0.
0.
.0( ) .0( ) .0( ) .0( ) .0( )
A( )
0 15. 1. 0. 1. 1. 0.
1.
1..
0.
1.
0.
.3( ) .1( ) .4( ) .3( ) .1( )
.4( )
.4(, )
.2( )
.2(
)
.1( )
1. 11. 1. 1. 0.
0.
T.
0.
1..
1.
.4( ) .2( ) .3( ) .4( ) .0( )
AM
.3(, )
.1( )
.3(
)
.1( )
0. 0. 1!. D. 1.
1.
.2( ) .0( ) .3( ) .1( ) .4( )
.3( )
0 20. 6. 3. .3. 8. 2.
4.
6.
2.
6.
S.
.9( ) .5( ) .0(0) .8( ) .5( )
1.0( )
.0(0.)
.6( )
.5(
)
.5( )
2. 10. 6. 14. 0.
0.
6.
11.
6.
6.
.0(0) .8( ) .8( ) 1.2( ) .1( )
:O(S)
.9( )
.2( )
.7(
)
.6( )
5. 1:. 3. 3. 3.
6.
2.
49.
21.
91.
2.
1.
8.
6.
24.
34.
.2(0)
1.9(
) AM
3.6( )
.3( )
.2(S)
.1(0)
.3(_)
1,.5(
) IM )
33.
20.
11.
27.
7.
26.
1.6( )
0 35.
24.
24.
3.
25.
28.
4.
6.
6.
32.
36..
.3(0)
1.6(
) AM
1.6( )
1.8( )
.2(0)
.7(0)
.9(
)
1.4(
) 1..7( )
2.
55.
21.
119.
6.
3.
8.
7.
41.
65.
AM
2.1(
) .5(0)
AM
.5( )
.4(S)
.4(0)
.3(
)
2.2(
) 2.0( )
63.
44.
17.
62.
8.
44.
2.6( )
1.6(
) .0(0)
1.7( )
.0(0)
2.3( )
0 40.
24.
24.
3.
28.
27.
4.
6.
6.
31.
38.
.6(0)
1.6(
) .2(0)
1.8( )
1.7( )
AM
1..4(0)
.9(
)
1.4(
) 1.7( )
2.
61,
21..
119.
9.
4.
8.
8.
35.
68.
.:7(0)
2.3(
) T.1(0)
AM
.6( )
.7(S)
.7(0)
.X
)
1.9(
) 2.0( )
68.
64.
17.
80.
8.
38.
2.8( ) -
2.0(
) .0(0)
1.9( )
AM
2.11 )
0 45.
24.
24.
3.
26.
27.
4.
6.
6.
32.
37.
.8(0)
1_.6(
) .3(0)
1.6( )
1.7( )
.5(0)
2.0(0)
.9(
)
1.4(
) 1.7( )
2.
59.
21:.
119.
8.
5.
8.
8.
25.
44.
.9(0)
2.2(
) 1,.5(0)
.7(0)
.6( )
.9(S)
LOW)
.3(
)
1.6(
) 1.6( )
44.
57.
10.
75.
3.
26.
2.0( )
1.8(
) 1:.0( )
1.8( )
.6( )
1.6( )
0 50.
24.
24.
3.
28.
27.
4.
6.
6.
31.
38.
.9(0)
1.6(
) .3(0)
1.7( )
1.7( )
.5(0)
2.4(0)
.9(
)
1.4(
) 1.7( )
2.
60.
21.
119.
7.
5.
8.
8.
22.
36.
1.0(0)
2.2(
) 1.8(0)
AM
.6( )
1.1(S)
1.1(0.)
.3(
)
1.4(
) 1.5( )
35..
41.
3.
50.
1.
24.
1.7( )
1.6(
) .5( )
1.5( )
.5( )
1.5( )
0 55.
24.
24.
3. -
26.
27.
4.
6.
6.
32.
38.
.9(0)
1.6(
) Am
1.6E )
1.7( )
.6(0)
2.7(0)
.9(
)
1.4(
) 1.7( )
2.•
60.
21.
119:
7.
5.
8.
8.
20.
31..
1:.1(0)
2.2(
) 1.9(0)
.8(0)
.5( )
1.3(S)
1:.2(0)
.3(
)
1.4(
) 1.4( )
32.
35.
6.
42.
11.
21.
1.6( )
1.5(
) .7( )
I M )
.4( )
1.4( )
1 0.
24.
24.
3.
28.
27.
4.
6.
6.
31.
38.
.9(0)
1.6(
) .3(0)
1.7( )
1.7( )
.6(0)
2.9(0)
.9(
)
1.4(
) 1.7( )
2.
60.
21.
119.
6.
5.
B.
8.
20.
29.
1:.2(0)
2.2(
) 2.1(0)
.7(0)
.5( )
1.4(S)
1.3(0)
.3(
)
1-.4(
) 1.3( )
29.
31,
2.
36,
1:.
21.
_
w1.5( )
w1..4(
) '.4O
w1.3( )
^'.4( )
1.4( )
�.
....
Z7/ `t.�Ce
�11
1 15.
1 20.
' 1 25.
t 1 30.
35.
1 40.
2. 60. 21. - 119. S.
1.3(0) 2.2( ) 2.1(0) .5(0) .5( )
24. 26. 1. 29. 1.
1.4( ) 1.3( ) .3( ). 1.2( ) .3( )
24. 24. 3. 26. 27.
.7(0) 1.6( ) .3(0) 1.7( ) 1.7( )
2. 60. 21. 119. 4.
1.3(0) 2.2( ) 2.2(0) .3(0) .4( )
23. 24. 2. 26. 1.
1.4( ) 1.2( ) .5( ) 1.1( ) .3( )
24. 24. 3. 28. 27.
.6(0) 1.6( ) .3(0) 1'.7( ) 1.7( )
2. 60. 21. 119. 4.
1.3(0) 2.2( ) 2.1(0) AM .4(')
22. 23. 1. 25. 1'.
1.3( ) 1.2( ) .3( ) 1..1( ) .3( )
24. 24. 3. 26. 27.
.5(0) 1.6( ) .3(0) 1:.7( ) 1.7( )
2. 60. 21. 93. 4.
1.4(0) 2.2( ) 2.1(0) 3.7( ) .4( )
22. 22. 2. 24. 1s
1.3( ) 1.2( ) .4( ) 1.1( ) .3( )
24. 24. 3. 28. 27.
.3(0) 1.6( ) .3(0) 1.7( ) I'M )
2. 60. 21. 83. 4.
1.4(0) 2.2( ) 2.1(0) 3.4( ) .4( )
21. 21. 1. 23. 1.
1:.3( ) 1.1( ) .3( ) 1.1( ) .3(' ')
24. 24. 3. 26. 27.
.2(0) 1.6( ) .3(0) 1.7( ) 1:.7( )
2. 60. 21. 89. 3.
1:.4(0)' 2.2( ) 2.0(0) 3.5( ) .4( )
20. 21. 1. 22. 0.
1..3( ) 1.1( ) .3( ) 1.0( ) .2( )
24. 24. 3. 28. 27.
AM 1.6( ) .3(0) 1.7( ) 1.7( )
2. 60. 21, 81. 3.
1-4(0) 2.2( ) 2.0(0) 3.3( ) .4( )
19. 20. 1. 21. 0.
Y.2f ) 1.1( ) .2( ) 1.0( ) .2( )
6.
8.
8.
18.
24.
1.5(S)
1.4(0)
.3(
) 1.3(
) 1.2( )
18.
1.3( )
4.
6.
6..
32.
38.
.6(0)
3.3(0)
1.0(
) 1.4(
) 1.7( )
6.
8.
8.
17.
23.
1.6(S)
1.4(0)
.3(
) 1.3(
) 1.2( )
18.
1.3( )
4.
6.
6.
31.
38.
.6(0)
3.4(0)
1.0(
) 1.4(
) 1.7( )
6.
8.
8.
17.
22.
1.6(S)
1.4(0)
.3(
) 1.3(
) 1.2( )
18.
1.3( )
4.
6.
6.
32.
38.
.6(0)
3.5(0)
1.0(
) 1.4(
) 1.7( :)
6.
8.
8.
17.
21.
1.7(S)
1.4(0)
.3(
) 1.2(
) 1.1( )
17.
1.3( )
4.
6.
6.
31.
38.
.6(0)
33(0)
1.0(
) 1.4(
) 1.7( )
6.
8.
8.
17.
21.
1.7.(S)
1.4(0)
.3(
) 1.2(
) Mc )
17.
1.3( )
4.
6.
6.
32.
38.
.6(0)
3.6(0)
1.0(
) 1.4(
,) 1.7( )
6.
8.
8.
16.
20.
1.80)
1.4(0)
.3(
) 1.2(,,)
1..1( )
17.
1.2( )
4.
6.
6.
31.
38.
.5(0)
3.6(0)
1.0(
) 1.4(
) 1.7( )
6.
8.
8.
16.
19.
1.8(S)
1.4(0)
.3(
.) 1.2(
) t.1( )
16.
1.2( )
2.
53.,
21.
73.
3.
6.
8.
8.
16.
18.
1.4(0)
2.0(
) 1.8(0)
3.1(
) .3(
) 1.8(S)
1.4(0)
.3(
)
1..2(
) 1.0( )
18.
18.
0.
19.
0.
16.
1.2( )
1.1(
) .2( )
1.0(
) .2(
) 1.2( )
1 55.
7.
3.
3.
5.
9.
4.
6.
6.
13.
21.
.9( )
.6(
) .3(0)
.7(
) 1.0(
) .5(0)
3.7(0)
1.0(
)
.8(
) 1-2( )
2.
45.
21.
67.
3.
6.
8.
B.
15.
18.
1.4(0)
1.8(
) 1.8(0)
2.9(
) .3(
) LIM
1.3(0)
.3(
)
1:.2(
) 1.0( )
18.
18.
1.
19.
0.
.15.
1.2( )
1.0(
) .2( )
.9(
) .2(
) 1.2C }
2 0.
1.
4.
3.
7.
7.
4.
6.
6.
1 T.
18.
.4( )
.6(
) .3(0)
.8C
) .8(
) .5(0)
3.7(0)
1.0(
)
.8(
) 1.1( )
2.
40.
21.
59.
3.
6.
8.
8.
15.
17.
1.4(0)
1.7(
) 1.7(0)
2.7(
) .3C
) 1.8(S)
1.3(0)
.3(
)
1.2(
) 1.0C )
17.
17.
0.
18.
0.
15.
1.2( )
1.0(
) .2( )
.9(
) .2(
) 1.2( )
2 5.
4.
3.
3.
5.
6.
4.
6.
6.
11.
17.
.7( )
.5(
) .2(0)
.7(
) .8C
) AM
3.7(0)
TM
)
.7(
) 1.1( )
2.
39.
21..
59.
2.
6.
8.
8.
15.
17.
1.4(0)
1.7(
). LOW
2.7C
) .3C
) 1.8(S)
1.3(0)
.3(
)
1.2(
) 1.0( )
17.
17.
0.
18.
0.
15.
1.2( )
1.0(')
.2( )
.9(
) .1(
) 1.2( )
2 10.
1.
3.
3.
6.
6.
4.
6.
6.
10.
17.
.3( )
.5(
) .2(0)
.7(
) .8(
) AM
3.7(0)
1.0(
)
.7C
) 1.0( )
2.
39.
21.
57.
2.
6.
8.
8.
15.
U.
1-.4(0)
1:.6(
') 1.5(0)
2.6(
) .3(
) 1.8(S)
1.3(0)
.3(
)
1.2(
) 1.0( )
16.
17.
0.
17.
0.
15.
1.1( )
1-0(
) .1( )
.9(
) .1(
) 1.2( )
2 15.
3.
2.
3.
4.
5..
4.
6.
6.
10.
16.
.6( )
.4(
) .2(0)
.6(
) .7(
) AM
3.6(0)
1.0(
)
.7(
) 1.0( )
2.
38.
2T.
56.
2.
6.
8.
8.
15.
16.
1.4(0)
1:.6(')
1.4(0)
2.6(
) .3(
) 1.8(S)
1:.2(0)
.3(
)
1.1(
) 1.0( )
16.
16.
0.
17,
0,
15.
11.1( )
Y.0(
) .1( )
.9(
) .0(
) 1.1( )
2 20.
T.
2.
3.
S.
5.
4.
b.
6.
9.
16.
.3( )
.4(
) .2(0)
.7(
) .7(
) AM
3.6(0)
1.0(
)
.7(
) 1.0( )
2.
38.
21.
55.
2.
6.
8.
8.
15.
16.
TAM
1.6(
) 1:.3(0)
2.6(
) .3(
) 1.8(S)
1.2(0)
.3(
)
1.1(
) 1.0( )
16.
16.
0,
16,
0.
15.
0
0
2.
37.
21.
53.
2.
6.
8.
8.
14.
15.
1.4(0)
1.6(
) 1.0(0)
2.5(
) .3(
) 11.8(S)
1.1(0)
.3(
)
1.1(
) 1.0( )
15.
15.
0.
16.
0.
14.
1.1( )
1.0(
) .1( )
.9(
) .0(
) 1.1( )
1.
1'.
3..
4.
4.
4.
6.
6.
S.
15.
.4( )
.3(
) AM
.6(
) .6(
) .3(0)
3.6(0)
1.0(
)
.7(
) 1.0( )
2.
37.
21.
53.
2.
6.
8.
8.
14.
15.
1.4(0)
1.6(
) .9(0)
2.5(
) .3(
) 1.8(S)
1.:I M
.3(
)
1.:1:(
) 1.0(
15.
15.
0.
15.
0.
14.
1.1( )
1.0(
) .1(, )
.9(
) .0(
) 1.1( )
1.
1:.
3.
4.
4.
4.
6.
6.
8.
15.
..3( )
.3(
) .1(0)
.6(
) .6(
) .3(0)
3.5(0)
1.0(
)
.6(
) 1.0( )
2.
37.
21.
52.
2.
6.
8.
8.
14.
15.
1.4(0)
t.6(
) .8(0)
2.5(
) .3(
) 1.8(S)
1.0(0)
.3(
)
1.1(
} 1.0( )
15.
15.
0.
15.
0.
14.
1.1( )
1.0(
) :1( )
.9(
) .0(
) 1.1( )
1:.
1.
3.
3.
4.
4.
6.
6.
B.
15.
.3( )
.3(
) .1(0)
.5(
) .6(
) .2(0)
3.5(0)
1.0(
)
.6(
) 1.0( )
2.
37.
2:1:.
52.
2.
6.
8.
8.
14.
15.
1.4(.0)
1..6(
) .7(0)
2.5(
) .3(
) 1.8(S)
1.0(0)
.3(
)
1.1(
) 1.0( )
15.
15.
0.
15.
0.
14.
1.1( )
1.0(
) .1( )
.8(
) .0(
) 1.1( )
1.
1.
.3.
4.
4.
4.
6.
6.
8.
14.
.3( .)
.2(
) .1(0)
.6(
) .6(
) .2(0)
3.5(0)
1:.0(
)
.6(
) t.0( )
2.
37.
21:.
52.
2.
6.
8.
8.
14..
15.
1.4(0)
1.6(
) .6(0)
2.5(
) .2(
) 1.7(S)
1.0(0)
.3(
)
1.1f
) t.0( )
15.
:15.
0.
15.
0.
14.
1.1( )
1.0(
) .1( )
.8(
) .0(
) 1.1( )
1.
T. '
3.
3.
4.
4.
6.
6.
8.
14.
.3( )
.2(
) .1(0)
.5(
) .6(
) .2(0)
3.4(0)
1':..0(
)
.6(
) 1.0( )
2.
37.
21.
52.
2..
6.
8.
8.
14.
15.
1.4(o)
1.6(
) .5(0)
2.5(
) .2(
) 1.7(S)
.9(o)
.3(
)
1.1(
) .9( )
15.
15.
0.
15.
0.
14.
1.1( )
1.0(
) .1( )
.8(
) .0(
) 1.1( )
0.
1.
3.
4.
4.
4.
6.
6.
S.
14.
.3( )
.2(
) .0(0)
.6(
) .6(
) .1(0)
3.4(0)
1.0(
)
.6(
) 1.0( )
2.
37.
21.
51.
1.
6.
8.
8.
14.
14.
1.4(0)
1.6(
) .3(0)
2:5(
) .2(
) 1.7(S)
.9(0)
.3(
)
1.1(
) .9( )
14.
151.
0.:
15.
0.
14.
1.1( )
.9(
) .1( )
.8(
) .0(
) I.1( )
�e�
2.
36.
21.
51.
11.
6.
S.
8.
14.
14.
1.4(0)
1.6(')
AM
2.5(
} .2(
) 1.7(S)
.8(0)
.3(
)
1.1(
) .9( )
14.
14.
0.
14.
0.
14.
1.1( )
.9(
) .0(
) .8(
T .0(
) 1.1( )
3 15.
0.
0.
1.
1.
3.
4.
6.
6.
7.
14.
.2( )
.2(
) .5(
) .3(
> .5(
) AM
3.3(0)
1.0(
)
.6(
) .9( )
2.
30.
13.
45.
1.
6.
8.
8.
14.
14.
1:.3(0)
1:.4(
) 1.4(
) 2.3(
) .2(
) 1.7(S)
.7(0)
.3(
)
1.1.(
) .9( )
14.
14.
0.
14.
0.
14.
1.1( )
.9(
) .0(
) A(
) .0(
) 1.1( )
3 20.
0.
0.
0.
0.
2.
4.
6.
6.
6.
13.
.2( )
.2(
) .0(
) .2(
) .4(
) AM
3.2(0)
1.0(
)
.5(
) .9( )
'
2.
17.
1.
33.
1.
6.
8.
S.
14.
14.
1.3(0)
t.0(
) .3(
) 1.9(
) .2(
) 1.6(S)
.7(0)
.3(
)
1.1(
) .9( )
14.
14.
0.
14.
0.
14.
1•.1( )
.9(
) .0(
) .8(
) .0(
) 1.1( )
3 25.
0.
0.
0.
0.
1.
4.
6.
6.
S.
12.
.2( )
.2(
) .2(
) .2(
) .3(
) .0(0)
3.2(0)
1..0(
)
.5(
) .9( )
2.
14.
2.
28.
1.
6.
8.
8.
14.
14..
1.3(0)
.9(
) .5(
) 1.8(
) .2(
) 1.6(S)
.6(0)
.3(
)
LU
) .9( )
14.
14.
0.
14.
0.
14.
1.1( )
.9(
) .0(
) .8(
) M
) 1.1(
3 30.
0.
0.
0.
0.
1.
0.
6.
6.
1,.
9.
.2( )
.1(
) .0(
) .2(
) .2(
) .2( )
3.2(0)
1,.0(
)
.2(
) .8( )
2.
14.
2.
28.
1.
6.
8.
8.
14.
14.
1.3(0)
.9(
) .5(
) 1.8(
) .2(
) 1.6(S)
.6(0)
.3(
)
1.1(
) .9( )
14.
14.
0.
14.
0.
14.
1..1( )
.9(
) .0(
) .8(
) .0(
) 1.1( )
3 35.
0.
0.
0.
0.
1.
0.
6.
6.
0.
7.
.2( )
.1(
) .2(
) .2(
) .2(
) .0( )
3.1(0)
1.0(
)
.1(
) .6( )
2.
10.
2.
24.
1.
6.
8.
8.
14.
14.
1.3(0)
.8(
) .4(
) 1.7(
) .2(
) LAM
.5(0)
.3(
)
Li(
) .9( )
14.
14.
0.
14.
0.
14.
1.1( )
.9(
) .0(
) .8(
). .0(
) 1.1( )
3 40.
0.
0.
0.
0-
0.
0.
6.
6.
1-
7.
.2( )
.1(
) .0(
) .2(
) .2(
) .2( )
3.1(0)
1.0(
)
.2(
) .7( )
2.
10.
2.
24.
1.
6.
S.
8.
14.
14.
1,.3(0)
.8(
) .4(
) 1.7(
) .2(
) 1.60)
.5(0)
.3(
)
t.i(
) .9( )
14.
14.
0.
14.
-0.
14.
3�
2.
10.
1.
24.
1.
5.
8.
8.
14.
14.
1.3(0)
.8(
)
.4( )
1.6( )
.2(
) 1-.5(S)
.4(0)
.3( )
1.1(
)
.9(
)
14.
14.
0.
14.
0.
14.
1.0( )
.9(
)
.0( )
.8( )
.0(
) 11.1( )
3
55.
0.
0.
0.
0.
0.
0.
6.
6.
0.
7..
.2( )
.t(
)
.2( )
.1( >
.1(
) .0( )
3.0(0)
1.0( )
.1(
)
.7(
)
2.
10.
1.
24.
1.
5.
8.
8.
14.
14.
1.3(0)
.8(
)
.4( )
1-6( )
.2(
> 1.5(S)
.3(0)
.3( )
1.1(
)
.9(
)
14.
14.
0.
14.
0.
14.
1.0( )
.9(
)
.0( T
.8( )
.0(
> 1.1(, )
4
0.
0.
0.
0.
0.
0.
0.
6.
6.
0.
7.
.2( )
.1(
)
.0( )
.2( )
.1(
) .1(.)
2.9(0)
1.0( )
.It
)
.7(
)
2.
10.
1.
24.
1.
5..
8.
8.,
13.
14.
1.3(0)
.8(
)
A( )
1.6( )
.2(
) 1.5(S)
.3(0)
.3( )
1.1(
)
.9(
)
14.
14.
0.
14.
0.
13.
1.0( )
.9(
)
.0( )
.8( )
A(
) 1.1( )
4
5.
0.
0.
0.
0.
0.
0.
6.
6.
0.
7.
.1{ )
.1(
)
.1( )
.1( )
.1(
) .0( )
2.9(0)
1.0( )
.1(
)
.7(
)
2.
10.
1.
24.
1.
5.
8.
8.
13.
14.
1.2(0)
.8(
)
.4( )
1.6( )
.2(
) 1.4(S)
.2(0)
.3( ).
1.1(
)
.9(
)
14.
14.
0.
14.
0.
13.
1.0( )
.9(
)
.0( )
.8( )
.0(
) 1.1( )
4
10.
0.
0.
0.
0.
0.
0.
6.
6.
0.
7.
.1( )
.1(
)
.0( )
.1( )
.A(
) .1( )
2.8(0)
1.0( )
.1(
)
.7(
)
2.
10.
1.
23.
1.
5.
8.
8.
-13.
14.
1.2(0)
.8(
)
.4( )
1.6( )
.2(
) 1.4(S)
.2(0)
.3( )
1.1(
)
.9(
)
14.
U.
0.
14.
0.
13.
1
1.0( )
.9(
)
.0( )
.8( )
.0(
) 1.1( )
COTTONWOOD FARMS OVERALL DRAINAGE PLAN 25
YEAR EVENT
RBD FILE
NO. 50400125.DAT
PEAK FLOWS, STAGES
AND STORAGES
OF GUTTERS
AND DETENSION
DAMS ***
CONVEYANCE
PEAK
STAGE
STORAGE
TIME
ELEMENT
(CFS)
(FT)
(AC -FT)
(HR/MIN)
322
8.
1.3
IA
1 30.
320
9.
.6
0 40.
330
8.
1..5
.0
0 35.
®
323
321
8.
6.
.3
.1
1.8
1 45.
2 5.LP._-�5----
2 1 1 2
3 4
WATERSHED 0
COTTONWOOD FARMS OVERALL DRAINAGE PLAN 101,YEAR EVENT
RBD FILE NO. 50400100.DAT'
50 0 0 5.0 1 1.0
25 5
0.60 0.% 1.." 1.68 3.00 5.40 9.00 3.72 2.16 1.56
1.20 0.84 0.60 0.48 0.36 0.36 0.24 0.24 0.24 0.24
0.24 0.24 0.12 0.12 0.00
-2 .016 .250 0.1 0.5 0,.5 0.5
1 201 320 31514.75 14.5.0183
1 202 322 70022.90 50.0165
1 203 307 100032.25 .80.0100
1 204 301 90019.00 80.0100
1 205 303 650 5.85 47.0105'
1 206 306 650 7.70 70.0080
1,207 311 65013.80 .57,0235
1 208 313 95041.30 55.0170
1 209 321 43523.40 40.0085
1 210 324 400 8.90 40.0100
1 211 325 70010.90 40.0200
1 '212 328 400 4.20 70.0380
1 213 346 700 9.15 70.0055
1 214 330 2200 1.62 90.0110
1 215 331 35 0.70 90.0270
1 216 329 35 0.% 90.0060
0
0
0 301 302 0 2
0 302 304 0 1
0 303 304 0 2
0 304 305 0 2
0 305 309 0 1
0 306 309 0 2
0 307 308 0 2
0 308 310 0 1
0 309 310 0 2
0 310 312 0 2
0 31:1 312 0 2
0 312 340 0 2
0 313 312 0 2
0 320 321 0 1
0 321 324 8 2
0.0 0.0
1.52 5.5
0 322 323 0 2
0 323 324 0 1
0 324 331 0 2
0 325 326 01
0 326 327 0 2
0 327 .329 0 1
0 328 329 0 2
0 329 340 0 1
0 330 324 0 2
0 331 325 0 2
0 340 0 0 2
1
.0018
2.47
96
0.0032
0
0
0.013
2.47
4.00
260
0.0021
2
2
0.035
5.00
1.25
10
0.0017
0
0
0.013
1.25
2.47
40
�0.0070
0
0
0.013
2.47
4.00
460
0.0021
2
2
0.035
5.00
1.25
10
0.0038
0
0
0.013
1.25
1.50
120
0.0033
0
0
0.013
1.50
0
1200
0.0050
4
4
0.035
1.10
2.25
75
0.0211
0
0
0.013
2.25
2.50
853
0.0123
0
0
0..013
2.50
1.00
315
0.0020
0
0
0.013
1.00
3.00
480
-0.0100
0
0
0.013
3.00
2.25
680
0.0038
0
0
0.013
2.25
5.00
MO
0.0050
4
4
0.035
5.00
0.1
300
0.0053
0
0
0.013
0.10
0.05
0.0
0.31
2.6
0.79
4.3
2.55
6.4
3.85
7.3
5.40
8.0
1.50
10
0.0100
0
0
0.013
1.50
0
1500
0.0142
50
0
0.016
1.50
3.00
120
0.0050
0
0
0.013
3.00
4.00
420
0.0050
3
3
0.035
3:00
3.50
100
0.0050
0
0
0.013
3.50
4.00
750
0.0050
3
3
0.035
3.00
1.75
100
0.0100
0
0
0.013
1.75
5.00
240
0.0050
4
4
0.035
4.00
1.50
SO
0.0050
0
0
0.013
1.50
3.00
80
0.0050
0
0
0.013
3.00
5.20
130
0.001"
0
0
0.013
5.20
0
1
308
6.
328
17.
327
64.:
313
21.
311
2.
310
38.
329
80.
312
61.
1
340
119.
ENDPROGRAM
PROGRAM CALLED
r
r
r
r
r
r
r
r
r
1.0
2
25.
1.8
.0
0
35.
2.0
0
40.
2:3
2.2
1
15.
1.0
1.4
2
5.
1.7
1
20.
1.9
0
40.
2.3
0
40.
5.2
.8
0
50.
0
ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL —VERSION PC.1
DEVELOPED BY METCALF + EDDY, INC.
UNIVERSITY OF FLORIDA
WATER, RESOURCES ENGINEEERS,, INC. (SEPTEMBER 1970)
UPDATED BY
OTAPE OR 'DISK ASSIGNMENTS
C
UNIVERSITY OF FLORIDA (JUNE 1973)
HYDROLOGIC ENGINEERINGCENTER, CORPS -OF ENGINEERS
MISSOURI'RI,VER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974)
BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985)
JIN(T)
JIN(2) JIN(3)
JIN(4)
JIN(5)
JIN(6)
J1N(7)
JIN(8)
JIN(9)
JIN0 0)
2
JOUT0)
1 0
JOUT(2) JOUTM
0
JOUT(4)
0
JOUT(5)
0
JOUT(6)
D
JOUT(7)
0
JOUT(8)
0
JOUT(9).
0
JOUT0 0)
1
2 0
0
!0
0
0
ol
0
0
NSCRAT O )
NSCRAT(2)
NSCRAT(3)
NSCRAT(4)
NSCRAT(5)
'1
3
4
0
0
0
WATERSHED
PROGRAM CALLED
** ENTRY NOE TO RUNOFF MODEL ***
COTTONWOOD FARMS OVERALL DRAINAGE PLAN 100 YEAR EVENT
RBD FILE NO. 50400100.DAT
ONUMBER OF TIME' STEPS 50
OINTEGRATION TIME INTERVAL (MINUTES) 5.00
1 1:0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH
OFOR 25 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES
OFOR RAINGAGE NUMBER 1 RAINFALL HISTORY IN INCHES PER HOUR
.60 .96 1." 1.68 3.00 5.40 9.00 3.72 2.16 1.56
1.20 .84 .60 .48 .36 .36 .24 .24 .24 .24
�. .24 .24 .12 .12 .00
202
.322 700. 22.9 50.0
.0165
.016
.250
.100
.500
.50
.50
.00180
1
203
307 1000. 32.3 80.0
.0100
.016
.250
.100
.500
.50
:50
.00180
1
204
301 900. 19.0 80.0
.0100
.016
.250
.100
.500
.50
.50
.00180
1
205
303 650. 5.8 47.0
.0105
.016
.250
.100
.500
.50
.50
.00180
1
206
306 650. 7..7 70.0
.0080
.016
.250
.100
.500
.50
.50
.00180
1
207
311 650. 13.8 57.0
.0235
.016
.250
.100.
.500
.50
.50
.00180
1
208
313 950. 411.3 55.0
.0170
.016
.250
.100
.500
.50
.50
.00180
1
209
321 435. 23..4. 40.0
.0085
.016
.250
.100
.500
.50
.50
.00180
1
210
324 400. 8.9 40.0
.0100
.016
.250
.100
.500
.50
.50
.00180
1
1
211
325 700. 10.9 40.0
.0200
.016
.250
.100
.500
.50
.50
.00180
1
212
328 400. 4.2 70.0
.0380
.016
.250
.100
.500
.50
50
.00180
1
213
340 700. 9.1 70.0
.0055
.0.16
.250
.100
.500
.50
.50
.00180
1
214
330 2200. U.6 90.0
.01`10
.016
.250
.100
.500
.50
.50
.00180
1
215
331 35. .7 90.0
.0270
.016
.250
.100
.500
.50
.50
.00180
1
216
329 35. 1.0 90.0
.0060
.016
.250
.100
.500
.50
.50
.00180
1
OTOTAL
NUMBER OF SUBCATCHMENTS, 16
OTOTAL
TRIBUTARY AREA (ACRES), 217.38
,1
COTTONWOOD FARMS OVERALL DRAINAGE PLAN 100 YEAR EVENT
RBD FILE NO. 50400100.DAT
*** CONTINUITY CHECK FOR SUBCATCHMEMT ROUTING IN UDSWM2-PC MODEL ***
WATERSHED
AREA (ACRES)
217.380
TOTAL
RAINFALL (INCHES)
2.920
TOTAL
INFILTRATION (INCHES)
.363
TOTAL WATERSHED OUTFLOW (INCHES)
2.154
TOTAL
SURFACE STORAGE AT END OF STROM (INCHES) .403
ERROR
IN CONTINUITY, PERCENTAGE OF RAINFALL
.003
1
r
COTTONWOOD FARMS OVERALL DRAINAGE PLAN 100 YEAR EVENT
RBD FILE NO. 50400100.DAT
WIDTH
INVERT
SIDE SLOPES
OVERBANK/SURCHARGE
GUTTER
GUTTER NDP MP
OR DIM
LENGTH
SLOPE
HORI2
TO VERT
MANNING
DEPTH
JK
'
NUMBER
CONNECTION
(FT)
(FT)
(FT/FT)
L
R
N
(FT)
301
302 0 2
PIPE
2.5
96.
.0032
.0
.0
.013
2.47
0
302
304 0 1
CHANNEL
4.0
260.
.0021
2.0
2.0
.035
5.00
0
303
304 0 2
PIPE
1.3
10.
.0017
.0
.0
.013
1.25
0
304
305 0 2
PIPE
2.5
40.
.0070
.0
.0
.013
2.47
0
305
309 0 1
CHANNEL
4.0
460.
.0021
2:0
2.0
.035
5.00
0
306
309 0 2
PIPE
1.3
10.
.0038
.0
.0
.013
1.25
0
307
308 0 2
PIPE
1.5
120.
.0033
.0
.0
.013
11.50
0
308
310 0 1
CHANNEL
.0
1200.
.0050
4.0
4..0
.035'
1.10
0
309
310 0 2
PIPE
2.3
75.
.0211
.0
.0
.013
2.25
0
® 37/86
325 326 0 1
326 327 0 2
327 329 0 T
328 329 0 2
329 340 0 1
330 324 0 2
331 325 0 2
340 0 0 2
OTOTAL NUMBER OF GUTTERS/PIPES, 26
r 1
CHANNEL
4.0
420.
.0050
3.0
3.0
.035
3.00 0
PIPE
3.5
100.
.0050
.0
.0
.013
3.50 0
CHANNEL
4.0
750.
.0050
3.0
3.0
.035
3.00 0
PIPE
1.8
100.
:0100
.0
.0
.013
1.75 0
CHANNEL
m
240.
.0050
4.0
4.0
.035
4.00 0
PIPE
1.5
80.
.0050
.0
.0
.013
1.50 0
PIPE
3.0
80.
.0050
.0
.0
.013
3.00 0
PIPE
5.2
130.
.0015
.0
.0
.013
5.20 0
COTTONUM FARMS OVERALL DRAINAGE PLAN 100 YEAR EVENT
RBD FILE NO. 50400100.DAT
r
ARRANGEMENT OF SUBCATCHMENTS AND GUTTERS/PIPES
GUTTER TRIBUTARY GUTTER/PIPE
TRIBUTARY SUBAREA
D.A.(AC)
301
0
0
0
0
0
0
0
0
0
0
204
0
0
0
0
0
0
0
0
0
19.0
302
301
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
19.0
303
0
0
0
0
0
0
0
0
0
0
205
0
0
0
0
0
0
0
0
0
5.&
304
302
303
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
24.9
305
304
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
24.9
306
0
0
0
0
0
0
0
0
0
0
206
0
0
0
0
0
0
0
0
0
7.7
307
0
0
0
0
0
0
0
0
0
0
203
0
0
0
0
0
0
0
0
0
32.3
308
309
307
305
0
306
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.0
0
0
0
0
0
0
0
32.3
0
0
0
0
0
0
0
0
32.5
310
308
309
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
64.8
311
0
0
0
0
0
0
0
0
0
0
207
0
0
0
0
0
0
0
0
0
13.8
312
310
311
313
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
119.9
313
0
0
0
0
0
0
0
0
0
0
208
0
0
0
0
0
0
0
0
0
41.3
320
0
0
0
0
0
0
0
0
0
0
201
0
0
0
0
0
0
0
0
0
14.8
321
320
0
0
0
0
0
0
0
0
0
209
0
0
0
0
0
0
0
0
0
38.2
322
0
0
0
0
0
0
0
0
0
0
202
0
0
0
0
0
0
0
0
0
22.9
323
324
322
321
0
323
0
330
0
0
0
-0
0
0
0
0
0
0
0
0
0
0
0
210
0
0
0
0
0
0
0
0
0
0
0
0
22.9
0
�O
0
0
0
0
71.6
325
331
0
0
0
0
0
0
0
0
0
211
0
0
0
0
0
0
0
0
0
83.2
326
325
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
83.2
u
1
COTTONWOOD FARMS OVERALL DRAINAGE
PLAN
100 YEAR
EVENT
RBD FILE NO. 50400100.DAT
' HYDROGRAPHS ARE LISTED
FOR THE
FOLLOWING
26 CONVEYANCE ELEMENTS
THE
UPPER NUMBER IS DISCHARGE IN
CFS
THE
LOWER NUMBER IS ONE OF THE FOLLOWING CASES:
( )
DENOTES
DEPTH ABOVE INVERT IN
FEET
(S)
DENOTES
STORAGE IN
AC -FT FOR DETENSION
DAN. DISCHARGE INCLUDES SPILLWAY OUTFLOW'.
(1)
DENOTES
GUTTER INFLOW
IN CFS
FROM SPECIFIED INFLOW
HYDROGRAPH
(D)
DENOTES
DISCHARGE
IN CFS DIVERTED FROM THIS GUTTER
TIME(HR/MIN)
(0)
301
DENOTES
302
STORAGE IN
303
AC -FT FOR SURCHARGED GUTTER
304 305 306
307
308
309
311
312
313
340
320
321
322
323
324
326
327
328
329
330
331
r 0
5.
0.
0.
0.
0.
0.
0.
0.
0.
0.
-0( )
-0(
) .0(
) -0( )
-0(
)
-0( ?
-0( )
-0(
) -0(
)
0.
-0( )
0.
-0(
0.
) -0(
0. -
) -0( )
0.
-0(
)
0.
.0(S)
0.
.0( )
0.
-0(
0.
) -0(
)
0.
0.
0.
0.
0.
0.
-0( )
-0(
) -0(
) -0( )
-0(
)
A( )
0
10.
0.
0.
0.
0.
0.
0.
0.
0.
0.
-1( )
-0(
) -1(
) -0( )
-0(
)
-1( )
.1( )
-0(
) -0(
)
0.
.1( )
0.
-0(
0.
) -0(
0.
) -0( )
0.
-0(
)
0.
.O(S)
-1( )
0;
0.
-0(
0..
) .1(
)
0.
O.
0.
0.
0.
0.
.O( )
'O(
) .0(
) .0( )
"0( )
0
15.
4.
1.
2.
3.
1.
3.
4.
0.
3.
.7( )
.3(
) -9(
) -5( )
.2(
)
.7( )
-9( )
.3(
) .4(
)
2.
.0(0)
5.
-5(
3.
) .6(
6.
) -8( )
0.
-0(
)
0.
.O(S)
4.
.7( )
1.
-1(
S.
) .6(
)
2.
0.
2.
1.
3.
4.
M )
-1(
) 45(
) .2( )
-7(
)
.6( )
0
20.
12.
8.
3.
11.
5.
4.
6.
2.
11.
1.3( )
-9(
) .0(0) 1.0( )
-7(
)
.0(0)
.0(0)
-7(
) -7(
)
2.
20.
13.
30.
0.
0.
11.
4.
10.
.O(0)
1.1(
) 1.3(
) 1.9( )
.1(
)
.O(S)
1.3( )
-2(
) .9(
)
12.
4.
5.
6.
2.
11.
1.0(_)
-5(
) -7(
) -5( )
-5(
)
1.0(
-
0
25.
24.- -
27.-
3.- -
29.-
18.
4.- -
6.- -
4.-
20.-
310
325
22.
3f3`
.3(0)
2.0(
) .3(0)
.0(0)
.4(,;)
.3(S)
.2(0)
.3(
)
2.1( )
1.8(
) ,
53.
35.
17.
46.
8.
42.
2.2( )
1.5(
) 1.5(_)
1.5( )
AM
2.2( )
0
35.
24.
24.
3.
26.
27.
4.
6.
6.
30.
38.
.6(0)
1.6(
) .2(0)
1.7( )
1.7( )
.4(0)
1.3(0)
.9(
)
1.3( )
1.7(
)
2.
63.
21.
119.
10.
4.
1'1.
11.
51.
96.
'
.7(0)
2.3(
) 1.1(0)
.4(0)
.7( )
.6(S)
.6(0)
M.
)
.0(0)
2.4(
)
76.
73.
17.
Be.
8.
51.
.1(0)
2.1(
) .1(0)
2.0( )
.0(0)
.1(0)
i0
40.
24.
24.
3.
28.
27.
4.
6.
6.
33.
37.
1.1(0)
1.6(
) AM
1.7( )
1.7( )
.6(0)
2.3(0)
.9(
)
1.4( )
1.7(
)
2.
58.
21.
119.
14.
5.
11.
11.
51.
86.
1.1(0)
2.2(
) 2.0(0)
.9(0)
.8( )
1.1(S)
1.1(0.)
.4(
)
.0(0)
2.2(
)
76.
76.
17.
101.
8.
51.
.2(0)
2.1(
) .1(0)
2.1( )
.0(0)
.1(0)
r0
45.
24.
24.
3.
26.
27.
4.
6.
6.
30.
38.
1.4(0)
1.6(
) .5(0)
1.7( )
1.7( )
AM
3.1(0)
.9(
)
1.3( )
1.7(
)
2.
61..
21.
119.
13.
S.
1.1.
11.
43,
72.
1.4(0)
2.2(
) 2.6(0)
1.4(0)
.8( )
1.4(S)
1.4(0)
.4(
)
2.3( )
2.1(
)
76.
76.
17.
95.
8.
51.
.2(0)
2.1(
) .1(0)
2.1( )
AM
.1(0)
0
50.
24.
24.
3.
28.
27.
4.
6.
6.
32.
37.
1..6(0)
1.6(
) .5(0)
1.7( )
1.7( )
.8(0)
3.7(0)
.9(
)
1.4( )
1.7(
)
2.
1.5(0)
59.
2.2(
21.
) 3.0(0)
119.
1.8(0)
12.
.8( ),
6.
1.7(S)
11.
1.6(0)
11.
.4(
)
31.
1.8( )
70.
2.0(
)
76.
76.
17.
97.
3.
51.
.2(0)
2.1(
) .0(0)
2.1( )
..7( )
AM
0
55.
24.
24.
3.
26.
27.
4.
6.
6.
30.
38.
1.7(0)
1.6(
) .6(0)
1.7( )
1.7( )
.9(0)
4.1(0)
.9(
)
1.4( )
1.7(
)
2.
1,.7(0)
60.
2.2(
21.
) 3.3(0)
119.
2.1(0)
11.
.7( )
6.
2.00),
11.
1.8(0)
11.
.4(
)
31.
1.8( )
56.
1.8(
)
76.
76.
7.
88.
1.
33.
.1(.0)
2.1(
) .8( )
2.0( )
.3( )
1.9( )
1
0.
24.
24.
3.
28.
27.
4.
6.
6.
32'.
38.
1.7(0)
1.6(
) .6(0)
1.7( )
1.7( )
1.0(0)
4.4(0)
.9(
)
1.4( )
1.7(
)
2.
60.
21.
119.
11.
6.
11.
11.
27.
41.
11.8(0)
2.2(
) 3.6(0)
2.4(0),
..7( )
2.2(S)
1.9(0)
.4(
)
1.6( )
1.6(
)
51.
64..
3.
72.
2.
26.
2.2( ')
1:.9(
) .5( )
1.8( )
.5( )
1.6( )
® 1
5.
24.
24.
3.
26.
27.
4.
6.
6.
30.
38.
2.0(0)
2.2(
) 3.8(0)
2.4(0)
.6(
) 2.5(S)
2.0(0)
AC
)
1.5(
) 1.5( )
42.
37.
1.
40.
1.
24.
1.9( )
1.5(
) AC )
1.4( )
M
) 1.5( )
1
15.
24.
24.
3.
26.
27.
4.
6.
6.
30.
38.
1.6(0)
IM
) .6(0)
1.7( )
1.7(
) 1:0(0)
5.0(0)
b.0(
)
1.4(
) 1.7( )
2.
60.
21.
119.
8.
6.
11:.
11.
25.:
32.
2.0(0)
2.2(
) 3.9(0)
2.3(0)
.6(
) 2.6CS)
2.1(0)
AC
)
1.6(
) 1.4( )
26.
34.
3.
38.
0.
26.
1.5( )
Lk
) .5( )
1.3( )
.1(
) 1.6( )
1
20.
24.
24.
3.
28.
27.
4.
6.
6.
32.
38.
1.5(0)
1.6C
) .6(0)
1.7( )
1.7(
) 1:0(0)
5.1(0)
1.0(
)
1.4(
) 1.7( )
2.
2.1(0)
60.
2.2(
211.
) 3.9(0)
119.
2.2(0)
S.
.6(
6.
) 2.7(S)
11.
2.1(0)
11.
AC
)
22.
1.5(
30.
) 1.4( }
36.
31..
1..
34.
1.
22.
1.8( )
TAC
) .3( )
1.3( )
.3(
) 1.5( )
' 1
25.
24.
24.
3.
26.
27.
4.
6.
6.
31.
38.
1.4(0)
1.6(
) .6(0)
1.7( )
1.7(
) 1:0(0)
5.2(0)
1.0(
)
1.4(
) 1.7( )
2.
2.140)
60.
2.2(
21.
) 3.9(0)
119.
2.1(0)
7.
.6(
7.
) 2.7(S)
11.
2.1(0)
11.
AC
)
24.
1.5(
29.
) 1.3( )
24.
30.
2.
32.
0.
24.
1.4( )
L.4(
) AC )
1.2( )
.2(
) 1.5( )
1
.30.
24.
24.
3.
28.
27.
4.
6.
6.
32.
38.
1.3(0)
1.6(_)
.6(0)
1.7( )
1.7(
). 1.0(0)
5.3(0)
1.0(
)
1.4(
) 1.7( )
2.
2.1(0)
60.
2.2C
21.
) 3.9(0)
119.
1.9(0)
7.
.6(
7.
) 2.8(S)
11•.
2.1(0)
11.,
AC
)
21.
1.4(
27.
) 1.3(.)
32.
28.
1.
30.
0.
22.
1•.6( )
1.3(
) .2( )
1.2( )
.3(
) MC )
1
35.
24.
24.
3.
27.
27.
4.
6.
6.
31.
38.
1.2(0)
1..6(
) .6(0)
1.7( )
1.7(
) 1.0(0)
5.3(0)
1.0(
)
1.4(
) 1.7( )
2.
2.1(0)
60.
2.2(
21.
) 3.9(0)
119.
1.7(0)
6.
.5(
7.
) 2.9(S)
1 T.
2.1(0)
11.,
.4(
)
23.
1.5(
26.
) 1.3( )
23.
27.
1�.
29.
0.,
23.
TAC)
1.3(
,) .3( )
1.2( )
.2(
) 1.5( )
1
40.
24.
24.
3.
27.
27.
4.
6.
6..
32.
M.
1.1(0)
1'M
) .6(0)
1.7( )
1.7(
) 1:0(0)
5.4(0)
1.0(
)
1.4(
) 1.7( )
2.
60.
211.
119.
6.
7.
11:.
11.
21.
26.
2.2(0)
2.2(.
) 3.9(0)
1.5(0)
.5(
) 2.9(S)
2.1(0)
AC
)
1.4(
) 1.3( )
29.
26.
1.
28.
0.
21.
1.6( )
1,.3(
) .2( )
1.2( >
.2(
) 1.4( )
1
45..
24.----
24.1-
3.,---
27.--
27.--
4.----
6.•---
6.--
-
31.--
38.--
40/
TZ
2.2(0) 2.2( ) 3.8(0) 1.1(0) .5( ) 3.0(S) 2.0(0) M ) 1.4( ) 1.2( )
27. 25. 1. 26. 0. 21.
LU ) 1:.2() .3( ) 1.1( ) .2( ) 1.4E
24. 24. 3. 27. 27. 4. 6. 6. 31. 38.
.7(0) 1'.6( ) .6(0) 1.7( ) 1.:7( ) .9(0) 5.5(0) 1,.0( ) IM ) 1.7( )
2. 60. 21. 119. 5. 7. 11. 11. 21. 24.
2.2(0) 2.2( ) 3.8(0) .9(0) .5( ) LI M 2.0(0) M ) 1.4( ) 1.2(
22. 25. 1. 26. 0. 21.
1.3( ) 1,2( ) .3( ) 1.11( ) .2( ) 1.4( )
24. 24. 3. 27. 27. 4. 6. 6. 32. 38.
.5(0) 1i.6( ) .6(0) 1.7( ) 1.7( ) .9(0) 5.5(0) 1.0( ) 1.4( ) 1.7( )
2. 60. 21. 119. 5. 7. 11. 11. 20. 23.
2.2(0) 2.2( ) 3.7(0) .7(0) .5( ) LI M 2.0(0) M ) 1.4( ) 1.2( )
25. 24. 0. 25. 0. 21.
1.4( ) 1..2(') .2( ) 1.1( ) .2( ) 1.4( )
24. 24. 3. 27. 27. 4. 6. 6. 31. 38.
AM 1,.6( ) .6(0) 1.7( ) 1.:7( ) .9(0) 5.5(0) 1,.0( ) 1.4( ) 1.7( )
2. 60. 21. 119. - 5. 7. 1:1. 11. 21. 23.
2.2(0) 2.2( ) 3.6(0) .5(0) M ) 3 1(S) 1:.9(0) AC ) 1.4( ) 1.2( )
21. 23. 0. 24. 0. 20.
1..3( ) 1.,2( ) .2(' ') 1.1( ) .1( ) 1.4( )
24. 24. 3. 27. 27. 4. b,. 6. 32. 38.
.2(0) 1:.6(' ) .5(0) 1.7( ) 1.7( ) .8(0) 5..5(0) 1.0( ) 1.4( ) 1.7( )
2. 60. 21. 119. 4. 7. 11. 11. 20. 22.
2.2(0) 2.2( ) 3.5(0) .3(0) M ) 3 1(S) 1.9(0) M ) 1.4( ) 1.2( )
23. 22. 0. 23. 0. 20.
1:.4O 1.2O .1O 11O 1O 1.4O
24. 24. 3. 27. 27. 4. 6. 6. 31. 38.
AM IM ) .540) 1.7( ) 1.7( ) AM 5.5(0) 1.0( ) 1.4( ) 1.7( )
2. 60. 21. 119. 4. 7. 1.1. 11. 20. 21.
2.2(0) 2.2( ) 3.5(0) .0(0) M ) 3.2(S) 1.8(0) .4( ) 1.4( ) 1.1( )
20. 22. 0. 22. 0. 20.
11.3(' ') 1.2( ) .1( ) 1.0( ) .0( ) IM )
8. 14. 3. 18. 22. 4. 6. 6. 27. 35.
1.0( ) 1..3( ) .5(0) 1.3( ) 1..6( ) .8(0) 5..5(0) 1.0( ) 1.3( ) 1.6( )
2. 58. 21. 87. 4. 7. 11. 11. 19. 21.
2.2(0) 2.2(') 3.4(0) 3.5( ) M ) 3.2(S) 1.8(0) M ) 1.3.( ) 1.1( )
22. 21. 0. 22. 0. 20.
U.3( ) t1 ( ) .1( ) 1.0( ) .0( ) 1.4( )
0. 3. 3. 6. 13. 4. 6. 6. 17. 26.
1
1
2.2(0)
1.7(
) 3.2(0)
2.9(
) .4(
) 3.2(S)
1.7(0)
M
)
1.3(
) 1.1(
21.
21.
0.
21.
0.
20.
1.3( )
1.1(
) .1( )
1.0(
) -0(
) 1.3( )
1 2
35.
0.
1.
3.
4.
5.
4.
6.
6.
9.
16.
.2( )
.3(
) .5(0)
.6:(
) .7(
) .7(0)
5.4(0)
1.0(
)
M
) 1.0( )
2.
38.
21.
56.
3.
7.
11.
11.
19.
20.
'
2.2(0)
1.6(
) 3.1(0)
2.6(
) M
) 3.2(S)
LUO)
M
)
1.3(
) 1.1( )
20.
21.
0.
21.
0.
19.
1.3( )
1.1(
) .1( )
1..0(
) .0(
) 1.3( )
' 2
40.
1.
1.
3.
4.
4.
4.
6.
6.
9.
15.
.4( )
.3(
) AM
.6(
) .6(
) .7(0)
5.4(0)
1.0(
)
.7(
) 1.0( )
2.
37.
21.
61.
3.
7.
11.
11.
19.
20.
2.2(0)
1.6(
) 3.0(0)
2.8(
) M
) 3.2(S)
1.6(0)
.4(
)
1.3(
) 1.1( )
21.
20.
0.
20.
0.
19.
1.3( )
1.1(
) .1( )
1.0(
) .0(
) 1.3( )
1 2
45..
1.
1.
3.
4.
4.
4.
6.
6.
8.
15.
.3( )
.3(
) AM
.6(
) .6(
) .7(0)
5.3(0)
1.0(
)
.6(
) 1.0( )
2.
2.2(0)
37.
1.6(
21.
) 2.9(0)
56.
2.6(
3.
) M
7.
) 3.2(S)
11.
1.5(0)
11.
M
)
19.
1.3(
20.
) 1.1( )
20.
20.
0.
20.
0.
19.
1.3( )
1.1(
) .1( )
1.0(
) .0(
) 1.3( ')
1 2
50.
1.
1.
3.
4.
4.
4.
6.
6.
8.
15.
.3( )
.2(
) .4(0)
.6(
) .6(
} .6(0)
5.3(0)
1.0.(
)
M
) 1.0( )
1
2.
2.2(0)
37.
1.6(
21.
) 2.7(0)
'59.
2.7(
3.
) .3(
7.
) 3.2(S)
11.
1.4(0)
11.
.4.(
)
19.
1.3(
20.
) 1.1( )
20.
20.
0.
20.
0.
19.
1.3( )
1.1(
) .1( )
1.0(
) .0(
) 1.3( )
1 2
55.
1.
1.
3.
3.
4.
4.
6.
6.
8.
15.
.3( )
.2(
) AM
.5(
) .6(
) .6(0)
5.3(0)
1.0(
)
.6(
) 1.0( )
2.
2.2(0)
37.
1.6(
21.
) 2.6(0)
56.
2.6(
3.
) .3(
7.
) 3.2(S)
11.
1.4(0)
11.
M
)
19..
1.3(
20.
) 1.1( )
19.
20.
0.
20.
0.
19.
1.2( )
1.1(
) .1( )
1.0(
) .0(
) Y.3( )
1 3
0.
1.
1.
3.
4.
4.
4.
6.
6.
8.
14.
.3( )
.2(
) AM
.6(
) .6(
) .6(0)
5.2(0)
1.0(
)
.6(
.) 1.0( )
2.
37.
21.
58.
3.
7.
11.
1l1.
19.
20.
,.
2.2(0)
1.6(
) 2.5(0)
2.7(
) .3(
) 3.2(S)
1.3(0)
.4(
)
1.3(
) 1.1( )
W.
20.
0.
20.
0.
19.
1.3( )
1.1(
) A( )
1.0(
) -0(
) 1.3( )
' 3
S.
0._.
1.--
- 3.•---
3.--
4.-
4.^--
6.- -
66-
8.-
14.-
0
2.1(0)
1.6(
) 2.3(0)
2.6(
) :3(
) 3.1(.S)
1.2(0)
.4(
)
1.3(
) 1.1( )
20.
19.
0.
20.
0.
19.
1.3( )
1. T(
) .0( )
11.0(
) A(
) 1.3( )
3
15.
0.
0.
3.
3.
3.
4.
6.
6.
S.
14.
.2( )
.2(
) .3(0)
.5(
) .6(
) .5(0)
5.1(0)
1.0(
)
.6(
} 1.0( )
2.
36.
21.
56.
2.
7.
11.
11.
19.
19.
2.1(0)
1.6(
) 2.2(0)
2.6(
) .3(
) 3.1(S)
1.1(0)
.4(
)
1.3(
) 1.1( )
19.
19.
0.
19.
0.
19.
1.2( )
1.11(
) .0( )
1.0(
) .0(
) 1.3( )
3
20.
0.
0.
3.
3.
3.
4.
6.
6.
B.
14.
.2( )
.2(
) .3(0)
.5(
) .6(
) .5(0)
5.1(0)
1.0(
)
.6(
) 1.0( )
2.
2.1(0),
36.
1.6(
21.
) 2.0(0)
56.
2.6(
2.
) .3(
7.
) 3.1(S)
11.
1.0(0)
11.
.4(
)
19.
1.3(
19.
) 1.1( )
19.
19.
0.
19.
0.
19.
1.2( )
1.T(
) .0( )
1.0(
) .0(
) 1.3( )
3
25.
0.
0.
3.
3.
3.
4.
6.
6.
7.
14.
.2( )
.2(
) .3(0)
.5(
) .6(
) AM
5.1(0)
1.0(
)
.6(
) 1.0( )
2.
2.1(0)
36.
1.6(
21.
) 1.9(0)
56.
2.6(
2.
) .3(
7.
) 3.1(S)
11.
1.0(0)
11'.
.4(
)
19.
1.3(
19.
) 1.1(
19.
19.
0.
19.
0.
19.
1.2( )
1.1(
) .0(')
1.0(
) .0(
) 1.3( )
3
30.
0.
0.
3.
3.
3.
4.
6.
6.
S.
14.
.2( )
.2(
) .3(0)
.5(
) .6(
) AM
5.0(0)
1.0(
)
.6(
) 1.0( )
2.
2.1(0)
36.
1.6(
21.
) 1.8(0)
56.
2.6(
2.
) .3(
7.
) 3.10)
11.
.9(0)
11.
.4(
)
19.
1.3(
19.
) 1.1( )
19.
19.
0.
19.
0.
19.
1.2( )
1.1(
) .0( )
1.0(
) .0(
) 1.3( )
3
35.
0.
0.
3.
3.
3.
4.
6.
6.
7.
14.
.2( )
.1(
) :2(0)
.5(
) .6(
) AM
5.0(0)
1.0(
)
.6(
) 1.0( )
2.
2.1(0)
36.
1.6(
21.
) t.7(0)
55.
2.6(
2.
) .3(
7.
) 3.1(S)
11.
,8(0)
11.
.4(
)
19.
1.3(
19.
) 1.1( )
19.
19.
0.
19.
0.
19.
1.2( )
1.1(
) .0( )
1.0(
) .0(
) 1.3( )
3
40.
0.
0.
3.
3.
3.
4.
6.
6.
8.
14.
.2( )
.1(
) .2(0)
.5(
) .6(
) .3(0)
4.9(0)
1.0(
)
.6(
) 1.0( )
2.
2.1(0)
36.
1M
21.
) 1:.5(0)
55.
2.6(
2.
) .3(
7.
) 3.10)
11.
.8(0)
11.
.4(
)
19.
1.3(
19.
) 1.1( )
19.
19.
0.
19.
0.
19.
1.2( )
1,.1(
) .0( )
1.0.(
) .0(
) 1.3( )
3
45.
0.w.
0'..
- 3'..._-
3.
- 3.-
4.- -
- -
6.-.
7..-
14.-
4�/ems
1 • •
2.1(0)
1.6(
) 1.3(0)
2.6( )
.3(
) 3.00)
.6(0)
M
) 1,.3(
) 1.1( )
19.
19.
0.
19.
0.:
19.
1.2( )
1.1(
) -0( )
1.0( )
-0(
) 1.3( )
3
55.
0.
0.
3.
3.
3.
4.
6.
6.
7.
14.
.2( )
-1c
) .2CO)
.5( .)
-5(
) .3(0)
4.8(0)
I'M
) .6(
) -9(
2.
36.
21.
55.
2.
7.
11.
11.
18.
19.
2.1CO)
1.6(
) 1.1(0)
2.6( )
.3(
) 3.0(S)
.5(0)
M
) 1.3(
) 1.1( )
19.
19.
0.
19.
0.
18.
1.2( )
1.1(
) -0( )
-9( )
-0(
) 1.3( )
4
0.
0.,
0.
3.
3.
3.
4.
6.
6.
7.
14..
.2( )
-1(
) .1(0)
.5( )
.5(
) .2(0)
4.8(0)
1.0(
) .6(
) -9( )
2.
2.1(0)
36.
1.6(
21-
) 1.0(0)
55.
2.6( )
2-
.3(
7.
) 3.00)
11:.
.5(0)
IT*
M
18.
) 1.3(
19,
) 1.1(
19.
19.
0.
19.
0-
18.
1.2( )
1.1(
) -0( )
-9( )
-0(
) 1.3( )
4
5.
0.
0.
3.
3.
3.,
4.
6.
6.
7.
14.
.2( )
-1(
) .1(0)
.5( .)
.5(
) .2(0)
4.7(0)
1.0(
) .6(
) -9( )
2.
2.0(0)
36.
1.6(_)
21.
.9(0)
55.
2.6( )
2.
.2(
7.
) 3.0(S)
1t.
MO)
11.
M
18.:
) 1.3(
19.
) 1.1( )
19.
19.
0.
19.
0.
18.
1.2( )
1.1(
) -0( )
.9( )
-0(
) 1.3( )
4
10.
0.
0.
3.
3.
3.
4.
6.
6.
7.
14.
-1( )
-1(
') .1(0)
.5( )
.5(
) .2(0)
CAD)
1.0(
) .6(
) .9( )
2.
2.0(0)
36.
1-U,
21.
) .8(0)
55.
2.6( )
2.
.2(
7.
) 2.9(S)
11'.
.3(0)
11.
M
18.
) 1.3(
19.
) 1.1( )
19.
19.
0.
19.
0.
18.
1.2( )
1.1(
) -0( )
-9( )
M
) 1.3( )
1
COTTONWOOD FARMS OVERALL DRAINAGE PLAN 100
RBD FILE NO. 50400100.DAT
YEAR
'EVENT
***
PEAK FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENSION
DAMS ***
CONVEYANCE
PEAK
STAGE
STORAGE
TIME
ELEMENT
(CFS)
(FT)
(AC -FT)
(MR/MIN)
322
11.
1.5
2.1
1 25.
320
14.
.8'
O 40.
330
8.
1.5
.0
0 40.
323
11.
.4
1 40.
321
7.
.1
3.2
2 40.
301
24.
2.5
1.7
1 _0.
328
17.
1.8
3V
76.
2.1
313
21.
2.3
311
2.
1.0
310
38.
1.7
329
101.
2.1
312
63.
2.3
340
119.
5.2
'1
ENDPROGRAN
PROGRAM -CALLED
r
L�J
.1 0 40.,
0 55.
3.9 1 25.
2.2 2 10.
1 15.
0 40.
0 35.
2.5 1 S.
4GS/8;v
��I
lill�
-1
DESIGN OF CDR® INLETS, CHANNELS,
AND STORM SEWERS
4 �/gam
® CLIENT K /� I I F', %AC3, JT SS G_ JOB NO.EfM-
INC PROJECT t >zOMOt.1T Zr',A CALCULATIONS'.FOR � 1 11 F-= '
�!. Engineering Consultants MADE BY IOL'� DATE '93GHECKEDBY DATE: SHEET OF
CLIENT
JOB NO:Nfm
INC
PROJECT I
p-,n mc:* ►r ZN. CALCULATIONS FOR UDS \I!=)z Ll>=nnoTtL+
Engineering Consultants
QQKA
MADESYJN—DATE • I CHECKED BY
DATE —SHEET —OF
I v,
-
Pt nE= C A-7rL. E.r
IS" MC.P
O6
321
O
;
Q
i�^�.�IL-HIV PANT C-�
LOB Gu�g ItJL.rET
0
F�
�I.
If...1V = iC7C7.g'O Cz.4,)
3
Gl-.oWvJ 6B.4o
I a3n izC Q
2' x 4' ca�►a
. 324
-
r.�x C= o Sal
O
'
_
4
'—
c.um6 ,ii.FUET
8
O
E
49/
REPORT OF STORM SEWER SYSTEM DESIGN
USING UDSEWER-MODEL VERSION 4
'DEVELOPED
BY
JAMES C.Y. MUD ,PHD, PE
DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER
IN COOPERATION WITH
URBAN DRAINAGE AND FLOOD CONTROL DISTRICT
DENVER, COLORADO
esaasaa__aaa_� aaaaaaaaaaaaaaaaaaaaasssasaasaaasaaaaaaasa_aaaaaaaaeaaaasaaaaaaa
*** EXECUTED BY DENVER CITY/COUNTY USE ONLY .............................................
ON DATA 01-28-1993 AT TIME 14:12:"
*°* PROJECT TITLE :
MIRAMONT SECOND - BOARDWALK AND HIGHCASTLE;DRIVE
***'RETURN'PERIOD OF FLOOD IS 25 YEARS
1 RAINFALL -INTENSITY TABLE IS GIVEN
*** SUMMARY
OF HYDRAULICS AT MANHOLES-------------------------------------------------------------------------------
MANHOLE
CNTRBTING
RAINFALL RAINFALL
DESIGN
GROUND
WATER
COMMENTS
ID * NUMBER AREA C
DURATION INTENSITY
PEAK- FLOW ELEVATION ELEVATION
-
----
MINUTES INCH/HR
-
CFS
-
FEET
FEET
1.00
N/A
N/A N/A
44.00
69.05
67.76
OK
2.00
N/A
N/A N/A
44.00
69.88
68.45'
OK:
3.00
M/A
N/A N/A
41.00
69.66
68.75
OK
4.00
N/A
N/A N/A
6.00
74.50
71.81
OK
5.00
N/A
N/A N/A
8.00
69.82
69.88
NO
6.00
N/A
N/A N/A
8.00
69.82
69.93
NO
OK MEANS WATER ELEVATION IS LOWER THAN GROUND ELEVATION
*** SUMMARY OF SEWER HYDRAULICS
-
SEWER DESIGN FLOW NORMAL NORAAL CRITIC CRITIC FULL FROUDE COMMENT
ID FLOW 0 FULL 0 DEPTH VLCITY DEPTH VLCITY VLCITY NO.
NUMBER CFS CFS FEET FPS FEET FPS FPS
56.0 8.0 7.4 U.50 4.53 1.06 32.89 4.53 D.00 V-OK
331.0 44.0 48.7 .2.23 7.80 2.12 8.22 6.22 0.94 V-OK
324.0 41.0 50.9 1,..40 7.34 1.48 6.91 5.13 1.09 V-OK
321.0 & 0 4.7 1.25 4.89 0.99 5.76 4.89 0.00 V-OK
330.0 8.0 7.4 14.50 4.53 1.06 5.98 4.53 0.00 V-OK.
FROUDE NUMBER=0 INDICATES THAT A PRESSURED FLOW OCCURS
-------------------------------------- -----------------------------
SEWER SLOPE INVERT ELEVATION BURIED DEPTH COMMENTS
ID NUMBER UPSTREAM DNSTREAN UPSTREAM DNSTREAM
% (FT) (FT) (FT) -(FT)--_-------
56.00 0.50 66.84 66.84 1.48 1.48 NO
331.00 .0.53 65.21 65.05 1.67 1.00 NO
324.00 0.53 .66.40 66.21 1.26 1.67 NO
321.00 0.53 68v00 66.41 5.25 2.00 OK
330.00 0.50 66:84 66.44 1,.48 1.72 NO
OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET
[*** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS
SEWER ' SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW
'ID NUMBER LENGTH LENGTH UPSTREAM DNSTREAM UPSTREAM DNSTREAM-CONDITION
---------------FEET FEET FEET FEET FEET FEET
56.00 0.10 0.00 68.34 68.34 69:93 69.88 PRSSIED
331.00 30.00 0.00 68.21 68.05 68.45 67.76 SUSCR
324.00 36.00 36.00 68.40 68.21 68.75 68.45 PRSSIED
321.00 300v00 300.00 69.25 67.66 71.81 68.75 PRSSlED
330.00 80.00. 80.00 68.34 67.94 69.88 68.75 PRSSIED
PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW
*** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS
-------------------------------------------------------------------------------
UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST MANHOLE,
SEWER MANHOLE ENERGY FRCTION BEND BEND LATERAL LATERAL MANHOLE ENERGY
ID NO ID NO. ELEV FT FT K COEF LOSS FT K COEF LOSS FT ID FT-------------------------------------------------------------------------------
'56.0 6.00 70.25 0.05 0.00 0.00 0.00 0.00 5.00 70.20
331.0 2.00 69.39 1.03 1:00 0.60 0.00 0.00 1.00 67 76
324.0 3.00 69.59 0.07 0.30 0.12 0.00 0.00 2.00 69.39
321.0 4.00 72.18 2.57 OvO5 0.02 0.00 0.00 3.00 .69.59
'330.0 .5.00 701.20 0.46 0.48 0.15 0.00 0.00 3.00 69.59
BEND LOSS =BEND K* VHEAD IN SEWER.
LATERAL LOSS= OUTFLOW VHEAD-JCT LOSS K*INFLOW VHEAD
FRICTION LOSS=O MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP.
FRICTION LOSS INCLUDES SEWER INVERT DROP AT-NANHOLE
NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION.
RBD INC. ENGINEERING CONSULTANTS
CHANNEL RATING INFORMATION
WESTERLY ROADSIDE CHANNEL ALONG BOARDWALK DRIVE
STA ELEV
0.00
20.00
20.00
15.00
22.00
14.75
24.00
15.00
44.00
20.00
'N' VALUE
..........
SLOPE
...........•.
(ft/ft)
0.035
0:0050
ELEVATION
AREA
VELOCITY
-DISCHARGE
FROUDE
(feet)
(sq ft)
(fps)
(cfs)
NO.
15.25
1.8
1.3
2.30
0.43
15.75
5.8
2.1
11.80
0.48 I
16.25
11.8
2.6
30.98
0.51
16.75
19.8
3.1
62.18
0.53
17.25
29.8
3.6
107.59
0.55
17.75
41.8
4.1
169.23
0..56
18.25
55.8
4.5
248.99
0.58
18.75
71.8
4.9
348.68
0.59
19.25
89.8
5.2
470.04
0.60
19.75
109.8
5.6
614.,72
0.61
9INC
Engineering Consultants
® CLIENT JOS NO. ' 4 - QC
PROJECT
QQM 12A11C1�hIT CALCULATIONSFOR U7S �u� SCJ�Ldnd-
MADE BYB-O- DATE 1.2a CHECKED BY DATE SHEET SZ OF 56
REPORT OF STORM SEWER SYSTEM DESIGN
USING UDSEYER-MODEL VERSION 4
DEVELOPED
BY
JAMES C.Y. GUO ,PHD, PE
DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF COLORADO AT DENVER
IN COOPERATION WITH
URBAN DRAINAGE AND FLOOD CONTROL DISTRICT
DENVER, COLORADO
_____aaaaeoaaaaaaaaaaaeeaaaaaaaaa=ae=�aaaaaaaaaaaaaaaaaaaeaaoeae==aaaaaoaaaaa
*** EXECUTED BY DENVER CITY/COUNTY USE ONLY ...............................................
ON DATA 01-29-1993 AT TIME 06:21:38
***PROJECT TITLE
SAWGRASS COURT STORM SEWER TO DETENTION POND
*°* RETURN PERIOD OF FLOOD IS 2 YEARS
1 *** SUMMARY OF HYDRAULICS AT MANHOLES
UIMANHOLE
CNTRBTING
RAINFALL RAINFALL
DESIGN
GROUND
WATER
COMMENTS
D NUMBER AREA * C
DURATION INTENSITY
PEAK FLOW ELEVATION ELEVATION
MINUTES 1NCH/HR
CFS
FEET
FEET
',
------------------------•-----•---•---------------•-------------------•--------
1.00
N/A
N/A N/A
2.01
75.00
70.40
OK
2.00
N/A
N/A N/A
2.01
76.05
72.89
OK
3.00
N/A
N/A N/A
2.01
76.05
73.08
OK
'OK
MEANS WATER
ELEVATION IS LOWER THAN GROUND ELEVATION
*** SUMMARY OF
SEWER
HYDRAULICS
NOTE: THE GIVEN FLOW DEPTH -TO -SEWER SIZE RATIO= .8
-------------------------------------------------------------------------------
SEWER MAMHOLE NUMBER SEWER REQUIRED SUGGESTED EXISTING
ID NUMBER UPSTREAM DNSTREAM SHAPE DIA(HIGH) DIA(H1GH) D1A(HIGH) WIDTH
1D-NO. - ID NO.(IN) (FT) (IN) (FT) (IN) (FT) (FT)
-------
12.00 2.00 1.00 ROUND 9.68 15.00 15.00 0.00
23.00 3.00 2.00 ROUND 11.03 15.00 15.00 0.00
'DIMENSION UNITS FOR ROUND AND ARCH SEWER ARE IN INCHES
DIMENSION UNITS FOR BOX SEWER ARE IN FEET
REQUIRED DIAMETER WAS DETERMINED BY SEWER HYDRAULIC CAPACITY.
SUGGESTED DIAMETER WAS DETERMINED BY COMMERCIALLY AVAILABLE SIZE.
FOR A NEW SEWER, FLOW WAS ANALYZED BY THE SUGGESTED SEWER SIZE; OTHERWISE,
SEWER SLOPE--INVERT-ELEVATION BURIED DEPTH COMMENTS
ID NUMBER UPSTREAM DNSTREAM UPSTREAM DNSTREAM
% (FT) (FT) ('FT) (FT)
�1 12:00 1:00 72.32 71.00 2.48 2.75 OK
23.00 0.50 72.32 72.32 2.48 2.48 OK
OK MEANS BURIED DEPTH IS GREATER THAN REQUIRED SOIL COVER OF 2 FEET
e*** SUMMARY OF HYDRAULIC GRADIENT LINE ALONG SEWERS
SEWER SEWER SURCHARGED CROWN ELEVATION WATER ELEVATION FLOW
1D NUMBER LENGTH LENGTH UPSTREAM ONSTREAMUPSTREAM DNSTREAM CONDITION
-FEE T_---- FEET FEET FEET FEET FEET
-----
12:00 132.00 0.00 73.57 72.25 72.89 70.40 JUMP
23:00 0.10 0.00 73.57 73.57 73.08 72.89 SUBCR
PRSS'ED=PRESSURED FLOW; JUMP=POSSIBLE HYDRAULIC JUMP; SUBCR=SUBCRITICAL FLOW
'f
*** SUMMARY OF ENERGY GRADIENT LINE ALONG SEWERS
-------------- .:.-
UPST MANHOLE SEWER JUNCTURE LOSSES DOWNST I4ANHOLE
SEWER MANHOLE ENERGY FRCTION. BEND ' BEND LATERAL LATERAL MANHOLE ENERGY
ID_-NOID NO. ELEV 'FT FT K COEF LOSS FT K COEF'LOSS FT 1D FT
--
12.0 2.00 73.22 2.78 1.00 0.04 0.00 0.00 1.00 70.40
23.0 3.00 73.29 0.05 0.25 0.01 0.00 0.00 2.00 73.22
BEND LOSS =BEND K* VHEAD IN SEWER.
LATERAL LOSS= OUTFLOW VHEAD-JCT LOSS K*INFLOW VHEAD
FRICTION LOSS=0 MEANS IT IS NEGLIGIBLE OR POSSIBLE ERROR DUE TO JUMP.
FRICTION L'OS& INCLUDES SEWER INVERT DROP.AT MANHOLE
NOTICE: VHEAD DENOTES THE VELOCITY HEAD OF FULL FLOW CONDITION.
A MINIMUM JUCTION LOSS OF 0.05 FT WOULD BE INTRODUCED UNLESS LATERAL K=O.
FRICTION LOSS WAS ESTIMATED BY BACKWATER CURVE COMPUTATIONS.
RBD INC. ENGINEERING CONSULTANTS
CHANNEL RATING INFORMATION
OVERFLOW SWALE - SAWGRASS COURT TO DETENTION POND
STA
ELEV
0.00
20.00
20.00
15.00
40.00
20.00
'N' VALUE SLOPE (ft/ft)
0.035 1.0000
ELEVATION
AREA
VELOCITY
DISCHARGE
FROUDE
(feet)
(sq ft)
(fps)
(cfs)
NO.
.........
-------
........
---------
...... - (�
15.50
1.0
16.6
16.57
5.84
16.00
4.0
26.3
105.18
6.55
16.50
9.0
34.4
310.02
7.01
17.00
16.0
41.7
667.53
7.35
17.50
25.0
48.4
1210.13
7.63
18.00
36.0
54.7
1967.57
7.86
18.50
49.0
60.6
2967.63
8.07_
19.00
".0
66.2
4236.59
8.25
19.50
81.0
71.6
5799.48
8.41
20.00,
100.0
76.8
7680.31
8.56
i
�CAI coc= o• Z3 ��m ?,�,/
TEMPORARY DETENTOOW POND AT
BOARDWALK AND LEMAY
1
'
® CLIENT
JOB NO:EfS
INC PROJECT
Zd"CAA V,'4r CALCULATIONS FOR MM M'P I*CC�--T. PpJIo 1
Engineering Consultants MADEBY
DATE LL''Z,9�.CHECKEDBY DATE SHEETOF
7�u_3TI otJ 0 f1 V F LAPEt9
�-I- O�'VELt7P1=D 2_-,0h.SIh1S (, ZLO Z1S v.Jlt.l.. ► 1EED.. "TLC'.
�� o�Tdl►.,E� �
�3vd.e.au.e;�.L� � L>=+v��Y � >z�s
_ ._ _ �T .� _ :►Y10KLMUM__ 2oTt= . GAF �:, �u :..e}S./n� P P�2...:'L�+� .. ,
cx4w-/Carr= %4 %L1C=D
ZS
2 is o, 6 _
1 _ o ► . zs s. t9 _ .. s. 3
:Ito s�n< :. C_...=
1�>nano.I.a�.t0 : SII ►.fc� CbMPC��'�@. R2.ovPan� -`za SIB
b.�s
TrT.oL, . 1 r`1- l.0 1 C� Lam:. I .rY,;+�► _
�3 I oW. '._ a::tea. , ...5.: S_Z:64 cf .__
aaaa_ aaaaaaaaaaxaaaaaaaaaaaaaaaaaaaaaa�eaaaaaaapaa�ac=aaaaaaaaaaaaaaaaaaaaa
DETENTION POND SIZING BY FAA METHOD
DEVELOPED BY
JANES C.Y. GUO, PHD,:P.E.
DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF COLORADO AT DENVER
anaaxaaaaaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
EXECUTED ON 01-29-IM AT TIME 09:41:25
PROJECT TITLE: TEMPORARY DETENTION POND AT BOARDWALK AND LEMAY
**** DRAINAGE BASIN DESCRIPTION
BASIN ID NUMBER = 1.00
BASIN AREA (acre) 13.10
RUNOFF COEF = 0.80
***** DESIGN RAINFALL STATISTICS
DESIGN RETURN PERIOD (YEARS) = 100.00
INTENSITY(IN/HR)-DURATION(MIN) TABLE IS GIVEN:
DURATION 5 10 20 30 40 50 60 80 100 120 150 180
INTENSITY 9.0 7.3 5.2 4.2 3.5 3.0 2.6 2.1 1.7 1:5 1.2 1.0
***** POND OUTFLOW CHARACTERISTICS::
MAXIMUM ALLOWABLE RELEASE RATE = 6.55 CFS
OUTFLOW ADJUSTMENT FACTOR = .965
AVERAGE RELEASE RATE: = 6.32075 CFS
1 AVERAGE RELEASE RATE'= MAXIMUM RELEASE'RATE * ADJUSTMENT FACTOR.
***** COMPUTATION OF POND SIZE
-----------------------------------------------------
RAINFALL
RAINFALL
INFLOW
OUTFLOW
REQUIRED
DURATION
INTENSITY
VOLUME
VOLUME
STORAGE'
MINUTE
INCH/HR
ACRE -FT
ACRE -FT
ACRE -FT
0.00
5.00
0.00
9.00
0.00
0.66
0.00
0.04
0.00
0.61
10.00
7.30
1:06
0.09
0.98
15.00
6.25
136
0.13
1i.23'
20.00
5.20
1.51
0.17
1.34
25.00
4.70
1.71
0.22
1.49
30.00
4.20
1.83
0.26
t.57
35.00
3.65
1.96
0.30
t.66
40:00
3.50
2:04
0.35
t.69
45.00
50.00
3.25
3.00
2.13
2.18
0.39
0."
1.74
11.75'
55 A0
2.80
2.24
0:48
1.76
60.00
2.60
2.27'
0.52
1.75'
65.00
2.47
2.34
0.57
1.:78
70.00
2.35
2.39
0.61
t..78
75:00
2.22
2.43
0.65
1.78
b
O W
P4 3
c o
..� 44
w
41
N
O
O
h",
r
® CLIENT
LA I Ranh-KA = SM
JOB NO.
INC PROJECT M 1 Q �M—Y.A-r
2r%A CALCULATIONS FOR T`_MP P-- >P AC:,
Engineering Consultants MADEBY��DATE 1 .�Q CHECKED
BY DATE SHEET//,, �OF �2
<L.� rnoy-
-. . Z°j 1`�C • ;fir
POND `/ OL;u M'E l►•!/ 1= i L� ti,1G> Z
- 1.. -7.8 d�C.. ; �T
IV O?' ICI QCr1-I t zz=e2-
f= l u U T 1>= 1 t..1 ►J r IS Ta P 2 C7\l 1
-�.D D 1TI o1�1p.L� _ E, e m NGs . TO `.
P 1=2. it PI..J 1.LC� dN.� � PO �.aa Gpll�lL-,V eD.T7pt�l
,__.C�n1'rr�ulz.. ___ __ _. dit�a. ---.. -. .. .�lp>,..L.�Mr3_
.._ .._.C:yc_Y►�rtUE:: __._..�d.�:FT
1cD 77
Ze
Cal. _. _ _ I" J.4b� _ : _
_ ,._ ZoC�3
_ _..:_ -
C�z za 974
e
Ta-1�c srl u noel A 1-os . ] coo Y e
1
u 1s�L : Z _ 3
Tad aF . $I:2M
1.�71T�.1 Ta-i ;^.D17)T.o►.1 .�>_ KII:'IZOMOf�.iT• :
_
Z, 1=11.11.LC�• _ i
t14-E
L
p
RIPRAP DESIGN
IF
L
i1
■INC
Engineering Consultants
® CLIENT "I eL\ Mc=)b Iw I ®G JOB NO. 504'cXx17.
PROJECT KA I RA ML%J'r 2t,d CALCULATIONS FOR
MADE BY 5A DATE L21 Z - CHECKED BY DATE SNEET.G7OF g�
VS� 12" Gl.dsS L1,
1:
ki
,I
0
Fii
I
CLIENT e4+MQWjr
A ' JOB NO. C 4 _CXZ0;
INC PROJECT ��/ I I R fOONIr Zr1Ci CALCULATIONS FOR I P 2-N P yiL�PdSs
Engineering, Consultants MADE BYMCI- DATE 124A8 CHECKED'BY DATE SHEETLVZ.', OF
n
DESIGN, OF EROSION CONTROL PLAN
Ll
HI
rl"�
Fl�
RAINFALL PERFORMANCE STANDARD EVALUATION
PROJECT.: A ,� STANDARD FORM A
COMPLETED .BY: g . DATE: " Z-799
DEVELOPED'ERODIBILITY
SUBBA§IN
ZONE
As'b
(ac)
Lsb
(ft)
Ssb
00
Lb
(feet)
Sb
M
PS
(�)
..........
1�,IS
1
1
EFFECTIVENESS CALCULATIONS
PROJECT: STANDARD FORM B
KA%0.n,r,1c,s-m
COMPLETED BY: C.L>r--m Ss DATE: JAhj z--7, 1993
Erosion Control
Method
C-Factor
Value
P-Factor
Value
Comiftent
-4,-r e-,,A2-6 I ki Lars
m,0L.C-"- LU/-.sjF-.s-0 ------ .
.....
-.4-5
'.
MAJOR
PS
SUB
1, AREA
BASIN
BASINI.
(Ac)
CALCULATIONS
'-/ I I J
E
U
hj LE:r . .....
Z144. I.-V4
.... .......... ....
,.
0
EFFECTIVENESS CALCULATIONS
PROJECT: STANDARD FORM B
COMPLETED BY: 3. Cv e nss DATE; JaIQ Z-'7. 1993
Erosion controlC-Factor P-Factor
Method Value Value Coipjnent
MAJOR PS
BASIN (-%)
I I
BASINS (Ac) I CALCULATIONS
---- LU /--s7rc-4k
tj F-r - ---- --
-fumes_—
CONSTRUCTION SEQUENCE
'
PROJECT:
'v, ' �o Z* u►.►�
STANDARD FORM C
SEQUENCE
FOR 19 93
ONLY COMPLETED BY:
DATE: J O ►J 7-7 , 93
Indicate
by use of a
bar line or symbols when: erosion control
measures will be installed.
Major modifications town approved schedule may require submitting a
new schedule for
e
approval
by the City
Engineer.
YEAR
MONTH
0 OVERLOT GRADING
K WIND EROSION CONTROL
Soil Roughening
Perimeter Barrier
Additional Barriers
Vegetative Methods
Soil Sealant
Other
RAINFALL EROSION CONTROL
STRUCTURAL::
Sediment Trap/Basin
Inlet Filters
Straw Barriers
Silt Fence Barriers
Sand Bags
Bare Soil Preparation
Contour Furrows
Terracing
Asphalt/Concrete Paving
Other
VEGETATIVE:
Permanent Seed Planting;
Mulching/Sealant
Temporary Seed Planting
Sod Installat°ion
Nettings/Mats/Blankets
Other
'I
I
CHARTS, TABLES AND FIGURES
I
j
DRAINAGE CRITERIA MANUAL®
30
20
z
W
U
W.
10,
Z
W
a
5
W
3
U
2
,.
cc
W
w
3
'
1
.s
RUNOFF
S■■„'■
FA FA I
•I :
I
::
,1
.1 .2 .3 • .5 1 2 3 5 --10 20
VELOCITY IN FEET PER 'SECOND
FIGURE 3-2. ESTIMATE OF AVERAGE FLOW VELOCITY FOR
USE WITH THE RATIONAL FORMULA.
No Text
0
1.0
12
5
I
10
4
.9
8
3
10
6.
.8
o
►-
2
9
04
�
,�
.7
a '3
i U-
_
8
w
1.5
CL
'.,
.6
7
1.0
e: 'Past a
-- I.0
Z
z
.
9
.5
W
5.5
0
-. a
. 8
w
5
N
W
x
0 .6
z
o
.7
U
.4
z
w .4
z
4.5
z
a..6
ao .3
w
�
_
r
o
0
.5
4
x .2
t-
z
c�
z
o
a'3
3.5
w
w
'•
.4
0
a
0
o
u-
0
o .08
.25
3
o .06
.3
x7
c�
c�
U-,
?
w
x
w
x
x .04
Q:
.25
2.5
Uj
°`
w
a
.2
.03
U .02
a.
0
.2
a
'2
a
�
x
F-
a.
.15
.01
0
.15
L
u.
.1 -
STORM DRAINAGE DESIGN AND TECHNICAL CRITE'RIAl TABLE 803
MANHOLE AND JUNCTION LOSSES
- . E=Rmt:=
UJL LWUA I IUN IJUJ
IL= K _�
k=
a'f
USE EQUATION 005
.11
AIL. o"V,
o/ LAN ►aJf rotAnyTaw % PLAN
of 'IwIM.
o,
A
SECTION
CASE I
T ON MAIN LINE or
I+tfc 0.1 /Na:HCinz
AN
SECTION
I- w c wr
USE EQUATION 005
z
N =—k
0„r, VI V�
o,,n
SECTION.
CASE II
INLET ON MAIN LINE
WITH BRANCH LATERAL
o/
PLAN
USE EQUATION 001
a�-
't k-1.2S
SECTION
CA
INLET OR MANHOLE AT
BEGINNING OF -LINE
E,
STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA' TABLE s O a C
STORM SEWER ENERGY LOSS COEFFOCOENT
(SENDS AT MANHOLES)
1.4
01
13-1
1.2
I,I z
1.0
�S
rr,�s•I
Y 0.0
d
o d,Q
U
s v6Y
-' 0.6
OSG
CS
0,grs
0•y'�
0.4
v
0•SZ
d.lg
oj%q
0.2
I
I
I
i
I
�I
I
I
Bond at Manhole;
no Special Shaping
Deflector
Curved
I
Y
I
I
I
I
I
Bond e1 Manhole.
Curved or Do(leclorl
I
I
I
I
I
Manhole
I
I-
I
t
I
TABLE 12 - ENTRANCE LOSS COEFFICIENTS
Outlet Control, Full or Partly Full Entrance head loss
He = ke V2
2g
Type of Structure and Design of Entrance Coefficient _
Pine. Concrete
Projecting from fill, socket end .(groove -end) . . . . .
. . 0.2
'Projecting from fill, sq. cut end . . . . . . . .
. . 0.5
Headwall or headwall and wingwalls
Socket end of pipe (groove -end) . . . . . . . . .
. . 0.2
Square -edge . . . . . . . . . . . . .
. . 0.5
Rounded (radius _. 1/12D) . . . . . . . . . . .
0.2
Mitered to conform. to fill slope . . . . . . . . .
. . 0.7
*End -Section conforming to fill slope . . . . . .
. . 0.5
Beveled edges, 33.7° or, 450 bevels . . . . . . . .. .
. . 0.2
Side -or slope -tapered inlet . . . . . . . . .
. . 0.2
Pine. or Pine -Arch. Corrugated Metal
Projecting from fill (no headwall) . . . . . . . . .
. . 0.9
Headwall or headwall and wingwalls square -edge . . . . .
. . 0.5
Mitered to conform to fin slope, paved or unpaved slope .
. . 0.7
'End -Section conforming to fill slope . . . . . . .
. . 0.5
Beveled edges, 33.70 or 450 bevels . . . . . . ... .
. . 0.2
Side -or slope -tapered inlet . . . . . . . . . . .
. . 0.2
Box. Reinforced Concrete
Headwall parallel to embankment (no wingwalls)
Square -edged on 3 edges . . . . . . . . .
0.5
Rounded on:3 edges to radius of 1/12 barrel
dimension, or beveled edges on 3 sides . . . . .
. . 0.2
Wingwalls at 300 to 750 to barrel
Square -edged at crown . . . . . . . . . .. .. .
. . 0.4
Crown .edge rounded to radius of 1,/12 barrel
dimension, or beveled top edge . . . . . . . .
. . 0.2
Wingwall at 100 to 250 to barrel
Calculations for Curb Capacities and Velocities
Major and Minor Storms
per City of Fort Collins Storm Drainage Design Criteria
RESIDENTIAL with drive over curb and gutter Prepared by: RBD, Inc.
0 is for one side of the road only February_ 28, 1992
V is based on theoretical capacities
Area = 2.63 sq.ft.
Area - 20.11 sq.ft.
Minor
Storm .
Major
Storm
Slope
Red. .
Minor .
0
V .
Major .
0
V
(X) :Factor
:
X :
(cfs) :
(fps) :
X :
(cfs) :
(fps)
0.40
0.50
86.71 .
2.74 .
2.09 :
696.73 :
22.03
2.19 :
0.50
0.65 :•
86.71 :
3.99 :
2.33 :
696.73 :
'32.02 :
2.45 :
0.60
0.80
86.71 .
5.37 :
2.55 :
696.73 :
43.17 :
2.68 :
0.70
0.80
86.71 .
5.80
2.76 :
696.73 :
46.63
2:90 .
0.80:::
0.80
86.71 :
6.20
2.95 ::
696.73 :
49.85 :
3.:10 :
0.90".
0.80
86.71 .
6.58
3.13 :
696.73 :
'52.88
3.29
1.00
0.80
86.71 :
6.94
3.30 :
696.73 :
55.74 :
- 1.46
1.25
0.80
86.71 :
7.76 :
3.69 :
696.73 :
62.32 :
3.87
1.50
0.80 .
86.71 .
8.50
4.04 :
696.73 :
68.27 :
4.24
1.75
0.80 .
86.71 .
9.18 :
4.36 :
696.73 :
73.73 .
4.58
2.00
0.80 .
86.71 .
9.81 .
4.66 :
696.73 :
78.83 :
4.90
2.25
0.78 :
86.71
10.15 :
4.95 :
696.73 :
81.52 :
5.20
2.50
0.76 .
86..71 .
10.42 .
5.21 .
696.73
83.72 :
5.48
2.75
0.74 .
86.71
10.64 .
5.47 :
696.73 :
85.50
5.75 .
3.00
0.72 :
86.71
10.81 :
5.71 :
696.73 :
86.89 :
6.00 :
3.25 :
0.69 .
86.71.:
10.79 :
5.94 .
696.73 :
86.67 :
6.25 .
3.50
0.66 .
86.71
10.71 .
6.17 :
696.73 :
86.03 .
6.48 :
3.75 :
0.63 :
86.71
10.58 :
6.38 :
696.73 :
85.00
6.71 :
4.00
0.60 :
86.71
10.41 :
6.59 :
696.73 :
83.61
6.93 :
4.25':
0.58 :
86.71
10.37 :
6.80 :
696.73 :
83.31
7.14 :
4.50 :
0.54 .
86.71
9.93 .
6.99 :
696.73 :
79.81
7.35-:
4.75 .
0.52 .
86.71::
9.83 .
7.19 :
696.73 :
78.96 :
7.55 .
5.00 .
0.49 :
86.71
9.50 :
7.37 :
696.73 :
76.34 .
7..75 .
5.25'.
0.46 .
86.71
9.14 .
7.55
696.73 :
73.43 :
7.94 :
'5.50 :
0.44 :
86.71
8.95 :
7.73 :
696.73 :
71.89 :
8.13 :
5.75 :
0.42 :
86.71
8..73 :
7.91'
696.73 :
70.17 :
8.31 :
6.00 :
0.40 :
86.71
8.50 :
8.08 :
696.73 :
68.27 :
:8.49 :
CLIENT JOB NO.
%DINC PROJECT CALCULATIONS FOR LTTTSP- F _011
Engineering Consultants MADE BY-ik-'-DATE 2'9Z CHECKEDBY DATESHEET I 'OF �_
No Text
Calculations for Curb Capacities and Velocities
Major and Minor Storms
per City of Fort Collins Storm Drainage Design Criteria
COLLECTOR w/ 6" Vertical curb and gutter Prepared by: RBD, Inc.
Q is for one side of the road only February 28, 1992
V is based on theoretical capacities
Area = 3.55 sq.ft. Area = 28.96 sq.:ft.
Minor
Storm . Major
Storm
Slope
Red.
Minor
Q
V Major' Q
V
M :factor
X :
(cfs) :
:
(fps) X (cfs)
(:fps)
0.40 :
0.50
135.32 :
4.28 :
2.41 :: 1129.59 : 35..72
2.47 :
0.50 :
0.65
135.32 :
6.22 :
2..70-: 1129.59 : 51.92
2.76 :
0.60-:
0.80
135.32 :
•8.39 :
:2.95 1129.59 : 70.00
3.02 :
0.70
0.80
135.32
9.06 :
3.19 1129.59 : 75.61; 0
3.26 :
'
0.80 :
0.80 :
135.32 :
9.68 :
3.41 1129.59 : 80.83 :
:
3.49 :
0.90 :
0.80 :
135.32
10.27 :
3.62 : 1129.59 :: 85.73 .:
3.70 :
1.00
0.80 :
135.32
10.83 :
3.81 1129.59 ; 90.37 :
3.90 :
1.25
!0.80 :
135.32
12.10 :
4.26 1129.59 : 101.03
4.36 :
1.50
0.80 :
135.32
13.26 :
4.67 : 1129.59 : 110.68 :
4.78 :
1.75
0.80 :
135.32
14.32 :
5.04 : 1129.59 : 119.54 :
5.16 :
2.00
2.25
0.80 :
0.78 :
135.32 ::
135.32 :
15.31 :
15.83 :•
5.39 1129.59 : 127.80 :
5.72 1129.59 : 132.16 :
5.52 :
5.85 :
2.50
0.76 :
135.32 :
16.26 :
6.03 : 1129.59 : 135.74
6.17 :
2.75
0.74 :
135.32
16.61
6.32 : 1129.59 : 138.62 :
6.47 :
3.00 :
0.72 :
135.32 :
16.88 :
6.60 : 1129.59 : 140.87 :
6.76 :
3.25
0.69 :
135.32
16.83
6.87 : 1129.59 : 140.51
.7.03
3.50
0.66 :
135.32 :
16.71
7.13 1129.59 : 139.48 .
7.30
3.75
0.63 :
135.32 :
16.51
7.38 : 1129.59 : 137.81 :
7.55
4.00
0.60 :
135.32 :
16.24
7.62 1129.59 : 135.55 :
7.80
4.25
0.58 :
135.32 :
16.18 :
7.86 : 1129.59 : 135.07 :
8.04
4.50
0.54 :
135,32 •:
15.50 :
8.09 : 112959 : 129.40 :
8.27
4..75
0..52 :
135.32
15.34 :
8.31 : 1129'59 : 128.02 :
8.50
5.00
0.49 :
135.32
14.83 :
8.52 : 1129.59 : 123.77 :
8.72
5'.25
0.46 :
135.32
14.26 :
8.73 : 1129.59 : 1.19.06 :
8.94
5.50
0.44 :
135.32
13.96 :
8.94 : 1129.59 : 116.56 q
9.15
5.75 :
0.42 :
135.32 :
13.63 :
9.14 : 1129.59 : 113.76 :
9.35
6.00 :
0.40 :
135.32 :
13.26 :
9.34 : 1129.59 : 110.68 :
9.55
L�
INC
Engineering Consultants
1
/�� ® �e
CLIENT TY OF F-A== 50--C=X_L_1*4G JOB NO.
PROJECT
CALCULATIONS FOR 42t TIT�1Z 1=L�L /
MADE BY 150- DATE Z -97 CHECKED BY DATE SHEET I_ OF 7-
CLIENT 1`1 OF F—C>CM (21fll l 1 A1S JOB NO.
RINC PROJECT CALCULATIONS FOR L<`msy-- P4— k/
Engineering Consultants MADE BY _fa0_ DATE 7 -97 CHECKED'BY DATE —SHEET Z_OF _��
DRAINAGE CRITERIA MANUAL
a
0
® �a
RIPRAP
Yt/D
Use Do instead of D whenever flow is supercritical in the barrel.
**Use Type L for a distance of 3D downstream.
DRAINAGE CRITERIA MANUAL RIPRAP
9 = Expansion Angle
TAILWATER DEPTHY CONDUIT HEIGHT, Yt / D
0
a
0
u
N
z
H
a
a
0
u
FI
0
0
in
0
0
lw
O
O
M
0
0
N
O
0
ri
O
O
0
O
1D
0
Ln
to
4
O
to
c4
O
M
00 . .0 .
-' d' to to to
O O 0o 0o co
mmmm000000
d' v v d' to to to to to to
co co 0o 0o 0 0o .o cD co C0
CDCAC►0%ChChCho%CAC►0rn000
. . . .. . 444
. . . . . . . . .
d' eM sf' er d' d' st' 4 4 .4 .4 1; Ln Un Ul
co co 00 0 OD OD 0o co 0o CD .OD 0o Co 0o 0o
r- 0 O c0 m m 0 O 0 Ci 0% 01 0% C1 C► CA C1 C1 C% (ti
. . . .. .. . . .. . . . . . . . . . . .
0o 0o 0o co co 00 0o o co co co 0o 0o CD co 00 0 0o co co
0 M l' In %D %0 %0 w t` !` t- t` t` t` r- t` t` r- t` t` 00 co O CD 0o 00
. . . . . . 44
. . . . . . . . . . . . 44
. . . .
O 00 00 00 OD 00 00 CO O 00 O OD CD OD CO 00 CD O O 00 00,00 00 00 00 O0
co N M v to Ln to %o %o %D %0 %0 %o t` t` t` t` r- t- t` t` t` t` CO 00 00
A44...........................
.rsr�rd'•a'd'�a'epd'd'd'd'd'd'd'd'd'eYsr`r4q;4
00 00 00 OD OD CO-00 00 00 00 OD 00 00 0 00 OD 00 00 00 00 00 OD 00 00 00 00
�O O N M v "o to to in to %o %o 10 to %a%o %o %o %o %D t` t` t` r- t` t`
. . . . . 44
. . . . . . . . . . . . . . . . . . .
CO 00 O 00 00 00 {D 00 00 00 CO 00 00 00 00 00 00 O CO *00 00 DO 00 00 CO 00
,wC1e-1NMM wvvvtoLntotototototoLn%o%o%010%o%ot`
..........................
MMst'd'd'd'd'�d'd'd'd'd'�'d'd'd'd'd'srsrsr.e'd'd'd'
00 O O 00 O O O OD CO O O 00 O CW O 00 CO 00 CO CO OD 00 CO 00 00.00
O w O O rf rt N N M e" 1 M M v v -o v v -wv v to tn' in to %o�
Ml'1Md'd'd'd'd'd'd'd!d"d'd'd"d'd'eR40led'sMd'41'd'd'
00 00 OD O O CO W 00 00 00 OO CO 00 W 00 CO O0 00 00 C0 CD CD,CD O CO 00
to N In � 00 01 O O P rl rl N N N N N M M M M M sl' d' sf' d' d'
. . • . . . • . • .. . . . . . . . . . . . . . . • . .
N M r') M M M 'd' ai' d' d' eY v V qw V V 10 V qw V -0 lot q' qw 40 v
OD 00 O O 00 00 00 00 00 O 0 CD '00 OD O 00 00 CD C0 00 O 00 00 CO 00 00
H OD rt M d' to in %o %o t- N t- w OD 00 00 OD 00 (A 0% M 0 0 0 0 0
NNMMMMMMMM MMMC4MMM14MMMd leoIwo
Vo
d'
O000DC000CID -CID OCOCDCD, CID 00ODCID,
'00000000CDCO00OD OD- 00
w to 0o O rt N M v %r to to to %o %o %o w:%o t` r- t- t` 0 CO 00 aN C1
• • .. . . . ♦ . . • . .f . . . . . . . • • • 1 . .
1-1 N N M M M M M M M M M M M M M M M M M M M Mtn men
C0 00 00 CD OD OD CO 00 00 CO Co 00 00 CD 00 00 CO CO CO 00 OD 00 C0 O0 00 00
rt H to t` OD O O rt N N M M M V V V et' V to to to %D %D to (` t-
rl N N N N M M M M M M M M M c4 M M. M M M M r4 M M M M
00 00 CO O 00 00 O 00-00 00 00 00 00 0 00 00 C0 00 OD CO CO 00 00 00 OD CO
f"1NwOmOrlNNMMMd'vv wd'd'totototo%o%D%o%o
• • • . . . • . . . . . . . . . . . • • • • • • . .
O rt rt H rt N N N N N N N N N N N N N N N N N N N N N
O O O CO O O O O 00 O CD 00 O O O O O CD 00 O CO CO Co 00 CO O
to In to C. N M i 9 1O 1` r. t` 0 00 CO C1 C. C. C► C. C. O O O O O O
N 0%00rfrtr4rte-49-4r41-4Hr41-4rt1-1.-4.-4rtr4NNNNN N
l� 00 O OO 00 00 OO OD OO 00 OO 00 00 00 O O 00 00 CD OD O 00 DD CO O OD
O etLn0MtnW0000C1000rgrl:rle-iNNNNco) MMM MM
N co C1 O O O O O O O H rt H rt ri r♦ r♦ r1 rt rt H rt rl rt rt H rq
r t- 00 00 O0 CO OD 00 00 00 00 CO OD 00 00 00 CO CO 00 OD 00 CO OD CO O O
Table 813 C-Factors and P-Factors for Evaluating EFF Values.
'
Treatment C-Factor
P-Factor
BARE SOIL
Packed and smooth .... .... .
1.00
1.00
Freshlydisked ........ ........................................................
1.00
0.90
Roughirregular surface.........,.....................................................
1.00
0.90
SEDIMENT BASINfTRAP.................................................................. 1.00 0.50111
STRAW BALE BARRIER, GRAVEL FILTER, SAND BAG .......I ................. 1.00
0.80
SILTFENCE BARRIER....................................................................... 1.00
0.50
ASPHALT/CONCRETE PAVEMENT ................................................... 0.01
1.00
ESTABLISHED DRY LAND (NATIVE) GRASS .......................... See Fig. 8-A
1.00.
SODGRASS ............................................................................... 0.01,
1.00
TEMPORARY VEGETATION/COVER CROPS .................................... 0.45121.
1.00
HYDRAULIC MULCH @ 2 TONS/ACRE........................................... 0.10131
1.00
SOIL SEALANT ......................................... ........ .......... ............ 0.01=0.60141
1.00
EROSION CONTROL MATS/BLANKETS............................................ 0.10
GRAVEL MULCH
1.00
Mulch shall consist of gravel having a diameter of approximately
1:/4" to 1 1 /2" and applied at a rate of at least 135 tons/acre.............. 0.05
HAY OR STRAW DRY MULCH
1.00
After olantinsa orass seed, apply mulch at a rate of 2 tons/acre (minimum) and adequately anchor,
tack or crimp material into the soil.
Slope M)
1 to 05..............................................................................0.06
1.00
o to 10 ........ . .......... 0.06
11 to 15 ......... . ,. ..... ...... ....... ........ • • ..... .............. 0.07
1.00
1.00
16 to 20............................................................................. 0.11
1.00
21 to 25.............................:................................................ 0.14
25 to 33.............. .... .0.17
1;00
1.00
> 33 ...................................................................... 0.20
1.00
NOTE: Use of other-C+actor or P-Factor values reported in this table must be substantiated by documentation.
(1) Must be constructed as the first step in overlot grading.
(2) Assumes planting by dates identified in Table 11-4, thus dry or hydraulic mulches are not required.
(3) Hydraulic mulches shall 'be used only between March 15 and May 15 unless
irrigated.
(4) Value used must be substantiated by documentation.
Table 8-13
C-Factors and P-Factors for Evaluating EFF Values
(continued from previous page).
Treatment
C-Factor
P-Factor
CONTOUR FURROWED :SURFACE
Must be maintained throughout the construction period, otherwise P-Factor = 1.00.
Maximum
length refers to the down slope length.
Basin
Maximum
Slope
Length
M
(feet)
1 to
2 400..........................................................................
'1.00
0.60
3 to
5 300..............................................
......... .......1.00
0.50
6 to
8 200..........................................................................1.00
0.50
9 to
12 120 ............. :..................................................,..........1..00
0.60
13 to
16 80..........................................................................1..00
0.70
17 to
20 60...................................,.............................:........1.00
0.80
> 20 50.......................................................,
................ 1.00
0.90
TERRACING,
!Must contain 10-year runoff volumes, without overflowing, as determined by applicable hydrologic
methods, otherwise P-Factor = 1.00.
Basin
Slope (%)
1 to 2..................................................................................... 1.00 0.12
3 to 8....... ...............:......................................................... 1.00 0.10
9 to 12.............. .... . ..................1.00 0.12
13 to 16......................... ................................ 1.00 0.14
17 to 20.....................................................................................1.00 0.16
> 20........................:.............................................................. 1.00 0.18
NOTE: Use of' other C-Factor or P-Factor values reported in this table must be substantiated by documentation.