Loading...
HomeMy WebLinkAboutHORSETOOTH WEST MASTER PLAN - 14-88 - SUBMITTAL DOCUMENTS - ROUND 1 - TRAFFIC STUDY (2)HORSETOOTH WEST MASTER FLAN SITE ACCESS STUDY FORT COLLINS, COLORADO MARCH 1988 Prepared for: Jim Scavo Realty, Inc. 220 East Mulberry Street Fort Collins, CO 80524 Prepared by: MATTHEW J. DELlCH, P.E. 3413 Banyan Avenue Loveland, Colorado 80538 Phone 303-669-2061 I H I 11 11 1 11 P Z 11 EXECUTIVE :=1 IMt° A R'Y The Hor=.etooth West Master Plan is a proposed development located near the intersection of Taft Hill Road and Hor•setooth Road. This traffic impact study involved the step_ of trip generation, trip distribution, trip assignment, capacity analysis, traffic signal warrant analysis, signal progression analysis, and accident analysis. This study assessed the impacts of the Hor _.e tooth West Master Plan on the short range ; 1??2? , mid range 19^_ ) , and long range (2010) street system in the vicinity of the proposed development. As a. result of this analysis, the following is concluded: - The development of the Horsetooth, I:,.le=.t Master Plan is feasible from a. traffic engineering standpoint. At full development as proposed, approximately 15,800 trip ends wi l l be generated at this site dai 1 y. - The Taft Hill Horsetooth intersection currently opera.tes unacceptably with stop sign control. Signals are warranted at this intersection given the current traffic volumes. With a. =.i gna.l , left -turn lanes should be provided can all legs. - By 1 =?2, given the first three phases of development of the Horse tooth West Master Plan and an increase in background traffic, the signalized intersection of Taft Hi 1 l Hor_•et.00t.h wi 1 1 operate acceptably. At this level of development, all that is necessary in this area, is a. paved Hor_.etooth Road west of Taft Hill Road, a. paved north -south collector as far as the elementary school, and the necessary turn lane_- at the Taft Hill/Hor_.etooth intersection. - By 1?96, with full development of Hor=.etooth West Master Plan, acceptable operation wi 1 l occur at the Taft Hill Horsetooth intersection with a three lane approach on each leg. Signals would be warranted at the Taft Hi l l Bronson intersection and this intersection would operate acceptably. H signal at Bronson 'street wi 1 1 f i t. into a. signal progression scheme along Taft Hi 1 1 Road. - By 2010, the Taft HIl l/Horsetooth intersection wi l l operate acceptably in the morning peak .and unacceptably in the afternoon peaty:: with a. typical four lane cross section on each leg. Provision of southbound double left -turn lanes on Taft Hi 1 1 wi 1 1 provide acceptable operational level of service in the afternoon peak hour. - By 2010, the Taft Hill/Bronson intersection will operate acceptably with the warranted signal. With stop sign control, the Horsetooth/neighborhood center access 1 inter-sec tion wi 11 o aerate acce pta. �y exce t F _F tl, _F fnr the left -turn ex i is dur i ng the of ter -noon peak hour . These left -turn e its at Horse tooth Road do have _.a.fe, convert i en al ter nat i ves for - this particular- movement_. Other =_.tap =.i gn control 1 ed i ntersect i on_i wi 1 1 opera.te acceptabI -,". - By 2010, the proposed stag -si gn control led r i aht- in:'right-out access_. to Ta.ft Hi 11 t,,ti 11 opera.te a.cceptabIy A r i gh t - turn au i I i ary ( dece I er.at i on ) lane i s war ran ted. Th i = r i ght-turn 1 a.ne woul d remcve veh i cl es tram the through traff i c stream on Taft Hill , pr-ov i di ng a. —afer condition. This right -turn lane should be at least 280 feet including taper . - With the recommended central a.nd geometrics, the accident rate =_.haul d be at an acceptable level for typical urban condi t i ons. I J� I I . I Pat er D U C-T I O(A This tra.ff i c impact stud; addresses the ca.pac i ty, c4eometric, and control requirement•_. at arid near a proposed development knovn hereinafter as the Horsetooth West t'1a.ster i''l an . I t i •__. l orA'ted near the i n ter— ec t i on of Taf t H i 1 1 Road and Hor•s.etooth Road in Fort C:ol l in=., Colorado. During the course of the analysis, numerous contacts vaere made vii th the project pl ann i ng con=_.uI tint f Gefr•oh Ha.ttma.n, Inc.. and the Fort C:ol l in=. Traffic Engineering Dep.y.rtment. Th i s =.tud;:� general 1 y conforms. to the format set forth in the Traffic Impact 'study Guidelines. The s.tudY i nvol ved the fol 1 oifjli ng steps: Col 1 ec t ph s.i cal , traff i c and deg.?e 1 opmen t data. Perform trip generation, trip distribution, and trip ass i gnmen t . - Determ i ne peak hour traff i c voI ume=_. and dai 1; tr•.a.ff i c of urnes.. - r:onduc t c.apa.c i t;•• .a.nd opera.t i on.a.l level of service anal y=_.e=. c �n k:ey inter =.ec t i on a.nd ro.a.d�::��..� s.ec t i c,n=_.. Hna.l ze i ona.l 1::�a.rra.n is and signal pr-ogres.s i on . Analyze potential change=• in accidents and safety considerations. II. E::.ISTING CO[ADITIQt••S The location of the Horse tooth West 1-1a.ster Plan is shown in Figure 1. It is important that a. thorough under —standing of the existing conditions be presented. Land Use Land uses in the area are primarily vacant or resi dent i al . Re=_ i dent i al development exists to the ea.s.t �;Rcros.s Taft Hill Road) .a.nd south of the Hor=•etooth, t-Jes.t h'1.aster Plan. :5orrie vacant land exists to the southeast across the Taft Hi 11:,'Hora_etooth intersection. Residential uses are proposed to the east of the site .a.cross. Taft Hi 1 l Road in a de,.!e l opmen t knor:•ln as. Rossborough . To the 4,,,je st of the site, 1-arid is va-cant . Land to the north of this site is large lot residential. Land in the ar•ea is e_s.entiall;v flat. Beginning at a.ppro-x. ima.tel:;, Horsetooth Road, Taft Hi 1 1 Road climbs. a small grade to the south. This. small grade has little effect on traffic operations and no effect on sight distance. The center of Fort Col 1 i ns lies to the northeast of the Horse tooth West t'1a.•_.ter Plan. [l L t I ii I I I I h I r] I I I I I t I I r- 5120 jm Do Ll LiLiElEil-4 A Fo r P. Golf _j :jLjLjr__jLJ6u, DO Elp — Ll JE]❑Ej Sew e 1 L DA, LJEJ III Dibpo I • U 0�IJ 1510 BM 4954 1 OlinIJUL (WEA r--.$. W PA. t ADU ADU TE ]EDIn IL-jr-if F-1 FQ�bo] cal- � I IVER i nrix- WHOS _. ;, - - - _� DUB � o o� ��11AW3115u.! u 0=93 14 UL- n, , V 5065 /544 4LA [in Fir S — WA ­1117-17 --- 7FIM 1� Hugkres :S �J- Gi7avele. 2 .# r 23 r_1 Pit II �Drive-i,!, jTheate CP Drakes F ti Lh ____ 1[2�7 __ . ; w 71— . !, , = ' �,;#) �'x Rf..;t I F J ' r Omega P I RW' W HO ETOOTH Dry D Lake it oni am -Gravel DAL MASTER PLAN - ' S,?/ Pit Me Cleflands J_ IT Harmonyp Cem-* 0 — 501.0 152450001 4916 /498 I SITE LOCATION FIGURE 1 1 R.oa.d=• 1I i 1 1 I L 1 C The pr•ima.ry =.tree+=. near the Horse tooth t%Je_.t r1a.=•ter• Plan a.r•e shot n i n F i gur•e Taft Hi 1 1 Road i east of the Horshl etootI.%Je=.t t1a.=.ter• Plan. It is .a. north -south street designated a, an arterial on the Fort 1=ol l in=. Plaster 'street F'1 akn . In thl is area, south of Drake Road, it has. a. tt%io lane rural cross- section t,iith no auxili-ar-y turn lanes. The posted _•peed 1 imi t is 45 mph. eight di _•ta.nce is generally not a. problem along Taft Hill Road. The Taft Hill ./Hor _.e tooth intersection is =.top sign controlled k.%iith Taft Hill receil•:'ing the r• i ght-of—t:.ja,:-.., The nearest si gna.l along Taft Hi l 1 Road is -at Drake to l the north. tIo signals exist south of this i to . Hor=.etooth Road is south of this site. It is an e-as t- 1:':lest street designated .as a.n aster i al on the Fort C.ol 1 i n=• Master Street Plan. Adjacent to the =. i to , Horse tooth Road has. a. gravel surf.a.ce. It is 5-40 feet 1.,,1ide. East of Taft. Hill Road, Hor=.et_Iclth Road has a. tvjo 1 a.ne cross section v)i th same additional vji den i ng to a curb -and gutter on the north side of the street. Existing Traffic Daily traffic f l ot:,1 is. _•hovjn in Figure These are machine counted volumes umes conducted b;•. the City of Fort Col 1 i ns r' �. I n _�4 . Peak hour- turning movements obtained in February, a,re also =.h1c1v: n in Figure RaV•j traffic count data is provided in Appendix H. Existing Oper•at i iDn The Taft Hi 11:,Horsetooth intersection, which Laa.=. counted in February 15�88, i.,,ia_• evaluated regarding operational efficiency. It tjas evaluated using existing stop sign control vii th existing geometric=• a.nd the volumes shot. -,In in F i Qur•e 3. The peak: hour operation is _.hot:an in Table 1. Npperldi 2, describes level of service for signalized and unsi gnat i zed intersections from the 1'=85 Hi ghvia.y Capacity P'lanua.l (: i th the e .: i = t i ng stop =•i Qn control , l of t turns and 7- crossing maneullers= from the m i nor street (Hor =•e tooth ) experience unacceptable operation. This was confirmed during tr•aff i c counting tjhen it vlas. observed that some vehicles had to t:,1 a. i t as long .a, 160 seconds before a. g .a, p vj $ -. available in the Taft Hi 1 1 Road traffic. ��_•InQ either the available daily traffic volumes or the current peak: hour volumes' , signals arevia.rranted at this I Ater=.ect j orl . Thl I =_. cclrlcl IJsi ran I,:.)a.s reached b comparing the available counts to the =.iQnal t',la.r•r•a.nt chart and peak hour t,,l.a,rr,ants provided in Appendix 0. Given this conclusion, this intersection 4'.Ja._• a.l _o evaluated as. a. signalized inter -section. I 0 W W F- N N J W_ N COUNTY RD. 38E Q N PRIMARY STREETS FIGURE 2 = J N LoU. a ��-9I/Z07 350� (I��) Z52�9 (1984) �-34/IZZ ►4/5 _� t HORSETOOTH 1 1 / 5 —� 5 /0 �\N L M 6' d' O N 1988 AM/PM RECENT TRAFFIC COUNTS FIGURE 3 Table I i ;?8 Peak: Hour Intersection Operation r,P- F'e-ak: PFI Peek Inter =.ect i on Hour LOS Hour LO S i:omment Taft Hi I l/'Hor.._.etc-oth Stop Sign Control _' B LT lJB LT 4JB T/RT P-•16 LT EB LT EB T/RT Taft Hi 1 1;. Hor=_.etooth Signal Control S i g n.-a1 __ a. r e t,..j.:-:krr•an t e d A A 2 Phase, SB LT do not clear A A 3 Phase A=- a. =- i gna.l i zed i n ter=.ec t ion, •a.ccep ta.bl e oiler at i on I =- achieved. The peak hour oper•.a.t ion kii th a. -_•i gna.l i zed i n t e r sec t j on i= a.l so =_•hown i n Tab e 1. Due to the high number of =•ou thbound loft turns., coupled t!•ji th the high northbound opposing volume on Taft Hi 1 l , a separate left -turn phase i ._ needed. Therefore, the minimum number of pha.=.es• for thi-. signal v.j i l l be three . Calculation form for, all the ex. i =•t i ng tr•a.ff i c oper•.a.t i can a.re provided in Appendix D. F.'e=.ea.rch h.a.=• i nd i c.a.ted that the Ta.f t Hi 1 1:'Hc,r =.e to A, i ��n.-�.1 t-%ii l l be installed as. __.c-on ass. other impr•ocement= a.re made in the area.. III. PROPOSED DEk,IELQPt'1EPJT - The Hor _-e tooth, t,-je =.t Has ter P1 an i =• .a. propo=.ed ommerc i a l 're s. i den t i a I./'school dek:�e 1 opmen t 1 c �c a ted near the inter=section. of Taft Hi 11 Road and Hor-se tooth Road in Fart Cc,l 1 i n =.. F i pure 4 =hot:.j=• a.-schemat i c of the = i to p l an of the the Horse tooth t:Je =•t t1a=•ter Plan indicating location of the u=e=• -hovin in Table' 2, Trip Generation. The =•hort range an•a.l -y- i = 1' '?' :} included the=.chool , da.icare, and one multi- family parcel indicated in Table 22 as Phases 1, 21, and 3. A mid range anal ;.'=•i included full development of the site •a.ccc�r•di nri to the proposed phasing plan in 1?96. The long range anal-ysi = 2010) included the Hor•__.etooth tJe=•t t-'1.a•_.ter. Plan and an i ncr•eas.e in background traffic in general .accordance t::�i th the t-I ort_h Front Range Corridor Study. Trip Generation Trip generation is. important in considering the impact of a. development such a.•_ this. upon the existing -and proposed street =, s•tem. A drip i l at i on of trip generation information t:+a.=_prepared b;�' the In=.t i tute of Transportation Engineer in updated in 1'-';��, and t,la=• used to project trips that would be generated b-,v the proposed us -es at this _• i to . Some generation rate_', particul a.rl'+' during the peak hours, :'Jere I absent from the ITE Trip Generation Manual. These rates. t,,lere =supplemented using Development and And i cast l on c if Tr j Generation Rate_, FKIJA, January 1 -'85. Table 2 =hoV•!=. the expected trip generation on a da.i 1 -,w and peak: hour, ba.s.i s.. t c, a.d.jusAments• were made for- transit or r• i de=•h•a.r i ng. There- fore, the trip generation can be cons• i dered con _•ery a.t i ve l y high. Trip Distribution Tt,jo direstinnaI distributions- of the generated trips t,Jere determi ned for- the Hor=.etooth [.,,lest t1•a.=.ter Fl an . Di s.tr i - bu t i ona from the commerc i a.l /s.chool uses. used population as. the attraction variable in the gr•a. it model. Distributions I 11 RESIDENTIAL RESIDENTIAL 41 du 37 du PHASE 5 PHASE 4 RESIDENTIAL ROADSIDE 52 du BUSINESS PHASE 6 16 k.s.f. PHAS SCHOOL PHASE 1 ESIDENTIAL DAY 1 22 du CARE PHASE 3 PHASE 2 HORSETOOTH NEIGHBORHOOD CENTER 220 k.s.f. PHASE 7 J _J I— LL F- BRONSON STREET I SITE PLAN FIGURE 4 Table 2 Trip Generation Daily A.M. Peak P.M. Peak Land Use ' Trips Trips Trips Trips Trips in out in out Phase 1 - Elementary 550 59 27 School Phase 2 - Day Care 427 45 35 37 40 Phase 3 - 22 Multi- 134 2 9 9 4 Family DU Phase 4 - 37 Single 370 8 20 23 14 Family DU Phase 5 - 41 Single 410 9 23 26 15 Family DU Phase 6 - 52 Multi- 317 5 21 21 10 Family DU Phase 7 - Neighbor. 11132 88 44 462 484 Center - 220 KSF Phase 8 - Roadside 2500 110 110 150 150 Business - 16 KSF Total 15840 326 289 728 717 1 0 0 rfrom residential the use used employment as the attraction variable in the gravity mo d_ a 1 Future year data. were obtained from information supplied by the Fort Collins. Planning Department. The trip distribution is shown in Figure 5. r Traffic Projections. Traffic projections for the short range time period (1922) were obtained by factoring the existing traffic by 108 percent per year for Hors.etooth Road and 106 percent per year for Taft Hill Road to obtain the expected traffic_ in 19?2 given no definitive land development in the immediate area. This traffic is identified as background traffic which passes by the site on Taft Hill Road. These factors were obtained by comparing peak: hour counts conducted in 1984 with the counts obtained in I _8. Figure _ =.hraws the expected 1 ?9 daily traffic considering the site generated traffic and the background traffic. The traffic projections for the mid range time period (1'.='=_) were obtained by factoring the 1 ?"=2 traffic projections. by 102 percent per year +or both Taft Hi l 1 Road and Hors.et„oth Road. This s.l i ghtl y slower growth rate is more indicative of the rate of growth on other Fort C:ol 1 i ns. streets. Figure 7 s.hcnws the expected 1?-6 daily traffic considering the site generated traffic and the background traffic. rFor. 20+ year projections. (ye.a.r. 2010) , the usual source for projections is the Traffic Flow Map as provided by the C i t.y. However, the lost Traffic Flow Map provides projections for only the year 2000. Therefore, an estimation was made of traffic in this area by the year 2010 using the latest Traffic Flow Map and the knowledge of what has been occurring and what is expected to occur in this a.rea. of Fart Col 1 i ns. These daily projections are shown in Figure Q. These volumes assume that the system indicated on the Fart_ Col 1 i ns Master Street Plan is in place. Si final Warrants. signals As. a matter of pol i c��� , traffic ._ i gna.l s are not i nsta.l 1 ed at any location unless warrants are met according to the Hanua.l on Uniform Traffic Control Devices.. However, it is possible to determine whether traffic signal warrants are l i k:e l y to be met based upon estimated HDT and utilizing the chart shown in Appendix C. Using the daily traffic volumes shown in Figure 6, the need for a signal at the Taft Hill 'Horsetooth intersection is confirmed. RESIDENTIAL / COMMERCIAL TRIP DISTRIBUTION FIGURE 5 . J J_ O = o� F- z, 000 I 0 0 0 7,000 HORSETOOTH 4 N SHORT RANGE DAILY TRAFFIC FIGURE 6 J J a N 0 SITE a I- ��� 10 '0 HORSETOOTH MID RANGE DAILY TRAFFIC FIGURE 7 J J O = 0 N SITE N u. a a,000 15,000 HORSETOOTH LONG RANGE DAILY TRAFFIC FIGURE 8 IUsing the generated traffic volumes in Figure 7, a. traff i c si r-4na.l is 1 i kel y to be viarra.nted at the Taft Hi 1 l/ Ea•=.t4Je =.t col 1 ec tar i rite r=_.ec t ion. This collector 1 i ne=. up vii th a proposed Bronson Street shovin on pl a.ns for the Rossborough Subdivision on the east side of Taft Hill Road. This intersection be referred to as the Taft Hill/ Fr on=.can intersection in the remainder of this report . L.-ater. in this report, this intersection vi i 1 1 be evaluated to th r e g a. r• d •_. t o •_. i g r, .a. l p r ci g r e =. _. i on . The potential of a signal at the inter -section of Horse tooth Road arid the proposed north/south collector is a function of the volumes on bath streets. The t,je_•t portion of the circumferential arterial road _hot,:in on the Fart Col 1 i ns r1a.ster- 'street plan inter -sect_. viith Hor_.et.00th Road just vie_.t of Hor. _.etc Both tje =.t t-1-aster Plan. I f/i.,.jhen this circumferential arterial is built, it is 1 i k:el y that Hor•s_.etooth Road traff i s south of Horsetooth (4est [1a ter Plan t,)i l l be significant enough to mee t,"exceed the major street volumes required for signal viarr.a.nts. Hotjever, the volumes generated by' this si to on the north ,-'south collector t&ti l l not meet the minor street volumes for signal vjar•r.a.nts. The north south collector i =.hot.jn terminating at the north proper t:,: 1 i ne . Should this collector continue to the north and handle about tvjice the volumes indicated in Figure 8, then signal viarr-ants would be met at this. location, Trip Assignment Trip assignment is hot!.) the generated -and distributed trip=, are expected to be loaded on the street system. The assigned trips are the resultant of the tr• i p distribution r process. F i gure = shoos the short range morning peak. hour assignment .a.rid the .afternoon peak hour, assignment of Phases. 1, 2, and 3 of the Horse tooth I;-,les_.t Master Plan generated tr.a.ff i c plus background tr•aff i c . Figure 10 _.hobs. the mid range peak' hour- assignment of full development of the Hor_.etooth (,,.jest t-la=_.ter• plan plus background traffic. Figure 1 11 shot. --is the long range peak hour assignment of full development of the Horsetooth LJe•_t Master Plan with background tr.a.ff i c assuming implementation of the road ne tt,,ior•k: indicated on the Fart Col 1 i n Ma.s_.ter Street Plan. '=ign.a1 Pr* ogres_.s_.ion Signal progression vial. evaluated prior to i n t.er•s_.ec t i on oper•.a.t i anal anal ys_• i S in order to evil ua.te t:Ae th,er• the vj.a.rra.nted signal at the Taft Hi l l/`Bron=•on inter -section can i fit into a signal progres-sion pattern along Taft Hill Road. Other signals. along Taft Hill Road viere inserted based upon .judgment and included signals t::jhich t:.iould yield a. reasonable ilevel of a nal y i s_•. 1 Q N = J �O = �w w 2J Q ZV -9�� IOOf 44 I I 5/ 16 46/Ib4 5/Z HORSETOOTH 43/Z3- —/ 49/IlA — 44/25— 20/IU — c4) Ln J` N�� �N Lr% N AM/PM SHORT RANGE PEAK HOUR TRAFFIC FIGURE 9 a, HORSETOOTH -7/0 31o/41 EAST —WEST COLLECTOR do m� N� 102/49 4/ZZ i BRONSON 90/100 �\ _ t\3 r —Ir � r 0 r� �o �l m �m -S ro �— 1 lo4/ 310 0 124/ZOZ ! �� So/ 1"7-7 57-/ 104 --"o' IO3/ 1 Z 4 Zlo/5a �M � � -9 AM/PM MID RANGE PEAK HOUR TRAFFIC FIGURE 10 O v W J J 0 V H 0 N i H 0 Z �O N 6' HORSETOOTH 255/255 —� EAST -WEST COLLECTOR N J J_ O -7- 11-7- IL Q O� r N �- 1 BRONSON SO/ 11, 0 -1O/ 100 o ro 00 — �o oa N � O OdJ� O O N "'#'l— Z001400 N �— I00/50 �50/I-T5—Z-00/550 Z40/405 330/405 1 O/30 �� 1 z0/ 150 -� 33S/27 5 - zoo/250 --_ 35/i 5 O O AM/PM LONG RANGE PEAK HOUR TRAFFIC FIGURE 11 1 I J The technique used in the signal progression analysis. w7as .a. computer program called Signal Progression Anal .vsi •_ (SPAW prepared by the I In i ver _. i t;- of F1 or i da. Transpor ta.t i on Research Center-. Its main functions include: - Inter•.a.ctive entry of -Arterial =.ystem data. - Display a, time location diagram v.ihich provides graphical representation of the qua.l i ty of arterial progr e s i on . - Printing of a. time -space di agr•a.m to shoi.,.j the qu.a.l i t>: of progress -ion. - Optimization of signal off=•et.=. for Arterial pro- gression. The program inputs are: - Inter sec tion location - Cycle length - Pha.=• i ng - Off=.et_. - Speed Any � ter• a.l l of these inputs. can be changed iteratively in achieving the optimal progression. The signal progression on Taft Hi 1 1 Road was analyzed based upon the fol1oviing criteria: - Cycle length of 0-120 seconds. - Posted _.peed of 35-45 mph . - Mainline (Taft Hill) G/C Ratio Dr ak e G/C: 0 .50 rl o f f e t GI/ C: 0. 70 Br on son G../C 0 .75 Hor.._.etooth Gr'•C = 0.50 County Road 38E G C = 0.50 - Green time on the cross street is greater- than the pedestrian crossing time of the mainline at 4 feet per second. - Achieve the largest bandwidth possible along Taft Hill. A number of cycle lengths and speeds l,.)er•e examined. Appendix E shovis fifteen progression analyses for- Taft Hi l l Road. The minimum ba.ndvii dth of 207". eff i c i enc;:- (12 seconds) k.-,,as. Achieved i:�, i th ---t 60 second cycle and a. speed of 45 mph (Page 10) . The m.a.:; imum b.a.ndv)i dth of 47*.--: efficiency vas Achieved t,,ti th a. 100 second cycle and a. speed of -35 mph (Page 3) and with an 80 second cycle and a. speed of 45 mph (Page 12). All the other progression efficiencies are be tasieen these tt.jo extremes. The above progress ion analyse=. Are presented to shove, that. the Taft Hi 1 l.11Br•on=_.on signal can fit into •a. progression 6 1 0 0 pattern along Taft Hill Road. Design progression analysis must be conducted on a. regular basis reflecting change in land use, speed, and other variables. Oper•.a.t ions Anal y__• i Capac i tx .a.na.l ;.-se s• vier•e performed on key intersect ions. adjacent to the Horsetooth West Master Plan. The short range a.n.a.l::,,ses i..,Jere performed onl;, can the Taft Hi 11::' Horse tooth intersection due to the proposed phasing � .a. __. i n of this deve1 o ment . The mi d range and 1 on g range .a.na I X _ate t&ie ' performed on :. number of intersections. Using the traffic volumes sho!f•in in Figure 5and the geometrics noted in Table 1, the intersections operate in the short range condition as. indicated in Table O. Calculation forms for these analyses are provided in Appendix F. The Taft Hi 11, Horse tooth intersection operate=. acceptably !,,ii th ' traffic signals. It is. recommended that left -turn lanes be provided on all four legs of the intersection. At. this level of traffic, the throughz"•r i gh t-turn traffic can be handled in .a. single lane on each leg. The left -turn lanes should be: eastbound - 50 feet, =.outhbound - 230- 7'0 feet, westbound - 100-140 feet, and northbound - 50 feet. Using the traffic volumes shovin in Figure 10, the various. intersections operate in the mid range future as indicated in Table 4. Calculation forms for these analyses ' are provided in Appendix G. It is expected that by this future date (1'?9�,:: , the Hor _•e tooth West t1aster Plan will be at fu 1 l development. In order to attain -acceptable operation a.t the Taft HiIl./Hor-=_.etooth inter -section, it is recommended ' that each approach be provided vl i th a. left -turn l a.ne , a through 1 a.ne , and a. right -turn 1 a.ne . At this level of traffic, the left -turn lanes should be: eastbound - 80-100 feet, southbound - .2,0-420 feet, uiestbound - 120-150 feet, .and northbound - ;,5-100 feet. At. the Taft H i 1 1;'Er•onson intersection, a. t!,,1r, lane cross section with 1 of t-turn lanes. is. a.dequate. The eastbound and northbound left -turn lanes directly affect this site. At this level of traffic, the eastbound left -turn lane should be 1 '0-150 feet and the northbound left -turn lane should be 100-140 feet. The right- in/right-out to the neighborhood center (Ph•a.=.e ) from Taft Hill Road should be provided !,:i i th a deceleration lane. Given the current 45 mph on Taft Hi 1 1 Road, this dece 1 erat i on lane should be 350 feet plus taper to provide a 15 mph turn into this site. Stop sign controlled intersections along Hor=_.etooth and !!,iithin the Hor=_•etooth (,:lest Master Flan should operate a.ccept.a.bl y. Using the tr•.a.ff i s volume=_• shou.-in in Figure 11, the i nt_er•=_.ect_ i on=_. operate in the long range condition as i indicated in Table 5. Calculation farms. for these analyses 1 • • Table 3 T72 Peak Hour Intersection Operation AM Peak PH Peak Intersection Hour LOS Hour LOS Comment Taft Hi l l/Hor_.et_ooth C C 8 Phase Table 4 1??6 Peak Hour Intersection Operation AM Peak PH Peak Intersection Hour LOS Hour LOS Comment Taft Hillf`Horsetooth D E B C: Add P,T lanes on each leg Taft Hill/Bronson C D Marginal LOS C} Horse tooth/Ne i ghbor•hood - Center Access Stop Sign Control EB LT A A SB LT A e S B P,T A A • Table 2010 Peak Hour Intersection Operation AM Peak PM Peak Intersection Hour LOS Hour LOS Comment Taft Hill /Horse tooth C D Ttjo lane plus 1 B C Taf t H i l I. Br on son A A He �r se tooth:!P,fe i ghbor hood Center Access Stop Sign Control EB LT A A S2. LT C E '_* B FT A A Hor_.etooth/N-S Collector EB LT A A SC, LT C: C _' B RT A A LT lane cross -section on each approach 2 SB LT lanes 1 0 0 1 are provided in Appendix H. Using the standard four lane plus center turn lane arterial cross section, unacceptable (LOS D) operation wi 1 l occur during the afternoon peak hour at the Taft Hi l l/Horsetooth intersection. This is due to the high sou thbound left turns.. Providing .a. double left -turn 1 ane will achieve acceptable operation at this intersection. However, before j commitment is made regarding double left - turn lanes, traffic should be monitored to be sure they are necessary. The stop sign controlled intersections along ' Hor.set.00th operate acceptably except for left -turn exits from the neighborhood center in the afternoon peal! hour. However, these left turns can be stored in an exclusive lane and the. ' also have alternative routes to exit the site which would cause less delays. Where acceptable level of service is not attainable due to high levels of background traffic, it is important to provide alternatives as are provided at this ' site. On site intersections should operate acceptably with stop sign control. It hasbeen proposed that a. right-in/right-out .access be considered approximately Sf!Q feet_ north of Hor.s.etooth Road along Taft Hill Road. At the right-in/right-out driveway access and Taft Hill intersection, the right -turn entrances warrant an exclusive right -tern lane according to Graph 4 . .L of the State Highway Access. Code. According ng to Table 4.8.10 of the State Highway Access Code, a turn lane of 350 feet ' plus taper is required for a 45 mph speed. This would require a. right -turn lane extending from the driveway to the Taft Hill/Bronson intersection. However, according to A ' Policy on G-ometr i c Desan of Hi ��hl a>,s• and Streets,f-'ASHTC!, ?8 14P pg. 8749 "The length of the aux i l i a.r;•- lanes for turning _. vehicleconsists of three components . • (1 ) deceleration length, (2) storage length, and (3) entering taper. Desirably, the total length of the a.ux i 1 i .a.ry lane should be the sum of the length for these three components.. Common practice, however, is to accept a moderate amount ' of deceleration within the through lanes and to consider the taper as •a. part of the deceleration length. Where intersections occur as frequently as four per mi l e, it is customary to forego most ' of the deceleration length and to provide only the storage length plus taper• . " According to the figure in Appendix 1, copied from A Policy on !_eometr i c Design of Highways and Streets., AASHTC!, 1984, pg. :36, the distance needed to comfortably slow a. vehicle traveling 45 mph (posted speed can Taft Hill) to a. 10 mph turning speed is 280 feet. Given this., the length of deceleration lane=. should be at least 280 feet. Since acces-.es along m i l e, it is this street are more reasonable to assume frequent that some slowing than four per �� g i l l occur 11 1 11 11 11 1 11 11 in the right through lane and in the taper itself. Therefore, the 280 foot length can include taper. Storage length is not required on a right -turn lane of this type, since vehicle_ will not be delayed in entering the site. This. .a.ccess provides a. main entrance to the neighborhood center even though it is only accessible from the s.outhbound lanes � �n Taft Hill Road. Inclusion of the access would adversely affect the operation of Taft Hill Road if right -turning vehicles had to slow down significantly in the through lane on Taft Hill. However, as shown earlier, .a. right -turn deceleration lane of at least 220 feet including taper would effectively eliminate this slow down. Since there is 3II0 feet available to the Bronson/Taft Hill intersection, the taper could begin some distance south of Bronson Street. It is, therefore, recommended that the City consider allowing the right-in/right-out access. In order to insure truly right-in/eight-out access, design of this .a.ccess is very important. Placement of .a. raised ch.a.nnel iz.a.tion island on the west side of Taft Hill Road is one method of control- ling tra.ff i c . However, this island must be of sufficient size and geometric design to eliminate the pos•s•ibi 1 i ty of left -turn exits or entr•a.nces at this. location. The most effective method of insuring right-in/right-out access at this location is to provide .a. median on Taft Hi 1 1 Road. At .a minimum this median would need to extend from Horse tooth Road on the south to Bronson Street on the north. Which method of control will 1 i k:e l y be a. negotiated matter between the developer .and the City c �f Fort Col 1 i ns.. Croce the method of control is determined, then the design of that control can begin. Accident Analysis The recommended control devices and geomet.r•ics should minimize vehicular conflicts and maximize vehicle separation. Therefore, the accident rate should be at its minimum for a. typical urban condition. IV. CONCLUSIONS This study assessed the impacts of the Horsetooth West (1a.=.ter• Plan on the short range (1992) , mid range (1996), .and long range <2010) street system in the vicinity of the proposed development. As a. result of this analysis, the following is concluded: - The development of the Hors.etooth, (,,,lest Master Plan is feasible from a traffic engineering standpoint. At full 51 1 0 0 development as proposed, approximately 15,800 trip end.. will be generated at this site daily. t- The Taft Hill Horsetoot.h intersection currently operates unacceptably with stop sign control. Signals are warranted at th i =_ intersection given the current traffic volumes. With a •_. i gna.l , left -turn lanes should be provided on all legs. - By 1292, given the first three phasesof development of the Hor _.e tooth West Master Plan and an increase in background traffic, the signalized intersection of Taft H i l l Hor•setooth i;,.ii 1 1 operate acceptably. At this level of development, all that is necessary in this area is a. paved Horse tooth Road west of Taft Hill Road, a. paved north -south collector a, far as the elementary school, and the necessary turn lanes at. the Taft Hill/Hor_.etooth intersection. - By 1??6, with full development of Horsetooth West Master Plan, acceptable _operation will occur at the Taft Hill/Hor.setooth intersection with a. three lane approach on each leg. Signals would be warranted at the Taft Hill./ Bronson intersection and this intersection would operate acceptably. A signal at Bronson Street will fit into a signal progression scheme along Taft Hill Road. ' - By 2010, the Taft HIl1/Hors.etooth intersection will operate acceptably in the morning peak and unacceptably in the afternoon peak with a. typical four lane cross section can each leg. Provision of sou thbound double left -turn lanes on Taft Hi l 1 wi 1 1 provide acceptable operational level of service in the afternoon peaty: hour. ' - By 2010, the Taft Hill/Bronson intersection wi l l operate acceptably with the warranted si gna.l . With stop sign control, the Horsetoot.h/neighborhood center a.cces=. intersection will operate acceptably except for the 1 e+t-turn exits during the afternoon peak hour. These left -turn exits at Horsetooth Road do have safe, convenient alternatives for this particular movement. Other stop sign controlled intersections will operate acceptably. - By 2010, the proposed ..top sign controlled s' right- _ right- in/right-out access to Taft Hill will operate acceptably. A right -turn a.ux i l i a.r; (deceleration) lane i warranted. This right. -turn lane would remove vehicles from the through traffic stream on Taft Hi 1 1 , providing a safer condition. This. right -turn lane should be at least 280 feet including taper. ' - With the recommended control and geometric•_., the accident rate should be at an acceptable level for typical urban conditions. 1 10 1 0 0 I F I 1 fl APPEHDIX A 1 uj IL = WA U_ zLO J lJ 0 Q QO z }Z z Q W mw =,o Q .. E 4 '„C p ►o 00 � � a: co � M fV N ro po (Y) uuu � crcuo)CIQ m N _ r l`1 �► o �� , �9 G) 1 J e. i cn ` E W � o cr �� V r I }, ►— N r� l> > n) N ter R - cr r` r �; _ 61 r,n LL r o n) r _ r J 1 >+ Z �o Q r1i O n� cf) m to LI) r� --t N) c nJ N — z — N W t- r c r- V I) )�� I► to r '44f. 7yt: I I 1 0 APFt=fdblX B J 1 SOURCE : HIGHWAY CAPACITY M AI_ . 5. R, z09 TRE3/N IBC • w.4su. .c. 1985. ICAPACITY AND LEVEL OF SERVICE The concepts of capacity and level of service are central to the analysis of intersections, as they are for all types of facilities. in intersection analysis, however, the two concepts are not as strongly correlated as they are for other facility types. in pre- vious chapters, the same analysis results yielded a determination of both the capacity and level of service of the facility. For signalized intersections, the two are analyzed separately, and are not simply related to each other. It is critical to note at the ' outset, however, that both capacity and level of service must be fully considered to evaluate the overall operation of a signalized intersection. Capacity analysis of intersections results in the computation of v/c ratios for individual movements and a composite v/c ratio for the sum of critical movements or lane groups within the intersection. The v/c ratio is the actual or projected rate of flow on an approach or designated group of lanes during a peak 15-min interval divided by the capacity of the approach or designated group of lanes. Level of service is based on the average stopped delay per vehicle for various movements within the intersection. While v/c affects delay, there are other param- eters that more strongly affect it, such as the quality of pro- gression, length of green phases, cycle lengths, and others. Thus, for any given v/c ratio, a range of delay values may result, and vice -versa. for this reason, both the capacity and level of service of the intersection must be carefully examined. These two con- cepts are discussed in detail'in the following sections. ' Capacity of Signalized Intersections Capaci(v at intersections is defined for each approach. Inter- section approach capacity is the maximum rate of flow (for the subject approach) which may pass through the intersection un- der prevailing traffic, roadway, and signalization conditions. T he rate of flow is generally measured or projected for a 15-min period, and capacity is stated in vehicles per hour. Traffic conditions include volumes on each approach, the dis- tribution of vehicles by movement (left, through, right), the vehicle type distribution within each movement, the location of and use of bus stops within the intersection area, pedestrian crossing flows, and parking movements within the intersection area. Rood,va}, conditions include the basic geometries of the in- tersection, including the number and width of lanes, grades, and lane -use allocations (including parking lanes). Signalization conditions include a full definition of the signal phasing, timing, type of control, and an evaluation of signal progression on each approach. The capacity of designated lanes or groups of lanes within an approach may also be evaluated and determined using the pro- cedures of this chapter. This may be done to isolate lanes serving a particular movement or movements, such as an exclusive right - or left -turn lane. Lanes so designated for separate analysis are referred to as "lane groups." The procedure herein contains guidelines for when and how separate lanes groups should be designated in an approach. Capacity at signalized intersections is based on the concept of saturation flow and saturation flow rates. Saturation flaw rate is defined as the maximum rate of now that can pass through a given intersection approach or lane group under prevailing traffic and roadway conditions, assuming that the approach or lane group had 100 percent of real time available as effective green time. Saturation flow rate is given the symbol s, and is expressed in units of vehicles per hour of effective green time (vphg)• The flow A.r a given approach or lane group is defined as the ratio of the actual flow rate for the approach or lane group, v, to the saturation flow rate. The flow ratio is given the symbol, (v/s)„ for approach or lane group i. The capacity of a given lane group or approach may be stated as: c, = s, X (g/C), (9-1) where: c, = capacity of lane group or approach i, in vph; s, = saturation flow rate for lane group or approach i, in vphg; and (g/C), = green ratio for lane group or approach i. The ratio of flow rate to capacity, v/c, is given the symbol X in intersection analysis. This new symbol is introduced in this chapter to emphasize the strong relationship of capacity to sig- nalization conditions, and for consistency with the literature, which also refers to this variable as the "degree of saturation." For a given lane group or approach is X, _ (v/c), = v,/Is, X (g/C),] (9-2) X, = v,C/s,g, _ (v/s),/(g/C), where: X, = v/c ratio for lane group or approach i; v, = actual flow rate for lane group or approach i, in vph; s, = saturation flow rate for lane group or approach i, in vphg; and g, = effective green time for lane group i or approach i, in sec. Values of X, range from 1.00 when the flow rate equals ca- pacity to O.00 when the flow rate is zero. The capacity of the full intersection is not a significant concept and is not specifically defined herein. Rarely do all movements at an intersection become saturated at the same time of day. it is the ability of individual movements to move through the intersection with some efficiency which is the critical concern. Another capacity concept of utility in the analysis of signal- ized intersections is, however, the critical v/c ratio, X . This is a v/c ratio for the intersection as a whole, considering only the lane groups or approaches that have the highest flow ratio, v/s, for a given signal phase. For example, in a two-phase signal, opposing approaches move during the same green time. Generally, one of these two approaches will require more green time than the other (i.e., it will have a higher flow ratio). This would be the "critical" approach for the subject signal phase. Each signal phase will have a critical lane group or approach that determines the green time requirements for the phase. Where signal phases overlap, the identification of these critical lane groups or approaches is somewhat complex, and is discussed in the "Methodology" sec- tion of this chapter. The critical v/c ratio for the intersection is defined in terms of critical lane groups or approaches: X, _ (v/s),, X IC/(C—L)I (9-3) where: X, = critical v/c ratio for the intersection; Y_(v/s)„ = the summation of flow ratios for all crit- ical lane groups or approaches, i; C = cycle length, in sec; and L = total lost time per cycle; computed as the sum of "start-up" and change interval lost ' time minus the portion of the change in- terval used by vehicles for each critical signal phase. This equation is useful in evaluating the overall intersection with respect to the geometries and total cycle length provided, and is also useful in estimating signal timings where they are not known or specified by local policies or procedures. It gives the v/c ratio for all critical movements, assuming that green time has been appropriately or proportionally allocated. It is therefore possible to have a critical v/c ratio of less than 1.00, and still have individual movements oversaturated within the signal cycle. A critical v/c ratio less than 1.00, however, does indicate that all movements in the intersection can be accom- modated within the defined cycle length and phase sequence by ' proportionally allocating green time. In essence, the total avail- able green time in the phase sequence is adequate to handle all movements if properly allocated. The analysis of capacity in this chapter focuses on the com- putation of saturation flow rates, v/c ratios, and capacities for various approaches or lane groups of the intersection. Proce- dures for these computations are described in greater detail in the "Methodology" and "Procedures for Application" sections of this chapter. Level of Service for Signalized Intersections Level of service for signalized intersections is defined in terms of delay. Delay is a measure of driver discomfort, frustration, fuel consumption, and lost travel time. Specifically, level -of - service criteria are stated in terms of the average stopped delay per vehicle for a 15-min analysis period. The criteria are given in Table 9-1. Delay may be measured in the field, or may be estimated 1 using procedures presented later in this chapter. Delay is a complex measure, and is dependent on a number of variables, including the quality of progression, the cycle length, the green ratio, and the v/c ratio for the lane group or approach in 1 question. Level -of -service A describes operations with very low delay, i.e., less than 5.0 sec per vehicle. This occurs when progression is extremely favorable, and most vehicles arrive during the green phase. Most vehicles do not stop at all. Short cycle lengths may also contribute to low delay. 1 TAnI-E 9-1. LEVEL -or -SERVICE CRITERIA FOR SICNAI,izED INTER- SECTIONS STorrED DELAY rER VETIICLE LEVEL OF SERVICE (SEC) A < 5.0 B 5.1 to 15.0 C 15.1 to 25.0 D 25.1 to 400 E 40.1 to 60.0 F > 60.0 Level -of -service B describes operations with delay in the range of 5.1 to 15.0 sec per vehicle. This generally occurs with good progression and/or short cycle lengths. More vehicles stop than for LOS A, causing higher levels of average delay. Level -of -service C describes operations with delay in the range of 15.1 to 25.0 sec per vehicle. These higher delays may result from fair progression and/or longer cycle lengths. Individual cycle failures may begin to appear in this level. The number of vehicles stopping is significant at this level, although many still pass through the intersection without stopping. Level -of -service D describes operations with delay in the range of 25.1 to 40.0 see per vehicle. At level D, the influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high v/c ratios. Many vehicles stop, and the pro- portion of vehicles not stopping declines. individual cycle fail- ures are noticeable. Level -of -service E describes operations with delay in the range of 40.1 to 60.0 sec per vehicle. This is considered to be the limit of acceptable delay. These high delay values generally indicate poor progression, long cycle lengths, and high v/c ratios. In- dividual cycle failures are frequent occurrences. Level -of -service Fdescribes operations with delay in excess of 60.0 sec per vehicle. This is considered to be unacceptable to most drivers. This condition often occurs with oversaturation, i.e., when arrival flow rates exceed the capacity of the intersec- tion. It may also occur at high v/c ratios below 1.00 with many individual cycle failures. Poor progression and long cycle lengths may also be major contributing causes to such delay levels. Relating Capacity and Level of Service Because delay is n complex measure, its relationship to ca- pacity is also complex. The levels of service of Table 9-1 have been established based on the acceptability of various delays to drivers. It is important to note that this concept is not related to capacity in a simple one-to-one fashion. In previous chapters, the lower bound of LOS E has always been defined to be capacity, i.e., the v/c ratio is, by definition, 1.00. This is not the case for the procedures of this chapter. It is possible, for example, to have delays in the range of LOS F (unacceptable) while the v/c ratio is below 1.00, perhaps as low as 0.75-0.85. Very high delays can occur at such v/c ratios when some combination of the following conditions exists: (1) the cycle length is long, (2) the lane group in question is dis- advantaged (has a long red lime) by the signal timing, and/or (3) the signal progression for the subject movements is poor. The reverse is also possible: a saturated approach or lane group (i.e., v/c ratio = 1.00) may have low delays if: (1) the cycle length is short, and/or (2) the signal progression is favor- able for the subject movement. Thus, the designation of LOS F does not automatically imply that the intersection, approach, or lane group is overloaded, nor does a level of service in the A to E range automatically imply that there is unused capacity available. The procedures and methods of this chapter require the anal- ysis of both capacity and level -of -service conditions to fully evaluate the operation of a signalized intersection. It is imper- ative that the analyst recognize the unique relationship of these two concepts Rs they apply to signalized intersections. j 1 I 1 11 I IlJ LEVEL OF SERVICE CRITERIA FOR UNSIGNALIZED INTERSECTION - Level -of -service criteria for unsignalized intersec- tions are stated in very general terms. and are related to general delay ranges. Analysis for a stop- or - yield -controlled inter -section results in solutions for - the capacity of each lane on the minor approaches. The level -of -service criteria are then based on the reserve. or unused, capacity of the lane in question, e.�spressed in passenger cars per hoer- WCPH) . RESERVE CAPACITY LEVEL OF EXPECTED DELAY TO (F'CF'H) SERVICE MINOR STREET TRAFFIC -------------------------------------------------------- A Little or no delav '�-►!�-'99 E Short traffic delays iri►-9� C Average traffic delays 1199 D Long traf f i c delays 0- 99 E Very long traffic delays F *When demand volume exceeds the capcity of the lane, e:;treme delays will be encountered with queuing which may cause se, ere congestion of f ect i nq other traffic movements in the intersection. this condition usually warrants improvement to the intersection. Reference: Hi 1f..}� +Y_ Gpp.�c. _t.y M�!ri�!a.k E:,pe,c_i al Report 209. Jr anspor tat i on Research Board. Nation- al Research Council. Washington, D.C. 1 9ac. - 1 .0 CJ J H a I� 1 11 AFFEPJD I X G C) 0 0 C) 0 0 0 0 ae N N O O r r ^ r� O N N N N to to ► ' r` M w w M �' '�f r r N N LLJ #• O O O .O O O O O to N U J F- aE w co to C) cc) C)c# OO CO .ct m CO •ct co ztC • O to td O O M M ct r-- r N N 4j ►>-� Q tn C LtJ a e O O O O O O O O O O O O O O O to O to O o O O M M r w E r ct d' tD to N N Cl) M 0 Ln C Z W Oa: Z CC n C ul o^ CD C 0 Ln t- 4J as ►--� ^ r r r r f` D- M O E 2 ^ tD tv \ S U> m u r m� C)Z as O CD CD C) CD O CD CD O b L.0 W C) CZ) N tD WtD lD L M Cl. J t1 CO r r r r Q1 C L LLJ ► a) p •J w U W L waJ U o O o O O Lo Lo O CD O o O Ql +� C ►-. w ui CD Ln LO C) C)1� r- Z cu S L u tY elf r r r N N b E >. StNO L O o O O O Ln O O O O O Ln r S-' a) C 7 tT H a2 o r-- m O 0 o C) r M r` to to r- to to L z to Ln r� r� Lri w 0 0 W c r 1 ~O H r r Q 3 c +-3 Q Z# C:) C:) C:) C:)O O O O W `� N CD o oU o 0 0 0 oo O' O : -I- �- O co tD tb M tD Or N r N r O r •u 4- 4- co W P-t P4 r7 '-' �L to H c to d C as o 0 0 o O o 0 o L O 2 0 0 0 0 0 0 Ln 0 O 0 O 0 Ln C C 7 CD r) CD O M _w _ H r t70 O O CO N to to N to C l E ► 7 CI) r r r r r r r b rC +j O. r--- C u V to E -v Z to C a) N _ C) O L L F-' W O O O O O m O O LO O .� C) O S r� Ln N �3 N ct Ln M tD to Ln C)Ln F- UQ M +- C)0 L O o M SO.. tYF-of LtJ w tl ae C) 0 0 0 0 00 0 CDC) cJ ►. +J . a Q. °° oa 00 wt to LO u O +-t rLLJ e- ¢ d •r C L En ~ 4-LL-iO to L C -J cia � C) 0 0 0 CDO O O O b L -cc L r E �-. C:) CO o 0 0 0 C) tJl Ln r` CD tT CD Ol Ln r� �3 Ln lD to w >1 LLJ d LL. L Q) m rd y 0 O L C 3 • t- 4-3 •r 1 N N to a-J CU til U F— L L LO {�� L a) O to E E E E t/) LL- U Ld d Q O s L L L L C to (0LL O Z LL' O Z O 0 O O t d J~ ~ � r r N N r r N N 3 a- CD Cl- LL. Z d r N to L L O .. m C)C3 E E E E E w to L" L. Q W L L L L X LLJ a W OC O 7 O O O 0 to O Z L- C:)i r N N r r N N I iNVHUVM 11 iNVHHVM • 1 �I I 1 I rJ a O P > a u U C °31 r A 3 b ° + tp O1 UV " w w 01 a u .1 Vu • � � s .�� u C of b 7 0 Ay VC b uP Ij c j A O V ^' o O • 7 u O " u 4uybp w " p4 d m +b d Y T y Y y Y 31 ■ 6 gg? O tl r u a O • oc tr ow S 0 1 B '.•c M1 V ) A N I N • FIGURE I • PEAK lJoUn VOLUME w/lat of a 60o tom_"gi UB uA OR 3 �'' 2 on IoRE. ANE , a 1 1 1lME it �.� (11 Soo a _ ,, �.._ d I,l�( E_Q LANE rn �--i j•..... CL t .i. too— .w�soe:. .: 600 700 Bov 900 1000 .1100 1200 I�Ob 1400 ISIDO 1600 1700 1800 PANOR S1(?FET-TOTAL or Ik1101E1 150 Vrll AhrL1ES Its 711E l_OIIEpP, TIIRES11�IiD YOl_UFIE FOIL, A IItNOR STRFCT WROACII 11till'1kO OR (1onn. t-AtIES Allo; + 1 '10o Vrif ArFL1ES AS 111E LOIiEI!'TItREsl1o1i0 VOLII1 •.•rs 1" j� NINor SiRI Ei nrrROACNIrIS :1/111 Ot1E F.• Fp� FIGURE 2 PEAK 1101.111 VOLUME WAnnANT. (COMh1U111TY LESS TITAN 10.000 POPULM10" OR ABOVE 40 NP11011 MAJOR STREET) 0 !A a z 400 u Q JC3 300 �a o go 100 X tD 3 2 O:t V m; LAF 6S a 9- c It MAnE LANo , Z o boRE (LANE ArIEs a Ot 1I:AEE 1 LFJ1E —'"'T _ . 30 400 500 600 700 000 SOO 1000 1100 12�00 MAJOR STREETT-VTAL of qui11_�1rfRonC111Es7wl1 H "01Et inn. vr11 11rrL1ES PS 111E 'LOWER TIIRV6TIO _0 VOLVIIE roR ANINOR STREET /1FFROACII 111TN TVa.--CR 140RE LAIIES.A110 75 vrll ArrLIES AS T11r- LOWER 11,RraHoLn 'VoLtV" tort !� ` N1N0R STREET•APPROACHING WITH OBI LANe, - tso0 APPENDIX D 11 0 0 S( ri T UI k it 4i! 01 f O_ `r X EL I F- J V lli . L _! TLL[r:W U: I I I .y I - C, O O IL U7 I I Q I J I I I I U roc, 1 LU 0' I I ` I w _I2 I w r_rpr_�rI 1 J 1 1 I N F- I C•1 I I ,7 W Ui 1 _ ,:•Oo z J I T J I o 0 0 0 W J I 1 J Q O 0 CC I I« Cd C'yJ I I - r- u-) u? 1 7 7 `L I J I J I �r Pi 2 I I 2F 2F- LL 0 I F-tnHrrl tl0 1 LL'1W n: I OU10 _. W. n: LL 1 z .„ F- 1 I Door? LL I •i I 1 000r_� Ut U, I I %I I J _I I 1 I rn I I LLI CO I _' r✓ C Ln 1 W I .1 !I J I O F. I 1- I I rV 1 _J I J Q I T J I 1 u,-•oo L7 I ..1 Ci I I -• I wrn *r O' J I 1 rJv-�v I I 4J CJ I LL I F- U F - rI U_ V I it .1• Z. 1 <Ti+ I O WO_. U_ F 1 IT I 1 W 1 I 1 M I W I I J 1 I CJ I I W o z I 7 JI W ra I W -1 R J 1 r- n] 7 N 'n Zz J 1 LL (o z 77- 1 U F U F- U F- U In- }. u> L)D uj a ¢cL ¢cr rM 41m » LL W tL W CL w (L W �. ca[ to 4 r-n .:Z rn Z (-n 2 r� LL U LL L) LL U F LL Ix • W O W C I W O W O O tuJ it, CY.J ww ww ww III ww I Ul -, ww M '+ LU w - Cu ww F- w J Ci J W. -J s J W n: F- to X f~f7 H w LL O 1 LL 7 0 W 0 s�i z w 3 a F- I £ m ; I I r• I I w U-) u� z I ul o Q 1 J I w rJ I i i oa v IT o. w l C'J m C) W If) .T 7 w - Z I to n Q I J 1 Ul }} U (.) j U ^� U:1 O alai iw aw (Lll�W <L(r! 5 4Cf) UCn <Ew LL LL LL U- W O w 0 UI O w O Z CLJ w J U: J LiJ w w (11 , W W frI W W (r, > w W I In W LIJ n: J W Gl n: J w w n: J W LCl ♦- CK J W W (n LL O I �x =1 W O <L K I O W O Lt. LL 1 L (n 2 F 1 :. I O 0 004•_....04 Cl , 1- *1 - I I I I E NN 1.4 0 N7 z 02 0 - N L) C.) 0 C-4 Z) 0 (A V1 M CO 2 m a, CV-i ILL (0 03 0) Lu G Cr -i . . . . w w LLJ w O ul W U) CD 0 0 r 0 0 M cri C, w Ili tl) u7 c o n 0 LLJ kri LIJ W a 0 r.n V. 10 p I rl. I ij rx -1 . . . . w L. L) r, (1) C. w w > b-I N 0.1 0 (n 0 0 o.Y. LIJ w CYi ff ft: (0 L) f- v 00 r w a- (L I w w W D fn z J Z �m .7 LLI o 4, w m -:D zi F- D Z 1, -j 0 z fr z 0 0 0 II, j j _j w M IX w n w m w <r IT 11 z m: LL x 0 w w z P-) r L., LL J SS 0 b -1 CL . . . . . . =1 LL =1 o Q I- - w 0 (n Z. Ly. fx- fop 'Lun foP -1 in Ld [L U� ct z 2' c -1 cn 1-1 u U Ilt C) + 04 C',l (11 (q fx (F) Ll IT C-4 (0 z 02 0 Ir 0 ix z :m) C, LO 0 c M Pl. art m 81 L) LL X 0 z 7-. 0 o C, C) 0 F (D 0 CI z F, z z S 6 c000 0 ft� j CID M ca m z m J: F- F- - (n W W F- F- (n W (n w -j x z cr =, < w 'I GU ED -j N O's •r Wl m 00W2 m w - n a LL M w x Z (n fl- CL L) LIJ -i rt -_, =1 EL EL Z F. 0 m F- -1 0 u 0 C. IT C, U-) ED w < CU EU P. co �4 . . . . . . ILL F- 0 j YJ W fr (1) w Ul D til 4 CL n ci f 0 0 0- IM 0 w 0) + II H F now D, i4 k w w 0. 0 (Cl (ry + L cI H 2 X 2 EO i.. Cr A ul w + r ei P4 w It 00 U. + w to a_ Cr + 0 C, w a_ LL I w w + w W E x + D z Z D L- + 1+ 0 n O--> cz, C14 0. M Ix w D -1 -i 0 n z Cr ck z Ul + C' LWI 0 C3 04 :3 - IT (.4 j 0 r" W, 4D r- Z. 0 m 4 IL -j -j -j I I 'l W M W. OL w m + i C. I �- ILL. x X 0 u 3 D LL rl 0 �- (.1 �6 D i D D . . . . . . . 1 :3 WO 0 ui 0 + o Z w j , A 0) + III I. ft. Cc 1, + z : + + Cn, + + 04 (q N N 0 En 0 + X IT— L) =1 \Z =1 I- �- 0 (11 N : : : 0 Ce �d 0 LO (I c W L2. N a, Ul fl. X L) X ^u F- 3- — c in In z LILI C, C, 3: CK CK C) z 7 z C, in o �zz wi 0000 0 'T w F- M m co cu 3: X F- F- F- ujL'i -i 7 0 LL w (n (0 (r, LLJ -i ') 2 D -.4 Cm W) Ll. :D � w 00 2. 11 ( L I 2w >- L LL LL 0 Cl7- CL a- Ul UI F- W X Ell J) D (L X n • r' 1 r•.1 0 u G F- z cv r, r. o z rJ O -+ CJ U CJ J C! CJ _ W m Q coW ei nl N Cl C~n ? F- C.) LL iU Cl U) .., (v n W O LY _J w X W w ]C °i * G d k # G2 O K F- G d A4 R: ' _ F- CJ N L 17 U"1 O 7: 2 z _ :Y R: O '--' O Ln E U O Y »: { W F. W R- C) G o LLl W 7 CO F- m Vl r, C. F-- A 1 1 R t- iv !i. tI O Ill :- F- • . . . . LY J Cn W R \ W W m U U U - O L') W Cn C. tit 4 + A - w 00 0, y :Y W -J ..I A- Lr' W N m ll� to U :+ I_I CV r 0 :Y F-- F w LL CL 1 W W A W to x ZZa : U + U :- A: { Ul R. 0 O LU ZT O i7 Lr d t n r.. m fL LL 1 O J p Cl z ^. O . + ,' LU 01 A: ILl + R: F + LL J J J y: C.: F- O u W m rV 0.4 • • • • — _. . . . . C. CI LYI '.7 Cn CJ .., V J II CS F F- to F- LY: n _ • w , I , rV uI t. n- R: _i ~ .J O :( 1 .!F °.0 aI T R Cl + .:I r I LI U `k + IIiDF-F. F-� M zS_ :L F- Jc'b F- L[ J LL 2 LL F- 2E8 (✓ p) O J U)W _ W S i ' W W Cn J J 20 ~ O .. F W J 2`0 r•.l C-:Q FJ ..1. O [n i l l rc CI 6. i { _I inr ii�I It, k :R r. • 'Lr {C J • I .r 111 lil C. -r - +' R: O A 'Y W rU S Ll _ O u W •-' W Y„ o o o O - -• F- O G m m 0 �+ 10 IT.N-. :v y: U OS cc, 3 F Z LLI x t- F-- U O t O U) O lot:Q � 0 O L O lL O o L I j ' • it. 2 I L I W S . C'1 C)•lr)`4 F- F-CIS W 2o 7� 7 0000 S x F- F- F- F- (n (n m n 2 w OOLLLLII3 s Cn — w 0 Q: _J '�-' F- J W w W Q CA U S W - a a-u 2 C7 a: F- 1 ul U� D -i F, O _• w ... `w F- rJ - a lil Ll EL 2 Z u L) F- '-• 'S W LY J W 0to 11 LL j O u WLU G O S --..r ... ^1 1 J 111 '- lil ' .yI .. 0) 2 t- LL' -1 i F lL F... y: :Y A: R �!: -+ R� LU J J R: U[vvr_r A. -, - - CI)3i * A: u i . Z .I L # U Ill R: rj * F- R: IJ. J J J 1k ,I A: [') F- Ia2 *t * R W __I F- F.. 1- M {. .. F_ - >K * UJ C'. UcI * A A * Y ci f r .. LL F- rJO w 7 — ' r [] W W .+ .• = 3 0, Cn r Qiu _ - Gig Z 3- w f n o'er i-.. .:.:• rJt J . . . . F: Li _J - .-.NCOOIf1"<r p O Cn w OO y 20 W LLLl- Fx- LL O F. to O O Z N C N IT V) U, I -Mx lL = JF� w w d lil U) m J tI L) 0 y: D OD_00 zSzz 0000 m m Co W F- F- C~n in C L D w OOLl33 _ Lt Cn o o0w wWa �u O O i, a s I �D ♦- F- N F- CL G W x u > '; W <.0 W n) 2 •o ZLLl_ Z~U' .Zw r` I- _1 _ [f.I W J tI O U x W - w Z w � a W E J -'' W Q U M W Z Y. c, 0— rn F- w w G O h N m 'U `n ct ., O in 0 C'If, r Zvi Z C) -i O J 2 F- z W x j F- W J O m IT G a , 6- w z O m r+l rq c ,1 O Cn u G N 1 �- W J C . G F F a G Uzi F_Co a-t7 O � 11 a I , ZiT f1 .. T 1 0 0 APPENDIX E l Ll I I 1 I L flATTHEL.I J DELICH ARTERIAL PR V SIOtI DEGIGtl • P.UId4 ' ROUTE: TAFT HILL INTERSECTIONS: 5 CYCLE LENGTH: 60 SYSTEM OFFSET: 0 BANDWIDTH LEFT: 19 $k RIGHT: 19 SOC. PERFORMANCE INDEX: 41 EFFICIEPIC:Y: 217. ATTAINABILITY: 65 INTERFERENCE: 18 --------------------------------------------------------------------------- tlO. .........TIFIE—LOCATION DIAGRAM.......... DISTANCE SPEED R I GHTSOI_a•ID ... READ DOl,4N LEFT RIGHT LEFT RIGHT I °; XXXXXXXXXXXXXXXXXXX 273n n 35 35 2 x XxXXX.XXXXxx 1800 2780 35 35 3 Xxxxxxxxxx 700 1800 35 35 4 Xxxx) XYxxxXxxxxxxxx 2700 700 35 5 XXXXXXXXXXXXXXXXXXXX 0 2700 35 35 t1O. OFFSET .........TIVIE-LOCATION DIAGP.At1.......... PHASE LEtIGTHS LEFTSOUR•ID ... READ UP 1 2 3 4 5 6 7 8 1 2 XXXXXXXXXXXXXXXXXXX X 50 50 92 Xxlexx=!),XX X 70 30 40 Xxx:rxvw•v+ 75 25 4 X.:C:X';...::<7:X;C:`<Y.XXXXXX 5n 50 - 50 --------------------------------------------------------------------------- TIME SPACE DIAGRAM ROUTE: TAFT HILL COVV IV IT : PUf l4 CYCLE LEIIGTH 60 SECOIJC!S: SCALE IINCH=40i: OF CYCLE: I LINE= 179 FT >x>s.YYYs i�l�#Riga#�.YiiYYYY�iR+iiF\\iciisiiiEsiEiF�t�iri!IEIi*isFiEi�Yi:tIFM'lriiic�!#tiiYY�aI'iEYY'Jc'y��M�E�#�aYii�i��Ir I DRJI!<E XX.xXXXXxxx•; c A /xxxxxxxxxxx /.cxXxxxxxxxx 2 Xxxxxx xxxxxx xxxxxx BeAasoaxXxx XXXXxx xxxxxx NoR$6TOa7N XXXXXXXXxX` XXXXXXXXXXX 5C 38C-Xxxxxx lxxxxxxxxxxx XXXXXIXXI=x Y YYYYjFYYYY�tYYiJ(itY�ii J4Y�Y;YYYJ{Y.1tYYji��jiiLj{{JFYJk{i�*j{jij��t{f�t{{If�•jL �.*jib*Y{i {4 di*{F �{�*i*;., YYYYYY MATTHEW J DELICH ARTEPIAL PROSICR1 DEG1GN • P. LKJ5 POLITE: TAFT HILL INTERSECTIMS: 5 CYCLE LENGTH* 70 SfSTEtl OFFSET: 0 BANDWIDTH LEFT: 17 Sec RIGHT: 17 Scc. PERFORMANCE INDEX: 32 EFFICIEFICY: 24 /p ATTAINABILITY: 50 II'ITEPFERENCES 27 --------------------------------------------------------------------------- 1'10• .........TME-LOCATION DIAGRAM.......... DISTANCE SPEED PIGHTBM-M ... READ DOWN LEFT RIGHT LEFT RIGHT I xxxxxxxxxxxx XXXXXXXX 2780 0 35 35 2 XXXXXXXXXXXX 1800 2780 35 35 s xxxxxxxxxx 700 1800 35 35 4 XXXXXXXX,XXXXXX XXxXX 2700 700 35 35 5 Xxxxx xxxxxxxxxxxxxxx n 2700 35 35 NO. OFFSET ......... TIfIE-LOCATION DIAGRAM.......... PHASE LE146THS LEFTBOMID ... READ LIP 1 2 3 4 5 E 7 B 1 30 XXXXX XXXXXXXXXX.XXXXX 50 50 2 70 XXXXXXXX)()(` X 70 30 3 1-, x l:)CXxxxxxx 75 25 4 S0 x-: XXXXXXXXXXYXXXXXXX 50 50 _ 30 XXXXX,XXX.:<X XX XXXXXXXX SO 50 --------------------------------------------------------------------------- TIME SPACE DIAGRAFI POLITE: TAFT HILL CDFNiEt•IT: PIIIIS C'rCLE LEIIGTH 70 SECC41DS: SCALE IItICH=4n;; OF CYCLE: I LINE= 14? FT YYYiiYYYYYi Y{G{LjL{t��YYYYY��tY{[{FYjt Y�i jC jt jf.*�GaI•iil<!;*�**�eF i!16Yi*.JiY><iEYii�jG.IF#{L**�{tY�{Li#jiY{c .J[Yi 1 D�egtG6rx..:x:,. x::<:";�;xxxxxx xxxxxxxxxxxx xxxx I arum ��o28E xxxx%xxx:7/ "' xxxxxxxxxxx \ \xxxx Y{[YYi(.YY. iiYYYYY�cYYiiYYY YYYYYY YYd}Y li.��i*{E {t {�YjE ,Y�i[*JF**iiti�4iY i�Y�*.j�Y,4 i.4i�><x Y�}�i it 1�1!±E}*itY 11ATTHEW J DEL I C I*3 ARTERIAL PRO 1011 DELIGN ROUTE: TAFT HILL 1NTEP.SECTIOIJS: 5 CYCLE LENGTH: 100 SYSTEM OFFSET: 0 BANDWIDTH LEFT: 47$6c RIGHT: 47 Sac PERFORMANCE IMDEX: 4? EFFICIENCY 47 7. ATTAINABILITY- 98 INTERFERENCE: 16 --------------------------------------------------------------------------- 110. .........TIME -LOCATION DIAGPW .......... DISTANCE SPEED PIGHTBOUtID ... PEAL) DOWN LEFT RIGHT LEFT RIGHT I XXXXXXXXXXXXXXX3CXXXX 2780 0 35 35 XXXXXXXXXXXX 1800 2780 35 35 XXXXXX`:XXX 700 1800 35 35 4 XXXXXXXXXXXXXXXXXXXX 2700 700 35 35 5 XXXXXXXXXXXXXXXXXXXX 0 2700 35 35 HO. OFFSET .........TIME -LOCATION DIAGRAM.......... FHASE LENGTHS LEFTBOUNE, ... READ UP 1 2 3 4 5 6 7 8 1 0 XXXXXXXXXXXXXXXXX,X.X X 50 50 2 40 XXXXXX•.XXXXXX 70 30 3 87 XXXXXXXXY X 75 25 4 0 :,XXXXXX.'.:.:CXXXXXX XXXX X 50 50 50 :<XXXXXX,!^,XXXXXXXXXX 50 50 --------------------------------------------------------------------------- TIME SPACE DIAGRAM F.OUTE: TAFT HILL COHIIENT: RUM CYCLE LENGTH 100 SECONDS- SCALE 1114CH=40% OF CYCLE: I LINE= 179 FT YYsa IDR 200 -C.k Y {tYYi�YYY�f Yif YYIf�.if.r�.ti.�*jtYi�*YYY�iF*�tY#,*{i��*{{fi�Y{{��{E{F �f �4•��4 �L �1.*JF{{4�Y YYf *Y.�{t.yjYi}*�Y���**� MATTHEW J DELICH ARTERIAL PROD cSICNJ DEGIGN • P.lRJ2 ROUTE: TAFT HILL It1TERSEC:TIONS: 5 CYCLE LENGTH: 110 SYSTEM OFFSET: 0 PAND14IDTH LEFT: 44 $GG RIGHT: 44 BsG PERFORMANCE INDEX: 47 EFFICIENCY: 40�.7 ATTAINABILITY- 84 INTERFERENCE: 17 --------------------------------------------------------------------------- NO. .........TINE-LOCATICNI DIAGP.AM.......... DISTANCE SPEED P• I GHTBOL NdD ... READ DOI,.NJ LEFT RIGHT LEFT RIGHT I XXXXXXXXXXXXXXXXXXXX 27$0 0 35 35 2 XXXXXXXXXY,XX 1800 2720 35 35 "ll XXXXXXX 700 1800 35 35 4 XXXXXXXXXXXXXXXX 2700 700 35 35 5 XXX%' XXXXXXXXXXXXXXXX 0 2700 35 35 NO. OFFSET .........TINE -LOCATION DIAG,RAM.......... PHASE LENGTHS LEFTEOLNdD ... READ UP 1 2 3 4 5 67 e i 0 XXXX;;XXXXXXXXXXXXXXX 50 50 2 40 X,Xxxxxxxx xx 70 30 c _ X,Y.X;:::XX.•<XX 75 25 4 r 0 X XXXXXII, ""X:::,'XXX"- .XX 50 50 s 51, 50 50 --------------------------------------------------------------------------- TIh1E SPACE DIAGRAM ROUTE: TAFT HILL CONE 1ENT : PUt,12 CYCLE LENGTH I10 SECONDS: SCALE 11NCH=40% OF CYCLE: 1 LINE= IT9 FT YY iaYiii iiiuu�.*�;.s jcY Y'X'i jR {�M �#YY r��xiE iE Y. IE iF iF*1ki!Y �R�FiiE lt!!�Y7EYYi!ii�iik i!##;Y{t.:c ii iiY Y,{t {t {F {F {R {LY{4YY 3 IO itYY�tY*jf{LY�iYYYYjiYYY*YYiFYY�[i({iYYYj�..��I �f*�j{{fjf*Y{i{f{F�*/I jl�Yjl ik/4*�Y{{�***{l �.rY*{tYYYYrY�i ji �tY*� MATTHE4J J DELICH ARTERIAL PROGPESSIOIJ DEGICRI • ROUTE: TAFT HILL P.UN11 • Pi INTERSECTIOtIS! 5 CYCLE LENGTH: 60 SYSTEM OFFSET: 0 BANDL.II DTH LEFT: 13 SEC. RI CHT - 13 Sit- PERFORMANCE INDEX: 36 EFFICIENCY: 217.. ATTAINABILITY: 44 INTFRFFRFPJrP! a.q tlO. .........T1t4E—LOCATICMJ DIAGRAM.......... DISTANCE SPEED PIGHTPOUND ... READ DOWN LEFT RIGHT LEFT RIGHT 1 XXXXXXXXXX :CXXX XXXXXX 2780 0 40 40 2 XXXXXXXXXXXX 1800 2780 40 40 XXXXXXXXXX 700 1800 40 40 4 XXXXXXXX.XXXXXXX, XXXXX 2700 700 40 40 XXXXXXXXXXXXX`<;XXXXXX 0 2700 40 40 tIO. OFFSET .........TIME —LOCATION DIAGRAM.......... PHASE LENGTHS LEFTBOU111) ... READ UP 1 2 3 4 5 6 7 8 1 35 XXXXX XXXXXXXXXXXXXYX 50 50 2 25 XXXYXXXXXXXX 70 30 '' 72 XXXXXXXXXX 75 25 4 85 YXXX XXXXXXXXXXXXXXXX 50 50 5 --------------------------------------------------------------------------- 85 XX) XX,XX.XXXX,„(XXXXXXXX 50 50 TIME SPACE DIAGRAM ROUTE: TAFT HILL COt 111Et IT : PUt•11 1 CYCLE LEFJGTH 60 SECONDS: SCALE 1INCH=40% OF CYCLE: 1 LINE= 19? FT iYYYii•Y.•X............ 1 DRAKEt; 2MoFFe a�eHse a NoRSETo sii!,tY**ifaFieii*iiYYi�i!ii?Eieix#Fi�YYs�Eui{�.YifY,E�!±E*i4?:xiFii+i*�i:ias�iF+��*eFiEaFYiFif�i4afaFiFif+�?4±fafMYYii!�iYiF I 19ATTHEW J DELICH ARTERIAL PP.OGRESSICNJ DEGIGN ROUTE: TAFT HILL • P.IBJ 10 is INTEP•SECT1OhIS: 5 CYCLE LEPJGTH: 80 SYSTEM OFFSET: 0 BAtIDWIDTH LEFT: 26 SeC. RIGHT: 26 SoC. PERFORMANCE INDEX: 46 EFFICIENCY: 32'% ATTAINABILITY: 67 INTERFERENCE: 16 --------------------------------------------------------------------------- NO. .........TIME -LOCATION DIAGRAM.......... DISTANCE SPEED P• I GHTSOUt•ID ... READ D(XN4 LEFT RIGHT LEFT RIGHT I XXX XXXXXXXXXXXXXXXXX 2780 0 40 40 2 XXXXXXXXXXY,X 1800 2780 40 40 XXXXXXXXXX 700 1800 40 40 4 XXXXXXXXXXXXXXXXXXXX 2700 -00 40 40 XXXXXXXXXXXXXXXXXXXX 0 2700 40 40 P1O. OFFSET .........TINE -LOCATION DIAGRAM.......... PHASE LENGTHS LEFTBOUtJD ... READ UP 1 2 3 4 5 6 7 8 1 7 XXXXXXXXXXXXXXXY. XXXX 50 50 47 XXXXXXXXXXXX 70 30 q5 XXXXXXXXX`l 75 25 4 7 >.:XXXXXXXXXXXXXXXXXXX 50 50 5 57 XXXXXXXXXXXXXXXXXXXX 50 50 --------------------------------------------------------------------------- TIME SPACE DIAGRAM ROUTE: TAFT HILL COM10IT : P,! 1110 C)r_LE LEt,ICTH 80 SECOIJDS: SCALE 1INCH=40% OF CYCLE: 1 LINE= 1P9 FT #[YjtYj[#j[�t�{i Yii�YYY YY{tYY�tY{G jR aGY jGY �'.a.�i�ia�+::!s�RiE BF iFi*it�3!#if if iF iF#iF i�l�i!YiFiis itRri it {c {c aiii4.�GY*YYYX. ID 11 s ait �C. j4Yl{YYiY}L�{YY*�YY.j �e JiY �tYYYYYjii; YY,Yit��{i**{tY�c j{Y{{YYY jfYYYi{FuYY{i**{t 34 if #S iE iF it j}icY Ji*�Y*ilF ?�1EY* MATTHEI:.I J DELICH ARTERIAL PROGRESSION DEGIGN 0 RUN? • ROUTE: TAFT HILL INTEP.SECTIOtIS: 5 CYCLE LENGTH: 90 SYSTEM OFFSET: 0 BA111*1IDTH LEFT: 42S&C. RIGHT: 42S&C. PERFORMANCE INDEX: 49 EFFICIENCY': 46 7 ATTAINABILITY: 96 INTERFERENCE: 16 --------------------------------------------------------------------------- NO. .........TIME —LOCATION DIAGRAM.......... DISTANCE SPEED P, I GHTSOLR4D ... READ DOAW4 LEFT RIGHT LEFT RIGHT I XXX):xxx:-lxl : X.`tXXXXXX X 27e0 0 40 40 2 xxxxxxxxxxXX 1e00 2780 40 40 3 XXXXXXXXXX 700 1e00 40 40 4 XXXXXXXXXXXXXXXXXXXX 2700 700 40 40 5 xxxxxxxxxxxxxxXxxXxx 0 2700 40 40 NO. OFFSET .........TIME—LOCATIOI.1 DIAGRAM.......... PHASE LENGTHS LEFTBOUND ... READ UP 1 2 3 4 5 6 7 8 1 47 XXXXXXXXXXXXXXXXXXXX 50 50 2 e7 Xxxxxxxxxxxx 70 30 3 35 XXXXXXXXXX 75 25 4 47 XXXXXXXXXXXXXXXXXXXX 50 50 97 XXXXXXXXXXXXXXXXXXXX 50 50 --------------------------------------------------------------------------- TIME SPACE DIAGRAM ROUTE: TAFT HILL CCIIVIEIIT: P.LVI9 CYCLE LENGTH 90 SECONDS: SCALE IINCH=407 OF CYCLE: I LIIIE= 199 FT *;acxx>YY>is��i�YYie icy. ie�sie ie•�i!iis�•��'iiixi�iF s'1Fi%'Jf+�1.IiitKii if i��i��i�xxi�Kiair i�w�'�rie le�FYieYiIF ri,c,4�Yi�i ME.TTHEW J C`ELICH ARTERIAL FROGIOpa DEGIGIJ • PU1J8 POLITE: TAFT HILL INTEPSECTICNIS: 5 CYCLE LEIIGTH: 100 SYSTEM OFFSET: 0 BANDWIDTH LEFT: 35SEL. RIGHT: 353ec. PEP.FORMAPICE INDEX: 45 EFFIC1EflCf - =:g7.7 ATTAIIJABILITY: 73 INTERFERENCE: 18 --------------------------------------------------------------------------- PIO. .........TIME —LOCATION DIAGRAM.......... DISTANCE SFEED P.IGHTSOUJD ... READ DOWN LEFT RIGHT LEFT RIGHT I XXXXXXX`;XXXXXXXXX XXX 2780 0 40 40 2 xXXXXXXXXXXX 1800 2780 40 40 3 XYXXXXXXXX 700 1800 40 40 4 X XXXXXXXXlxl)ey XXXX:;Y, 2700 700 40 40 XXXX:XXXXXXXXXXXXXXX 0 2700 40 40 NO. OFFSET .........TIME —LOCATION DIAGRAM.......... PHASE LENGTHS LEFTSOLRJD ... READ UP 1 2 3 4 5 6 S 1 42 `:: ;X XXXXXXXJXXXXXXXXXX 50 50 2 82 XXXXXXXY.X.XXX 70 30 3 30 XXXXXXXXXX 75 25 4 42 XXXXXXXXXXXXXXXXXY.XX 50 50 5 72 XXXXXXXXY,XXXXXXXXXXX 50 50 --------------------------------------------------------------------------- TIME SPACE DIAGRAM ROUTE: TAFT HILL COMMENT: PU! IS CYCLE LEIJGTH 100 SEC:OlJDS: SCALE 11NCH=40G OF CYCLE: i LIME= 199 FT IDEAN B Ro Hoes xii!YiFY#lfiF!EYJi JkY�.r iq 1{iEYY�!?4ix:!it.c,tr!f#1!K!f!lit±f �!i!it iF i4 �F if K±f It #tki!iF +fitlta4!f3l i!if #f!*#M*!!lFkiF i4l�i!±fiYiFM MATTHEW J DELICH ARTERIAL PROr GSIOIJ DEGIGN P,LRJ7 • , ROUTE: TAFT HILL INTEPSECTIMIS: 5 CYYCLE LENGTH: 120 SYSTEM OFFSET: 0 BAIJDLJIDTH LEFT: 30SfC P.IGHT: 30 99C. PEP.FOPIlWNCE INDEX: 36 EFFICIEPJCY: 25 7 ATTAINABILITY: 52 INTERFERENCE: 21 --------------------------------------------------------------------------- NO. .........TII1E—LOr_.ATION DIAGRAM.......... DISTANCE SPEED PIGHTSOL14D ... READ D(XJN LEFT RIGHT LEFT RIGHT 1 '-XXXXXXXXXXX XXXXXX 2780 0 40 40 2 XXXXXXXXXXXX 1800 27SO 40 40 - XXX XXXXXXX 700 1800 40 40 a XXXX XXXXXXXXXXXXXXXX 2700 700 40 40 XXXXXXXXX XXXXXXXXXXX 0 2700 40 40 110. OFFSET .........TIME —LOCATION DIAGRAM.......... PHASE LENGTHS LEFTBOLVD ... READ UP 1 2 3 4 5 6 7 8 1 35 XXXXXXXXXX XXXXXXXXXX 50 50 75 X XXXXXXXXXXX 70 30 3 72 XXX XXXXXXX 75 25 4 85 )<X"<X,;X"" „XXXXXXXXX X 50 50 5 32 XXXXXXXXXXXXX XXXXXXX 50 50 --------------------------------------------------------------------------- TIME .SPACE DIAGRAM ROUTE: TAFT HILL C01111ENT : RL417 C:C:LE LENGTH 120 SECOJDS: SCALE (INCH=40% OF CYCLE: 1 LINE= 199 FT �a� s.Y�jF?F#f YIF iF�aiYiri?F jtY YiEY i4 it!iYi±:#E+::t!:�it ik iF%#F iE iF iF iF i4lii!ik;±!!tR!!;%1f?f *Jf Y{Fu Y�YY i*YY YY{i#Y{css� ARTERIAL PROGRESSION 1)EGIGI4 isRUN12 • IO ROUTE: TAFT HILL / II4TERSECTIONS: 5 C`('CLE LENGTH: 60 SYSTEM OFFSET: 0 BAI4D4.IIDTH LEFT: 12.96C. RIGHT- 13 $iC. PERFORMANCE INDEx: 32 EFFICIENCY: 20? ATTAINABILITY: 42 INTERFERENCE: 25 --------------------------------------------------------------------------- NO. .........TIME -LOCATION DIAGRAM.......... DISTANCE SPEED P.IGHTSOIL)ND ... READ DOWN LEFT RIGHT LEFT RIGHT 1 XXX`IXXXXXXXXX XXXXXX 2780 0 45 45 2 XXx XXXY.>'.XXxx 1800 2780 45 45 3 xxxx XXXXXX 700 1800 45 45 4 XXXXXXXXIXI<YXXXXX>Cxx 2700 700 45 45 5 XXM\-/.XXXXXXXX XXXXXX 0 2700 45 45 NO. OFFSET .........TIHE-LOCATIO14 DIA(,PAII.......... PHASE LENGTHS LEFTBOUND ... READ UP 1 2 3 4 5 6 7 B 1 35 XY.X•.XXX)'X;XXXx,XX XXXXX 50 50 2 77 XXxxxxxxxxxx 7.0 30 3 25 xxxxxxxXXX 75 25 4 e5 Xxxxxxx XXXXXXXXXXXXX 50 50 5 32 XXXXXXXXXxxxx XXXXXXX 50 50 --------------------------------------------------------------------------- TIME SPACE DIAGP,AI1 ROUTE: TAFT HILL C014I TENT : R p41 2 C*fCLE LENGTH 60 SECONDS: SCALE 1I14C_H=40Y OF CYCLE: I LINE— 17? FT j4YjtY�F;{[.�;.Y*�Yi�i('iiit ji jt.Ji{�jiYYYjtYj!{�YYY{L it ir{tYY�{(. iEYj!1i �g iF iF if �><i*i?'��►�i�'x.'si:ta�tii;iit�iF IiYYIE'R'}i i'i IDEArX.XXXXxxx XXXxXXXXXxxx XXXXXXXXxXxx i XXx 2M�Fcr 362oIUS0�: 4 }{oRtETDer� 5e•Rx::� �;:. XXx.�:xxxXXxx �IEYYY{{i YYi[YiF jL{LYi(YY �Yif jL �l jL �tY*{iYY��YIf .K*� XXXXXX XXXXXXXXXXXX 1F iF iF�#F ifY#ki4 #f kif*sY?E*iE 1t�#�#if MATTHEW J DELICH ARTERIAL PROGRESSION DEGIGt4 • PLT113 • �' POLITE: TAFT HILL IPITERSECTIONS: 5 CYCLE LENGTH: 70 SYSTEM OFFSET: 0 BANDNIDTH LEFT: 21GW— RIGHT: 21 98C. PERFOPMANCE INDEX: 44 EFFICIEt4CY: 30% ATTAINABILITY: 63 INTERFERENCE: 17 --------------------------------------------------------------------------- NO. .........TIME —LOCATION DIAGRAM.......... DISTAtICE SPEED RIGHTBOUND ... READ DOWN LEFT RIGHT LEFT RIGHT t XXXXX XXXXXXXXXXXXXXX 2780 0 45 45 2 XXXXXXXXXXXX 1800 2780 45 45 XX XXXXXXXX 700 1800 45 45 4 XXXXY,XXXXXXXXXXXXXXX 2700 700 45 45 XVXXXXXXXXXXXXXXXXXX 0 2700 45 45 HO. OFFSET .........TIME —LOCATION DIAGRAM.......... PHASE LENGTHS LEFTBOLWID ... READ UP 1 2 3 4 5 6 7 8 1 12 XXY.XXXXXXXXXXXXXX XXX 50 50 52 XXXXX.CXXXXXX 70 30 3 2 XXXXXXXXXX 75 25 4 12 XXXXY.X`CXXXXXXXXXXXXX 50 50 _ 62 XXX''%XXXY.XXXXXXXXXXX 50 50 --------------------------------------------------------------------------- TIME SPACE DIAGRAM ROUTE: TAFT HILL COM11ENT: P,LR113 CYCLE LENGTH 70 SECCW4DS: SCALE IINCH=407 OF CYCLE: 1 LIhIE= I" FT ii.YYisiialK.x�xacx��c{csu�#ieYi�iiisrisaE�iiFaElF�rsle�iMsi��xiicY��c�iFiFisif��i�}I'i:iF+Fi>EYiF�Y�I�*�iFY��i MATTHEW J DELICH ARTERIAL PROGRESSICNd DEGIGFJ • RUN14 • Z FnUTE: TAFT HILL INTEPSEC:TI"XIS: 5 CYCLE LENGTH: 80 SYSTEM OFFSET: 0 BANDWIDTH LEFT: 38 SEC. RIGHT- 38 see- PEP.FORMAIJCE INDEX- 49 EFFICIENCY: 47P ATTAINABILITY- 78 INTERFERENCE: 15 10. .........TItIE-LOCATION DIAGRAM.......... DISTAI•ICE SPEED P.lCHTBOUtID ... READ DOWN LEFT RIGHT LEFT RIGHT 1 XXXXXXXXXX;XXXXXXXX X 2780 0 45 43 2 XXXXXXXXXXXX 1800 2-780 45 45 3 ` 1-1XXXXXXX 700 1800 45 45 4 XXX?XXXXXXXXXXXXXXXxX 2700 700 45 45 5 XXXXXXXXXX`•<XXXXXXXXX 0 2700 45 45 NO. OFFSET .........TINE -LOCATION DIAGRAM.......... PHASE LENGTHS LEFTBOLAdD ... READ UP 1 2 3 4 5 6 7 8 1 47 XXXXXXXXXXXXXXXXXXXX 50 50 2 87 XXXXXXXXXXXX 70 30 3 35 XXXXXXXXXX 75 25 4 47 XXXXXXXXXXXXXXXXXXXX 50 50 - --------------------------------------------------------------------------- 97 XXXXXXXXXXXXXXXXXXXX 50 50 TIME SPACE DIAGRAM POLITE: TAFT HILL COIUIEIJT: P,L4114 CYCLE LENGTH 80 SECCUIDS: SCALE 1111CH=40% OF CYCLE: 1 LINE= 199 FT .........._............_...._..-- ------......__ Y IEYYAf 1p jt iEY �tY�YY{fY YY Y�cY Y.i YYI�Yj{Yi{tYYYY{tY**{taE{t*Y�Y{t{t jt�{1*i**■{4�;{FY***�.��;{F {F*Y*�**j{�� 1'IH 1 1 m7w J Ut L: L.H' ARTERIAL PROGP,ESSION DEGIGN • R111.115 • � 3 ROUTE: TAFT HILL INTERSECTIONS: 5 CYCLE LENGTH: 90 SYSTEM OFFSET: 0 BANDWIDTH LEFT: 29S6C. P.ICHT: 29$8C. PEP.FORMANCE INDEX: 44 EFFICIENCY: 32'�.7 ATTAINAelLITY: 67 INTERFERENCE: 18 --------------------------------------------------------------------------- NO. .........TIME-LOC'ATICMJ DIAGRAM.......... DISTANCE SPEED P•IGHTSOUND ... READ DOWN LEFT RIGHT LEFT RIGHT 1 xxxxxxxxxxxxxxxxx XXX 2780 0 45 45 2 XXXXXXXXXXXX 1800 2780 45 45 3 XlX:C;'(XXXX 700 1800 45 45 4 XXXXXXYX)<XXXXXXXXXXX 2700 700 45 45 5 XXXXXXXXXXXXXXXXXXXX 0 2700 45 45 NO. OFFSET .........TVIE-LOCATIOM DIAGPAM.......... PHASE LENGTHS LEFTBrniMD ... READ UP 1 2 3 4 5 6 7 8 1 42 XXXXXXXXXXXXXXXX 50 50 2 80 XXXXXXXXXXXX 70 30 3 30 xXxXxxxxxx 75 25 4 42 XXXXXXXXXXXXXXXXXXXX 50 50 92 XxXXXXXXXXXXXXXXXXXX 50 50 --------------------------------------------------------------------------- TIME SPACE DIAGRAM ROUTE: TAFT HILL CrXIIIENT: P.UN15 CYCLE LENGTH 90 SECONDS: SCALE ]INCH=40% OF CYCLE: 1 LIME= 199 FT cxs.x><,<sr.lFas{tsacYYis�siitiY�Yi�iiri!s�Ies+tiii�iFit# IVeAArr:xxxxxxxx \ siiisr.If:Ei!+Fs!!iik�Fi!�F:EiFsv�1E+!:tJE+!.IF ieMlcY�illxis�r. xxxxxxxxx xxxxxxxxx / x MIFF 6 T 5p_o0S40►.i::x -� N eRSETooTFk:xx ':xxxxx;< XXXXXXX XXXXXXX I I' xxxxxx xxxxxx s Q R / E <xxxxxxxxxxx ; xxxxxxxx xxrxxxr.::xxx,\ Y{iY jt i�Y�YYYYY{L if Jf��*af �i Y?<3ERYifijl iF #ki if *if i!►+: it iF iF*!F!EiiF*;�4�ii±fiiifis�!i41!*�#lEi+i!if is lfilt l�*+*s MATTHEW J DELICH APTEP..IAL PROGRESSION DEGIGN . R11416 • POLITE: TAFT HILL INTERSECTIONS: 5 CYCLE LENGTH: 110 SYSTEM OFFSET: 0 BANDWIDTH LEFT- 30 9&C. RIGHT- 30 960t. PERFORMANCE INDEX: 37 EFFICIENCY: 27°ATTAINABILITY: 56 INTERFERENCE: 21 --------------------------------------------------------------------------- N0. .........TIME —LOCATION DIAGRAM.......... DISTANCE SPEED P,IGHTBOUtJD ... READ DOWN LEFT RIGHT LEFT RIGHT 1 XXXXXXxxxxxxxxxx XXXX 2780 0 45 45 2 XXXXXxxxxxxx 1800 2780 45 45 Xxxxxx XXXX 700 1800 45 45 4 X.X'XXxXXX XXY.Xxx)CXXXYX 2700 700 45 45 5 XXXXXXXXXXXXX XXXXxxx 0 2700 45 45 tJO. OFFSET .........TIME—LOCAT1Ot•I DIAGRAM.......... PHASE LENGTHS LEFTBOUIJD ... READ UP 1 2 3 4 5 6 7 8 1 40 Xxxxxxxxxxxxx XXX>OXX.X 50 50 2 BO xxxx Xxxxxxxx 70 30 i 77 XXXxxXXX<.x 75 25 4 90 XYXXXXXXXXXXXXXXXXXX 50 50 40 xxxxxxxxxxxxx'.fxx XXXX 50 50 --------------------------------------------------------------------------- TIME SPACE DIAGRAM ROUTE: TAFT HILL CC#JI tEtJT : P.Ut,11 b CYCLE LEhIGTH 110 SECWDS: SCALE (INCH=40% OF CYCLE: l LINE= 199 FT iFYifirasiEi��iFifsifie��'Itlt�'�fifil�Y.1i��I•ir.�iiiFIfIEIEx•r►�saflF�tIEIFi+E�F�ie�iixilFifi:i��iFiEie)FriYiiFi:lii!iafieie�E�riii�ar ID¢Arr<xxxxX\ xxxxxxxxxxA / \ /XxxxxxxXXXX /,X Ms�ts� =' BRONSON a Ii e R SGToovf XXXX' XXXX`, >:XX:<XX 4x)(,X)oC XXXXXX -OR 389xxxxr. / / xxly xxxxxxxxx xrxxxxxxxxxx \ \ xx YY YY RRRi�i(.RYYY Yif �fYY YRY YYYRR RYRRRR*RifRRRRRRRRRRR RRRRlf#flE; RRRRRY{t ifRRR RR RRRRRRRRRRRR ti AF.TERIAL PROr_,F.ESSIOH DEGIGN ROUTE: TAFT HILL 0 PLR •I t 7 • 160 ItITEPSECTIOt1S: 5 C,CLE LEt4GTH: 120 SYSTEM OFFSET: 0 EANDIAIDTH LEFT: 36 biG FIGHT: 36 $eC. PEP.FORM04CE INDEX: 38 EFFIC:IEIICY: -14 ATTAINARILITY: 63 INTERFERENCE: 22 --------------------------------------------------------------------------- NO. .........TIME -LOCATION DIAGR.AM.......... DISTANCE SPEED P,IGHTBOUI-JD ... READ DO1,44 LEFT RIGHT LEFT RIGHT I XXXXlXXXl'XlX.':XXXX XXXX 2-80 0 45 45 2 )<XX^YXxleXXXXX 1800 2780 45 45 3 XXXXXXX XXX 700 1800 45 45 4 XXIr),"XXXXXX XXXXXXXXXX 2700 700 45 45 5 XXXXXXXXXXXXXXXX XXXX 0 2700 45 45 NO. OFFSET .........TWE-LOCATION] DIAGRAM.......... PHASE LEI'.IGTHS LEFTBOLIID ... READ LIP 1 2 3 4 5 6 7 8 1 40 XXXXXXX,XXXXXXXXX. XXXX 50 50 2 8o XXXXXX XXXXXX 70 30 '5 XXX.X.`XXX.X`:X 75 25 4 510 XXXXXX.XXXXXXXXXXXXXX 50 50 5 --------------------------------------------------------------------------- 40 XX.XXXXXXXXXXXXXX XXXX 50 50 TIRE SPACE DIAGRAM POLITE: TAFT HILL C:014IIEtIT: PI_II117 C)CLE LENGTH 120 SECO(IDS: SCALE (INCH=40% OF CYCLE: 1 Llt)E= 19? FT >YY�YY{cY{LYY YY YY�iY jL jcY�YYYjL jLYY�Yj[Y{4j4{tji{tj4{tYY�{t{i jLY�i{LjL{L{LYY{G�jL jiisi3}YYji;YjL jCY Y-i Yii i�i�!.Y {i; 1 pP-AW'.....x:•:A.� \ X)^:. `<XXXXXXX�( / \ / ``/.)C`' X;<.`<:''.....);XX �%'. i� 5CZ YYYY.{Y{tYY YYYYY YY�.Y{iYYYY{iYY{tYYYYY1t �E*i*#3iY{{YYjcYYYYYY*♦<jt**I<.*{i �[�{LYjiY*jFY jt {{Y�[YYYYi�Y �fY AFFEHDIX F F II� L 1 1 m r N Cr.. R.. I ^. 1 • '7 F •I n Lu F- W w Ln U'l CY 111 �I S F- J fFJL' -f F LL U F - 1J Cl . . . . C« � G. «f 100 CA 0 7f.0 m3 m Q m« mV0C1I F_ h LL a LL h F- C) .7 (j) 3 m to w 0 ft: -t •.•. All m O J W W w 3 w y«««� ww 00 Y q S 2 * W F F- c, • a .. G 8' z F-- CJ PJ - - z M •Y c =' 2 L G Z * O •-+ O fh G •O O d `ram Fm- GGw Fm- FF--•[7 O o n� m WWa o to to t F-F-m q O tr, to >H Lq z fC J • • • • W \ U L) FwW } W * U) O O L Y W J J ,k CL W U) tt m W C) _) C) O O ,k F- £ W EL d I W LL) :. -• n- * w o o) x x .k £ J D U) V7 a U iC CnJ♦� * 0G 00 OG m Z.-L' J G G in to :k 0 J F- N Cd •U `O V' J » :> O 7 Z .C. W U O N 07 q F- F- U) O N 7 0 LL .+ J J J* Will— m LLS U O G SS Z w z cu CA x10PJ F- m Sr- -• 0 Q 0hQ<IQ tI U U U :k z2= F- LL F- J F- h O 00 U ¢¢ J F- 7 F- LL F- +J N .9 C•) Z J tl' 7 O Cl F- qJ LC O m m W 0 w _ 0 to S- LL J F_ N N J Ui J N ILA CL [i CL M .J .UlJ') Jk • O U v ~ N N N N C 7 * N U z2 c•� G z M NVN U m3F- z OG ..-• - 0 fC z W 000 0 m _. m S F- U m Cf.) r..- m F"" o I F- F CA 2 fC Q Z Z LL J G GGGGt7 L G 000 -i mmmm O i J W J x xh F- (nW F- ZO_ W F- F- U) 0) Cn W J S _> '� Z 2 Ix 7 d¢ W q G U W} 0 J H O A- J « C'l 0 It In .0 F- 0 LL W (D 3 0 0 W Z Ln x fl (L L) (C W W w F-U+ Jhx W F-Cn q W J K > > CL D dti<L0 2 ZZ 0 U 1 0 0 HF PEt1C� I >' G I �l 11 1 1 1 1 G f�G SV S•J - O � G O _.•..• h lf) o 0 L 0,U•1 � c] � r-N10 F SON 0 •-. d --(VM L)O'n Or-U-, I m3 m Q m mrNCv .. t_ F. LL lJJ LC LL: J- W m J J W W s i 3 0 O m to W W 3 _ Y ¢ xx W F F GS a o ZF OG CJ f•J -. -. . � V `7m Gf•J U? �x Z Z W :3InN J O .-. O 0 0) cf 0 m 3 m G m 0) 1 r. G .'I n _ W W �o c1 (00Z . . • • . m R O ( "0 F cL F- V= Z W 'r i LU re J - • _ ltJ \ W W }to G _ G } Cn 0 O R. Y F i w !1. LL 1 W W W O (n E x fA (O 0 U Z Z J O U W ZS - - - _? Z V)M V mm O Z : Z 0 G .. -+ • U O M •O Q F- F w 0 10 IT M 0 W iu .- m I.) G W m C'd L, ~ Iri Zx2 U.2 O xx Z Z xr-C'J xU7ITc.,I U.t J FF O Q F F FMO, <LFOy} w J 0MrJ = od F- led mm o w (r) i m J • . • . F (o Cn J b) J (n U C." F .. .. .. U Cn.. G G 01MCl) Y 'r G G - o•row ? (n3F D J F fv(�J \ m .-. m F (a -. IT m 2 3 x F x(n xR.—U7Q F F U F �. FR.•rGIx x Ix CL O 0 ►.- O F 0 0 L Y m J Z noon Z Z Z 7 0 00000 Q Z W 0F J mmmm ` W J x=Ff- (nw F TO W F F 0 :) to W .J x 0 z m7;IW Q GU U" J '-I-. J.-.NM7U)10 FJ� ILm(9 CIDW 3 Z(n 2 W;- m (L0 R:F Ool- ±Ld -41 W x 1 LL F U JFm W F(n j W m _d G x rV PJ • • . • �' F- •• .• Z O r, •T `O O R. C Ir'1 T J _l A O .-. Z. O Ifl OD F U O f•J O G G I'-- Q mw IllLL t-u: as F z W O 1Y: J W m J W W 3 d 3 O W W -. .. x 0 O rYL u7 F F -- F- 3 CV CJ Z tV M ` .... 2 to E G � ...._. _] f) b IN ,, gWg G m3 m _ C.)W G G W mR F m(1400 F U) _> 0 m W W d 0 (n Qd t. L)I.)w LL \ 7k W W } •o-.O-•• FFR. m w anm. w w H E I r J to (0 0 = U OG ..JG 0G m ZZ J G G W-2 �Z O•or. mm o Z Z OG --.. UO Mb Q FF O) OR a � O W fa Zx3 LLx U O G 22 ZZ W Z CDR- R. xCV F m x(DR G Q T F LL F -1 F F- 6 Q F F F 't C, J>> Q O 00 U J 7 LL 1: l N 00 F m 0 m m W O W 0 (n O: J . . • • F M n J (n J t0 0 (QJ _ �NNNCJ C? .F•. m Zx . . • . . 2. vov U m3F Z Z OF (�J C•J O `ON 7 ,\•-• O p O 0:Z W 5 ONO O m - m F m 'O m a-, . . . . . LL Qx m m ._ O Cr t.� O F O o Z 0 (C _1 Z GGOG szzz O Z. 7 -(7 ? W _ 0 000 cri co co ca 0 m J Z U W J x x F F W F O W FF(n 0) N WJ 2 Z) J F- D x m n Q W O O W 3 Q no x to u •-• F- J } F O G F Z W !i m f:J x Z O) (L 6. U It 1 - fL .; F W .+ JFm W i, J DDa- m a d a 2 F .••• Q Q 3 G G ZF 7� rnlno o Zrou) Z O O n PJ 10 F- O m N _f O •-• O — N m U O PI .-, 0 r- in r- <T m 3 m ¢ m m C. CJ (-I '. F- . . . . . . F LL a a. F F- •-r! W O 'jF-J W w JJ W W 3 £ O IY a: 3 O W ww�• 2 ....-, r. -• O O Y ¢ S S » (L F F- * n O 3 3 F G o »: »:Z F- CV N N • . • V' IT OU v S Z Z 'G * F• G O W U) F- o t » » «f-, CO in wwa 0 m rn w F- IL F- J . 000 m i W J-1 »_ L't W (n 2 Q (r) U + �_�-1 00 »: F Z: W dd 1 W W 4. (rn3£ * OG GGO . . OG m Z)Zc zi J G U G ». ul \ 7 »: WZ2 _ �Z U)Cl tr mix 0 Z »: (nz Zu)(n »: (30E- CV CVN = (n U?IC'i J D7 z 7 IZY D W »: G * F- »: LLrJJJ »: O G W m—CO .-. -• .» U O m b ¢ U F- F- (n G W O -� r 10h U. 7 f'- O 01 <i * OF-Q¢1I * .D »: ,I r i U Q * Zx3 �I F- LLLx LL F- 0 J 2x F- F- 0 Z •L xv�CI F- F- 2U?It11) `T. F Cn C*. xF-t Wz F--F- »: 0 09 - - QO mm W w O W O LLF-J F- J m J m LLJr-r* 00 0 * G o00 O C*mm Y G G Z am•0 U m3\F 'L Z t LLi O G ....+ .-. O � W O U? -• O I.0 F F- U F- F •t O CZ <L 2 of Q: Z 0f O F J Z£ CCF-J • • . Z OGGO "(3 G J ¢uU FI T S �J07 mmmm Z F-J W J 2 S F- F- •• m ul LL W4 F-F(0(n () wJ 2 = CJ 7 `n. 7 O O W 2 LLJ F- <1 J .• Cn U? F- 2 LL Ix 0 3 Z Cn d 0- W 2.+ I LL F-U� J F- !r W f_ W ¢ LU cr n_. ^y 2 0 1 Fi I ul tI O O• J J. I - 1 :L 2 U ' w �- W o F- W - w lil D (n rr G 2 ~ Cj LL H C1 O G Gx �N0 �C�CyJ ohtr O S J p U) (0 10 F- U ". 0 O c o r. <I LL rl m w ¢ ¢ W 0 CC F J W J _1 W W D rh Ix w T O O aY * aco LL] d F F .:.0 CJNN - Z Nm`a -'T Z Z Z * m 3 ro G W m CL CV 0 0 IT. _ oGw O N U, rn tY W W C (n G * 20 m #G F- n00Jc* mac_ C..ro W d W. w W [w.I .+00 * -> H O) I £ x .. of * W £ J D N CO o J U cr.,Cif 3L» OG a0o • • • OO m ZZ -i G O uiz 7Z o•0N RfC JJ O Z J Z d' Z f r, Z W Cn * S »' 0 D- 0 G NNN 1 L) C. •tm V m 10 J ¢ F- F- (n -,. O N L. O O . LL JJJ », W m.. Cu U G W mU?P F- m G ¢ Zx=. LLF- J F-F-- O ¢ F-bC! F- F-�f 0, JRUCJU N JJ^., ¢� Q O L) J 7 LL 7 m CV Z W 7F-F'.~-,» 'On£ mm (n J ir• J O w(EMU:Cr* tY F-J FLL-0 o U J()UUU * n * * vNNNN ~ ;* cf7 A En U » O Goa p r`IT Y %' O 0 F- N N CV O `O N 7 OG -+ O LL Z W:1 0rl O al .. m x F S F- U F F- •t G \ Z% Ix F-J .. Z OGoo ZU ¢ Z 0 0 ��0 0 0 M -i 0Q:J U) W J 2 2 F- F- (n W W F- f- Cn 0) rJl W Jzi S _ m O r W O (n 3 CI O U 2 W ~ 0 W LL1 fy J F-a W CL HU) ¢ x (L Z F ¢ 1 1 1 1 _ • �1 Z CV C7 . . . . G W G G O.- O U Om OOO o A m = m ¢ (u m F. F_ LL LLI O LL: IIJ W = tr J 3 O W S.-..., .-..., ; wW 00 Y ¢ S S LLI � F G x 0 3 3 Om- G G 7G �l el Z 000 ICJ N O v x W O? Z O m : m i_7 W m -+ -. Co o 'Td' ¢ F- 0 0 W F F '7. 0 to _. (n w w CL u (1) (n .. , .LLr W E 1 tt: J•••• ¢ W x \ FF'tt' L) L)..• z ¢ W ¢ w m -.00 FHn. CC W (n Cr CC 0 U (n R CL I III x W D i J (n Cn o O C! OG IIl 2 00 - • O -. r� m ZZ Q: CC J O G Z G z O =i F-- of Cd • • rn m •O J O _7 D � —I O G --' -' U O -n -. ¢ F F U G CV O O O w m ~ co W S Z <L F- IL S LL F- O J S x z F F- O 0 F ^' F m o 0 0¢ F- (n `\ JO> ¢O OO U O IL O z00 F - [r0 mm W O W O U co, F �•NiVOa -4c1- G r 0 0 Y1 o iCANN Y U (rJ3 0 G Z 3: F CV K'J Z J P O \ Z J J 00 .. • . . • O W. Zw� OP. Ill O m •_� m F m •-. ti m U - '1 2 - _< F F- F CJ h O O Zz w—i . • • • z 0000 Zo D -1 , , ¢ �] 0000 (9 0-J ? SSFF Cnw F �0 W FF(¢nw fn w_J x Oa OOW2 m LU (7 0(-~ Q .+(V Coe 47 �0 FOX LLIxU Z(n 0. a. CC� _c JF� �1W FU it H Jaw CL (L � D S GGfJ 27 F '-• T oc. - GT f.l ri :D . • !• J 0470 O Z47o :D .00 0 •-• O 04 (1) F U O GooC.¢ m T It7 ¢ W m el 1L d d F- F `- I n Cn W W 3F... W ..J •.•• W 3 LL m J W w W - S..........-: O Y ¢ xx LLI F_ F a. 33Q F G G -•F._ t�J CV Z fA 00 v "2 L Z c O o 0 m� ro G m mLl CKC, G G W F Fr--• \. n -:. w S F- : - r� w w a u a` 0 o z uJ w (n z u�I uT1 OF m Oa Y IL w w d w iL I W x III J O N_(no U O G 0 0 O G m 0 W ZT i Z j 474'7O O O Z =l z R OG .. -• UO .., n) r� O, J ¢ J F F (n 003O O O LLJ m m L)G W m N F 111 z .:, LLF of FF G F- F Ix-4--o=,=I J j-: ¢O OO L)O-' 1L ti 0 0 ♦-- Q O m m LL1 O WC. (r) T- lY .J • • • • F- toU) J (n J ( ) �o F •-%NNoO SJ''1' N U 0 0 el ... o Y U () 3 f- 0 z C1 z ;x 11 rJ1 0 r. 47 -. F,Z� ON O OG °-t° � coF F- mm-' 2 r._ m 3: C4 ¢x ik - (Fed O O ZZ F- (X _I O Z GG0G F- z0 O Z O Z _ z- ¢ W O O L)O 0 J wJ W_ FFf~n o 9) WJ S =� z LLO¢¢w W ¢ GU S W J- OGI Z -Noct47•n F72 OO 3 Z(n iL 0- L) lYLL _ LLI W=C7 F J F W F- 0 <I W -.. OJ rY , Da (L ' I O S 7 Ciu 7 F 2 I-I q (� 0 VNSIONALIZ17,r) IMIFIZSr;CIK)NS • 10-37 1 I 1VOItKS 1EE I I:Olt ANALYSIS OFFIN IN I ERSEC'I IONS r ,' LOCAIION:A s �"� NAME: _ VOLUMES IN rcm IIVURLY VOLUMES _ Major l I I O Street: N 19=0 -. VS tz0 2-0ZV V Z2- — Grade /Z--`�' V7 �- VI —'�� 4 v3 -- N - a ) �- ` �� v, --,-� cr-r.: V7 V, V 7 Vo Dale of Counts: Zi�Z U Slut, l Z Z lime Period:___ — U YIELD Average Running Speed: N — EJ Minor Street:_ rim Grade % VOLUME ADJUST MEN I S Nlovenrent No. 2 3 4 5 7 9 Volume (vhh) j Z 4 .`T 4— -Z Vol. (pcph), tee Table 10-1 Z Z Z - SIEr 1: RI' from Minor Street r•- V9 Conflicting r1m, V, 1/2 V, 4- Ni, = 4- I Z4 vpl, (v,J Z `Iv Critical Gap, 1', , and Potential Capacity, cr T, =S S sec ( Table 10-2) cr9 = pcph (rig. 10-3) Actual Capacity, cm r Cm9 = cr,? — pcph % cr 5 S I Er 2: L'I' morn Major Street ` V. Conflicting rlow, v, v, 4- Vz = S + / 2-4 = L 7 5vrh (Vc1) 3"1 Critical Gap, �r, , and Potential Capacity, cr T� _ "� sec (table 10-2) cr/ _ '115 pcph (rig. 10 3) 1'ercent of cr Utilized and Impedance racbr (rig. 10-5) (v4/cr4) X 100 = � PI = • � �7 3. O 0•9 S Adult CRpaclty, Cm Cm4 = Cr4 _^� I > pcph L S S I Er 3: Lr rrom )Minor Street V7 Conflicting Flow, V, 1 /2 V) 1 V v I-V/ = _ 4- _ + _ + = Z? ¢vph (V,7) Crilicat Gap, 'T, , and Polential Capacity, cr I =�. P sec (table 10-2) cr7 = 7- `'pcpl, (rig. 10-3) 70 Actual Capaclly, cm cm7 _ cr7 X P4 = X = _6A pcph S 5- SIIAREU-LANE CAI'ACI FY v7 t v9 If lane is shared SI I = — (V7/Cm7) -t. (V9/Cm9) Movement No. v(pcph) c� (rc h� can (Fchp) CR LOS 7 z 1 Z(?` -3 & Z —734-1 A 3 4 4 2 Z_ -7 1 s '1 r r q31 A 7qS 71 3w 0 rl I Li APPEPdD I X H C��a0 G G zu D mG-o Kl F 7)n' D O7 O NmR U Om-. 00 N o!L m' m Q m m M w F.. W_ O . . . . . CL h -1 F_ w ILL Sr J J W w 6 W w O O Jr h h 4 u7 GG G a 33a F G r� 1 j, 1 III)- to lu0 .E F' lil N I . 0 f- w n Lt` 0 x 1 L 'L F' »: » sk ». ['J Sk •CI ». G P'W0) K * » CIO * + Ill iA» + �.l »: + I �. J .J J Ik + I-Q 211 »: + -I �._ U iJ »: + u_ M +lil-, fr ... 4 A lit •.. f✓_ U_ 0 M I rii L1 U U »: sk sk :k G m Z W Z '•� h W x Q) D G Oo W m .-• x3 'i F- .J 7 -) ab SO i 0 ^ x IF-t�l 02 m• •�. 2 3 Ix 0 w S 1 rlNrN ::: h- LtihJ NNt•'J --- • . • • h- tL' F_ -1 r;. O o :. CJ CV -� h .-+NMTt U'J •n D m Q W 07 w Z > Z J U m tLx LL h Q O �o F_ i0 0 O m x � O OO U? In if) r" o G o 0-(2 •t CO-. G O O - In 10 N 1- Ox w Sr C7 JF� x \ o -o - i[1 to J Q U O J Y U > CY h G G G G '` ` 000> mmmm xxhh Q DD 6nW OOW3 Z iq 2 \ G G G W hh3 UUu wW E- I- P O O C. m Ir d CI.. I CC 7D hh i[l G xx Z h F• O 00 CJ mm w in .O CCI Ut } h UQx Z QO 6 Z h-J Sf1W Q WU x w}• n- d U z Z W 7 --, h W m h r Q tl } m (I) W O Z J OUJ7 W m CD'+1 xW)Cif 1- O a J rn Q U L) > O m- cr m 0 I`. x U7 Ix h 0 C1 F. I w J x C1 w Z tt: 7 F• F- IL w J J m 0 •cl o Q h in P- \ Q W Z D O m xO TCG F- O •o _ 7 o SO 1::1 Z)iii 0 In x G -It O •:L Chr��. O WJ E-1 -1 •'FJ OG f- _� W LLI z F- n I EL LY d'7<jo x Z O U 1: ?p 0 «_. CU j to W b L O G G F- Q_F-J n m N 3 U7 G G '000 N N O hZ. Q LL Z) [JC [C 2 ... I[} O CIS in 3 u, W 0o I x x ' Ltl l^ t`u ui to CIJ f- J `~ Jr » M »: » U-) U-1 7 * + * +. l�l _I J * + U �- O »: » » N + rn Z WU7 »: W + U Ik F- » l�... J J J »: .:L+r�FrU() »: :+. I.II hF-F »: - , F! M »: sk J » M W :K Cn CL x h h CO[l 3 fjTl 11J£ - Cr h GG W :t ,_�Sh OG W m •-• x3 OL1 lfl g.: Z x 0 l'. o CIO - x =` 0 �i Z E w 2 _I NNN ... l~YhJ : : : o0o C'JNN •..,. . . . •• •• F- fY. F- J . . i-JNN F- •. iCh-1 [vm•ru7 0 G m W w w OG , Z 0 UO m u.x LL0 F- CrY o OD a: HW. Z 00 1) G OO OGN d'm-. O O N mM f- - i li m IM Wx w '•_� S rfl 41 m J Q U -i CJ Ul U m G O G G `�?07 0000 mmmm xxf-h it w oou 3 h h m 33 n O G W W t'L UPS W W CL Ix a CL I ZZ 00 Dn hh 0 G Fx-h 0 mm w io 00 } U7 3\ F Zt)�- F- -. U. 'T W CU m_I z F. N W?- dU h > CI x } UJ w J O W 3 -i U G `[J m�J F- iQ0 tll G � O-.? 0. lei = 7- M F- _ i l'1 Z m o, 117) 0 - h O I w ]J K x F-- U w R O ~ LLh. ul _1 G Z m C.It 0 rI h ('I vl W O mx ,- n'�m O SI) m Ix 0 %- W J G�'h �. W 1 to F- rhll(`L ui DDa. = a.-,a6 Z u U Z Q • • c� 0 0 : : 0 2 j G 0 ('J .-. « : 0 s O M U7 O N(1)•S tY F u o 7 P. OD 0co 0 J Oo N o j CO .- m Q m m M 0) O W W Y r] S o 3 3 T Z o n # m to O W m« CO O `0 C. <I 4 n't • # 4 # l_i LC " . . . Q CCl am O o F Fat f-F�.. 000, E ¢ m Y ¢ A: LU _l J A F U('JUn # * . r- �> # it F- W W Z to W (f) O: CC fL CL I to W U W x ' N i u)-•Z # W \* =' # :K (n '� �_ LLl U7 y F k LL..JJJ k 4 0F¢Q¢ 4L) 0 u ltJlC1 k IL L WCLS k 4 _I V. U r_i Q # c0 W Z7 C' O F- W m.. .71 J GG o000 : CJ ('1 CJ r.'-7 oo_ - S LL ¢ CCO 000 O Ui o m J O zz ZZ [Y tY O J 0 22 O OO U mm W - •� J _O O GG 7 W m0 Z SU7 ¢ u W Z m 0 L 7 Sof O,_L F- o YA m JIr CQ OJJ J 2 4 # \ F• ' 1 L rU 1 r F FLL. CF. i,, 0 F Ct Tr S J ^• ,I F- :K # # 0 O U m •- xZ' O O Zf w Z ¢ J 0 0 0 (iF_J .. NM^t U7b 0 o ril S 0 Z O O O F FF--7S L fr 0 F tY (0 Y K F U_{�Oo0 7JJ0fn' mmmm SxFF- F- F- N N tY=¢ W 00W 3 Z U) `- ZWD F U F- Z0 11z Ul M F- mW (r) w J Q CA L) 2 W} CL fL U U 0 0 xr �r m 0 r^- =U-) F O Z F S O. CL F- 1 w azJ O 0 m xo v 0 •:I Frnr 0 z wJ n :3_ J F 00 �- L)J t- (n ¢ UJ CL ,¢b S Z 0 U O O O ' Cl :i; O ... W_ 0CY: CJ CJ CI F J - 0 O m W � If) o IM N N O ¢ LL _ a x .a<[ �. .J J x CG ww Z« m w 3 F Z. rt r Ili 00 ' r J I T W F- UJ w lU - w<r _ .1 40000 G: L' S[ N 2 I- U LLO :t J -1 LL * # # k U-1 # N U) If.' # 'yj f C J # 4' # v u r a #.. ^n^.. # F k W yZw(0 # 4' F # lL ..JJJ # 4'. J(< # ul :3 # ' F- .-, .-. q: # Ill ¢(C CL Ix # J 1:9 U r_1 r 1 # # %# # J F- cn W i Y W Z F W LLIG2 '_'JF- Wm•-+ _I O-+ Oil Cl) ._. n Z) 0 0 Ml ., x 3 F 00 J C. [V C-1 CV CA O: F J - CK Ooo •`I NN C'J F- � F J _I 0 0 0 r � C�1 "J : : : _ F [CFJ .., cJ (n ^r U- '-n m Q w Ul w ? J 00 J 20 LL '¢O= F rn m x F O z N O M 00CD _�oN 7xi« w m m F 0 S LL ix C1 Y W D_ � N uwi O m J <L OJ L) d' F o000 O zz mmmm SSFF FF-(nw O O W 3 7-0 F F 33Q �' now w L) W W Ix CC a EL (Ci U)0 CL Ix OJ FF 0 FF O OO U m m W M O \ 3~ Z W M F L) ci 2 F c7 W InW J Z F (1)LL1 m• WJ x wF- CL CL U F- WZ > } cu (� � J O W J J U a ; V ? F•.. w n Z « O mP? F•x « J 0 if) Z J 0« O 'X L i aj F- (C O Z F x !r K .J 2 F W 2 �) Z D F LL W J 7 FO 7O ¢ (4 -• O Z - 0 m 2u7r O? CO Z. O (n Z O 2 0 0 <I F- m <M O F. W J r J W` li-I LL ._ t] U —IT. I 0 of r•J • O Q: G G U ?UFO O O O� O O;I 11 LL a¢I s h h Z W G CL • •.• W J W i" .J Z CL: O J CY CC W 3 O W W _- Y ¢ x S W h h G7 O O - • . • • O Q. 33= G CC, C..J C...I . . . . Z 000 cn m= m G W OD Co tr c.Q I-- F- G G W :� h h O k,rI) . . . . . . [ W W rt w W a A O to f) . -, W f J W W } W W } Cn -- -.00 OOn•• ol m Y u W Cn W. w to U r N a u. I W W_ W z J fJ) Cn o C r 0 0 0 0 - O G m Z Z J G G w Zx I...A -, •~ f.J.m ~~ W_m ... Cl W CD a) F-m 4F3 LLH LL O x2 Z S•O So00<I ¢JO-. . . . . . tI0 00 0 D LL 7i1 00 h x O m In W O W �. O to E iY h J h CQ in J ffi J. i it U •o yNN00 tr V r~. (n LI u o 0 0 - G o 0 0 05 N Y J F- N N (-Ii - Z)r.J j \ J . ZW:-' ro m h c � m T o T h� h rhJ h10 hN .. O O F- 0 h O O ZZ cr Z GGGG z0 Z z zz�7 <r CD mmm Z 1-J W _1 W hhIn0 (a Wr in WJ 2 , J� Z h CY 7¢ W ¢ G U 0 J -- F J .-. pIM-r Ui 'n F �2 001112 S W } �-, OUF. ll. Ix L7 ZCn a aU u h W.. lil W x.-. I U. h0?- -1 W F- Cn ¢ W 7J Dera 1 Q LL ? ¢ 0 r G LY G G O UlO O ZIn0 =1 N --• M h 7 •S J O .-. G V 0 0 0 o m LD ¢ m m rJ F_ I w CL (L F} �I n w w G 27 1: w J W :3 W O_ J J W W W 3 ~ w w Y ¢ xx w h h °' r k "1 ji.f C•JrJ - 0oO P�-•T �'2 lL Z O Z O W 4 Y. # O --. -. O Cn ril 0o O o Cv O •7 J 'M Lo 3 :3 m G GGW 0 m -- h m 0 O o h0 rl m2 n: w w a G (1) to w� w w FrJorl a ww } w ¢ -•oCO M # :k Ltl J J !k I:Y_ Ul W Cq 00 rw a CY: W 1 L5 O O :4, W CL CL I W W p * f � J ff) UI !k u tn3� k OG G100 •.• OG J m Cn r_ Z Z J CIO W '\ 1'r W S V NCV J b700 rl r. J fY[C 00 O Z O Z W L O N A Cnz ZIli0 I ul N it * ''7F 0 C., -. -+-+ OO N ¢ hh to Oloo 7 O I- M Li J J J M ,Z CiF.. I¢¢ �: w m .•. -2= ••+ m -+ U of 0 `O WWZ m tI, F .a ca TUi O u I! ¢UUU A: :k J rr .-• .• •.• !1 <Ih J O _..• . • • • ILLS. Fx•• ¢ 7 F-F 00 Li �Q J O F- LL O woF F hr oo F ao mm w o w 0 ny * _• h .-. .., :�: to c R h _J F- W i.0 J to J LIJ ¢ Cr LL Cr �: ¢ * n J A # vNN00 S¢ k A; tit 'y' .h•. :_r z O to U j .T Cn $ G �_. O O • • • G iC1 U7 In } G_ C.:,ILI F o r x 7 .. r. •a w O III) 3 D J i_il F CL N N G O ^' K \ Z tJ � 0 'D `9 O «, m O I-).. m~ -• ~ ¢ ._. lil J F- F- U Fes~ Hi _•nCD lil ib .J. R- LL ¢ 2 Ix CC < t" O h O O cry m Z OGOG _ Z t� < Z r, ¢ 0000 O u J ~ mSxh Z F• r~i'lw h F O F• W hh to Cn N W J x 0 - J LL W L7 Z (n a a W J I W h[ ¢ui i2-[Y Z) J :D.. CL LL CL ¢ 0 x F- 11NS10NA1,17,rif) INIrRSr:Ci1oN5 � 10-37 ' WORKSIIEE I' FOR ANALYSIS OFT -IN I ERSECI IONS ff f l f/ ya r i ,, LUCAI ION: l� . :�t.. � '1 NAME:��uc �� VOLUMES IN t'CI'II IIOURLY VOLUMES A Major Street:O N ��7 v, 3 3� V2 r— GradeJ v1 -10 T�V V7 VO Date of Crnmis: 2r71 ItP U SIt)P v7 V9 Iin,e Period:_ U YIELD Average Running Speed: N = u Minor Street:_ I'I ir: Grade % VOLUME ADJUSIMEN IS Movement No, 2 3 4 5 7 9 Volume (vph) 3 'Sn S`0 10 3 35' TO I d Vol. (pcph), see "I",ble 10-1 zoo �;—d A=O SIEP I: 111" from Minor Street V9 Connicting now, V, 1 /2 V, 4- Vi = + _ass vph tv�9) 49 3 Critical Gap, T� , and Potential Capacity, cr rC = C � 0 sec ('Table 10-2) cr9 = � 5.� pcph (rig. 10-3) Actual Capacity, cm Cm9 = cp9 = `^ pcph 5-6 Q STEP 2: Lh rrorn Nlajor Street V, Conflicting now, V, V) 4- V, = -1 = KQ vph (V,r) 6-80 Critical Gap, T` , and Potential Capacity, cr T, =5•! sec (cable 10-2) cr,r=71-!rpcph (I"ig. 10-3) I'ercent of cr Utilized and Impedance Factor (rig. 10-5) (Vdrr,) X 100 = (� P, _ (— ` ( s : �S . qi9 Actual Capacity, Cm Cml = cP4=I—Z-5-P-"cpl1 SI EP 3: LI- wont Minor Street 1 -) V7 Conflicting Flow, V, 1 /2 V) I-V71-Vs I-V4 _ -1- — + _ 4- = vph (V,7) Critical Gap, 'r, , and I'olentia) Capacity, cr T, = ?' Srsec (table 10-2) cr7 = 3z]d pcph (rig. 10-3) Z 3$ Actual Capacity, Cm cm7 = Cr7 x P, = X = 'I pcpll SIIARED-LANE CAI'ACI IfY SI I = — v7-1 v9 If lane is shared (V7/Cm7) -1_ (V9/Cm9) Movement No. v(pch) c c hp) C (c h) CR LUS 7 7 0 2 op 3 17 2 a i q -7 ZC* C 9 4 icy 8d 1Z5 5765- 5G S ? 91K UNSI(1NA1.171171N1F1(SriCII(111S 46 10-37 LOCAL ION: Hv-1,D1 I VURLY VOLUMES IVlU/RKSIIEET FUR ANALYSIS O FIN I ERSEC-I IONS NAME: Major Street: 0 N N _ O V, Z5 5"' Grade -,4a V2 _ Vr -4. 1&t V i -- �\ �` N= EJ i V7 V9 Dale of Counts 1, U -,lul, lime Period: — U YIELD Average Running Speed: N — U Minor Street: VOLUMES IN I'CI'II / 1 ' //1 V, �S— ¢Q.1rV 2 V i en, V7 V9 s� y I'lln Grade % I VOLUME AD)US I MEN I S Movement No. 2 3 4 5 7 9 Volume (vPll) Z 4 0 10 90 O Vol. (pcph), see Table 10-1 SIEI' 1: 111' from Mirror Street V9 ' Conflicting Clow, V, Critical Gap, 'f, , and Potential Capacity, cr Actual Capacity, cm Si Er 2: UT' From Major Street 1 1 1 1 Conflicting Flow, V, Critical Gap, -f, , and Potential Capacity, cr Percent of Cr Utilized and Impedance Factor (Fig. 10-5) Actual Capacity, cm SI'EP 3: a From Minor Street 1/2 V3 -1- V2 = + =Z90 vpll (V,9)431D 1C sec (fable 10-2) cr9 = 77-0 pcph (rig. 10-3) Cm9 = Cp9 = r Lv pcph 1 V4 T, = S- 5 sec (Iable 10-2) crl = 75­0 pcph (rig. 10-3) S`S� (v//cr/) X I00 = L-5 P4 = n- 7 e' Cm4 = Cr/ = .Jl. pcpll V7 Conflicting Flow, V, 1 /2 V3 I V2 1 V, I V4 _ _ + — + + LS• Vrll (Vt7) t S Critical Gip,'I, , and Potential Capacity, cr "f� _ 7' j sec (table I02) cr2 = 3SS pcph (rig. 10 3) 2 i Actual Capacity, cm Cm7 = cr7 X P4 = X = -7, 5 1 pcph Lii 0 SIIARED-LANE CAI'ACI I Y Movement No. 7 9 4 SI I = — V7 -1. V9 if lane is shared (V7/Cm7) I (V9/Cm9) V(p_ph) Cm (I7C II) CSn (rCpil) 9 b 5"0 '- 1 Z G Z 7 I_ " I z.v I r 7 7 0 & 0 0 ? o-o I(" 3 0 'M) (0 5Y 740 LOS C, A A 9Z A Ar 1 0 0 AFFEHDIX I 1 1 • • 80 70 50 45 40 33 30 20 0 AZ X U/ -� 0 100 000 200 A300 400 500 600 DISTANCE TRAVELED IFT) SPEED REACIIED ICOMFORTABLE RATE) A = 50 MPII B = 40 MPII C = 30 MPII D - 20 MPII E = 0 MPII MINIMUM BRAKING DISTANCE X - DRY PAVEMENT Y - WETPAVEMENT A POLICY OIV Cl OML TRI C DE S IG lV O F C jIG I4Wa-2S