HomeMy WebLinkAboutHORSETOOTH WEST MASTER PLAN - 14-88 - SUBMITTAL DOCUMENTS - ROUND 1 - TRAFFIC STUDY (2)HORSETOOTH WEST MASTER FLAN
SITE ACCESS STUDY
FORT COLLINS, COLORADO
MARCH 1988
Prepared for:
Jim Scavo Realty, Inc.
220 East Mulberry Street
Fort Collins, CO 80524
Prepared by:
MATTHEW J. DELlCH, P.E.
3413 Banyan Avenue
Loveland, Colorado 80538
Phone 303-669-2061
I
H
I
11
11
1
11
P
Z
11
EXECUTIVE :=1 IMt° A R'Y
The Hor=.etooth West Master Plan is a proposed
development located near the intersection of Taft Hill Road
and Hor•setooth Road. This traffic impact study involved the
step_ of trip generation, trip distribution, trip assignment,
capacity analysis, traffic signal warrant analysis, signal
progression analysis, and accident analysis.
This study assessed the impacts of the Hor _.e tooth West
Master Plan on the short range ; 1??2? , mid range 19^_ ) , and
long range (2010) street system in the vicinity of the
proposed development. As a. result of this analysis, the
following is concluded:
- The development of the Horsetooth, I:,.le=.t Master Plan is
feasible from a. traffic engineering standpoint. At full
development as proposed, approximately 15,800 trip ends wi l l
be generated at this site dai 1 y.
- The Taft Hill Horsetooth intersection currently
opera.tes unacceptably with stop sign control. Signals are
warranted at this intersection given the current traffic
volumes. With a. =.i gna.l , left -turn lanes should be provided
can all legs.
- By 1 =?2, given the first three phases of development
of the Horse tooth West Master Plan and an increase in
background traffic, the signalized intersection of Taft Hi 1 l
Hor_•et.00t.h wi 1 1 operate acceptably. At this level of
development, all that is necessary in this area, is a. paved
Hor_.etooth Road west of Taft Hill Road, a. paved north -south
collector as far as the elementary school, and the necessary
turn lane_- at the Taft Hill/Hor_.etooth intersection.
- By 1?96, with full development of Hor=.etooth West
Master Plan, acceptable operation wi 1 l occur at the Taft
Hill Horsetooth intersection with a three lane approach on
each leg. Signals would be warranted at the Taft Hi l l
Bronson intersection and this intersection would operate
acceptably. H signal at Bronson 'street wi 1 1 f i t. into a.
signal progression scheme along Taft Hi 1 1 Road.
- By 2010, the Taft HIl l/Horsetooth intersection wi l l
operate acceptably in the morning peak .and unacceptably in
the afternoon peaty:: with a. typical four lane cross section on
each leg. Provision of southbound double left -turn lanes on
Taft Hi 1 1 wi 1 1 provide acceptable operational level of
service in the afternoon peak hour.
- By 2010, the Taft Hill/Bronson intersection will
operate acceptably with the warranted signal. With stop sign
control, the Horsetooth/neighborhood center access
1
inter-sec tion wi 11 o aerate acce pta. �y exce t
F _F tl, _F fnr the left -turn
ex i is dur i ng the of ter -noon peak hour . These left -turn e its
at Horse tooth Road do have _.a.fe, convert i en al ter nat i ves for -
this particular- movement_. Other =_.tap =.i gn control 1 ed
i ntersect i on_i wi 1 1 opera.te acceptabI -,".
- By 2010, the proposed stag -si gn control led r i aht-
in:'right-out access_. to Ta.ft Hi 11 t,,ti 11 opera.te a.cceptabIy A
r i gh t - turn au i I i ary ( dece I er.at i on ) lane i s war ran ted. Th i =
r i ght-turn 1 a.ne woul d remcve veh i cl es tram the through
traff i c stream on Taft Hill , pr-ov i di ng a. —afer condition.
This right -turn lane should be at least 280 feet including
taper .
- With the recommended central a.nd geometrics, the
accident rate =_.haul d be at an acceptable level for typical
urban condi t i ons.
I
J�
I
I . I Pat er D U C-T I O(A
This tra.ff i c impact stud; addresses the ca.pac i ty,
c4eometric, and control requirement•_. at arid near a proposed
development knovn hereinafter as the Horsetooth West t'1a.ster
i''l an . I t i •__. l orA'ted near the i n ter— ec t i on of Taf t H i 1 1 Road
and Hor•s.etooth Road in Fort C:ol l in=., Colorado.
During the course of the analysis, numerous contacts
vaere made vii th the project pl ann i ng con=_.uI tint f Gefr•oh
Ha.ttma.n, Inc.. and the Fort C:ol l in=. Traffic Engineering
Dep.y.rtment. Th i s =.tud;:� general 1 y conforms. to the format set
forth in the Traffic Impact 'study Guidelines. The s.tudY
i nvol ved the fol 1 oifjli ng steps:
Col 1 ec t ph s.i cal , traff i c and deg.?e 1 opmen t data.
Perform trip generation, trip distribution, and trip
ass i gnmen t .
- Determ i ne peak hour traff i c voI ume=_. and dai 1; tr•.a.ff i c
of urnes.. -
r:onduc t c.apa.c i t;•• .a.nd opera.t i on.a.l level of service
anal y=_.e=. c �n k:ey inter =.ec t i on a.nd ro.a.d�::��..� s.ec t i c,n=_..
Hna.l ze i ona.l 1::�a.rra.n is and signal pr-ogres.s i on .
Analyze potential change=• in accidents and safety
considerations.
II. E::.ISTING CO[ADITIQt••S
The location of the Horse tooth West 1-1a.ster Plan is shown
in Figure 1. It is important that a. thorough under —standing
of the existing conditions be presented.
Land Use
Land uses in the area are primarily vacant or
resi dent i al . Re=_ i dent i al development exists to the ea.s.t
�;Rcros.s Taft Hill Road) .a.nd south of the Hor=•etooth, t-Jes.t
h'1.aster Plan. :5orrie vacant land exists to the southeast across
the Taft Hi 11:,'Hora_etooth intersection. Residential uses are
proposed to the east of the site .a.cross. Taft Hi 1 l Road in a
de,.!e l opmen t knor:•ln as. Rossborough . To the 4,,,je st of the site,
1-arid is va-cant . Land to the north of this site is large lot
residential. Land in the ar•ea is e_s.entiall;v flat.
Beginning at a.ppro-x. ima.tel:;, Horsetooth Road, Taft Hi 1 1 Road
climbs. a small grade to the south. This. small grade has
little effect on traffic operations and no effect on sight
distance. The center of Fort Col 1 i ns lies to the northeast
of the Horse tooth West t'1a.•_.ter Plan.
[l
L
t
I
ii
I
I
I
I
h
I
r]
I
I
I
I
I
t
I
I
r-
5120 jm
Do Ll
LiLiElEil-4
A
Fo
r
P.
Golf
_j :jLjLjr__jLJ6u,
DO
Elp
—
Ll
JE]❑Ej Sew
e
1
L DA,
LJEJ
III
Dibpo
I
• U
0�IJ
1510
BM 4954
1 OlinIJUL
(WEA r--.$. W
PA.
t ADU
ADU TE
]EDIn
IL-jr-if
F-1
FQ�bo]
cal-
�
I IVER i
nrix-
WHOS
_. ;, - - - _� DUB
� o o� ��11AW3115u.!
u
0=93
14 UL-
n,
, V
5065
/544
4LA
[in
Fir
S
—
WA 1117-17
--- 7FIM
1�
Hugkres
:S �J-
Gi7avele.
2
.#
r
23
r_1
Pit II �Drive-i,!,
jTheate
CP
Drakes
F
ti Lh ____
1[2�7
__ . ;
w
71—
. !, ,
= ' �,;#) �'x
Rf..;t I
F
J '
r Omega
P I
RW' W HO ETOOTH
Dry D
Lake it
oni
am -Gravel
DAL
MASTER PLAN
- '
S,?/
Pit
Me Cleflands
J_
IT
Harmonyp
Cem-*
0
—
501.0
152450001
4916
/498
I SITE LOCATION FIGURE 1
1 R.oa.d=•
1I
i
1
1
I
L
1
C
The pr•ima.ry =.tree+=. near the Horse tooth t%Je_.t r1a.=•ter• Plan
a.r•e shot n i n F i gur•e Taft Hi 1 1 Road i east of the
Horshl etootI.%Je=.t t1a.=.ter• Plan. It is .a. north -south street
designated a, an arterial on the Fort 1=ol l in=. Plaster 'street
F'1 akn . In thl is area, south of Drake Road, it has. a. tt%io lane
rural cross- section t,iith no auxili-ar-y turn lanes. The posted
_•peed 1 imi t is 45 mph. eight di _•ta.nce is generally not a.
problem along Taft Hill Road. The Taft Hill ./Hor _.e tooth
intersection is =.top sign controlled k.%iith Taft Hill receil•:'ing
the r• i ght-of—t:.ja,:-.., The nearest si gna.l along Taft Hi l 1 Road is
-at Drake to l the north. tIo signals exist south of this i to .
Hor=.etooth Road is south of this site. It is an e-as t-
1:':lest street designated .as a.n aster i al on the Fort C.ol 1 i n=•
Master Street Plan. Adjacent to the =. i to , Horse tooth Road
has. a. gravel surf.a.ce. It is 5-40 feet 1.,,1ide. East of Taft.
Hill Road, Hor=.et_Iclth Road has a. tvjo 1 a.ne cross section v)i th
same additional vji den i ng to a curb -and gutter on the north
side of the street.
Existing Traffic
Daily traffic f l ot:,1 is. _•hovjn in Figure These are
machine counted volumes umes conducted b;•. the City of Fort Col 1 i ns
r' �.
I n _�4 . Peak hour- turning movements obtained in February,
a,re also =.h1c1v: n in Figure RaV•j traffic count data is
provided in Appendix H.
Existing Oper•at i iDn
The Taft Hi 11:,Horsetooth intersection, which Laa.=. counted
in February 15�88, i.,,ia_• evaluated regarding operational
efficiency. It tjas evaluated using existing stop sign
control vii th existing geometric=• a.nd the volumes shot. -,In in
F i Qur•e 3. The peak: hour operation is _.hot:an in Table 1.
Npperldi 2, describes level of service for signalized and
unsi gnat i zed intersections from the 1'=85 Hi ghvia.y Capacity
P'lanua.l (: i th the e .: i = t i ng stop =•i Qn control , l of t turns and
7-
crossing maneullers= from the m i nor street (Hor =•e tooth )
experience unacceptable operation. This was confirmed during
tr•aff i c counting tjhen it vlas. observed that some vehicles had
to t:,1 a. i t as long .a, 160 seconds before a. g .a, p vj $ -. available in
the Taft Hi 1 1 Road traffic.
��_•InQ either the available daily traffic volumes or the
current peak: hour volumes'
, signals arevia.rranted at this
I Ater=.ect j orl . Thl I =_. cclrlcl IJsi ran I,:.)a.s reached b comparing the
available counts to the =.iQnal t',la.r•r•a.nt chart and peak hour
t,,l.a,rr,ants provided in Appendix 0. Given this conclusion, this
intersection 4'.Ja._• a.l _o evaluated as. a. signalized inter -section.
I
0
W
W
F-
N
N
J
W_
N
COUNTY RD. 38E
Q
N
PRIMARY STREETS
FIGURE 2
=
J
N
LoU.
a
��-9I/Z07
350� (I��)
Z52�9 (1984)
�-34/IZZ
►4/5 _�
t
HORSETOOTH
1 1 / 5 —�
5 /0
�\N
L
M 6'
d'
O
N
1988 AM/PM
RECENT TRAFFIC COUNTS FIGURE 3
Table I
i ;?8 Peak: Hour Intersection Operation
r,P- F'e-ak: PFI Peek
Inter =.ect i on Hour LOS Hour LO S i:omment
Taft
Hi I l/'Hor.._.etc-oth
Stop
Sign Control
_' B
LT
lJB
LT
4JB
T/RT
P-•16
LT
EB
LT
EB
T/RT
Taft Hi 1 1;. Hor=_.etooth
Signal Control
S i g n.-a1 __ a. r e
t,..j.:-:krr•an t e d
A A 2 Phase, SB LT
do not clear
A A 3 Phase
A=- a. =- i gna.l i zed i n ter=.ec t ion, •a.ccep ta.bl e oiler at i on I =-
achieved. The peak hour oper•.a.t ion kii th a. -_•i gna.l i zed
i n t e r sec t j on i= a.l so =_•hown i n Tab e 1. Due to the high
number of =•ou thbound loft turns., coupled t!•ji th the high
northbound opposing volume on Taft Hi 1 l , a separate left -turn
phase i ._ needed. Therefore, the minimum number of pha.=.es• for
thi-. signal v.j i l l be three . Calculation form for, all the
ex. i =•t i ng tr•a.ff i c oper•.a.t i can a.re provided in Appendix D.
F.'e=.ea.rch h.a.=• i nd i c.a.ted that the Ta.f t Hi 1 1:'Hc,r =.e to A, i ��n.-�.1
t-%ii l l be installed as. __.c-on ass. other impr•ocement= a.re made in
the area..
III. PROPOSED DEk,IELQPt'1EPJT
- The Hor _-e tooth, t,-je =.t Has ter P1 an i =• .a. propo=.ed
ommerc i a l 're s. i den t i a I./'school dek:�e 1 opmen t 1 c �c a ted near the
inter=section. of Taft Hi 11 Road and Hor-se tooth Road in Fart
Cc,l 1 i n =.. F i pure 4 =hot:.j=• a.-schemat i c of the = i to p l an of the
the Horse tooth t:Je =•t t1a=•ter Plan indicating location of the
u=e=• -hovin in Table'
2, Trip Generation. The =•hort range
an•a.l -y- i = 1' '?' :} included the=.chool , da.icare, and one multi-
family parcel indicated in Table 22 as Phases 1, 21, and 3. A
mid range anal ;.'=•i included full development of the site
•a.ccc�r•di nri to the proposed phasing plan in 1?96. The long
range anal-ysi = 2010) included the Hor•__.etooth tJe=•t t-'1.a•_.ter.
Plan and an i ncr•eas.e in background traffic in general
.accordance t::�i th the t-I ort_h Front Range Corridor Study.
Trip Generation
Trip generation is. important in considering the impact
of a. development such a.•_ this. upon the existing -and proposed
street =, s•tem. A drip i l at i on of trip generation information
t:+a.=_prepared b;�' the In=.t i tute of Transportation Engineer in
updated in 1'-';��, and t,la=• used to project trips that
would be generated b-,v the proposed us -es at this _• i to . Some
generation rate_', particul a.rl'+' during the peak hours, :'Jere
I absent from the ITE Trip Generation Manual. These rates. t,,lere
=supplemented using Development and And i cast l on c if Tr j
Generation Rate_, FKIJA, January 1 -'85. Table 2 =hoV•!=. the
expected trip generation on a da.i 1 -,w and peak: hour, ba.s.i s..
t c, a.d.jusAments• were made for- transit or r• i de=•h•a.r i ng. There-
fore, the trip generation can be cons• i dered con _•ery a.t i ve l y
high.
Trip Distribution
Tt,jo direstinnaI distributions- of the generated trips
t,Jere determi ned for- the Hor=.etooth [.,,lest t1•a.=.ter Fl an . Di s.tr i -
bu t i ona from the commerc i a.l /s.chool uses. used population as.
the attraction variable in the gr•a. it model. Distributions
I
11
RESIDENTIAL
RESIDENTIAL
41 du
37 du
PHASE 5
PHASE 4
RESIDENTIAL ROADSIDE
52 du BUSINESS
PHASE 6 16 k.s.f. PHAS
SCHOOL
PHASE 1
ESIDENTIAL DAY
1 22 du CARE
PHASE 3 PHASE
2
HORSETOOTH
NEIGHBORHOOD CENTER
220 k.s.f.
PHASE 7
J
_J
I—
LL
F-
BRONSON
STREET
I SITE PLAN FIGURE 4
Table 2
Trip Generation
Daily
A.M.
Peak
P.M.
Peak
Land Use
'
Trips
Trips
Trips
Trips
Trips
in
out
in
out
Phase 1
- Elementary
550
59
27
School
Phase 2
- Day Care
427
45
35
37
40
Phase 3
- 22 Multi-
134
2
9
9
4
Family
DU
Phase 4
- 37 Single
370
8
20
23
14
Family
DU
Phase 5
- 41 Single
410
9
23
26
15
Family
DU
Phase 6
- 52 Multi-
317
5
21
21
10
Family
DU
Phase 7
- Neighbor.
11132
88
44
462
484
Center
- 220 KSF
Phase 8
- Roadside
2500
110
110
150
150
Business - 16 KSF
Total
15840
326
289
728
717
1 0 0
rfrom
residential
the use used employment as the attraction
variable in the gravity mo d_ a 1 Future year data. were
obtained from information supplied by the Fort Collins.
Planning Department. The trip distribution is shown in
Figure 5.
r
Traffic Projections.
Traffic projections for the short range time period
(1922) were obtained by factoring the existing traffic by 108
percent per year for Hors.etooth Road and 106 percent per year
for Taft Hill Road to obtain the expected traffic_ in 19?2
given no definitive land development in the immediate area.
This traffic is identified as background traffic which passes
by the site on Taft Hill Road. These factors were obtained
by comparing peak: hour counts conducted in 1984 with the
counts obtained in I _8. Figure _ =.hraws the expected 1 ?9
daily traffic considering the site generated traffic and the
background traffic.
The traffic projections for the mid range time period
(1'.='=_) were obtained by factoring the 1 ?"=2 traffic
projections. by 102 percent per year +or both Taft Hi l 1 Road
and Hors.et„oth Road. This s.l i ghtl y slower growth rate is
more indicative of the rate of growth on other Fort C:ol 1 i ns.
streets. Figure 7 s.hcnws the expected 1?-6 daily traffic
considering the site generated traffic and the background
traffic.
rFor.
20+ year projections. (ye.a.r. 2010) , the usual source
for projections is the Traffic Flow Map as provided by the
C i t.y. However, the lost Traffic Flow Map provides
projections for only the year 2000. Therefore, an estimation
was made of traffic in this area by the year 2010 using the
latest Traffic Flow Map and the knowledge of what has been
occurring and what is expected to occur in this a.rea. of Fart
Col 1 i ns. These daily projections are shown in Figure Q.
These volumes assume that the system indicated on the Fart_
Col 1 i ns Master Street Plan is in place.
Si final Warrants.
signals
As. a matter of pol i c��� , traffic ._ i gna.l s are not i nsta.l 1 ed
at any location unless warrants are met according to the
Hanua.l on Uniform Traffic Control Devices.. However, it is
possible to determine whether traffic signal warrants are
l i k:e l y to be met based upon estimated HDT and utilizing the
chart shown in Appendix C. Using the daily traffic volumes
shown in Figure 6, the need for a signal at the Taft
Hill 'Horsetooth intersection is confirmed.
RESIDENTIAL / COMMERCIAL
TRIP DISTRIBUTION FIGURE 5
. J
J_
O =
o�
F-
z, 000 I
0
0
0
7,000
HORSETOOTH
4
N
SHORT RANGE DAILY TRAFFIC FIGURE 6
J
J
a
N
0
SITE a
I-
��� 10 '0
HORSETOOTH
MID RANGE DAILY TRAFFIC FIGURE 7
J
J
O =
0
N
SITE N u.
a
a,000
15,000
HORSETOOTH
LONG RANGE DAILY TRAFFIC
FIGURE 8
IUsing the generated traffic volumes in Figure 7, a.
traff i c si r-4na.l is 1 i kel y to be viarra.nted at the Taft Hi 1 l/
Ea•=.t4Je =.t col 1 ec tar i rite r=_.ec t ion. This collector 1 i ne=. up
vii th a proposed Bronson Street shovin on pl a.ns for the
Rossborough Subdivision on the east side of Taft Hill Road.
This intersection be referred to as the Taft Hill/
Fr on=.can intersection in the remainder of this report . L.-ater.
in this report, this intersection vi i 1 1 be evaluated to th
r e g a. r• d •_. t o •_. i g r, .a. l p r ci g r e =. _. i on .
The potential of a signal at the inter -section of
Horse tooth Road arid the proposed north/south collector is a
function of the volumes on bath streets. The t,je_•t portion of
the circumferential arterial road _hot,:in on the Fart Col 1 i ns
r1a.ster- 'street plan inter -sect_. viith Hor_.et.00th Road just vie_.t
of Hor. _.etc Both tje =.t t-1-aster Plan. I f/i.,.jhen this circumferential
arterial is built, it is 1 i k:el y that Hor•s_.etooth Road traff i s
south of Horsetooth (4est [1a ter Plan t,)i l l be significant
enough to mee t,"exceed the major street volumes required for
signal viarr.a.nts. Hotjever, the volumes generated by' this si to
on the north ,-'south collector t&ti l l not meet the minor street
volumes for signal vjar•r.a.nts. The north south collector i
=.hot.jn terminating at the north proper t:,: 1 i ne . Should this
collector continue to the north and handle about tvjice the
volumes indicated in Figure 8, then signal viarr-ants would be
met at this. location,
Trip Assignment
Trip assignment is hot!.) the generated -and distributed
trip=, are expected to be loaded on the street system. The
assigned trips are the resultant of the tr• i p distribution
r process. F i gure = shoos the short range morning peak. hour
assignment .a.rid the .afternoon peak hour, assignment of Phases.
1, 2, and 3 of the Horse tooth I;-,les_.t Master Plan generated
tr.a.ff i c plus background tr•aff i c . Figure 10 _.hobs. the mid
range peak' hour- assignment of full development of the
Hor_.etooth (,,.jest t-la=_.ter• plan plus background traffic. Figure
1 11 shot. --is the long range peak hour assignment of full
development of the Horsetooth LJe•_t Master Plan with
background tr.a.ff i c assuming implementation of the road
ne tt,,ior•k: indicated on the Fart Col 1 i n Ma.s_.ter Street Plan.
'=ign.a1 Pr* ogres_.s_.ion
Signal progression vial. evaluated prior to i n t.er•s_.ec t i on
oper•.a.t i anal anal ys_• i S in order to evil ua.te t:Ae th,er• the
vj.a.rra.nted signal at the Taft Hi l l/`Bron=•on inter -section can
i fit into a signal progres-sion pattern along Taft Hill Road.
Other signals. along Taft Hill Road viere inserted based upon
.judgment and included signals t::jhich t:.iould yield a. reasonable
ilevel of a nal y i s_•.
1
Q
N
=
J
�O
=
�w
w
2J
Q
ZV -9��
IOOf 44 I I
5/ 16
46/Ib4
5/Z HORSETOOTH 43/Z3- —/
49/IlA — 44/25—
20/IU
—
c4) Ln J`
N��
�N
Lr% N
AM/PM
SHORT RANGE PEAK HOUR TRAFFIC FIGURE 9
a,
HORSETOOTH
-7/0
31o/41
EAST —WEST COLLECTOR
do
m�
N�
102/49
4/ZZ
i
BRONSON
90/100 �\
_
t\3 r
—Ir
�
r
0
r�
�o
�l
m
�m
-S ro �— 1 lo4/ 310 0
124/ZOZ ! �� So/ 1"7-7
57-/ 104 --"o'
IO3/ 1 Z 4
Zlo/5a �M �
� -9
AM/PM
MID RANGE PEAK HOUR TRAFFIC FIGURE 10
O
v
W
J
J
0
V
H
0
N
i
H
0
Z
�O
N
6'
HORSETOOTH
255/255 —�
EAST -WEST COLLECTOR
N
J
J_
O
-7-
11-7-
IL
Q
O�
r N
�-
1
BRONSON
SO/ 11, 0
-1O/ 100
o
ro
00
—
�o
oa
N �
O OdJ�
O O N "'#'l— Z001400
N
�— I00/50 �50/I-T5—Z-00/550
Z40/405 330/405
1 O/30 �� 1 z0/ 150 -�
33S/27 5 - zoo/250 --_
35/i 5 O O
AM/PM
LONG RANGE PEAK HOUR TRAFFIC FIGURE 11
1
I
J
The technique used in the signal progression analysis.
w7as .a. computer program called Signal Progression Anal .vsi •_
(SPAW prepared by the I In i ver _. i t;- of F1 or i da. Transpor ta.t i on
Research Center-. Its main functions include:
- Inter•.a.ctive entry of -Arterial =.ystem data.
- Display a, time location diagram v.ihich provides
graphical representation of the qua.l i ty of arterial
progr e s i on .
- Printing of a. time -space di agr•a.m to shoi.,.j the qu.a.l i t>:
of progress -ion.
- Optimization of signal off=•et.=. for Arterial pro-
gression.
The program inputs are:
- Inter sec tion location
- Cycle length
- Pha.=• i ng
- Off=.et_.
- Speed
Any � ter• a.l l of these inputs. can be changed iteratively in
achieving the optimal progression.
The signal progression on Taft Hi 1 1 Road was analyzed
based upon the fol1oviing criteria:
- Cycle length of 0-120 seconds.
- Posted _.peed of 35-45 mph .
- Mainline (Taft Hill) G/C Ratio
Dr ak e G/C: 0 .50
rl o f f e t GI/ C: 0. 70
Br on son G../C 0 .75
Hor.._.etooth Gr'•C = 0.50
County Road 38E G C = 0.50
- Green time on the cross street is greater- than the
pedestrian crossing time of the mainline at 4 feet
per second.
- Achieve the largest bandwidth possible along Taft
Hill.
A number of cycle lengths and speeds l,.)er•e examined.
Appendix E shovis fifteen progression analyses for- Taft Hi l l
Road. The minimum ba.ndvii dth of 207". eff i c i enc;:- (12 seconds)
k.-,,as. Achieved i:�, i th ---t 60 second cycle and a. speed of 45 mph
(Page 10) . The m.a.:; imum b.a.ndv)i dth of 47*.--: efficiency vas
Achieved t,,ti th a. 100 second cycle and a. speed of -35 mph (Page
3) and with an 80 second cycle and a. speed of 45 mph (Page
12). All the other progression efficiencies are be tasieen
these tt.jo extremes.
The above progress ion analyse=. Are presented to shove,
that. the Taft Hi 1 l.11Br•on=_.on signal can fit into •a. progression
6
1 0 0
pattern along Taft Hill Road. Design progression analysis
must be conducted on a. regular basis reflecting change in
land use, speed, and other variables.
Oper•.a.t ions Anal y__• i
Capac i tx .a.na.l ;.-se s• vier•e performed on key intersect ions.
adjacent to the Horsetooth West Master Plan. The short
range a.n.a.l::,,ses i..,Jere performed onl;, can the Taft Hi 11::'
Horse tooth intersection due to the proposed phasing �
.a. __. i n of this
deve1 o ment . The mi d range and 1 on g range .a.na I X _ate t&ie
'
performed on :. number of intersections.
Using the traffic volumes sho!f•in in Figure 5and the
geometrics noted in Table 1, the intersections operate in the
short range condition as. indicated in Table O. Calculation
forms for these analyses are provided in Appendix F. The
Taft Hi 11, Horse tooth intersection operate=. acceptably !,,ii th
'
traffic signals. It is. recommended that left -turn lanes be
provided on all four legs of the intersection. At. this level
of traffic, the throughz"•r i gh t-turn traffic can be handled in
.a. single lane on each leg. The left -turn lanes should be:
eastbound - 50 feet, =.outhbound - 230- 7'0 feet, westbound -
100-140 feet, and northbound - 50 feet.
Using the traffic volumes shovin in Figure 10, the
various. intersections operate in the mid range future as
indicated in Table 4. Calculation forms for these analyses
'
are provided in Appendix G. It is expected that by this
future date (1'?9�,:: , the Hor _•e tooth West t1aster Plan will be
at fu 1 l development. In order to attain -acceptable operation
a.t the Taft HiIl./Hor-=_.etooth inter -section, it is recommended
'
that each approach be provided vl i th a. left -turn l a.ne , a
through 1 a.ne , and a. right -turn 1 a.ne . At this level of
traffic, the left -turn lanes should be: eastbound - 80-100
feet, southbound - .2,0-420 feet, uiestbound - 120-150 feet,
.and northbound - ;,5-100 feet. At. the Taft H i 1 1;'Er•onson
intersection, a. t!,,1r, lane cross section with 1 of t-turn lanes.
is. a.dequate. The eastbound and northbound left -turn lanes
directly affect this site. At this level of traffic, the
eastbound left -turn lane should be 1 '0-150 feet and the
northbound left -turn lane should be 100-140 feet. The right-
in/right-out to the neighborhood center (Ph•a.=.e ) from Taft
Hill Road should be provided !,:i i th a deceleration lane. Given
the current 45 mph on Taft Hi 1 1 Road, this dece 1 erat i on lane
should be 350 feet plus taper to provide a 15 mph turn into
this site. Stop sign controlled intersections along
Hor=_.etooth and !!,iithin the Hor=_•etooth (,:lest Master Flan should
operate a.ccept.a.bl y.
Using the tr•.a.ff i s volume=_• shou.-in in Figure 11, the
i nt_er•=_.ect_ i on=_. operate in the long range condition as
i
indicated in Table 5. Calculation farms. for these analyses
1
•
•
Table 3
T72 Peak Hour Intersection Operation
AM Peak PH Peak
Intersection Hour LOS Hour LOS Comment
Taft Hi l l/Hor_.et_ooth C C 8 Phase
Table 4
1??6 Peak Hour Intersection Operation
AM Peak
PH Peak
Intersection
Hour LOS
Hour LOS
Comment
Taft Hillf`Horsetooth
D
E
B
C:
Add P,T lanes on
each leg
Taft Hill/Bronson
C
D
Marginal LOS C}
Horse tooth/Ne i ghbor•hood
-
Center Access
Stop Sign Control
EB LT
A
A
SB LT
A
e
S B P,T
A
A
•
Table
2010 Peak Hour Intersection Operation
AM Peak PM Peak
Intersection Hour LOS Hour LOS Comment
Taft Hill /Horse tooth C D Ttjo lane plus 1
B C
Taf t H i l I. Br on son
A A
He �r se tooth:!P,fe i ghbor hood
Center Access
Stop Sign Control
EB LT
A A
S2. LT
C E
'_* B FT
A A
Hor_.etooth/N-S Collector
EB LT
A A
SC, LT
C: C
_' B RT
A A
LT lane cross
-section on each
approach
2 SB LT lanes
1 0 0
1 are provided in Appendix H. Using the standard four lane
plus center turn lane arterial cross section, unacceptable
(LOS D) operation wi 1 l occur during the afternoon peak hour
at the Taft Hi l l/Horsetooth intersection. This is due to the
high sou thbound left turns.. Providing .a. double left -turn
1 ane will achieve acceptable operation at this intersection.
However, before j commitment is made regarding double left -
turn lanes, traffic should be monitored to be sure they are
necessary. The stop sign controlled intersections along
' Hor.set.00th operate acceptably except for left -turn exits from
the neighborhood center in the afternoon peal! hour. However,
these left turns can be stored in an exclusive lane and the.
' also have alternative routes to exit the site which would
cause less delays. Where acceptable level of service is not
attainable due to high levels of background traffic, it is
important to provide alternatives as are provided at this
' site. On site intersections should operate acceptably with
stop sign control.
It hasbeen proposed that a. right-in/right-out .access be
considered approximately Sf!Q feet_ north of Hor.s.etooth Road
along Taft Hill Road. At the right-in/right-out driveway
access and Taft Hill intersection, the right -turn entrances warrant an exclusive right -tern lane according to Graph 4 . .L
of the State Highway Access. Code. According ng to Table 4.8.10
of the State Highway Access Code, a turn lane of 350 feet
' plus taper is required for a 45 mph speed. This would
require a. right -turn lane extending from the driveway to the
Taft Hill/Bronson intersection. However, according to A
' Policy on G-ometr i c Desan of Hi ��hl a>,s• and Streets,f-'ASHTC!,
?8 14P pg. 8749
"The length of the aux i l i a.r;•- lanes for turning
_. vehicleconsists of three components . • (1 )
deceleration length, (2) storage length, and
(3) entering taper. Desirably, the total length
of the a.ux i 1 i .a.ry lane should be the sum of the
length for these three components.. Common
practice, however, is to accept a moderate amount
' of deceleration within the through lanes and to
consider the taper as •a. part of the deceleration
length. Where intersections occur as frequently
as four per mi l e, it is customary to forego most
' of the deceleration length and to provide only
the storage length plus taper• . "
According to
the figure in Appendix
1, copied from A Policy
on !_eometr i c
Design of Highways
and Streets.,
AASHTC!, 1984,
pg. :36, the
distance needed to
comfortably
slow a. vehicle
traveling 45
mph (posted speed can
Taft Hill)
to a. 10 mph
turning speed
is 280 feet. Given
this., the
length of
deceleration
lane=. should be at
least 280 feet.
Since
acces-.es along
m i l e, it is
this street are more
reasonable to assume
frequent
that some slowing
than four per
�� g i l l occur
11
1
11
11
11
1
11
11
in the right through lane and in the taper itself.
Therefore, the 280 foot length can include taper. Storage
length is not required on a right -turn lane of this type,
since vehicle_ will not be delayed in entering the site.
This. .a.ccess provides a. main entrance to the neighborhood
center even though it is only accessible from the s.outhbound
lanes � �n Taft Hill Road.
Inclusion of the access would adversely affect the
operation of Taft Hill Road if right -turning vehicles had to
slow down significantly in the through lane on Taft Hill.
However, as shown earlier, .a. right -turn deceleration lane of
at least 220 feet including taper would effectively eliminate
this slow down. Since there is 3II0 feet available to the
Bronson/Taft Hill intersection, the taper could begin some
distance south of Bronson Street.
It is, therefore, recommended that the City consider
allowing the right-in/right-out access. In order to insure
truly right-in/eight-out access, design of this .a.ccess is
very important. Placement of .a. raised ch.a.nnel iz.a.tion island
on the west side of Taft Hill Road is one method of control-
ling tra.ff i c . However, this island must be of sufficient
size and geometric design to eliminate the pos•s•ibi 1 i ty of
left -turn exits or entr•a.nces at this. location. The most
effective method of insuring right-in/right-out access at
this location is to provide .a. median on Taft Hi 1 1 Road. At .a
minimum this median would need to extend from Horse tooth Road
on the south to Bronson Street on the north. Which method of
control will 1 i k:e l y be a. negotiated matter between the
developer .and the City c �f Fort Col 1 i ns.. Croce the method of
control is determined, then the design of that control can
begin.
Accident Analysis
The recommended control devices and geomet.r•ics should
minimize vehicular conflicts and maximize vehicle separation.
Therefore, the accident rate should be at its minimum for a.
typical urban condition.
IV. CONCLUSIONS
This study assessed the impacts of the Horsetooth West
(1a.=.ter• Plan on the short range (1992) , mid range (1996), .and
long range <2010) street system in the vicinity of the
proposed development. As a. result of this analysis, the
following is concluded:
- The development of the Hors.etooth, (,,,lest Master Plan is
feasible from a traffic engineering standpoint. At full
51
1 0 0
development as proposed, approximately 15,800 trip end.. will
be generated at this site daily.
t- The Taft Hill Horsetoot.h intersection currently
operates unacceptably with stop sign control. Signals are
warranted at th i =_ intersection given the current traffic
volumes. With a •_. i gna.l , left -turn lanes should be provided
on all legs.
- By 1292, given the first three phasesof development
of the Hor _.e tooth West Master Plan and an increase in
background traffic, the signalized intersection of Taft H i l l
Hor•setooth i;,.ii 1 1 operate acceptably. At this level of
development, all that is necessary in this area is a. paved
Horse tooth Road west of Taft Hill Road, a. paved north -south
collector a, far as the elementary school, and the necessary
turn lanes at. the Taft Hill/Hor_.etooth intersection.
- By 1??6, with full development of Horsetooth West
Master Plan, acceptable _operation will occur at the Taft
Hill/Hor.setooth intersection with a. three lane approach on
each leg. Signals would be warranted at the Taft Hill./
Bronson intersection and this intersection would operate
acceptably. A signal at Bronson Street will fit into a
signal progression scheme along Taft Hill Road.
' - By 2010, the Taft HIl1/Hors.etooth intersection will
operate acceptably in the morning peak and unacceptably in
the afternoon peak with a. typical four lane cross section can
each leg. Provision of sou thbound double left -turn lanes on
Taft Hi l 1 wi 1 1 provide acceptable operational level of
service in the afternoon peaty: hour.
' - By 2010, the Taft Hill/Bronson intersection wi l l
operate acceptably with the warranted si gna.l . With stop sign
control, the Horsetoot.h/neighborhood center a.cces=.
intersection will operate acceptably except for the 1 e+t-turn
exits during the afternoon peak hour. These left -turn exits
at Horsetooth Road do have safe, convenient alternatives for
this particular movement. Other stop sign controlled
intersections will operate acceptably.
- By 2010, the proposed ..top sign controlled s' right- _
right-
in/right-out access to Taft Hill will operate acceptably. A
right -turn a.ux i l i a.r; (deceleration) lane i warranted. This
right. -turn lane would remove vehicles from the through
traffic stream on Taft Hi 1 1 , providing a safer condition.
This. right -turn lane should be at least 280 feet including
taper.
' - With the recommended control and geometric•_., the
accident rate should be at an acceptable level for typical
urban conditions.
1 10
1 0 0
I
F
I
1
fl
APPEHDIX A
1
uj
IL
= WA
U_ zLO
J lJ 0
Q QO
z
}Z
z
Q
W mw
=,o
Q
.. E
4
'„C
p
►o
00
�
�
a: co
�
M
fV
N
ro
po
(Y)
uuu
�
crcuo)CIQ
m
N
_
r
l`1
�►
o
��
,
�9
G)
1
J
e.
i
cn
`
E
W
�
o
cr
��
V r
I
},
►—
N
r�
l> >
n)
N
ter
R -
cr
r`
r
�; _
61
r,n
LL
r
o
n)
r _
r J
1
>+ Z
�o Q
r1i
O
n�
cf)
m
to
LI)
r�
--t
N)
c
nJ
N
—
z
—
N
W
t-
r
c
r-
V
I)
)��
I►
to
r
'44f. 7yt: I
I 1 0
APFt=fdblX B
J
1
SOURCE :
HIGHWAY CAPACITY M AI_ . 5. R, z09
TRE3/N IBC • w.4su. .c. 1985.
ICAPACITY AND LEVEL OF SERVICE
The concepts of capacity and level of service are central to
the analysis of intersections, as they are for all types of facilities.
in intersection analysis, however, the two concepts are not as
strongly correlated as they are for other facility types. in pre-
vious chapters, the same analysis results yielded a determination
of both the capacity and level of service of the facility. For
signalized intersections, the two are analyzed separately, and
are not simply related to each other. It is critical to note at the
' outset, however, that both capacity and level of service must be
fully considered to evaluate the overall operation of a signalized
intersection.
Capacity analysis of intersections results in the computation
of v/c ratios for individual movements and a composite v/c
ratio for the sum of critical movements or lane groups within
the intersection. The v/c ratio is the actual or projected rate of
flow on an approach or designated group of lanes during a peak
15-min interval divided by the capacity of the approach or
designated group of lanes. Level of service is based on the
average stopped delay per vehicle for various movements within
the intersection. While v/c affects delay, there are other param-
eters that more strongly affect it, such as the quality of pro-
gression, length of green phases, cycle lengths, and others. Thus,
for any given v/c ratio, a range of delay values may result, and
vice -versa. for this reason, both the capacity and level of service
of the intersection must be carefully examined. These two con-
cepts are discussed in detail'in the following sections.
' Capacity of Signalized Intersections
Capaci(v at intersections is defined for each approach. Inter-
section approach capacity is the maximum rate of flow (for the
subject approach) which may pass through the intersection un-
der prevailing traffic, roadway, and signalization conditions. T he
rate of flow is generally measured or projected for a 15-min
period, and capacity is stated in vehicles per hour.
Traffic conditions include volumes on each approach, the dis-
tribution of vehicles by movement (left, through, right), the
vehicle type distribution within each movement, the location of
and use of bus stops within the intersection area, pedestrian
crossing flows, and parking movements within the intersection
area.
Rood,va}, conditions include the basic geometries of the in-
tersection, including the number and width of lanes, grades,
and lane -use allocations (including parking lanes).
Signalization conditions include a full definition of the signal
phasing, timing, type of control, and an evaluation of signal
progression on each approach.
The capacity of designated lanes or groups of lanes within an
approach may also be evaluated and determined using the pro-
cedures of this chapter. This may be done to isolate lanes serving
a particular movement or movements, such as an exclusive right -
or left -turn lane. Lanes so designated for separate analysis are
referred to as "lane groups." The procedure herein contains
guidelines for when and how separate lanes groups should be
designated in an approach.
Capacity at signalized intersections is based on the concept
of saturation flow and saturation flow rates. Saturation flaw rate
is defined as the maximum rate of now that can pass through
a given intersection approach or lane group under prevailing
traffic and roadway conditions, assuming that the approach or
lane group had 100 percent of real time available as effective
green time. Saturation flow rate is given the symbol s, and is
expressed in units of vehicles per hour of effective green time
(vphg)•
The flow A.r a given approach or lane group is defined
as the ratio of the actual flow rate for the approach or lane
group, v, to the saturation flow rate. The flow ratio is given the
symbol, (v/s)„ for approach or lane group i.
The capacity of a given lane group or approach may be stated
as:
c, = s, X (g/C), (9-1)
where:
c, = capacity of lane group or approach i, in vph;
s, = saturation flow rate for lane group or approach
i, in vphg; and
(g/C), = green ratio for lane group or approach i.
The ratio of flow rate to capacity, v/c, is given the symbol
X in intersection analysis. This new symbol is introduced in this
chapter to emphasize the strong relationship of capacity to sig-
nalization conditions, and for consistency with the literature,
which also refers to this variable as the "degree of saturation."
For a given lane group or approach is
X, _ (v/c), = v,/Is, X (g/C),] (9-2)
X, = v,C/s,g, _ (v/s),/(g/C),
where:
X, = v/c ratio for lane group or approach i;
v, = actual flow rate for lane group or approach i, in
vph;
s, = saturation flow rate for lane group or approach i,
in vphg; and
g, = effective green time for lane group i or approach i,
in sec.
Values of X, range from 1.00 when the flow rate equals ca-
pacity to O.00 when the flow rate is zero.
The capacity of the full intersection is not a significant concept
and is not specifically defined herein. Rarely do all movements
at an intersection become saturated at the same time of day. it
is the ability of individual movements to move through the
intersection with some efficiency which is the critical concern.
Another capacity concept of utility in the analysis of signal-
ized intersections is, however, the critical v/c ratio, X . This is
a v/c ratio for the intersection as a whole, considering only the
lane groups or approaches that have the highest flow ratio,
v/s, for a given signal phase.
For example, in a two-phase signal, opposing approaches
move during the same green time. Generally, one of these two
approaches will require more green time than the other (i.e., it
will have a higher flow ratio). This would be the "critical"
approach for the subject signal phase. Each signal phase will
have a critical lane group or approach that determines the green
time requirements for the phase. Where signal phases overlap,
the identification of these critical lane groups or approaches is
somewhat complex, and is discussed in the "Methodology" sec-
tion of this chapter.
The critical v/c ratio for the intersection is defined in terms
of critical lane groups or approaches:
X, _ (v/s),, X IC/(C—L)I (9-3)
where:
X, =
critical v/c ratio for the intersection;
Y_(v/s)„ =
the summation of flow ratios for all crit-
ical lane groups or approaches, i;
C =
cycle length, in sec; and
L =
total lost time per cycle; computed as the
sum of "start-up" and change interval lost
' time minus the portion of the change in-
terval used by vehicles for each critical
signal phase.
This equation is useful in evaluating the overall intersection
with respect to the geometries and total cycle length provided,
and is also useful in estimating signal timings where they are
not known or specified by local policies or procedures. It gives
the v/c ratio for all critical movements, assuming that green
time has been appropriately or proportionally allocated. It is
therefore possible to have a critical v/c ratio of less than 1.00,
and still have individual movements oversaturated within the
signal cycle. A critical v/c ratio less than 1.00, however, does
indicate that all movements in the intersection can be accom-
modated within the defined cycle length and phase sequence by
' proportionally allocating green time. In essence, the total avail-
able green time in the phase sequence is adequate to handle all
movements if properly allocated.
The analysis of capacity in this chapter focuses on the com-
putation of saturation flow rates, v/c ratios, and capacities for
various approaches or lane groups of the intersection. Proce-
dures for these computations are described in greater detail in
the "Methodology" and "Procedures for Application" sections
of this chapter.
Level of Service for Signalized Intersections
Level of service for signalized intersections is defined in terms
of delay. Delay is a measure of driver discomfort, frustration,
fuel consumption, and lost travel time. Specifically, level -of -
service criteria are stated in terms of the average stopped delay
per vehicle for a 15-min analysis period. The criteria are given
in Table 9-1.
Delay may be measured in the field, or may be estimated
1 using procedures presented later in this chapter. Delay is a
complex measure, and is dependent on a number of variables,
including the quality of progression, the cycle length, the green
ratio, and the v/c ratio for the lane group or approach in
1 question.
Level -of -service A describes operations with very low delay,
i.e., less than 5.0 sec per vehicle. This occurs when progression
is extremely favorable, and most vehicles arrive during the green
phase. Most vehicles do not stop at all. Short cycle lengths may
also contribute to low delay.
1
TAnI-E 9-1. LEVEL -or -SERVICE CRITERIA FOR SICNAI,izED INTER-
SECTIONS
STorrED DELAY
rER VETIICLE
LEVEL OF SERVICE (SEC)
A
< 5.0
B
5.1 to 15.0
C
15.1 to 25.0
D
25.1 to 400
E
40.1 to 60.0
F
> 60.0
Level -of -service B describes operations with delay in the range
of 5.1 to 15.0 sec per vehicle. This generally occurs with good
progression and/or short cycle lengths. More vehicles stop than
for LOS A, causing higher levels of average delay.
Level -of -service C describes operations with delay in the range
of 15.1 to 25.0 sec per vehicle. These higher delays may result
from fair progression and/or longer cycle lengths. Individual
cycle failures may begin to appear in this level. The number of
vehicles stopping is significant at this level, although many still
pass through the intersection without stopping.
Level -of -service D describes operations with delay in the range
of 25.1 to 40.0 see per vehicle. At level D, the influence of
congestion becomes more noticeable. Longer delays may result
from some combination of unfavorable progression, long cycle
lengths, or high v/c ratios. Many vehicles stop, and the pro-
portion of vehicles not stopping declines. individual cycle fail-
ures are noticeable.
Level -of -service E describes operations with delay in the range
of 40.1 to 60.0 sec per vehicle. This is considered to be the limit
of acceptable delay. These high delay values generally indicate
poor progression, long cycle lengths, and high v/c ratios. In-
dividual cycle failures are frequent occurrences.
Level -of -service Fdescribes operations with delay in excess of
60.0 sec per vehicle. This is considered to be unacceptable to
most drivers. This condition often occurs with oversaturation,
i.e., when arrival flow rates exceed the capacity of the intersec-
tion. It may also occur at high v/c ratios below 1.00 with many
individual cycle failures. Poor progression and long cycle lengths
may also be major contributing causes to such delay levels.
Relating Capacity and Level of Service
Because delay is n complex measure, its relationship to ca-
pacity is also complex. The levels of service of Table 9-1 have
been established based on the acceptability of various delays to
drivers. It is important to note that this concept is not related
to capacity in a simple one-to-one fashion.
In previous chapters, the lower bound of LOS E has always
been defined to be capacity, i.e., the v/c ratio is, by definition,
1.00. This is not the case for the procedures of this chapter. It
is possible, for example, to have delays in the range of LOS F
(unacceptable) while the v/c ratio is below 1.00, perhaps as low
as 0.75-0.85. Very high delays can occur at such v/c ratios
when some combination of the following conditions exists: (1)
the cycle length is long, (2) the lane group in question is dis-
advantaged (has a long red lime) by the signal timing, and/or
(3) the signal progression for the subject movements is poor.
The reverse is also possible: a saturated approach or lane
group (i.e., v/c ratio = 1.00) may have low delays if: (1) the
cycle length is short, and/or (2) the signal progression is favor-
able for the subject movement. Thus, the designation of LOS F
does not automatically imply that the intersection, approach, or
lane group is overloaded, nor does a level of service in the A
to E range automatically imply that there is unused capacity
available.
The procedures and methods of this chapter require the anal-
ysis of both capacity and level -of -service conditions to fully
evaluate the operation of a signalized intersection. It is imper-
ative that the analyst recognize the unique relationship of these
two concepts Rs they apply to signalized intersections.
j
1
I
1
11
I
IlJ
LEVEL OF SERVICE CRITERIA
FOR
UNSIGNALIZED INTERSECTION -
Level -of -service criteria for unsignalized intersec-
tions are stated in very general terms. and are related
to general delay ranges. Analysis for a stop- or -
yield -controlled inter -section results in solutions for -
the capacity of each lane on the minor approaches. The
level -of -service criteria are then based on the
reserve. or unused, capacity of the lane in question,
e.�spressed in passenger cars per hoer- WCPH) .
RESERVE CAPACITY LEVEL OF EXPECTED DELAY TO
(F'CF'H) SERVICE MINOR STREET TRAFFIC
--------------------------------------------------------
A Little or no delav
'�-►!�-'99 E Short traffic delays
iri►-9� C Average traffic delays
1199 D Long traf f i c delays
0- 99 E Very long traffic delays
F
*When demand volume exceeds the capcity of the lane,
e:;treme delays will be encountered with queuing which
may cause se, ere congestion of f ect i nq other traffic
movements in the intersection. this condition usually
warrants improvement to the intersection.
Reference: Hi 1f..}� +Y_ Gpp.�c. _t.y M�!ri�!a.k E:,pe,c_i al Report
209. Jr anspor tat i on Research Board. Nation-
al Research Council. Washington, D.C.
1 9ac. -
1 .0
CJ
J
H
a
I�
1
11
AFFEPJD I X G
C)
0
0
C)
0
0
0
0
ae
N
N
O
O
r
r
^
r�
O
N
N
N
N
to
to
►
'
r`
M w
w
M
�'
'�f
r
r
N
N
LLJ #•
O
O
O .O
O
O
O
O
to
N
U
J F-
aE
w
co
to
C)
cc)
C)c#
OO
CO
.ct
m
CO
•ct
co
ztC
•
O
to
td
O
O
M
M
ct
r--
r
N
N
4j
►>-�
Q
tn
C
LtJ
a e
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
to
O
to
O
o
O
O
M
M
r
w
E
r
ct
d'
tD
to
N
N
Cl)
M
0
Ln
C
Z W
Oa: Z
CC
n
C
ul
o^
CD
C
0
Ln
t-
4J
as
►--�
^
r
r
r
r
f`
D-
M
O E 2 ^
tD
tv
\
S U>
m
u
r
m� C)Z
as
O
CD
CD
C)
CD
O
CD
CD
O
b
L.0 W C)
CZ)
N
tD
WtD
lD
L
M
Cl. J t1
CO
r
r
r
r
Q1
C
L
LLJ ►
a)
p
•J w
U W L waJ U
o
O
o
O
O
Lo
Lo
O
CD
O
o
O
Ql
+�
C
►-. w ui
CD
Ln
LO
C)
C)1�
r-
Z
cu
S L u tY elf
r
r
r
N
N
b
E
>. StNO
L
O
o
O
O
O
Ln
O
O
O
O
O
Ln
r
S-'
a)
C
7
tT
H
a2
o
r--
m
O
0
o
C)
r
M
r`
to
to
r-
to
to
L
z
to
Ln
r�
r�
Lri
w
0
0
W
c
r
1
~O
H
r
r
Q
3
c
+-3
Q
Z#
C:)
C:)
C:)
C:)O
O
O
O
W
`�
N
CD
o
oU
o
0
0
0
oo
O' O
:
-I-
�- O
co
tD
tb
M
tD
Or
N
r
N
r
O
r
•u
4-
4-
co
W P-t
P4
r7
'-' �L
to
H
c
to
d
C
as
o
0
0
o
O
o
0
o
L
O
2
0
0
0
0
0
0
Ln
0
O
0
O
0
Ln
C
C 7
CD
r)
CD
O
M
_w
_
H
r
t70
O
O
CO
N
to
to
N
to
C
l
E
► 7
CI)
r
r
r
r
r
r
r
b
rC +j
O.
r---
C
u
V
to
E
-v
Z
to
C
a)
N
_
C)
O
L
L
F-' W
O
O
O
O
O
m
O
O
LO
O
.�
C) O S
r�
Ln
N
�3
N
ct
Ln
M
tD
to
Ln
C)Ln
F- UQ
M
+-
C)0
L
O
o
M
SO..
tYF-of
LtJ w tl
ae
C)
0
0
0
0
00
0
CDC)
cJ
►.
+J .
a Q.
°°
oa
00
wt
to
LO
u
O
+-t
rLLJ
e- ¢
d
•r
C
L
En ~
4-LL-iO
to
L
C
-J
cia
�
C)
0
0
0
CDO
O
O
O
b
L
-cc
L
r
E
�-. C:) CO
o
0
0
0
C)
tJl
Ln
r`
CD
tT
CD
Ol
Ln
r�
�3
Ln
lD
to
w
>1
LLJ d LL.
L
Q)
m
rd
y 0
O
L
C
3
•
t-
4-3
•r
1
N
N
to
a-J
CU
til
U
F—
L
L
LO
{��
L
a)
O
to
E
E
E
E
t/) LL- U
Ld d Q
O
s
L
L
L
L
C
to
(0LL
O
Z LL' O
Z
O
0
O
O
t d
J~
~
�
r
r
N
N
r
r
N
N
3
a-
CD Cl-
LL. Z d
r
N
to
L
L
O
..
m C)C3
E
E
E
E
E
w
to
L" L. Q
W
L
L
L
L
X
LLJ
a W
OC
O
7
O
O
O
0
to
O
Z L- C:)i
r
N
N r
r N
N
I iNVHUVM
11
iNVHHVM
•
1
�I
I
1
I
rJ
a
O P >
a
u U C °31
r A 3 b ° + tp O1 UV
" w w 01 a u .1 Vu •
� � s
.��
u C of b 7
0 Ay VC b uP Ij c j A O V ^' o O
• 7 u O " u 4uybp w " p4 d m +b
d Y T y Y y Y 31
■ 6 gg? O tl r u a O •
oc
tr ow
S 0 1 B
'.•c M1 V ) A
N
I
N
• FIGURE I •
PEAK lJoUn VOLUME w/lat of
a
60o
tom_"gi UB uA OR 3 �''
2 on IoRE. ANE , a 1 1 1lME it �.�
(11
Soo
a
_ ,,
�.._
d
I,l�( E_Q LANE
rn
�--i j•.....
CL
t
.i.
too—
.w�soe:. .:
600 700 Bov 900 1000 .1100 1200 I�Ob 1400 ISIDO 1600 1700
1800
PANOR S1(?FET-TOTAL or
Ik1101E1 150 Vrll AhrL1ES Its 711E l_OIIEpP, TIIRES11�IiD YOl_UFIE FOIL,
A IItNOR STRFCT WROACII 11till'1kO OR (1onn. t-AtIES Allo; +
1 '10o Vrif ArFL1ES AS 111E LOIiEI!'TItREsl1o1i0 VOLII1 •.•rs 1"
j� NINor SiRI Ei nrrROACNIrIS :1/111 Ot1E F.• Fp�
FIGURE 2
PEAK 1101.111 VOLUME WAnnANT.
(COMh1U111TY LESS TITAN 10.000 POPULM10" OR ABOVE 40 NP11011 MAJOR STREET)
0
!A
a
z 400
u
Q
JC3
300
�a
o
go
100
X
tD
3
2 O:t V m; LAF
6S a 9- c
It MAnE
LANo
,
Z o boRE
(LANE
ArIEs a
Ot 1I:AEE
1 LFJ1E
—'"'T
_ .
30 400 500 600
700 000 SOO 1000 1100
12�00
MAJOR STREETT-VTAL of qui11_�1rfRonC111Es7wl1
H "01Et inn. vr11 11rrL1ES PS 111E 'LOWER TIIRV6TIO _0 VOLVIIE roR
ANINOR STREET /1FFROACII 111TN TVa.--CR 140RE LAIIES.A110
75 vrll ArrLIES AS T11r- LOWER 11,RraHoLn 'VoLtV" tort !�
` N1N0R STREET•APPROACHING WITH OBI LANe, -
tso0
APPENDIX D
11
0
0
S(
ri
T
UI
k
it
4i! 01
f O_
`r X
EL
I F-
J V
lli .
L _!
TLL[r:W
U: I
I
I
.y I
- C, O O
IL U7 I
I
Q I
J
I
I I
I
U roc,
1
LU 0' I
I
` I
w _I2 I
w
r_rpr_�rI
1
J 1
1
I
N
F- I
C•1 I
I
,7 W Ui 1
_ ,:•Oo
z
J I
T J I
o 0 0 0
W J I
1
J
Q O 0
CC I
I«
Cd C'yJ
I
I
- r- u-) u?
1
7 7
`L I
J I
J I
�r Pi
2 I
I 2F 2F-
LL 0 I F-tnHrrl
tl0 1 LL'1W
n: I OU10 _. W.
n: LL 1 z .„
F- 1
I
Door?
LL
I
•i I
1
000r_�
Ut U, I
I
%I I
J
_I I
1
I
rn I
I
LLI CO I
_' r✓ C
Ln 1
W I .1
!I J I
O
F.
I
1- I
I rV 1
_J I
J Q I
T J I
1
u,-•oo
L7
I
..1
Ci
I
I
-• I
wrn
*r O'
J I
1
rJv-�v
I
I
4J
CJ I
LL I
F- U F - rI
U_ V I
it .1• Z. 1
<Ti+ I
O WO_.
U_
F 1
IT I
1
W 1
I
1
M I
W I
I
J
1
I
CJ I
I
W
o
z I
7
JI
W
ra I
W
-1
R
J 1
r-
n] 7
N
'n
Zz
J 1
LL
(o
z
77-
1 U
F U
F- U
F- U In-
}.
u>
L)D
uj a
¢cL
¢cr
rM
41m »
LL W
tL W
CL w
(L W �.
ca[ to
4 r-n
.:Z rn
Z (-n 2
r�
LL
U
LL
L)
LL
U F
LL Ix
•
W O
W C I
W O
W O O
tuJ
it,
CY.J
ww
ww
ww
III
ww I
Ul -,
ww
M '+
LU
w -
Cu
ww F-
w J
Ci J
W. -J
s J W
n:
F-
to
X
f~f7
H
w
LL O 1
LL
7
0
W 0
s�i
z
w
3 a
F- I
£
m ;
I
I
r• I I
w
U-) u�
z I
ul
o
Q 1
J I
w
rJ I
i i
oa
v
IT
o.
w l
C'J m
C) W
If) .T
7 w
- Z I
to
n
Q I
J 1
Ul
}}
U
(.) j
U ^�
U:1 O
alai
iw
aw
(Lll�W
<L(r!
5
4Cf)
UCn
<Ew
LL
LL
LL
U-
W O
w 0
UI O
w O
Z
CLJ
w J
U: J
LiJ
w w
(11 ,
W W
frI
W W
(r, >
w W I
In
W LIJ
n: J
W Gl
n: J
w w
n: J
W LCl ♦-
CK J W
W
(n
LL O I
�x
=1
W O
<L K I
O
W
O
Lt. LL 1
L
(n
2
F 1
:.
I
O
0
004•_....04
Cl
, 1-
*1 - I I I I
E
NN
1.4
0
N7
z
02
0
- N
L)
C.)
0 C-4
Z)
0 (A V1
M
CO
2
m
a, CV-i
ILL
(0
03
0)
Lu G
Cr -i . . . .
w
w
LLJ
w
O
ul
W U) CD
0
0
r 0
0
M
cri
C,
w Ili
tl) u7 c o
n 0 LLJ
kri
LIJ W a
0 r.n
V.
10 p I rl.
I
ij
rx -1 . . . .
w
L. L)
r, (1) C.
w w
>
b-I N 0.1
0
(n
0 0 o.Y.
LIJ
w
CYi
ff ft:
(0
L)
f- v 00
r
w
a- (L I
w
w
W
D
fn
z
J
Z
�m .7 LLI o 4,
w m
-:D zi F-
D Z
1,
-j
0
z
fr
z
0
0
0
II, j j _j
w M
IX w n
w m
w
<r IT 11
z m:
LL x
0
w w z
P-)
r L.,
LL
J
SS 0
b
-1 CL
. . . . . .
=1
LL
=1
o Q
I- -
w
0
(n Z.
Ly.
fx- fop
'Lun
foP
-1
in
Ld [L U� ct
z 2'
c
-1 cn 1-1 u U Ilt
C)
+
04 C',l (11 (q
fx
(F)
Ll
IT C-4
(0
z
02
0
Ir
0
ix
z
:m)
C, LO 0
c
M
Pl.
art
m
81
L)
LL
X
0
z 7-.
0
o C, C) 0
F
(D
0
CI
z
F, z z S
6
c000
0 ft� j
CID M ca m
z
m J: F- F-
- (n W
W
F- F- (n W
(n w -j
x
z
cr =, < w
'I GU
ED
-j
N O's •r Wl
m
00W2
m w -
n a
LL M
w x
Z (n
fl- CL L)
LIJ
-i
rt
-_, =1 EL
EL
Z F.
0
m
F-
-1
0
u
0
C. IT C, U-)
ED
w
<
CU
EU P. co �4
. . . . . .
ILL
F-
0
j
YJ
W
fr
(1)
w
Ul
D
til
4
CL
n
ci
f
0
0
0-
IM
0
w
0)
+ II
H
F
now
D,
i4
k
w w 0.
0
(Cl
(ry
+
L cI
H
2
X
2
EO i..
Cr A
ul
w
+ r ei P4
w
It
00 U.
+
w
to
a_ Cr
+ 0 C,
w
a_ LL I
w
w
+
w
W
E
x
+
D
z Z
D
L-
+
1+
0 n
O--> cz,
C14 0.
M
Ix w
D -1
-i
0
n
z
Cr
ck
z
Ul + C'
LWI
0 C3
04
:3
- IT
(.4
j
0 r" W,
4D r-
Z.
0
m
4 IL -j -j -j
I I 'l
W
M
W. OL
w
m
+ i C.
I �-
ILL.
x X 0
u
3
D
LL
rl 0
�- (.1 �6
D
i D D
. . . . . .
. 1 :3
WO
0
ui
0
+
o Z
w j
,
A
0)
+ III I. ft. Cc 1, +
z
:
+ +
Cn,
+
+
04 (q N N
0
En
0
+
X
IT—
L)
=1
\Z
=1
I-
�-
0
(11 N : : :
0
Ce
�d
0 LO (I
c
W
L2.
N
a,
Ul
fl.
X
L)
X ^u
F-
3- — c in
In
z
LILI C,
C,
3:
CK
CK
C)
z 7
z
C, in o
�zz
wi
0000
0 'T
w
F-
M m co cu
3: X F- F-
F-
ujL'i
-i
7 0
LL
w
(n (0
(r, LLJ -i
')
2
D
-.4 Cm W)
Ll. :D � w
00 2.
11 ( L I
2w >-
L
LL LL 0
Cl7-
CL a-
Ul UI
F-
W X
Ell
J)
D (L
X
n
•
r' 1 r•.1
0
u
G
F-
z
cv r, r.
o
z rJ
O
-+ CJ
U
CJ
J C! CJ
_
W
m
Q
coW
ei
nl N Cl
C~n ?
F-
C.)
LL
iU
Cl
U) .., (v n
W O
LY _J
w
X
W
w
]C
°i
*
G
d
k #
G2
O
K
F-
G
d
A4 R:
' _ F-
CJ N
L
17 U"1 O
7: 2
z
_
:Y R:
O '--'
O
Ln
E
U
O
Y »:
{
W
F.
W
R-
C)
G o LLl
W
7
CO
F-
m Vl r, C.
F--
A
1 1
R t- iv !i.
tI O
Ill :-
F- • . . . .
LY J
Cn
W
R
\
W W m
U U U -
O
L')
W
Cn C.
tit
4
+ A
-
w
00 0,
y
:Y W -J ..I A-
Lr'
W
N
m ll�
to
U
:+ I_I CV r 0 :Y
F--
F
w
LL CL 1
W
W
A
W
to
x
ZZa
:
U
+ U :- A:
{ Ul R.
0 O
LU ZT
O i7
Lr d
t
n r..
m
fL LL
1 O
J
p
Cl
z
^.
O
.
+ ,' LU 01 A:
ILl + R:
F + LL J J J y:
C.: F-
O u
W m
rV 0.4 • • • •
— _. . . . .
C. CI
LYI
'.7 Cn CJ
.., V
J
II
CS
F F-
to
F- LY: n
_ •
w
,
I , rV
uI t. n-
R:
_i
~
.J
O
:( 1 .!F °.0 aI T R
Cl + .:I r I LI U `k
+ IIiDF-F. F-� M
zS_
:L F-
Jc'b
F-
L[ J
LL 2
LL F-
2E8
(✓ p)
O
J
U)W _
W S i '
W
W Cn
J
J
20
~
O
..
F
W
J
2`0 r•.l C-:Q
FJ ..1.
O
[n
i l l rc CI 6. i
{ _I inr ii�I
It, k :R
r.
• 'Lr
{C
J
• I .r
111
lil C.
-r -
+' R:
O A 'Y
W
rU
S
Ll _
O u
W •-'
W Y„
o o
o O
- -•
F-
O
G
m
m
0
�+ 10
IT.N-.
:v
y:
U
OS
cc, 3 F
Z LLI
x
t-
F--
U
O
t
O U) O
lot:Q
�
0
O
L
O
lL O
o
L I
j
' •
it.
2
I L
I
W
S
. C'1 C)•lr)`4
F-
F-CIS
W 2o
7� 7
0000
S x F- F-
F- F- (n (n
m n 2 w
OOLLLLII3
s Cn
— w
0 Q: _J
'�-' F-
J
W w W
Q CA U
S W -
a a-u
2
C7
a: F-
1
ul
U�
D
-i F,
O
_• w ... `w
F- rJ -
a lil
Ll
EL
2
Z u L)
F-
'-• 'S
W
LY J
W
0to 11
LL
j
O
u
WLU
G
O
S
--..r ...
^1
1
J
111
'-
lil
' .yI
..
0)
2
t-
LL'
-1
i
F
lL
F...
y:
:Y A:
R �!:
-+
R� LU J J R:
U[vvr_r A.
-, - -
CI)3i *
A: u i . Z .I L #
U
Ill R: rj *
F- R: IJ. J J J 1k
,I A: [') F- Ia2 *t *
R W __I F- F.. 1- M
{. .. F_ - >K
* UJ C'. UcI *
A A
* Y
ci f
r ..
LL
F-
rJO
w 7 —
' r []
W W .+
.• = 3
0,
Cn r
Qiu
_ -
Gig
Z 3-
w
f
n
o'er
i-.. .:.:•
rJt J . . . .
F:
Li _J -
.-.NCOOIf1"<r
p
O
Cn
w
OO
y
20
W
LLLl- Fx-
LL O
F. to
O
O
Z
N C
N IT
V) U,
I -Mx
lL =
JF�
w
w
d
lil
U)
m
J
tI
L)
0
y:
D
OD_00
zSzz
0000
m m Co W
F- F- C~n in
C L D w
OOLl33
_
Lt
Cn
o
o0w
wWa
�u
O O i,
a s I
�D
♦- F-
N
F- CL G
W x u
> '; W
<.0 W n)
2 •o
ZLLl_
Z~U'
.Zw
r` I- _1
_
[f.I W J
tI O U
x W -
w
Z
w
�
a
W
E
J
-''
W
Q
U
M
W
Z Y. c,
0—
rn
F-
w
w
G
O h N
m 'U `n
ct .,
O
in
0
C'If, r
Zvi
Z
C)
-i
O J
2
F-
z
W
x
j
F-
W
J
O
m IT G a ,
6-
w
z
O
m
r+l rq c ,1
O
Cn
u
G
N 1
�-
W J
C
.
G F F
a G Uzi
F_Co a-t7
O � 11
a I ,
ZiT f1
.. T
1 0 0
APPENDIX E
l
Ll
I
I
1
I
L
flATTHEL.I J DELICH
ARTERIAL PR V
SIOtI DEGIGtl •
P.UId4 '
ROUTE: TAFT HILL
INTERSECTIONS: 5 CYCLE LENGTH: 60 SYSTEM OFFSET: 0
BANDWIDTH LEFT: 19 $k RIGHT: 19 SOC. PERFORMANCE INDEX: 41
EFFICIEPIC:Y: 217. ATTAINABILITY: 65 INTERFERENCE: 18
---------------------------------------------------------------------------
tlO. .........TIFIE—LOCATION DIAGRAM.......... DISTANCE SPEED
R I GHTSOI_a•ID ... READ DOl,4N LEFT RIGHT LEFT RIGHT
I °; XXXXXXXXXXXXXXXXXXX 273n n 35 35
2 x XxXXX.XXXXxx 1800 2780 35 35
3 Xxxxxxxxxx 700 1800 35 35
4 Xxxx) XYxxxXxxxxxxxx 2700 700 35
5 XXXXXXXXXXXXXXXXXXXX 0 2700 35 35
t1O. OFFSET .........TIVIE-LOCATION DIAGP.At1.......... PHASE LEtIGTHS
LEFTSOUR•ID ... READ UP 1 2 3 4 5 6 7 8
1 2 XXXXXXXXXXXXXXXXXXX X 50 50
92 Xxlexx=!),XX X 70 30
40 Xxx:rxvw•v+ 75 25
4 X.:C:X';...::<7:X;C:`<Y.XXXXXX 5n 50
- 50
---------------------------------------------------------------------------
TIME SPACE DIAGRAM
ROUTE: TAFT HILL
COVV IV IT : PUf l4
CYCLE LEIIGTH 60 SECOIJC!S: SCALE IINCH=40i: OF CYCLE: I LINE= 179 FT
>x>s.YYYs i�l�#Riga#�.YiiYYYY�iR+iiF\\iciisiiiEsiEiF�t�iri!IEIi*isFiEi�Yi:tIFM'lriiic�!#tiiYY�aI'iEYY'Jc'y��M�E�#�aYii�i��Ir
I DRJI!<E XX.xXXXXxxx•; c A /xxxxxxxxxxx /.cxXxxxxxxxx
2 Xxxxxx xxxxxx xxxxxx
BeAasoaxXxx XXXXxx xxxxxx
NoR$6TOa7N XXXXXXXXxX` XXXXXXXXXXX
5C 38C-Xxxxxx lxxxxxxxxxxx XXXXXIXXI=x
Y YYYYjFYYYY�tYYiJ(itY�ii J4Y�Y;YYYJ{Y.1tYYji��jiiLj{{JFYJk{i�*j{jij��t{f�t{{If�•jL �.*jib*Y{i {4 di*{F �{�*i*;., YYYYYY
MATTHEW J DELICH
ARTEPIAL PROSICR1 DEG1GN •
P. LKJ5
POLITE: TAFT HILL
INTERSECTIMS: 5 CYCLE LENGTH* 70 SfSTEtl OFFSET: 0
BANDWIDTH LEFT: 17 Sec RIGHT: 17 Scc. PERFORMANCE INDEX: 32
EFFICIEFICY: 24 /p ATTAINABILITY: 50 II'ITEPFERENCES 27
---------------------------------------------------------------------------
1'10• .........TME-LOCATION DIAGRAM.......... DISTANCE SPEED
PIGHTBM-M ... READ DOWN LEFT RIGHT LEFT RIGHT
I xxxxxxxxxxxx XXXXXXXX 2780 0 35 35
2 XXXXXXXXXXXX 1800 2780 35 35
s xxxxxxxxxx 700 1800 35 35
4 XXXXXXXX,XXXXXX XXxXX 2700 700 35 35
5 Xxxxx xxxxxxxxxxxxxxx n 2700 35 35
NO. OFFSET ......... TIfIE-LOCATION DIAGRAM.......... PHASE LE146THS
LEFTBOMID ... READ LIP 1 2 3 4 5 E 7 B
1 30 XXXXX XXXXXXXXXX.XXXXX 50 50
2 70 XXXXXXXX)()(` X 70 30
3 1-, x l:)CXxxxxxx 75 25
4 S0 x-: XXXXXXXXXXYXXXXXXX 50 50
_ 30 XXXXX,XXX.:<X XX XXXXXXXX SO 50
---------------------------------------------------------------------------
TIME SPACE DIAGRAFI
POLITE: TAFT HILL
CDFNiEt•IT: PIIIIS
C'rCLE LEIIGTH 70 SECC41DS: SCALE IItICH=4n;; OF CYCLE: I LINE= 14? FT
YYYiiYYYYYi Y{G{LjL{t��YYYYY��tY{[{FYjt Y�i jC jt jf.*�GaI•iil<!;*�**�eF i!16Yi*.JiY><iEYii�jG.IF#{L**�{tY�{Li#jiY{c .J[Yi
1 D�egtG6rx..:x:,. x::<:";�;xxxxxx xxxxxxxxxxxx xxxx
I
arum
��o28E
xxxx%xxx:7/
"' xxxxxxxxxxx \ \xxxx
Y{[YYi(.YY. iiYYYYY�cYYiiYYY YYYYYY YYd}Y li.��i*{E {t {�YjE ,Y�i[*JF**iiti�4iY i�Y�*.j�Y,4 i.4i�><x Y�}�i it 1�1!±E}*itY
11ATTHEW J DEL I C I*3
ARTERIAL PRO 1011 DELIGN
ROUTE: TAFT HILL
1NTEP.SECTIOIJS: 5 CYCLE LENGTH: 100 SYSTEM OFFSET: 0
BANDWIDTH LEFT: 47$6c RIGHT: 47 Sac PERFORMANCE IMDEX: 4?
EFFICIENCY 47 7. ATTAINABILITY- 98 INTERFERENCE: 16
---------------------------------------------------------------------------
110. .........TIME -LOCATION DIAGPW .......... DISTANCE SPEED
PIGHTBOUtID ... PEAL) DOWN LEFT RIGHT LEFT RIGHT
I XXXXXXXXXXXXXXX3CXXXX 2780 0 35 35
XXXXXXXXXXXX 1800 2780 35 35
XXXXXX`:XXX 700 1800 35 35
4 XXXXXXXXXXXXXXXXXXXX 2700 700 35 35
5 XXXXXXXXXXXXXXXXXXXX 0 2700 35 35
HO. OFFSET .........TIME -LOCATION DIAGRAM.......... FHASE LENGTHS
LEFTBOUNE, ... READ UP 1 2 3 4 5 6 7 8
1 0 XXXXXXXXXXXXXXXXX,X.X X 50 50
2 40 XXXXXX•.XXXXXX 70 30
3 87 XXXXXXXXY X 75 25
4 0 :,XXXXXX.'.:.:CXXXXXX XXXX X 50 50
50 :<XXXXXX,!^,XXXXXXXXXX 50 50
---------------------------------------------------------------------------
TIME SPACE DIAGRAM
F.OUTE: TAFT HILL
COHIIENT: RUM
CYCLE LENGTH 100 SECONDS- SCALE 1114CH=40% OF CYCLE: I LINE= 179 FT
YYsa
IDR
200
-C.k
Y {tYYi�YYY�f Yif YYIf�.if.r�.ti.�*jtYi�*YYY�iF*�tY#,*{i��*{{fi�Y{{��{E{F �f �4•��4 �L �1.*JF{{4�Y YYf *Y.�{t.yjYi}*�Y���**�
MATTHEW J DELICH
ARTERIAL PROD cSICNJ DEGIGN •
P.lRJ2
ROUTE: TAFT HILL
It1TERSEC:TIONS: 5 CYCLE LENGTH: 110 SYSTEM OFFSET: 0
PAND14IDTH LEFT: 44 $GG RIGHT: 44 BsG PERFORMANCE INDEX: 47
EFFICIENCY: 40�.7 ATTAINABILITY- 84 INTERFERENCE: 17
---------------------------------------------------------------------------
NO. .........TINE-LOCATICNI DIAGP.AM.......... DISTANCE SPEED
P• I GHTBOL NdD ... READ DOI,.NJ LEFT RIGHT LEFT RIGHT
I XXXXXXXXXXXXXXXXXXXX 27$0 0 35 35
2 XXXXXXXXXY,XX 1800 2720 35 35
"ll XXXXXXX 700 1800 35 35
4 XXXXXXXXXXXXXXXX 2700 700 35 35
5 XXX%' XXXXXXXXXXXXXXXX 0 2700 35 35
NO. OFFSET .........TINE -LOCATION DIAG,RAM.......... PHASE LENGTHS
LEFTEOLNdD ... READ UP 1 2 3 4 5 67 e
i 0 XXXX;;XXXXXXXXXXXXXXX 50 50
2 40 X,Xxxxxxxx xx 70 30
c _ X,Y.X;:::XX.•<XX 75 25
4 r 0 X XXXXXII, ""X:::,'XXX"- .XX 50 50
s 51, 50 50
---------------------------------------------------------------------------
TIh1E SPACE DIAGRAM
ROUTE: TAFT HILL
CONE 1ENT : PUt,12
CYCLE LENGTH I10 SECONDS: SCALE 11NCH=40% OF CYCLE: 1 LINE= IT9 FT
YY iaYiii iiiuu�.*�;.s jcY Y'X'i jR {�M �#YY r��xiE iE Y. IE iF iF*1ki!Y �R�FiiE lt!!�Y7EYYi!ii�iik i!##;Y{t.:c ii iiY Y,{t {t {F {F {R {LY{4YY
3
IO
itYY�tY*jf{LY�iYYYYjiYYY*YYiFYY�[i({iYYYj�..��I �f*�j{{fjf*Y{i{f{F�*/I jl�Yjl ik/4*�Y{{�***{l �.rY*{tYYYYrY�i ji �tY*�
MATTHE4J J DELICH
ARTERIAL PROGPESSIOIJ DEGICRI
•
ROUTE: TAFT HILL
P.UN11
•
Pi
INTERSECTIOtIS! 5 CYCLE LENGTH: 60 SYSTEM OFFSET: 0
BANDL.II DTH LEFT: 13 SEC. RI CHT - 13 Sit- PERFORMANCE INDEX: 36
EFFICIENCY: 217.. ATTAINABILITY: 44 INTFRFFRFPJrP! a.q
tlO.
.........T1t4E—LOCATICMJ DIAGRAM.......... DISTANCE
SPEED
PIGHTPOUND ... READ DOWN LEFT
RIGHT
LEFT
RIGHT
1
XXXXXXXXXX :CXXX XXXXXX 2780
0
40
40
2
XXXXXXXXXXXX 1800
2780
40
40
XXXXXXXXXX 700
1800
40
40
4
XXXXXXXX.XXXXXXX, XXXXX 2700
700
40
40
XXXXXXXXXXXXX`<;XXXXXX 0
2700
40
40
tIO.
OFFSET
.........TIME —LOCATION DIAGRAM..........
PHASE
LENGTHS
LEFTBOU111) ... READ UP 1
2
3 4
5 6
7 8
1
35
XXXXX XXXXXXXXXXXXXYX 50
50
2
25
XXXYXXXXXXXX 70
30
''
72
XXXXXXXXXX 75
25
4
85
YXXX XXXXXXXXXXXXXXXX 50
50
5
---------------------------------------------------------------------------
85
XX) XX,XX.XXXX,„(XXXXXXXX 50
50
TIME SPACE DIAGRAM
ROUTE: TAFT HILL
COt 111Et IT : PUt•11 1
CYCLE LEFJGTH 60 SECONDS: SCALE 1INCH=40% OF CYCLE: 1 LINE= 19? FT
iYYYii•Y.•X............
1 DRAKEt;
2MoFFe
a�eHse
a NoRSETo
sii!,tY**ifaFieii*iiYYi�i!ii?Eieix#Fi�YYs�Eui{�.YifY,E�!±E*i4?:xiFii+i*�i:ias�iF+��*eFiEaFYiFif�i4afaFiFif+�?4±fafMYYii!�iYiF
I
19ATTHEW J DELICH
ARTERIAL PP.OGRESSICNJ DEGIGN
ROUTE: TAFT HILL •
P.IBJ 10
is
INTEP•SECT1OhIS: 5 CYCLE LEPJGTH: 80 SYSTEM OFFSET: 0
BAtIDWIDTH LEFT: 26 SeC. RIGHT: 26 SoC. PERFORMANCE INDEX: 46
EFFICIENCY: 32'% ATTAINABILITY: 67 INTERFERENCE: 16
---------------------------------------------------------------------------
NO. .........TIME -LOCATION DIAGRAM.......... DISTANCE SPEED
P• I GHTSOUt•ID ... READ D(XN4 LEFT RIGHT LEFT RIGHT
I XXX XXXXXXXXXXXXXXXXX 2780 0 40 40
2 XXXXXXXXXXY,X 1800 2780 40 40
XXXXXXXXXX 700 1800 40 40
4 XXXXXXXXXXXXXXXXXXXX 2700 -00 40 40
XXXXXXXXXXXXXXXXXXXX 0 2700 40 40
P1O. OFFSET .........TINE -LOCATION DIAGRAM.......... PHASE LENGTHS
LEFTBOUtJD ... READ UP 1 2 3 4 5 6 7 8
1 7 XXXXXXXXXXXXXXXY. XXXX 50 50
47 XXXXXXXXXXXX 70 30
q5 XXXXXXXXX`l 75 25
4 7 >.:XXXXXXXXXXXXXXXXXXX 50 50
5 57 XXXXXXXXXXXXXXXXXXXX 50 50
---------------------------------------------------------------------------
TIME SPACE DIAGRAM
ROUTE: TAFT HILL
COM10IT : P,! 1110
C)r_LE LEt,ICTH 80 SECOIJDS: SCALE 1INCH=40% OF CYCLE: 1 LINE= 1P9 FT
#[YjtYj[#j[�t�{i Yii�YYY YY{tYY�tY{G jR aGY jGY �'.a.�i�ia�+::!s�RiE BF iFi*it�3!#if if iF iF#iF i�l�i!YiFiis itRri it {c {c aiii4.�GY*YYYX.
ID
11
s
ait
�C.
j4Yl{YYiY}L�{YY*�YY.j �e JiY �tYYYYYjii; YY,Yit��{i**{tY�c j{Y{{YYY jfYYYi{FuYY{i**{t 34 if #S iE iF it j}icY Ji*�Y*ilF ?�1EY*
MATTHEI:.I J DELICH
ARTERIAL PROGRESSION DEGIGN
0 RUN? •
ROUTE: TAFT HILL
INTEP.SECTIOtIS: 5 CYCLE LENGTH: 90 SYSTEM OFFSET: 0
BA111*1IDTH LEFT: 42S&C. RIGHT: 42S&C. PERFORMANCE INDEX: 49
EFFICIENCY': 46 7 ATTAINABILITY: 96 INTERFERENCE: 16
---------------------------------------------------------------------------
NO. .........TIME —LOCATION DIAGRAM.......... DISTANCE SPEED
P, I GHTSOLR4D ... READ DOAW4 LEFT RIGHT LEFT RIGHT
I XXX):xxx:-lxl : X.`tXXXXXX X 27e0 0 40 40
2 xxxxxxxxxxXX 1e00 2780 40 40
3 XXXXXXXXXX 700 1e00 40 40
4 XXXXXXXXXXXXXXXXXXXX 2700 700 40 40
5 xxxxxxxxxxxxxxXxxXxx 0 2700 40 40
NO. OFFSET .........TIME—LOCATIOI.1 DIAGRAM.......... PHASE LENGTHS
LEFTBOUND ... READ UP 1 2 3 4 5 6 7 8
1 47 XXXXXXXXXXXXXXXXXXXX 50 50
2 e7 Xxxxxxxxxxxx 70 30
3 35 XXXXXXXXXX 75 25
4 47 XXXXXXXXXXXXXXXXXXXX 50 50
97 XXXXXXXXXXXXXXXXXXXX 50 50
---------------------------------------------------------------------------
TIME SPACE DIAGRAM
ROUTE: TAFT HILL
CCIIVIEIIT: P.LVI9
CYCLE LENGTH 90 SECONDS: SCALE IINCH=407 OF CYCLE: I LIIIE= 199 FT
*;acxx>YY>is��i�YYie icy. ie�sie ie•�i!iis�•��'iiixi�iF s'1Fi%'Jf+�1.IiitKii if i��i��i�xxi�Kiair i�w�'�rie le�FYieYiIF ri,c,4�Yi�i
ME.TTHEW J C`ELICH
ARTERIAL FROGIOpa DEGIGIJ •
PU1J8
POLITE: TAFT HILL
INTEPSECTICNIS: 5 CYCLE LEIIGTH: 100 SYSTEM OFFSET: 0
BANDWIDTH LEFT: 35SEL. RIGHT: 353ec. PEP.FORMAPICE INDEX: 45
EFFIC1EflCf - =:g7.7 ATTAIIJABILITY: 73 INTERFERENCE: 18
---------------------------------------------------------------------------
PIO. .........TIME —LOCATION DIAGRAM.......... DISTANCE SFEED
P.IGHTSOUJD ... READ DOWN LEFT RIGHT LEFT RIGHT
I XXXXXXX`;XXXXXXXXX XXX 2780 0 40 40
2 xXXXXXXXXXXX 1800 2780 40 40
3 XYXXXXXXXX 700 1800 40 40
4 X XXXXXXXXlxl)ey XXXX:;Y, 2700 700 40 40
XXXX:XXXXXXXXXXXXXXX 0 2700 40 40
NO. OFFSET .........TIME —LOCATION DIAGRAM.......... PHASE LENGTHS
LEFTSOLRJD ... READ UP 1 2 3 4 5 6 S
1 42 `:: ;X XXXXXXXJXXXXXXXXXX 50 50
2 82 XXXXXXXY.X.XXX 70 30
3 30 XXXXXXXXXX 75 25
4 42 XXXXXXXXXXXXXXXXXY.XX 50 50
5 72 XXXXXXXXY,XXXXXXXXXXX 50 50
---------------------------------------------------------------------------
TIME SPACE DIAGRAM
ROUTE: TAFT HILL
COMMENT: PU! IS
CYCLE LEIJGTH 100 SEC:OlJDS: SCALE 11NCH=40G OF CYCLE: i LIME= 199 FT
IDEAN
B Ro
Hoes
xii!YiFY#lfiF!EYJi JkY�.r iq 1{iEYY�!?4ix:!it.c,tr!f#1!K!f!lit±f �!i!it iF i4 �F if K±f It #tki!iF +fitlta4!f3l i!if #f!*#M*!!lFkiF i4l�i!±fiYiFM
MATTHEW J DELICH
ARTERIAL PROr GSIOIJ DEGIGN
P,LRJ7 • ,
ROUTE: TAFT HILL
INTEPSECTIMIS: 5 CYYCLE LENGTH: 120 SYSTEM OFFSET: 0
BAIJDLJIDTH LEFT: 30SfC P.IGHT: 30 99C. PEP.FOPIlWNCE INDEX: 36
EFFICIEPJCY: 25 7 ATTAINABILITY: 52 INTERFERENCE: 21
---------------------------------------------------------------------------
NO. .........TII1E—LOr_.ATION DIAGRAM.......... DISTANCE SPEED
PIGHTSOL14D ... READ D(XJN LEFT RIGHT LEFT RIGHT
1 '-XXXXXXXXXXX XXXXXX 2780 0 40 40
2 XXXXXXXXXXXX 1800 27SO 40 40
- XXX XXXXXXX 700 1800 40 40
a XXXX XXXXXXXXXXXXXXXX 2700 700 40 40
XXXXXXXXX XXXXXXXXXXX 0 2700 40 40
110. OFFSET .........TIME —LOCATION DIAGRAM.......... PHASE LENGTHS
LEFTBOLVD ... READ UP 1 2 3 4 5 6 7 8
1 35 XXXXXXXXXX XXXXXXXXXX 50 50
75 X XXXXXXXXXXX 70 30
3 72 XXX XXXXXXX 75 25
4 85 )<X"<X,;X"" „XXXXXXXXX X 50 50
5 32 XXXXXXXXXXXXX XXXXXXX 50 50
---------------------------------------------------------------------------
TIME .SPACE DIAGRAM
ROUTE: TAFT HILL
C01111ENT : RL417
C:C:LE LENGTH 120 SECOJDS: SCALE (INCH=40% OF CYCLE: 1 LINE= 199 FT
�a� s.Y�jF?F#f YIF iF�aiYiri?F jtY YiEY i4 it!iYi±:#E+::t!:�it ik iF%#F iE iF iF iF i4lii!ik;±!!tR!!;%1f?f *Jf Y{Fu Y�YY i*YY YY{i#Y{css�
ARTERIAL PROGRESSION 1)EGIGI4
isRUN12 • IO
ROUTE: TAFT HILL /
II4TERSECTIONS: 5 C`('CLE LENGTH: 60 SYSTEM OFFSET: 0
BAI4D4.IIDTH LEFT: 12.96C. RIGHT- 13 $iC. PERFORMANCE INDEx: 32
EFFICIENCY: 20? ATTAINABILITY: 42 INTERFERENCE: 25
---------------------------------------------------------------------------
NO. .........TIME -LOCATION DIAGRAM.......... DISTANCE SPEED
P.IGHTSOIL)ND ... READ DOWN LEFT RIGHT LEFT RIGHT
1 XXX`IXXXXXXXXX XXXXXX 2780 0 45 45
2 XXx XXXY.>'.XXxx 1800 2780 45 45
3 xxxx XXXXXX 700 1800 45 45
4 XXXXXXXXIXI<YXXXXX>Cxx 2700 700 45 45
5 XXM\-/.XXXXXXXX XXXXXX 0 2700 45 45
NO. OFFSET .........TIHE-LOCATIO14 DIA(,PAII.......... PHASE LENGTHS
LEFTBOUND ... READ UP 1 2 3 4 5 6 7 B
1 35 XY.X•.XXX)'X;XXXx,XX XXXXX 50 50
2 77 XXxxxxxxxxxx 7.0 30
3 25 xxxxxxxXXX 75 25
4 e5 Xxxxxxx XXXXXXXXXXXXX 50 50
5 32 XXXXXXXXXxxxx XXXXXXX 50 50
---------------------------------------------------------------------------
TIME SPACE DIAGP,AI1
ROUTE: TAFT HILL
C014I TENT : R p41 2
C*fCLE LENGTH 60 SECONDS: SCALE 1I14C_H=40Y OF CYCLE: I LINE— 17? FT
j4YjtY�F;{[.�;.Y*�Yi�i('iiit ji jt.Ji{�jiYYYjtYj!{�YYY{L it ir{tYY�{(. iEYj!1i �g iF iF if �><i*i?'��►�i�'x.'si:ta�tii;iit�iF IiYYIE'R'}i i'i
IDEArX.XXXXxxx XXXxXXXXXxxx XXXXXXXXxXxx i XXx
2M�Fcr
362oIUS0�:
4 }{oRtETDer�
5e•Rx::� �;:. XXx.�:xxxXXxx
�IEYYY{{i YYi[YiF jL{LYi(YY �Yif jL �l jL �tY*{iYY��YIf .K*�
XXXXXX
XXXXXXXXXXXX
1F iF iF�#F ifY#ki4 #f kif*sY?E*iE 1t�#�#if
MATTHEW J DELICH
ARTERIAL PROGRESSION DEGIGt4
• PLT113 • �'
POLITE: TAFT HILL
IPITERSECTIONS: 5 CYCLE LENGTH: 70 SYSTEM OFFSET: 0
BANDNIDTH LEFT: 21GW— RIGHT: 21 98C. PERFOPMANCE INDEX: 44
EFFICIEt4CY: 30% ATTAINABILITY: 63 INTERFERENCE: 17
---------------------------------------------------------------------------
NO. .........TIME —LOCATION DIAGRAM.......... DISTAtICE SPEED
RIGHTBOUND ... READ DOWN LEFT RIGHT LEFT RIGHT
t XXXXX XXXXXXXXXXXXXXX 2780 0 45 45
2 XXXXXXXXXXXX 1800 2780 45 45
XX XXXXXXXX 700 1800 45 45
4 XXXXY,XXXXXXXXXXXXXXX 2700 700 45 45
XVXXXXXXXXXXXXXXXXXX 0 2700 45 45
HO. OFFSET .........TIME —LOCATION DIAGRAM.......... PHASE LENGTHS
LEFTBOLWID ... READ UP 1 2 3 4 5 6 7 8
1 12 XXY.XXXXXXXXXXXXXX XXX 50 50
52 XXXXX.CXXXXXX 70 30
3 2 XXXXXXXXXX 75 25
4 12 XXXXY.X`CXXXXXXXXXXXXX 50 50
_ 62 XXX''%XXXY.XXXXXXXXXXX 50 50
---------------------------------------------------------------------------
TIME SPACE DIAGRAM
ROUTE: TAFT HILL
COM11ENT: P,LR113
CYCLE LENGTH 70 SECCW4DS: SCALE IINCH=407 OF CYCLE: 1 LIhIE= I" FT
ii.YYisiialK.x�xacx��c{csu�#ieYi�iiisrisaE�iiFaElF�rsle�iMsi��xiicY��c�iFiFisif��i�}I'i:iF+Fi>EYiF�Y�I�*�iFY��i
MATTHEW J DELICH
ARTERIAL PROGRESSICNd DEGIGFJ
• RUN14 • Z
FnUTE: TAFT HILL
INTEPSEC:TI"XIS: 5 CYCLE LENGTH: 80 SYSTEM OFFSET: 0
BANDWIDTH LEFT: 38 SEC. RIGHT- 38 see- PEP.FORMAIJCE INDEX- 49
EFFICIENCY: 47P ATTAINABILITY- 78 INTERFERENCE: 15
10.
.........TItIE-LOCATION DIAGRAM.......... DISTAI•ICE
SPEED
P.lCHTBOUtID ... READ DOWN
LEFT RIGHT
LEFT
RIGHT
1
XXXXXXXXXX;XXXXXXXX X
2780
0
45
43
2
XXXXXXXXXXXX
1800
2-780
45
45
3
` 1-1XXXXXXX
700
1800
45
45
4
XXX?XXXXXXXXXXXXXXXxX
2700
700
45
45
5
XXXXXXXXXX`•<XXXXXXXXX
0
2700
45
45
NO.
OFFSET
.........TINE -LOCATION DIAGRAM..........
PHASE
LENGTHS
LEFTBOLAdD ... READ UP
1
2 3 4
5 6
7 8
1
47
XXXXXXXXXXXXXXXXXXXX 50
50
2
87
XXXXXXXXXXXX
70
30
3
35
XXXXXXXXXX
75
25
4
47
XXXXXXXXXXXXXXXXXXXX
50
50
-
---------------------------------------------------------------------------
97
XXXXXXXXXXXXXXXXXXXX
50
50
TIME SPACE DIAGRAM
POLITE: TAFT HILL
COIUIEIJT: P,L4114
CYCLE LENGTH 80 SECCUIDS: SCALE 1111CH=40% OF CYCLE: 1 LINE= 199 FT
.........._............_...._..-- ------......__
Y IEYYAf 1p jt iEY �tY�YY{fY YY Y�cY Y.i YYI�Yj{Yi{tYYYY{tY**{taE{t*Y�Y{t{t jt�{1*i**■{4�;{FY***�.��;{F {F*Y*�**j{��
1'IH 1 1 m7w J Ut L: L.H'
ARTERIAL PROGP,ESSION DEGIGN
• R111.115 • � 3
ROUTE: TAFT HILL
INTERSECTIONS: 5 CYCLE LENGTH: 90 SYSTEM OFFSET: 0
BANDWIDTH LEFT: 29S6C. P.ICHT: 29$8C. PEP.FORMANCE INDEX: 44
EFFICIENCY: 32'�.7 ATTAINAelLITY: 67 INTERFERENCE: 18
---------------------------------------------------------------------------
NO. .........TIME-LOC'ATICMJ DIAGRAM.......... DISTANCE SPEED
P•IGHTSOUND ... READ DOWN LEFT RIGHT LEFT RIGHT
1 xxxxxxxxxxxxxxxxx XXX 2780 0 45 45
2 XXXXXXXXXXXX 1800 2780 45 45
3 XlX:C;'(XXXX 700 1800 45 45
4 XXXXXXYX)<XXXXXXXXXXX 2700 700 45 45
5 XXXXXXXXXXXXXXXXXXXX 0 2700 45 45
NO. OFFSET .........TVIE-LOCATIOM DIAGPAM.......... PHASE LENGTHS
LEFTBrniMD ... READ UP 1 2 3 4 5 6 7 8
1 42 XXXXXXXXXXXXXXXX 50 50
2 80 XXXXXXXXXXXX 70 30
3 30 xXxXxxxxxx 75 25
4 42 XXXXXXXXXXXXXXXXXXXX 50 50
92 XxXXXXXXXXXXXXXXXXXX 50 50
---------------------------------------------------------------------------
TIME SPACE DIAGRAM
ROUTE: TAFT HILL
CrXIIIENT: P.UN15
CYCLE LENGTH 90 SECONDS:
SCALE ]INCH=40% OF CYCLE:
1 LIME=
199 FT
cxs.x><,<sr.lFas{tsacYYis�siitiY�Yi�iiri!s�Ies+tiii�iFit#
IVeAArr:xxxxxxxx \
siiisr.If:Ei!+Fs!!iik�Fi!�F:EiFsv�1E+!:tJE+!.IF ieMlcY�illxis�r.
xxxxxxxxx xxxxxxxxx
/ x
MIFF 6 T
5p_o0S40►.i::x
-� N eRSETooTFk:xx
':xxxxx;< XXXXXXX XXXXXXX
I
I'
xxxxxx xxxxxx
s Q R / E <xxxxxxxxxxx ; xxxxxxxx xxrxxxr.::xxx,\
Y{iY jt i�Y�YYYYY{L if Jf��*af �i Y?<3ERYifijl iF #ki if *if i!►+: it iF iF*!F!EiiF*;�4�ii±fiiifis�!i41!*�#lEi+i!if is lfilt l�*+*s
MATTHEW J DELICH
APTEP..IAL PROGRESSION DEGIGN
. R11416 •
POLITE: TAFT HILL
INTERSECTIONS: 5 CYCLE LENGTH: 110 SYSTEM OFFSET: 0
BANDWIDTH LEFT- 30 9&C. RIGHT- 30 960t. PERFORMANCE INDEX: 37
EFFICIENCY: 27°ATTAINABILITY: 56 INTERFERENCE: 21
---------------------------------------------------------------------------
N0. .........TIME —LOCATION DIAGRAM.......... DISTANCE SPEED
P,IGHTBOUtJD ... READ DOWN LEFT RIGHT LEFT RIGHT
1 XXXXXXxxxxxxxxxx XXXX 2780 0 45 45
2 XXXXXxxxxxxx 1800 2780 45 45
Xxxxxx XXXX 700 1800 45 45
4 X.X'XXxXXX XXY.Xxx)CXXXYX 2700 700 45 45
5 XXXXXXXXXXXXX XXXXxxx 0 2700 45 45
tJO. OFFSET .........TIME—LOCAT1Ot•I DIAGRAM.......... PHASE LENGTHS
LEFTBOUIJD ... READ UP 1 2 3 4 5 6 7 8
1 40 Xxxxxxxxxxxxx XXX>OXX.X 50 50
2 BO xxxx Xxxxxxxx 70 30
i 77 XXXxxXXX<.x 75 25
4 90 XYXXXXXXXXXXXXXXXXXX 50 50
40 xxxxxxxxxxxxx'.fxx XXXX 50 50
---------------------------------------------------------------------------
TIME SPACE DIAGRAM
ROUTE: TAFT HILL
CC#JI tEtJT : P.Ut,11 b
CYCLE LEhIGTH 110 SECWDS: SCALE (INCH=40% OF CYCLE: l LINE= 199 FT
iFYifirasiEi��iFifsifie��'Itlt�'�fifil�Y.1i��I•ir.�iiiFIfIEIEx•r►�saflF�tIEIFi+E�F�ie�iixilFifi:i��iFiEie)FriYiiFi:lii!iafieie�E�riii�ar
ID¢Arr<xxxxX\ xxxxxxxxxxA / \ /XxxxxxxXXXX /,X
Ms�ts�
=' BRONSON
a Ii e R SGToovf
XXXX'
XXXX`,
>:XX:<XX
4x)(,X)oC
XXXXXX
-OR 389xxxxr. /
/ xxly xxxxxxxxx
xrxxxxxxxxxx
\
\ xx
YY YY RRRi�i(.RYYY Yif �fYY YRY
YYYRR RYRRRR*RifRRRRRRRRRRR
RRRRlf#flE; RRRRRY{t ifRRR RR RRRRRRRRRRRR
ti
AF.TERIAL PROr_,F.ESSIOH DEGIGN
ROUTE: TAFT HILL 0
PLR •I t 7
•
160
ItITEPSECTIOt1S: 5 C,CLE LEt4GTH: 120 SYSTEM OFFSET: 0
EANDIAIDTH LEFT: 36 biG FIGHT: 36 $eC. PEP.FORM04CE INDEX: 38
EFFIC:IEIICY:
-14 ATTAINARILITY:
63 INTERFERENCE:
22
---------------------------------------------------------------------------
NO.
.........TIME -LOCATION
DIAGR.AM.......... DISTANCE
SPEED
P,IGHTBOUI-JD ...
READ DO1,44 LEFT
RIGHT
LEFT
RIGHT
I
XXXXlXXXl'XlX.':XXXX
XXXX 2-80
0
45
45
2
)<XX^YXxleXXXXX
1800
2780
45
45
3
XXXXXXX
XXX 700
1800
45
45
4
XXIr),"XXXXXX
XXXXXXXXXX 2700
700
45
45
5
XXXXXXXXXXXXXXXX
XXXX 0
2700
45
45
NO.
OFFSET
.........TWE-LOCATION]
DIAGRAM..........
PHASE
LEI'.IGTHS
LEFTBOLIID ... READ LIP 1 2
3 4
5 6
7 8
1
40
XXXXXXX,XXXXXXXXX.
XXXX 50 50
2
8o
XXXXXX
XXXXXX 70 30
'5
XXX.X.`XXX.X`:X
75 25
4
510
XXXXXX.XXXXXXXXXXXXXX
50 50
5
---------------------------------------------------------------------------
40
XX.XXXXXXXXXXXXXX
XXXX 50 50
TIRE SPACE DIAGRAM
POLITE: TAFT HILL
C:014IIEtIT: PI_II117
C)CLE LENGTH 120 SECO(IDS: SCALE (INCH=40% OF CYCLE: 1 Llt)E= 19? FT
>YY�YY{cY{LYY YY YY�iY jL jcY�YYYjL jLYY�Yj[Y{4j4{tji{tj4{tYY�{t{i jLY�i{LjL{L{LYY{G�jL jiisi3}YYji;YjL jCY Y-i Yii i�i�!.Y {i;
1 pP-AW'.....x:•:A.� \ X)^:. `<XXXXXXX�( / \ / ``/.)C`' X;<.`<:''.....);XX �%'.
i�
5CZ
YYYY.{Y{tYY YYYYY YY�.Y{iYYYY{iYY{tYYYYY1t �E*i*#3iY{{YYjcYYYYYY*♦<jt**I<.*{i �[�{LYjiY*jFY jt {{Y�[YYYYi�Y �fY
AFFEHDIX F
F
II�
L
1
1
m
r
N
Cr..
R..
I ^.
1
• '7 F
•I n
Lu F-
W w
Ln
U'l CY
111 �I S
F- J
fFJL' -f
F LL
U F
-
1J Cl . . . .
C«
� G.
«f
100 CA
0
7f.0
m3
m
Q
m«
mV0C1I
F_
h
LL
a LL
h
F- C) .7
(j)
3
m
to
w 0
ft: -t •.•.
All
m
O
J
W W
w
3
w
y«««�
ww
00
Y
q
S 2
*
W
F F-
c, •
a
..
G
8'
z F--
CJ PJ - -
z
M •Y c
=' 2
L
G
Z
*
O •-+
O
fh
G •O
O
d
`ram
Fm-
GGw
Fm-
FF--•[7 O o
n�
m
WWa
o
to
to t
F-F-m
q
O tr, to >H
Lq z
fC J • • • •
W
\
U L)
FwW
}
W
*
U)
O O L
Y
W J J ,k
CL
W
U)
tt m
W
C)
_) C) O O ,k
F-
£
W
EL d I
W
LL)
:.
-• n- *
w
o
o)
x
x
.k
£
J
D
U) V7 a
U
iC CnJ♦� *
0G
00
OG
m
Z.-L'
J
G
G
in to :k
0 J F-
N Cd
•U `O V'
J
»
:>
O
7
Z .C. W
U O
N 07
q
F- F- U)
O N
7
0
LL .+ J J J*
Will—
m
LLS
U
O
G
SS Z
w
z
cu CA
x10PJ
F-
m
Sr- -• 0 Q
0hQ<IQ
tI U U U :k
z2=
F-
LL F-
J
F- h O
00 U
¢¢
J
F-
7
F-
LL
F- +J N
.9 C•) Z
J tl'
7
O Cl
F-
qJ
LC O
m m W
0
w
_
0
to S-
LL J
F_ N
N
J
Ui
J
N
ILA CL [i CL M
.J .UlJ') Jk
• O
U
v
~
N N N N
C 7
*
N
U
z2
c•�
G
z
M
NVN
U
m3F-
z
OG
..-• -
0
fC
z W
000
0
m
_.
m
S
F-
U
m Cf.)
r..-
m
F"" o I
F-
F
CA
2
fC
Q
Z Z
LL J
G
GGGGt7
L
G
000
-i
mmmm
O
i J
W J
x xh F-
(nW
F-
ZO_
W
F- F- U) 0)
Cn W J
S
_>
'�
Z
2
Ix 7 d¢ W
q G U
W}
0
J H
O A-
J
« C'l 0 It In .0
F- 0
LL W (D
3 0 0 W
Z Ln
x
fl (L L)
(C
W W
w
F-U+
Jhx
W
F-Cn q W
J
K
> > CL D
dti<L0
2
ZZ 0 U
1 0 0
HF PEt1C� I >' G
I
�l
11
1
1
1
1
G
f�G
SV S•J -
O
�
G
O
_.•..•
h lf) o
0
L 0,U•1
� c]
�
r-N10
F
SON
0 •-.
d
--(VM
L)O'n
Or-U-, I
m3
m
Q
m
mrNCv ..
t_
F.
LL
lJJ
LC LL: J-
W
m
J J
W
W
s i
3
0
O
m to
W W
3
_
Y
¢
xx
W
F F
GS
a
o
ZF
OG
CJ f•J
-. -. .
�
V `7m
Gf•J U?
�x
Z Z
W :3InN
J
O .-.
O
0 0) cf
0
m 3
m
G
m
0) 1 r. G .'I
n
_
W W
�o c1
(00Z
. . • • .
m
R
O (
"0
F
cL
F- V=
Z W
'r
i LU
re J - • _
ltJ
\
W W
}to
G _ G
}
Cn
0 O R.
Y
F
i
w
!1. LL 1
W
W
W
O
(n
E
x
fA (O 0
U
Z Z
J O
U
W ZS
- - -
_? Z
V)M V
mm
O Z
:
Z
0 G
.. -+ •
U O
M •O
Q
F- F w
0 10 IT
M
0
W iu .-
m
I.)
G
W m C'd L,
~
Iri
Zx2
U.2
O
xx Z
Z xr-C'J
xU7ITc.,I
U.t
J
FF O
Q F
F
FMO,
<LFOy}
w
J
0MrJ =
od
F-
led
mm
o
w
(r) i
m J • . • .
F (o
Cn
J b)
J
(n
U
C."
F
.. .. ..
U
Cn..
G
G
01MCl)
Y
'r
G
G
-
o•row
?
(n3F
D
J
F
fv(�J
\
m .-.
m
F
(a -. IT
m
2 3
x
F
x(n
xR.—U7Q
F
F
U
F
�.
FR.•rGIx
x
Ix
CL
O 0
►.-
O
F
0
0
L Y
m J
Z
noon
Z
Z
Z
7 0 00000
Q Z
W
0F J
mmmm
`
W J
x=Ff-
(nw
F
TO
W
F F 0 :)
to W .J
x
0
z
m7;IW
Q GU
U"
J '-I-.
J.-.NM7U)10
FJ�
ILm(9
CIDW 3
Z(n
2 W;-
m (L0
R:F
Ool-
±Ld -41
W x
1 LL
F U
JFm
W
F(n j W
m
_d
G x
rV PJ • • . •
�' F-
•• .•
Z
O r, •T
`O
O
R. C
Ir'1
T
J
_l A
O .-.
Z.
O
Ifl OD
F
U
O f•J
O G G I'-- Q
mw
IllLL
t-u:
as
F
z
W O
1Y: J
W
m
J
W
W
3 d
3
O
W W
-.
..
x
0 O
rYL
u7
F F
-- F-
3
CV CJ
Z
tV M `
.... 2
to
E G
�
...._.
_]
f) b
IN
,,
gWg
G
m3
m
_
C.)W
G G W
mR
F
m(1400
F U)
_>
0
m
W W d
0
(n
Qd
t.
L)I.)w
LL
\
7k
W W
}
•o-.O-••
FFR.
m
w
anm.
w
w
H
E
I
r
J
to (0 0
=
U
OG
..JG
0G
m
ZZ
J
G
G
W-2
�Z
O•or.
mm
o
Z
Z
OG
--..
UO
Mb
Q
FF O)
OR a
�
O
W fa
Zx3
LLx
U
O
G
22 ZZ
W
Z
CDR- R.
xCV
F
m
x(DR G Q
T F
LL F
-1
F F- 6
Q
F
F
F 't C,
J>>
Q O
00 U
J
7
LL
1: l N
00
F
m 0
m m W
O
W
0
(n
O: J . . • •
F M
n
J
(n
J
t0
0
(QJ
_
�NNNCJ
C?
.F•.
m
Zx
. . • . .
2.
vov
U
m3F
Z
Z
OF
(�J C•J
O
`ON
7
,\•-•
O p
O
0:Z
W 5
ONO
O
m -
m
F
m 'O
m
a-,
. . . . .
LL
Qx
m
m ._
O Cr
t.�
O
F
O
o
Z 0
(C _1
Z
GGOG
szzz
O Z. 7
-(7
? W
_
0 000
cri co co ca
0 m J
Z U
W J
x x F F
W
F
O
W
FF(n 0)
N WJ
2
Z)
J
F-
D x
m n Q W
O O W 3
Q no
x to
u
•-•
F-
J } F
O G F Z
W
!i m f:J
x
Z O)
(L 6. U
It
1 - fL
.; F
W .+
JFm
W
i,
J
DDa-
m
a d
a
2
F
.••• Q
Q
3 G G
ZF
7�
rnlno
o
Zrou)
Z
O O
n PJ 10
F-
O m N
_f
O •-•
O
— N m
U
O PI .-,
0 r- in r- <T
m 3
m
¢
m
m C. CJ (-I '.
F-
. . . . . .
F
LL
a a.
F
F- •-r!
W O
'jF-J
W
w
JJ
W
W
3 £
O
IY a:
3
O
W ww�•
2 ....-, r. -•
O O
Y
¢
S S
»
(L
F F-
*
n
O
3 3
F
G
o
»: »:Z
F-
CV N N • . •
V' IT OU
v S
Z
Z
'G
*
F•
G O W
U)
F- o t
» »
«f-,
CO
in
wwa
0
m
rn
w F-
IL F- J .
000
m
i W J-1 »_
L't
W
(n
2 Q
(r)
U
+ �_�-1 00 »:
F
Z:
W
dd 1
W
W
4. (rn3£ *
OG
GGO . .
OG
m
Z)Zc
zi
J
G
U
G
». ul \ 7 »:
WZ2
_
�Z
U)Cl tr
mix
0
Z
»: (nz Zu)(n »:
(30E-
CV CVN
=
(n U?IC'i
J
D7
z
7
IZY
D
W »: G *
F- »: LLrJJJ »:
O G
W m—CO
.-. -• .»
U O
m b
¢
U
F- F- (n
G
W
O -� r
10h U.
7
f'-
O
01
<i * OF-Q¢1I *
.D »: ,I r i U Q *
Zx3
�I F-
LLLx
LL F-
0
J
2x
F- F- 0
Z
•L
xv�CI
F-
F-
2U?It11) `T.
F Cn C*.
xF-t
Wz F--F- »:
0
09
- -
QO
mm W w
O
W
O
LLF-J
F-
J
m
J
m
LLJr-r*
00
0
*
G
o00
O
C*mm
Y
G
G
Z
am•0
U
m3\F
'L
Z
t LLi
O G
....+ .-.
O
� W
O U? -•
O
I.0
F
F-
U
F-
F •t O
CZ
<L 2
of
Q: Z
0f
O
F
J
Z£
CCF-J • • .
Z
OGGO
"(3
G
J
¢uU
FI T
S
�J07
mmmm
Z F-J
W J
2 S F- F-
•• m ul
LL
W4
F-F(0(n
() wJ
2
=
CJ 7 `n.
7
O O W
2 LLJ
F-
<1
J
.• Cn U?
F- 2
LL Ix 0
3
Z Cn
d 0-
W 2.+
I LL
F-U�
J F- !r
W
f_ W ¢ LU
cr
n_. ^y 2 0
1
Fi
I
ul
tI
O
O•
J
J. I
-
1 :L
2
U
'
w �-
W
o
F-
W
- w
lil D
(n
rr
G
2
~
Cj
LL
H
C1 O G
Gx
�N0
�C�CyJ
ohtr
O
S
J
p
U) (0 10
F-
U
".
0
O c o r. <I
LL
rl
m
w
¢ ¢
W 0
CC F J
W
J _1
W
W
D
rh Ix
w
T
O O
aY
*
aco
LL]
d
F F
.:.0
CJNN -
Z
Nm`a
-'T
Z
Z
Z
*
m 3
ro
G
W
m
CL CV 0 0 IT.
_
oGw
O
N
U,
rn
tY
W W C
(n
G *
20
m
#G
F-
n00Jc*
mac_
C..ro
W
d W.
w
W
[w.I .+00 *
->
H
O)
I
£
x
.. of *
W
£
J
D
N CO o
J
U
cr.,Cif 3L»
OG
a0o • • •
OO
m
ZZ
-i
G
O
uiz
7Z
o•0N
RfC
JJ
O
Z
J
Z
d'
Z
f
r, Z W Cn *
S »'
0 D-
0 G
NNN
1
L) C.
•tm V
m 10
J
¢
F- F- (n
-,.
O N L.
O
O
. LL JJJ »,
W m..
Cu
U
G
W
mU?P
F-
m
G ¢
Zx=.
LLF-
J
F-F-- O
¢
F-bC!
F-
F-�f 0,
JRUCJU N
JJ^.,
¢�
Q O L)
J
7
LL
7 m CV Z
W 7F-F'.~-,»
'On£
mm (n
J
ir•
J
O
w(EMU:Cr*
tY F-J
FLL-0
o
U
J()UUU *
n
*
*
vNNNN
~
;*
cf7
A
En
U
»
O
Goa
p
r`IT
Y
%'
O
0 F-
N N CV
O
`O N
7
OG
-+
O
LL
Z W:1
0rl
O
al ..
m
x
F
S
F-
U
F
F- •t G \
Z%
Ix F-J ..
Z
OGoo
ZU
¢
Z
0
0
��0 0 0
M -i
0Q:J
U)
W J
2 2 F- F-
(n W
W
F- f- Cn 0)
rJl W Jzi
S
_
m O r W
O (n 3
CI O U
2 W
~
0
W LL1
fy
J F-a
W
CL
HU) ¢
x
(L
Z
F
¢
1
1
1
1
_
•
�1 Z
CV C7 . . . .
G
W
G
G
O.-
O
U
Om
OOO o A
m =
m
¢
(u
m
F.
F_
LL
LLI O
LL:
IIJ
W
=
tr
J
3
O
W
S.-...,
.-...,
; wW
00
Y
¢
S S
LLI
� F
G x
0
3 3 Om-
G
G
7G
�l el
Z
000
ICJ N O
v x
W
O?
Z
O
m :
m
i_7
W
m -+ -.
Co o 'Td' ¢
F-
0 0 W
F
F '7. 0
to _.
(n
w w CL
u
(1)
(n .. ,
.LLr
W E
1
tt: J••••
¢
W
x
\
FF'tt'
L) L)..•
z
¢
W
¢
w
m
-.00
FHn.
CC
W
(n
Cr CC
0
U
(n
R CL I
III
x
W
D
i
J
(n Cn o
O
C!
OG
IIl 2
00
- •
O -. r�
m
ZZ
Q: CC
J
O
G
Z
G
z
O =i F--
of Cd • •
rn m •O
J
O _7
D
�
—I
O G
--' -'
U O
-n -.
¢
F F U
G CV O
O
O
w
m
~
co
W S Z
<L F-
IL S
LL F-
O
J
S x z
F F- O
0
F ^'
F
m o 0 0¢
F- (n `\
JO>
¢O
OO U
O
IL
O z00
F -
[r0
mm W
O
W
O
U
co,
F
�•NiVOa
-4c1-
G
r 0
0
Y1 o
iCANN
Y
U
(rJ3
0
G
Z
3:
F
CV K'J
Z
J
P
O
\
Z
J
J
00
.. • . . •
O
W.
Zw�
OP. Ill
O
m •_�
m
F
m •-. ti
m
U
-
'1 2
- _<
F
F-
F CJ h
O
O
Zz
w—i . • • •
z
0000
Zo
D -1 , ,
¢ �]
0000
(9 0-J
?
SSFF
Cnw
F
�0
W
FF(¢nw
fn w_J
x
Oa
OOW2
m LU
(7
0(-~
Q
.+(V Coe 47 �0
FOX
LLIxU
Z(n
0. a.
CC�
_c
JF�
�1W
FU it
H Jaw
CL
(L � D
S
GGfJ 27
F
'-• T
oc. -
GT
f.l ri
:D
. • !•
J
0470
O
Z47o
:D
.00
0 •-•
O
04 (1)
F
U
O
GooC.¢
m T
It7
¢
W
m el
1L
d d
F-
F `-
I n
Cn
W
W
3F...
W ..J •.••
W
3
LL
m
J
W w
W
-
S..........-:
O
Y
¢
xx
LLI
F_ F
a.
33Q
F
G
G
-•F._
t�J CV
Z
fA 00
v "2
L
Z
c
O o
0
m�
ro
G
m
mLl CKC,
G G W
F
Fr--• \.
n -:.
w S
F- : -
r�
w w a
u a`
0
o
z
uJ
w
(n z
u�I
uT1
OF
m
Oa
Y
IL
w
w
d
w
iL I
W
x
III
J
O
N_(no
U
O G
0 0
O G
m
0
W ZT
i Z
j
474'7O
O
O
Z
=l
z
R
OG
.. -•
UO
.., n) r�
O,
J
¢
J
F F (n
003O
O
O
LLJ m
m
L)G
W
m N
F
111
z .:,
LLF
of
FF G
F-
F
Ix-4--o=,=I
J j-:
¢O
OO L)O-'
1L
ti
0 0
♦--
Q O
m m LL1
O
WC.
(r) T-
lY .J • • • •
F- toU)
J
(n
J
( )
�o
F
•-%NNoO
SJ''1'
N
U
0
0
el ... o
Y
U
() 3 f-
0
z
C1
z
;x
11 rJ1
0
r. 47 -.
F,Z�
ON
O
OG
°-t° �
coF
F-
mm-'
2 r._
m
3: C4
¢x
ik -
(Fed
O O
ZZ
F-
(X _I
O
Z
GG0G
F-
z0
O
Z
O
Z
_
z-
¢ W
O O L)O
0 J
wJ
W_
FFf~n o
9) WJ
S
=�
z
LLO¢¢w
W
¢ GU
S W J-
OGI Z
-Noct47•n
F72
OO 3
Z(n
iL 0- L)
lYLL
_ LLI
W=C7
F
J F
W
F- 0 <I W
-..
OJ
rY
, Da
(L ' I O
S
7 Ciu 7
F
2
I-I q (� 0 VNSIONALIZ17,r) IMIFIZSr;CIK)NS •
10-37 1 I
1VOItKS 1EE I I:Olt ANALYSIS OFFIN IN I ERSEC'I IONS
r ,'
LOCAIION:A s �"�
NAME:
_
VOLUMES IN rcm
IIVURLY VOLUMES
_
Major l I I O
Street: N
19=0 -. VS tz0
2-0ZV V Z2-
—
Grade /Z--`�' V7 �- VI
—'�� 4 v3 -- N - a
) �-
` �� v, --,-� cr-r.:
V7 V,
V 7 Vo
Dale of Counts: Zi�Z U Slut,
l
Z Z
lime Period:___ — U YIELD
Average Running Speed: N — EJ
Minor
Street:_
rim Grade %
VOLUME ADJUST MEN I S
Nlovenrent No.
2
3
4
5
7
9
Volume (vhh)
j Z 4
.`T
4—
-Z
Vol. (pcph), tee Table 10-1
Z Z
Z
-
SIEr 1: RI' from Minor Street
r•- V9
Conflicting r1m, V,
1/2 V, 4- Ni, = 4- I Z4 vpl, (v,J Z `Iv
Critical Gap, 1', , and Potential Capacity, cr
T, =S S sec ( Table 10-2) cr9 = pcph (rig. 10-3)
Actual Capacity, cm
r
Cm9 =
cr,? — pcph % cr 5
S I Er 2: L'I' morn Major Street
` V.
Conflicting rlow, v,
v, 4- Vz = S + / 2-4 = L 7 5vrh (Vc1) 3"1
Critical Gap, �r, , and Potential Capacity, cr
T� _ "� sec (table 10-2) cr/ _ '115 pcph (rig. 10 3)
1'ercent of cr Utilized and Impedance racbr (rig. 10-5)
(v4/cr4) X 100 = � PI = • � �7 3. O 0•9 S
Adult CRpaclty, Cm
Cm4 = Cr4 _^� I > pcph L S
S I Er 3: Lr rrom )Minor Street
V7
Conflicting Flow, V,
1 /2 V) 1 V v I-V/ = _ 4- _ + _ + = Z? ¢vph (V,7)
Crilicat Gap, 'T, , and Polential Capacity, cr
I =�. P sec (table 10-2) cr7 = 7- `'pcpl, (rig. 10-3) 70
Actual Capaclly, cm
cm7 _ cr7 X P4 = X = _6A pcph S 5-
SIIAREU-LANE CAI'ACI FY
v7 t v9 If lane is shared
SI I = —
(V7/Cm7) -t. (V9/Cm9)
Movement No.
v(pcph)
c� (rc h�
can (Fchp)
CR
LOS
7
z 1 Z(?`
-3
& Z —734-1
A 3
4
4 2 Z_
-7 1 s
'1 r r q31
A
7qS
71
3w
0
rl
I
Li
APPEPdD I X H
C��a0
G
G
zu
D
mG-o
Kl
F
7)n'
D
O7
O
NmR
U
Om-.
00 N o!L
m'
m
Q
m
m M w
F..
W_ O
. . . . .
CL h -1
F_
w
ILL
Sr
J J
W
w
6
W w
O O
Jr
h h
4
u7
GG
G
a
33a
F G
r�
1
j,
1
III)-
to
lu0
.E
F'
lil
N I
.
0
f-
w
n
Lt`
0
x
1
L
'L
F'
»:
» sk
». ['J Sk •CI ».
G P'W0)
K *
» CIO *
+ Ill iA»
+ �.l »:
+ I �. J .J J Ik
+ I-Q 211 »:
+ -I �._ U iJ »:
+ u_ M
+lil-,
fr ... 4
A lit •.. f✓_ U_ 0 M
I rii L1 U U
»: sk
sk
:k
G
m Z
W Z
'•�
h
W x
Q) D
G
Oo
W m .-•
x3
'i F-
.J 7 -)
ab
SO i
0
^ x
IF-t�l
02
m• •�.
2 3
Ix
0
w
S
1
rlNrN
:::
h-
LtihJ
NNt•'J
---
• . • •
h-
tL' F_ -1
r;. O o
:. CJ CV
-�
h
.-+NMTt U'J •n
D
m
Q
W
07
w
Z
> Z
J
U
m
tLx
LL h
Q O
�o
F_ i0
0
O
m
x
�
O
OO U?
In if) r"
o G o
0-(2
•t CO-.
G O O
- In
10 N
1- Ox
w Sr C7
JF�
x
\
o -o -
i[1
to
J
Q
U
O
J
Y
U
>
CY
h
G G G G
'` `
000>
mmmm
xxhh
Q DD 6nW
OOW3
Z iq
2
\
G
G G W
hh3
UUu
wW
E- I- P
O O C.
m Ir
d CI.. I
CC
7D
hh i[l
G
xx Z
h F• O
00 CJ
mm w
in
.O
CCI
Ut }
h
UQx
Z QO
6
Z h-J
Sf1W
Q WU
x w}•
n- d U
z Z
W 7 --, h
W m
h
r Q
tl
}
m
(I)
W
O Z
J
OUJ7
W m CD'+1
xW)Cif
1-
O
a
J rn
Q
U
L)
>
O m- cr
m 0 I`.
x U7
Ix
h
0
C1 F.
I w
J
x
C1
w
Z
tt:
7
F•
F-
IL
w
J
J
m 0 •cl o Q
h in P- \
Q
W
Z
D
O
m
xO TCG
F- O •o _
7
o
SO
1::1
Z)iii
0
In
x G -It O •:L
Chr��.
O
WJ
E-1
-1 •'FJ
OG f-
_� W LLI
z
F- n I
EL
LY
d'7<jo
x
Z O U 1:
?p
0 «_.
CU j
to
W b
L
O G G
F-
Q_F-J
n
m
N
3
U7 G G
'000
N N
O
hZ.
Q
LL
Z)
[JC [C
2 ... I[}
O CIS
in
3
u,
W
0o
I
x x
'
Ltl l^
t`u
ui
to CIJ
f-
J
`~
Jr »
M
»: »
U-) U-1 7 *
+ *
+. l�l _I J *
+ U �- O »:
» »
N + rn Z WU7 »:
W + U Ik
F- » l�... J J J »:
.:L+r�FrU() »:
:+. I.II hF-F
»: - , F! M
»: sk
J » M
W :K
Cn
CL
x
h
h
CO[l 3
fjTl
11J£
-
Cr
h
GG
W :t
,_�Sh
OG
W m •-•
x3
OL1
lfl g.:
Z x
0 l'.
o CIO -
x =`
0 �i
Z E
w
2
_I
NNN
...
l~YhJ : : :
o0o
C'JNN
•..,. . . .
•• ••
F-
fY. F- J . .
i-JNN
F- •.
iCh-1
[vm•ru7 0
G
m
W
w
w
OG
, Z
0
UO
m
u.x
LL0
F- CrY
o OD
a:
HW.
Z
00
1)
G OO
OGN
d'm-.
O O N
mM
f- - i
li m IM
Wx
w
'•_�
S
rfl
41
m
J
Q
U
-i
CJ
Ul
U
m
G O G G
`�?07
0000
mmmm
xxf-h
it w
oou 3
h h
m 33
n
O G
W W t'L
UPS
W W
CL Ix
a CL I
ZZ
00
Dn
hh 0
G
Fx-h 0
mm w
io
00
}
U7 3\ F
Zt)�-
F-
-. U.
'T W
CU m_I
z F.
N W?-
dU
h
>
CI
x
}
UJ
w
J
O
W
3
-i
U
G
`[J
m�J
F-
iQ0
tll
G
�
O-.?
0. lei
= 7- M
F-
_
i l'1
Z
m o,
117)
0
-
h
O
I w
]J
K
x
F--
U
w
R
O
~
LLh.
ul
_1
G
Z
m C.It 0 rI
h ('I vl
W
O
mx
,-
n'�m
O
SI)
m
Ix
0
%-
W J
G�'h
�. W 1 to
F- rhll(`L ui
DDa. =
a.-,a6
Z u U Z
Q
•
•
c� 0 0 : :
0 2
j G
0
('J
.-. « :
0
s
O
M U7 O
N(1)•S
tY
F
u
o
7 P. OD
0co
0
J
Oo N o j
CO .-
m
Q
m
m M 0)
O
W W
Y
r] S
o
3 3 T
Z o
n
#
m
to
O
W m«
CO O `0 C. <I
4 n't • #
4 #
l_i
LC " . . .
Q
CCl
am
O o
F Fat
f-F�..
000,
E ¢
m
Y
¢
A: LU _l J A
F U('JUn #
* . r- �> #
it
F-
W
W
Z
to
W
(f)
O: CC
fL CL I
to
W
U
W
x
'
N
i u)-•Z
# W \* =' #
:K (n '� �_ LLl U7 y
F k LL..JJJ k
4 0F¢Q¢
4L) 0 u
ltJlC1
k IL L WCLS k
4 _I V. U r_i Q #
c0
W Z7
C' O F-
W m..
.71
J
GG
o000 :
CJ ('1 CJ r.'-7
oo_
-
S
LL
¢
CCO
000
O Ui o
m
J
O
zz
ZZ
[Y tY
O J
0
22 O
OO U
mm W
- •�
J _O
O GG
7
W m0
Z SU7
¢
u
W
Z
m
0
L
7
Sof O,_L
F- o YA
m
JIr CQ
OJJ
J
2
4 #
\
F•
'
1 L
rU
1 r
F
FLL.
CF.
i,,
0
F
Ct
Tr
S
J
^•
,I
F-
:K #
#
0
O U
m •-
xZ'
O O
Zf
w
Z
¢
J
0 0 0
(iF_J
.. NM^t U7b
0
o
ril
S
0
Z
O O O
F
FF--7S
L fr 0
F tY
(0
Y
K
F
U_{�Oo0
7JJ0fn'
mmmm
SxFF-
F- F- N N
tY=¢ W
00W 3
Z U)
`-
ZWD
F
U
F-
Z0
11z
Ul
M F-
mW
(r) w J
Q CA L)
2 W}
CL fL U
U
0
0 xr �r
m 0 r^-
=U-)
F
O
Z
F
S
O.
CL F-
1 w
azJ
O
0
m
xo v 0 •:I
Frnr
0
z
wJ
n
:3_
J F
00 �-
L)J
t- (n ¢ UJ
CL ,¢b
S
Z 0 U
O O O
'
Cl :i;
O ...
W_ 0CY:
CJ CJ CI
F J -
0
O
m
W
�
If) o IM
N N
O
¢
LL
_
a
x
.a<[ �.
.J J
x CG
ww
Z«
m
w
3
F Z.
rt r
Ili
00
'
r
J
I T
W F-
UJ
w lU
-
w<r
_
.1 40000
G:
L'
S[
N
2
I-
U
LLO
:t
J
-1
LL
* #
#
k U-1
# N U) If.' #
'yj
f C J #
4' #
v u r a
#.. ^n^.. #
F
k W yZw(0 #
4'
F # lL ..JJJ #
4'. J(< #
ul :3
# ' F- .-, .-. q:
# Ill ¢(C CL Ix #
J 1:9 U r_1 r 1
# #
%#
#
J F-
cn
W i
Y W Z
F
W
LLIG2
'_'JF-
Wm•-+
_I O-+
Oil
Cl) ._.
n
Z)
0 0
Ml .,
x 3
F
00
J
C.
[V C-1 CV CA
O: F J -
CK
Ooo
•`I NN C'J
F-
� F J _I
0 0 0
r � C�1 "J : : :
_
F
[CFJ
.., cJ (n ^r U- '-n
m
Q
w
Ul
w
?
J
00
J
20
LL
'¢O=
F rn
m
x
F
O
z
N O M
00CD
_�oN
7xi«
w m m
F 0 S
LL ix C1
Y
W
D_
�
N
uwi
O
m
J
<L
OJ
L)
d'
F
o000
O zz
mmmm
SSFF
FF-(nw
O O W 3
7-0
F F
33Q
�'
now
w L)
W W
Ix CC
a EL
(Ci U)0
CL Ix
OJ
FF 0
FF O
OO U
m m W
M
O
\ 3~
Z W M
F
L)
ci 2
F
c7
W
InW J
Z F
(1)LL1
m• WJ
x wF-
CL CL U
F-
WZ
>
}
cu
(�
�
J
O
W
J
J
U
a
; V ?
F•..
w
n
Z «
O
mP?
F•x «
J
0
if)
Z
J
0« O
'X L i aj
F-
(C
O
Z
F
x
!r
K .J
2
F
W
2
�)
Z
D
F
LL
W
J
7
FO 7O ¢
(4 -•
O
Z -
0
m
2u7r
O? CO Z.
O
(n
Z
O
2 0 0 <I
F-
m <M
O
F.
W J
r J
W` li-I
LL
._ t] U
—IT.
I
0 of r•J
•
O
Q:
G
G
U
?UFO
O
O
O� O O;I
11
LL
a¢I s
h
h Z
W G
CL • •.•
W
J
W
i"
.J
Z
CL:
O
J
CY CC
W
3
O
W W
_-
Y
¢
x S
W
h h
G7
O O - • . •
•
O
Q.
33=
G
CC,
C..J C...I . . . .
Z
000
cn
m=
m
G
W OD
Co tr c.Q
I--
F-
G G W
:� h
h O
k,rI)
. . . . . .
[
W
W
rt
w W a
A
O to
f) . -,
W f
J
W W
} W
W
}
Cn
-- -.00
OOn•• ol
m
Y
u
W
Cn
W. w
to
U
r
N
a u. I
W
W_
W
z
J
fJ) Cn o
C r 0
0 0 0 -
O G
m
Z Z
J G
G
w Zx
I...A
-, •~
f.J.m
~~
W_m
...
Cl
W CD a)
F-m
4F3
LLH
LL
O
x2
Z S•O
So00<I
¢JO-.
. . . . .
tI0
00 0
D
LL
7i1
00
h
x O
m In W
O
W
�.
O
to E
iY h J
h CQ
in
J ffi
J.
i it
U
•o
yNN00
tr V
r~.
(n
LI
u
o 0 0 -
G
o 0 0
05 N
Y
J F-
N N (-Ii -
Z)r.J
j
\
J
.
ZW:-'
ro
m
h
c �
m
T o T
h�
h
rhJ
h10
hN
..
O O
F-
0
h
O
O
ZZ
cr
Z
GGGG
z0
Z
z
zz�7
<r
CD mmm
Z 1-J
W _1
W
hhIn0
(a Wr
in WJ
2
,
J�
Z
h
CY 7¢ W
¢ G U
0
J -- F
J
.-. pIM-r Ui 'n
F �2
001112
S W }
�-,
OUF.
ll. Ix L7
ZCn
a aU
u h
W.. lil
W x.-.
I U.
h0?-
-1
W
F- Cn ¢ W
7J
Dera 1
Q
LL ? ¢ 0
r
G
LY
G
G
O UlO
O
ZIn0
=1
N --• M
h
7 •S
J
O .-.
G
V
0
0 0 o
m
LD
¢
m
m rJ
F_
I
w
CL (L
F}
�I
n
w
w G
27 1:
w J
W
:3
W
O_
J J
W W
W
3
~
w w
Y
¢
xx
w
h h
°'
r k
"1
ji.f
C•JrJ -
0oO
P�-•T
�'2
lL
Z
O
Z
O
W 4
Y. #
O
--. -.
O
Cn
ril
0o
O o Cv
O
•7
J 'M
Lo 3
:3
m
G
GGW
0
m --
h
m 0 O o
h0 rl
m2
n:
w w a
G
(1)
to
w�
w
w
FrJorl
a
ww
}
w ¢ -•oCO
M #
:k Ltl J J !k
I:Y_
Ul
W
Cq
00 rw
a CY:
W
1
L5
O O :4,
W
CL CL I
W
W
p
* f
�
J
ff)
UI
!k u tn3� k
OG
G100 •.•
OG
J
m
Cn r_
Z Z
J
CIO
W '\ 1'r
W S
V NCV
J
b700
rl r.
J
fY[C
00
O
Z
O
Z
W
L
O
N
A Cnz ZIli0 I
ul N it *
''7F
0 C.,
-. -+-+
OO
N
¢
hh to
Oloo
7
O
I- M Li J J J M
,Z CiF.. I¢¢ �:
w m .•.
-2=
••+ m
-+
U
of
0
`O
WWZ
m tI,
F .a
ca
TUi O
u I! ¢UUU A:
:k J rr .-• .• •.• !1
<Ih
J O _..•
. • • •
ILLS. Fx••
¢ 7
F-F
00 Li
�Q
J
O
F-
LL
O
woF F hr
oo
F
ao
mm w
o
w
0
ny
* _• h .-. .., :�:
to c
R h _J
F- W
i.0
J
to
J
LIJ ¢ Cr LL Cr �:
¢
*
n
J
A #
vNN00
S¢
k A;
tit 'y'
.h•.
:_r z
O
to
U
j .T
Cn
$
G
�_. O O • • •
G
iC1 U7 In
}
G_
C.:,ILI
F
o
r
x
7
..
r. •a
w
O
III) 3
D
J i_il
F
CL N N
G
O
^'
K
\
Z tJ �
0 'D `9
O
«,
m
O I-)..
m~
-•
~
¢
._. lil
J
F-
F-
U
Fes~
Hi _•nCD
lil ib
.J.
R-
LL
¢ 2
Ix
CC <
t"
O
h
O
O
cry
m
Z
OGOG
_ Z t�
<
Z
r,
¢
0000
O u J
~
mSxh
Z
F•
r~i'lw
h
F O
F•
W
hh to Cn
N W J
x
0
-
J
LL W L7
Z (n
a a
W
J
I W
h[ ¢ui
i2-[Y
Z) J
:D.. CL
LL
CL ¢ 0
x
F-
11NS10NA1,17,rif) INIrRSr:Ci1oN5 � 10-37
' WORKSIIEE I' FOR ANALYSIS OFT -IN I ERSECI IONS
ff f l f/ ya r i ,,
LUCAI ION: l� . :�t.. � '1
NAME:��uc
��
VOLUMES IN t'CI'II
IIOURLY VOLUMES
A
Major Street:O
N
��7 v,
3 3� V2 r—
GradeJ
v1 -10
T�V
V7 VO
Date of Crnmis: 2r71 ItP
U SIt)P
v7 V9
Iin,e Period:_
U YIELD
Average Running Speed: N = u
Minor
Street:_
I'I ir: Grade %
VOLUME ADJUSIMEN IS
Movement No,
2
3
4
5
7
9
Volume (vph)
3 'Sn
S`0
10
3 35'
TO
I d
Vol. (pcph), see "I",ble 10-1
zoo
�;—d
A=O
SIEP I: 111" from Minor Street
V9
Connicting now, V,
1 /2 V, 4- Vi = + _ass vph tv�9) 49 3
Critical Gap, T� , and Potential Capacity, cr
rC = C � 0 sec ('Table 10-2) cr9 = � 5.� pcph (rig. 10-3)
Actual Capacity, cm
Cm9 = cp9 = `^ pcph 5-6 Q
STEP 2: Lh rrorn Nlajor Street
V,
Conflicting now, V,
V) 4- V, = -1 = KQ vph (V,r) 6-80
Critical Gap, T` , and Potential Capacity, cr
T, =5•! sec (cable 10-2) cr,r=71-!rpcph (I"ig. 10-3)
I'ercent of cr Utilized and Impedance Factor (rig. 10-5)
(Vdrr,) X 100 = (� P, _ (— ` ( s : �S . qi9
Actual Capacity, Cm
Cml = cP4=I—Z-5-P-"cpl1
SI EP 3: LI- wont Minor Street
1 -) V7
Conflicting Flow, V,
1 /2 V) I-V71-Vs I-V4 _ -1- — + _ 4- = vph (V,7)
Critical Gap, 'r, , and I'olentia) Capacity, cr
T, = ?' Srsec (table 10-2) cr7 = 3z]d pcph (rig. 10-3) Z 3$
Actual Capacity, Cm
cm7 = Cr7 x P, = X = 'I pcpll
SIIARED-LANE CAI'ACI IfY
SI I = —
v7-1 v9 If lane is shared
(V7/Cm7) -1_ (V9/Cm9)
Movement No.
v(pch)
c c hp)
C (c h)
CR
LUS
7
7 0 2 op
3 17
2 a
i q -7 ZC*
C
9
4
icy 8d
1Z5
5765-
5G S
? 91K
UNSI(1NA1.171171N1F1(SriCII(111S 46
10-37
LOCAL ION: Hv-1,D1
I VURLY VOLUMES
IVlU/RKSIIEET FUR ANALYSIS O FIN I ERSEC-I IONS
NAME:
Major Street: 0 N
N _ O V, Z5 5"'
Grade -,4a V2 _ Vr -4.
1&t V i -- �\ �` N= EJ
i V7 V9
Dale of Counts 1, U -,lul,
lime Period: — U YIELD
Average Running Speed: N — U
Minor
Street:
VOLUMES IN I'CI'II
/
1 ' //1
V, �S—
¢Q.1rV 2 V i en,
V7 V9
s� y
I'lln Grade % I
VOLUME AD)US I MEN I S
Movement No. 2 3 4 5 7 9
Volume (vPll) Z 4 0 10 90 O
Vol. (pcph), see Table 10-1
SIEI' 1: 111' from Mirror Street V9
' Conflicting Clow, V,
Critical Gap, 'f, , and Potential Capacity, cr
Actual Capacity, cm
Si Er 2: UT' From Major Street
1
1
1
1
Conflicting Flow, V,
Critical Gap, -f, , and Potential Capacity, cr
Percent of Cr Utilized and Impedance Factor (Fig. 10-5)
Actual Capacity, cm
SI'EP 3: a From Minor Street
1/2 V3 -1- V2 = + =Z90 vpll (V,9)431D
1C sec (fable 10-2) cr9 = 77-0 pcph (rig. 10-3)
Cm9 = Cp9 = r Lv pcph
1 V4
T, = S- 5 sec (Iable 10-2) crl = 750 pcph (rig. 10-3) S`S�
(v//cr/) X I00 = L-5 P4 = n- 7 e'
Cm4 = Cr/ = .Jl. pcpll
V7
Conflicting Flow, V, 1 /2 V3 I V2 1 V, I V4 _ _ + — + + LS• Vrll (Vt7) t S
Critical Gip,'I, , and Potential Capacity, cr "f� _ 7' j sec (table I02) cr2 = 3SS pcph (rig. 10 3) 2 i
Actual Capacity, cm Cm7 = cr7 X P4 = X = -7, 5 1 pcph Lii 0
SIIARED-LANE CAI'ACI I Y
Movement No.
7
9
4
SI I = — V7 -1. V9 if lane is shared
(V7/Cm7) I (V9/Cm9)
V(p_ph) Cm (I7C II) CSn (rCpil)
9 b 5"0 '- 1 Z G Z 7 I_ " I
z.v I r 7 7 0 & 0 0 ? o-o
I(" 3 0 'M) (0 5Y 740
LOS
C,
A A
9Z A Ar
1 0 0
AFFEHDIX I
1
1
•
•
80
70
50
45
40
33
30
20
0
AZ
X
U/
-�
0 100 000 200 A300 400 500 600
DISTANCE TRAVELED IFT)
SPEED REACIIED
ICOMFORTABLE RATE)
A = 50 MPII
B = 40 MPII
C = 30 MPII
D - 20 MPII
E = 0 MPII
MINIMUM BRAKING DISTANCE
X - DRY PAVEMENT
Y - WETPAVEMENT
A POLICY OIV Cl OML TRI C DE S IG lV O F C jIG I4Wa-2S