Loading...
HomeMy WebLinkAboutPOLESTAR VILLAGE - PDP220010 - SUBMITTAL DOCUMENTS - ROUND 1 - DRAINAGE REPORTPRELIMINARY DRAINAGE REPORT FOR POLESTAR VILLAGE Prepared For: POLESTAR GARDEN, INC PO BOX 211582 FORT COLLINS, COLORADO 80521 Michael Gornik (808) 443-9956 JUNE 2022 Project No. 39797.01 Prepared By: JR Engineering, LLC 2900 South College Avenue, Suite 3D Fort Collins, CO 80525 POLESTAR VILLAGE Preliminary Drainage Report ii TABLE OF CONTENTS TABLE OF CONTENTS ......................................................................................................................... ii APPENDIX ..................................................................................................................................... iii Engineer’s Certification Block ........................................................................................................... iv GENERAL DESCRIPTION AND LOCATION ............................................................................................ 1 LOCATION ..................................................................................................................................... 1 DESCRIPTION OF PROPERTY .......................................................................................................... 1 MASTER DRAINAGE BASIN DESCRIPTION ....................................................................................... 1 FLOODPLAIN SUBMITTAL REQUIREMENTS ..................................................................................... 2 DRAINAGE BASINS AND SUB-BASINS ................................................................................................. 2 MAJOR BASINS AND SUB-BASINS ................................................................................................... 2 EXISTING SUB-BASIN DESCRIPTION ................................................................................................ 2 EXISTING OFFSITE DRAINAGE BASINS ............................................................................................ 2 EXISTING OFFSITE DRAINAGE DESCRIPTIONS ................................................................................. 3 PROPOSED SUB-BASINS DESCRIPTIONS ......................................................................................... 3 OFFSITE SUB-BASINS DESCRIPTIONS .............................................................................................. 6 PROJECT DESCRIPTION ...................................................................................................................... 6 PROJECT DESCRIPTION .................................................................................................................. 7 PROPOSED DRAINAGE FACILITIES ...................................................................................................... 7 GENERAL CONCEPT ....................................................................................................................... 7 WATER QUALITY/ DETENTION FACILITIES ...................................................................................... 8 LOW IMPACT DEVELOPMENT ........................................................................................................ 8 DRAINAGE DESIGN CRITERIA ............................................................................................................. 9 REGULATIONS ............................................................................................................................... 9 FOUR STEP PROCESS TO PROTECT RECEIVING WATERS ................................................................. 9 DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS ........................................................... 10 HYDROLOGIC CRITERIA ................................................................................................................ 11 HYDRAULIC CRITERIA ................................................................................................................... 12 FLOODPLAIN REGULATIONS COMPLIANCE ................................................................................... 12 MODIFICATIONS OF CRITERIA ...................................................................................................... 12 EROSION CONTROL ..................................................................................................................... 12 CONCLUSIONS ................................................................................................................................. 12 COMPLIANCE WITH STANDARDS ................................................................................................. 12 DRAINAGE CONCEPT ................................................................................................................... 13 REFERENCES .................................................................................................................................... 14 POLESTAR VILLAGE Preliminary Drainage Report iii APPENDIX Appendix A – Figures Appendix B – Hydrologic Calculations Appendix C – Hydraulic Calculations Appendix D – Water Quality Calculations Appendix E – Reference Appendix F – Maps Appendix G – LID Exhibit POLESTAR VILLAGE Preliminary Drainage Report iv Engineer’s Certification Block I hereby attest that this report for the final drainage design for the Polestar Village was prepared by me or under my direct supervision, in accordance with the provisions of the Fort Collins Stormwater Criteria Manual. I understand that the City of Fort Collins does not and will not assume liability for drainage facilities designed by others. Timothy J Halopoff , PE Registered Professional Engineer State of Colorado No. 37953 POLESTAR VILLAGE Preliminary Drainage Report GENERAL DESCRIPTION AND LOCATION LOCATION The site is located in The Northwest Quarter of Section 16, Township 7 North, Range 69 West of the 6th P.M. in the City of Fort Collins, Larimer County, Colorado. More specifically, the site is a 20.55 acre property that is currently undeveloped. The site borders Mountaire Subdivision to the East, to the South the site borders the back of single-family residential lots facing west Elizabeth Ave. To the west, the site borders the Scenic Views retention pond, and the Scenic Views Subdivision. To the north, the site borders a single-family residential subdivision Locust Grove Filing No. 3, the street Orchard Place and Locust Grove Filing No. 2. For additional information, refer to the site vicinity map within Appendix A of this report. DESCRIPTION OF PROPERTY The site generally drains west to east at a 2.5% to 1% slope. The site is located in the Canal Importation Basin, specifically north of West Elizabeth Street, east of South Overland Trail and directly East of the Scenic Views Subdivision. The existing streets Orchard Place and West Plumb Street dead end within the site. The Natural Resources Conservation Service (NRCS) soil survey shows that the majority are type C soils; which are characterized by a lower infiltration rate and corresponding higher runoff rates. The remaining soil on site are made up of Type B soils, which are characterized by a moderate infiltration rate and lower runoff rates. For additional information, refer to the NRCS soil map within Appendix A of this report. The existing site is currently used for Agricultural purposes and has an existing house, green house, field purposed for crops and native grass. The existing irrigation ditch; i.e. the Pleasant Valley and Lake Canal is within the site and borders the western boundary. The existing ground water depths and boring locations are shown within Appendix E of this report. An under-drain system will be designed at final design to lower the site’s ground water elevations, and the proposed buildings on the site will not have basements. MASTER DRAINAGE BASIN DESCRIPTION The site is located in the Canal Importation basin. The 2020 Canal Importation Basin – Selected Plan Update plan by Jacobs Engineering preliminary report specifies that the site have a regional detention facility. For additional information on the drainage patterns and characteristics of the site refer to the Drainage Basins and Sub-Basins section of this report. POLESTAR VILLAGE Preliminary Drainage Report FLOODPLAIN SUBMITTAL REQUIREMENTS The site is on FEMA FIRM panel 08069C0960F, as shown in Appendix A. The site lies within FEMA Zone X, areas which are determined to be outside the 0.2% annual chance floodplain. The site is not located within a FEMA regulated floodplain, as shown in Appendix A in the FEMA attachments. The site is located in the City of Fort Collins Pleasant Valley and Lake Canal Floodplain, as shown in Appendix A in the City of Fort Collins Flood map. A CLOMR will be prepared after first round PDP comments and a LOMR will be prepared after the construction survey is performed. At time of FP a description will be provided describing how the development is within the applicable floodplain regulation (Chapter 10 of City Code); i.e elevations of the lowest floor above the regulatory flood protection elevation flood proofing, floodway regulation, erosion buffer zone regulation, no-rise, etc. The floodplain use permit will not be submitted until a building permit will be submitted. In addition, flood-proofing information will be submitted at time of the final building permit. DRAINAGE BASINS AND SUB-BASINS MAJOR BASINS AND SUB-BASINS The Polestar Village site is 20.55 Acres; the site will be developed into a single family, multi-family residential community with a community center and other amenities. The site will include future regional onsite and offsite detention. The site is located in the Canal Importation basin. EXISTING SUB-BASIN DESCRIPTION There are offsite areas that flow across the proposed development site. The existing drainage basins within the site flow from west to east. The existing basin map is shown in Appendix F of this report Basin EX1 19.89, acres and 3.1% impervious. This basin is composed of native grassland, an existing shed, and drains to a swale towards West Plumb Street. EXISTING OFFSITE DRAINAGE BASINS Currently, the site collects offsite runoff at two different locations. The site is currently in the overflow path of the Scenic Views retention pond and receives direct runoff from Locust Grove Filing No. 3; which enters the site via curb and gutter from Locust Grove Drive. The Scenic Views retention facility, receives overflow runoff from the Pleasant Valley and Lake Canal, runoff from the Scenic Views Multi-family Subdivision, the Colorado State Equine Horse center, and the POLESTAR VILLAGE Preliminary Drainage Report Center of Disease Control facility. For additional information, refer to the existing drainage basin map in Appendix F of this report. EXISTING OFFSITE DRAINAGE DESCRIPTIONS The offsite flows are currently routed through the site. The existing offsite basins have been modeled in the Canal Importation - Basin Selected Plan Updates Alternatives Analysis Report, by Jacobs, dated February 2022. The basin map for the offsite areas is shown within the Existing Drainage Map within Appendix F. Basin 13, 2.9 acres and 10% impervious. This basin is directly tributary to the Scenic Views detention facility. The Scenic Views Pond was designed by JR Engineering, Ltd. to be a temporary retention facility in 1998 as shown in Appendix E of this report. The temporary retention facility has not yet been converted into a detention facility. The retention pond is pumped into the Pleasant Valley and Lake Canal via existing submersible sumps pump, as shown in Appendix E of this report. The main pump has to be manually started, so the pond was modeled as a complete retention pond with no outflow just an overflow path within the existing SWMM model. Basin 10, 64.4 Acres and 20% impervious. This basin is tributary to the Colorado State University Equine Reproduction Laboratory, located west of the site directly west of South Overland Trail. Runoff from this basin is released from the Equine Center pond and is then piped to the Scenic Views pond. Basin 11, 23.1 Acres and 70% impervious. This basin is tributary to the existing Scenic Views multi-family subdivision, runoff from this basin is detained in the Scenic Views pond. PROPOSED SUB-BASINS DESCRIPTIONS To model the proposed runoff going into the on-site detention facility the pond was modeled as a composite 20.02-acre basin in SWMM a with 48.1% impervious value. The following is a description of the individual sub-basins for the composite basin. POLESTAR VILLAGE Preliminary Drainage Report Basin A1, 1.00 acres and 17% impervious this basin is composed of open space a proposed walk and a rain garden an overflow structure that treats runoff and water quality from the Polestar Village site. Basin A2, 0.60 acres and 51% impervious this basin is composed of multi-family residential units, an alley, and onsite parking. The runoff from this basin will be conveyed via a paned alley to the curb and gutter on West Plumb Street. Basin A3, 0.59 acres and 28% impervious this basin is composed of multi-family residential units, and a swale. The runoff from this basin will be conveyed via a swale and chase to West Plumb Street. Basin A4, 2.13 acres and 54% impervious this basin is composed of multi-family residential units, paved walk, and paved driveways paved parking spaces. The runoff from this basin goes to design point 4a at an on-grade inlet and drains on West Plumb Street. Basin A5, 1.85 acres and 59% impervious this basin is composed of a local residential street, paved walk, and paved driveways. The runoff from this basin goes to design point 5a and drains onto the West plumb Street. Basin A6, 0.97 acres and 66% impervious this basin is composed of a local street West Plumb Street, paved walk and front-facing multi-family units. The runoff from this basin goes to a sump inlet at design point 6a. Basin A7, 0.88 acres and 59% impervious this basin is composed of a local Street West Plumb, paved walk. The runoff from this basin goes to a sump inlet at design point 7a. Basin B1, 0.98 acres and 57% impervious this basin is composed of a residential alley, multi-family residential units, paved driveways and paved walk ways. The runoff from this basin drains to design point 1b and is treated for water quality within a rain garden, and then overflows into the detention facility. POLESTAR VILLAGE Preliminary Drainage Report Basin B2, 0.56 acres and 66% impervious this basin is composed of open space and a side swale that runs adjacent to the property line. The runoff from this basin drains into a rain garden where it is treated for water quality and then the runoff outfalls into the on-site detention facility. Basin C1, 0.28 acres and 57% impervious this basin is composed of residential duplex units, paved walk, and a rain-garden. The runoff from this basin drains into a rain garden, where it is then released into the detention facility. Basin C2, 0.34 acres, and 29% impervious this basin is composed of paved walk, grass and multi- family units. The runoff from this basin drains into a type C inlet a design point 2C. Basin D1, 3.00 acres and 48% impervious this basin is composed a paved alley, and paved walk. The runoff from this basin drains into rain garden on the eastern border of this basin. Basin D2, 0.51 acres and 66% impervious this basin is comprised of a local residential street and paved walk. The runoff from this basin drains via chase curb and gutter and it is then treated for water quality within a rain garden within basin D1. Basin D3, 0.19 acres and 67% impervious this basin is comprised of a local residential street and paved walk. The runoff from this basin drains via chase curb and gutter and it is then treated for water quality within a rain garden within Basin D4. Basin D4, 0.38 acres and 68% impervious this basin is comprised of alleys, multi-family residential units and paved walk. The runoff from this basin drains to a sump inlet at design point 4d. Basin E1, 2.26 acres and 56% impervious this basin consists of West Orchard Place and single family residential units. The runoff from this basin will drain to an on-grade inlet a design point 1e. POLESTAR VILLAGE Preliminary Drainage Report Basin E2, 0.45 acres and 61 % impervious this basin consists of a local residential road West Orchard Place, single family units and drains via curb and gutter to an on grade inlet a design point 2e Basin F1, 4.16 acres and 31% impervious this basin is composed of the onsite detention facility. O-1, 0.45 acres and 58% impervious this basin drains onto existing West Orchard Place and is left untreated. The total area of the site left untreated is under one acre. The area that is single family to be developed is 0.22 acres. OFFSITE SUB-BASINS DESCRIPTIONS The offsite basins for the site are shown and described below. OSI, 7.81 acres and 59% impervious. This basin is composed of an existing residential subdivision Locust Grove Filling No. 3. The runoff from this basin drains on to the site via curb and gutter. For additional information, see the proposed drainage map in Appendix F of this report. OS2, 2.24 acres and 66% impervious. This basin is composed of an existing residential subdivision Locust Grove Filling No. 3. The runoff from this basin drains on to the site via curb and gutter. For additional information, see the proposed drainage map in Appendix F of this report. The existing offsite basins modeled in the Canal Importation - Basin Selected Plan Updates Alternatives Analysis Report, by Jacobs, dated February 2022, is shown within the existing drainage map in Appendix F. Basin 13, 2.9 acres and 10% impervious. This basin is directly tributary to the Scenic Views retention facility. POLESTAR VILLAGE Preliminary Drainage Report Basin 10, 64.4 Acres and 20% impervious. This basin is tributary to the equine center pond, Located west of the site directly west of South Overland Trail. Runoff from this basin is released from the Equine Center pond and is then piped to the Scenic Views pond. Basin 11, 23.1 Acres and 70% impervious. This basin is tributary to the Scenic View’s subdivision runoff from this basin is detained in the Scenic Views pond. PROJECT DESCRIPTION PROJECT DESCRIPTION Polestar Village is a residential multi-family development that will consist of a community center, wellness center, alleys, local and collector roadways. The Polestar Village site will hold regional detention and water quality for the site. In the future after the site is fully developed the Canal Importation basin offsite improvements will be built in continuity with the Jacobs Canal Importation basin Selected Plan updated February 2022. The Canal Importation Basin improvements are still being worked out with by the City. JR Engineering has designated a large area of the site for regional detention. The future onsite regional detention facility is shown in Appendix F of this report. PROPOSED DRAINAGE FACILITIES GENERAL CONCEPT The proposed improvements to the Polestar Village site will result in the developed condition being treated and detained for full spectrum runoff and water quality. Low-impact development best management practices are proposed to improve the quality of runoff and aid in reducing peak flows. Specifically, rain gardens are proposed near the central portion of the site to treat and provide water quality for the majority of the development. Runoff from the site is captured in inlets located in the alleys and grate inlet along the curb and gutter. Runoff is conveyed in storm sewers, along curb and gutter, and via surface flow to rain gardens. Secondly, surface overflow paths will be provided, such that the 100-year storm flows remain at least one foot below the finished floor elevation at time of the final drainage report. POLESTAR VILLAGE Preliminary Drainage Report WATER QUALITY/ DETENTION FACILITIES The majority of the water quality is treated within the onsite rain gardens. The remaining water quality within the site will be treated in the full spectrum detention facility. A small portion of the site 0.45 acres will be left untreated. The LID water quality treatment exhibit is shown within Appendix G of this report. LOW IMPACT DEVELOPMENT A minimum of 75 percent of new impervious surface area is treated by a Low-Impact Development (LID) best management practice (BMP) in accordance with City criteria. An illustrative LID/ Surface Map is provided in Appendix G, and the sizing of the LID methods is provided in Appendix D. POLESTAR VILLAGE Preliminary Drainage Report DRAINAGE DESIGN CRITERIA REGULATIONS This report was prepared to meet or exceed the City of Fort Collins stormwater criteria. The City of Fort Collins Stormwater Criteria Manual (dated 2018)(FCSCM) and the Urban Drainage Flood Control District’s (UDFCD) Drainage Criteria Manual (USDCM) Volumes 1, 2 and 3 were referenced as guidelines for this design. FOUR STEP PROCESS TO PROTECT RECEIVING WATERS The City of Fort Collins requires the Four Step Process to protect receiving waters. The four step process incorporates reducing runoff volume, treating water quality capture volume, stabilizing streams, and implementing long-term source controls. Volume reduction is an important part of the Four Step Process and is fundamental to effective stormwater management. Per City criteria, a minimum of 75 percent of new impervious surface area must be treated by a Low-Impact Development (LID) best management practice (BMP). The site incorporates rain gardens to provide water quality. The rain gardens will need to be cleaned and maintained to allow for long-term protection of the receiving waters. The proposed LID BMPs will have the effect of slowing runoff through the site lot and increasing infiltration and rainfall interception by encouraging infiltration and careful selection of vegetative cover. The improvements will decrease the runoff coefficient from the site and are expected to have no adverse impact on the timing, quantity, or quality of stormwater runoff. The majority of new impervious area is treated by the proposed raingarden in the northwestern portion of the site as illustrated in the LID/Surface Map is provided in Appendix G. POLESTAR VILLAGE Preliminary Drainage Report DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS The site is part of the Canal Importation - Basin Selected Plan Updates Alternatives Analysis Report, by Jacobs Engineering Group and is currently in the process of preliminary design. The site was previously analyzed in the Canal Importation Basin Hydrologic Conversion from MODSWMM to EPA SWMM 5.1; Anderson Consulting Engineers, Inc, December 6, 20213, (Revised July 3rd 2014). Jacobs Engineering group is currently modifying the Anderson model for the City of Fort Collins Capital Improvement plan for the Canal Importation basin. JR Engineering will evaluate the floodplain for the site, and JR Engineering is in the process of preforming a CLOMR to show that the improvements to the site are not within the floodplain. The improvements for the planned regional Happy Hearts detention facility will take place in the future after the site is developed into Polestar Village. The Polestar Community will not impact the downstream development, and onsite detention will be provided within the site, but the homes downstream of the site will remain within the floodplain until the improvements to the offsite and onsite facilities are put in place as recommended in the Canal Importation - Basin Selected Plan Updates Alternatives Analysis Report, by Jacobs. The following items are a list of the subject improvements. Conversion of Scenic Views retention pond to a detention pond. Addition of a pipe outfall from the Scenic views detention pond to the Happy Heart Farms i.e Polestar detention pond. Increasing the volume of the onsite detention pond per the proposed outfall from Jacobs master plan. The Canal Importation - Basin Selected Plan Updates Alternatives Analysis Report, by Jacobs is currently in a preliminary stage is subject to change. Currently in the 100-year event the Pleasant Valley and Lake Canal overflows and spills into the Scenic Views pond. The Scenic Views pond has a manually operated pumped outfall to the Pleasant Valley and Lake Canal. In the 100-year event, water overtops the Scenic views pond and goes on the Polestar site, creating a floodplain as shown in the existing drainage map within Appendix F. In the proposed condition, the floodplain will go onto the onsite rain garden, overtop W. Plumb Street and then the floodplain will be contained within the proposed detention facility, however due to the shallow gravity outfall and limited capacity the detention facility will only hold the required on site detention volume for the Polestar community. Runoff from the offsite tributary area will still overtop the proposed detention pond and the homes downstream of the proposed Polestar development will still be within the floodplain. The onsite detention for the site i.e the required runoff difference between the 100 year developed inflow rate and the 2-year historic runoff is 4.28 Acre-ft. The detention provided POLESTAR VILLAGE Preliminary Drainage Report onsite within the interim condition is 6.43 Acre-ft. In the future when the regional outfall is constructed, the pond will be able to be deeper and detain the offsite runoff in the available footprint, as shown in the Drainage Plan with Future Regional Detention in Appendix F. HYDROLOGIC CRITERIA Weighted percent imperviousness were calculated for each basin using the Fort Collins Stormwater Criteria Manual Table 3.2-2 for each basin. EPA SWMM was used to model the runoff for the site since the corresponding tributary area of the site is over 20 acres, and there are multiple detention basins upstream of the site that are in series with one another. The City of Fort Collins area has rainfall depths associated with the table below as shown in Chapter 5 of the Fort Collins Stormwater Criteria Manual. The corresponding site and tributary area were modeled in SWMM for the 2-year storm and the 100- year storm. POLESTAR VILLAGE Preliminary Drainage Report HYDRAULIC CRITERIA At time of the Final Plan (FP) StormCAD will be utilized to determine the hydraulic capacity of the storm sewer system on site. Additionally, hydraulic calculations for items such as; street capacity, inlet capacity, swales, channels and the emergency spillway will be provide within the Final Drainage Report. FLOODPLAIN REGULATIONS COMPLIANCE As previously stated, the site lies within FEMA Zone X, areas which are determined to be outside the 0.2% annual chance floodplain. The site is not located within a FEMA-regulated floodplain, as shown in Appendix A in the FEMA attachments. The site is located in the City of Fort Collins Floodplain, as shown in Appendix A in the City of Fort Collins Flood map. MODIFICATIONS OF CRITERIA JR is proposing that the spillway depth for the Scenic View and the onsite detention and future regional detention pond be one foot deep with one foot of freeboard. The current City Stormwater Criteria Manual specifies that the maximum spill depth be 6 inches. EROSION CONTROL A statement of compliance with Erosion Control Criteria and all Erosion Control Materials will be provided with the Final Drainage Report. CONCLUSIONS COMPLIANCE WITH STANDARDS The hydrologic and water quality calculations were performed using the required methods as outlined in the City of Fort Collins Stormwater Criteria Manual. POLESTAR VILLAGE Preliminary Drainage Report DRAINAGE CONCEPT The proposed concept for the Polestar Village Development involves surface flows and piping of developed conditions and offsite flow through the interim detention facility. The site includes LID water quality facilities with raingardens. Runoff for the site will be treated in a regional full spectrum interim detention facility onsite. All the offsite flows will be conveyed through the site and directly released at a rate in continuity with the existing condition. The existing conditions and drainage patterns are maintained in the proposed. The proposed improvements will have no additional adverse impacts on the flow rate, character, or quality of runoff leaving the site. The proposed improvements will have no adverse impacts on adjacent properties, and the existing floodplain downstream of the site will be in continuity with the current condition. POLESTAR VILLAGE Preliminary Drainage Report REFERENCES Fort Collins Stormwater Criteria Manual; City of Fort Collins, Colorado, December 2018. Urban Storm Drainage Criteria Manual (Volumes 1, 2, and 3); Urban Drainage and Flood Control District, June 2001. Canal Importation Basin Hydrologic Conversion from MODSWMM to EPA SWMM 5.1; Anderson Consulting Engineers, Inc, December 6, 20213, (Revised July 3rd 2014) Canal Importation basin Selected Plan Update, Jacobs Engineering Group,Dated February 2022*pending Preliminary Geotechnical Investigation Polestar Village; CTL Thompson, Dated November 2021 POLESTAR VILLAGE Preliminary Drainage Report APPENDIX A – FIGURES A Westrian Company Hydrologic Soil Group—Larimer County Area, Colorado Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 5/17/2022 Page 1 of 44491400449150044916004491700449180044919004492000449210044922004492300449240044914004491500449160044917004491800449190044920004492100449220044923004492400488700488800488900489000489100489200489300489400 488700 488800 488900 489000 489100 489200 489300 489400 40° 34' 59'' N 105° 8' 2'' W40° 34' 59'' N105° 7' 27'' W40° 34' 23'' N 105° 8' 2'' W40° 34' 23'' N 105° 7' 27'' WN Map projection: Web Mercator Corner coordinates: WGS84 Edge tics: UTM Zone 13N WGS84 0 250 500 1000 1500 Feet 0 50 100 200 300 Meters Map Scale: 1:5,390 if printed on A portrait (8.5" x 11") sheet. Soil Map may not be valid at this scale. MAP LEGEND MAP INFORMATION Area of Interest (AOI) Area of Interest (AOI) Soils Soil Rating Polygons A A/D B B/D C C/D D Not rated or not available Soil Rating Lines A A/D B B/D C C/D D Not rated or not available Soil Rating Points A A/D B B/D C C/D D Not rated or not available Water Features Streams and Canals Transportation Rails Interstate Highways US Routes Major Roads Local Roads Background Aerial Photography The soil surveys that comprise your AOI were mapped at 1:24,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Larimer County Area, Colorado Survey Area Data: Version 16, Sep 2, 2021 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Aug 11, 2018—Aug 12, 2018 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. Hydrologic Soil Group—Larimer County Area, Colorado Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 5/17/2022 Page 2 of 4 Hydrologic Soil Group Map unit symbol Map unit name Rating Acres in AOI Percent of AOI 3 Altvan-Satanta loams, 0 to 3 percent slopes B 68.4 43.1% 4 Altvan-Satanta loams, 3 to 9 percent slopes B 38.2 24.1% 37 Fort Collins loam, 5 to 9 percent slopes C 0.0 0.0% 48 Heldt clay loam, 0 to 3 percent slopes C 9.2 5.8% 64 Loveland clay loam, 0 to 1 percent slopes C 15.9 10.0% 74 Nunn clay loam, 1 to 3 percent slopes C 2.2 1.4% 76 Nunn clay loam, wet, 1 to 3 percent slopes C 11.8 7.5% 95 Satanta loam, 1 to 3 percent slopes C 12.9 8.1% Totals for Area of Interest 158.5 100.0% Hydrologic Soil Group—Larimer County Area, Colorado Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 5/17/2022 Page 3 of 4 Description Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. Rating Options Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher Hydrologic Soil Group—Larimer County Area, Colorado Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 5/17/2022 Page 4 of 4 ROCKY RDW ELIZABETH ST KIMBALL RD ORCHARD PL W PL U M ST ARANCIA DRLOUISE LNTIERRA LNCUERTO LNRADCLIFF CIR Printed: 07/14/2021. All floodplain boundaries are approximate. This information is based on the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) and the City of Fort Collins Master Drainageway Plans. This letter does not imply that the referenced property will or will not be free from flooding or damage. A property not in the Special Flood Hazard Area or in a City Designated Floodplain may be damaged by a flood greater than that predicted on the map or from a local drainage problem not shown on the map. This map does not create liability on the part of the City, or any officer or employee thereof, for any damage that results from reliance on this information. City Flood Risk Map Moderate Risk May include:- Areas of FEMA 500-year floodplain (FEMA Zone X-shaded).- Areas of FEMA or City 100-year floodplain (sheet flow) with average depths of less than 1 foot.- Areas protected by levees from the 100-year flood.Low Risk Areas outside of FEMA and City mapped 100-year and 500-year floodplains. Local drainage problems may still exist. City Flood Fringe - May Include:- Areas of FEMA 100-year floodplain (FEMA Zones A, AE, AO, and AH)- Areas of City 100-year floodplain including ponding areas and sheet flow areas with average depths of 1-3 feet.There is a 1% annual chance that these areas will be flooded. High Risk City Floodway - Area of 100-year floodplain with greatest depths and fastest velocities. 0 140 280 420 56070Feet Fort Collins Utilities Floodplain Administration (970) 416-2632 Page 5 of 7 ☐ If the floodplain use permit is not going to be submitted until the building permit is applied for, then a note is on the plans stating that the floodplain use permit will be submitted at the time of building permit application. ☐ A note is on the plans stating that a FEMA elevation or floodproofing certificate will be completed and approved before the CO is issued. This is required even if property is only in a City floodplain. Drainage Report ☐ The site is described as being in the floodplain. Floodplain name and if the floodplain is a FEMA or City-designated is described. Any floodway or erosion buffer zones on the site are described. ☐ The FEMA FIRM panel # and date and/or the Master Plan information is cited. ☐ A copy of the FIRM panel with the site location marked is included in the report. ☐ If a floodplain modeling report has been submitted, that report is referenced. The reason for the floodplain modeling report is described. ☐ If a FEMA CLOMR or LOMR has been approved for the site, the case number is referenced. The reason for the CLOMR or LOMR is described. ☐ If a FEMA LOMR is required after construction, this is stated in the report. ☐ The location of the structures relative to the floodplain is described. If there is both a FEMA and a City floodplain on the site, the location of the structures relative to both is described. ☐ The use of the structures is described. This is to determine if the structure is residential, non-residential, or mixed-use. Also, structures in all 100-year and Poudre River 500-year floodplains cannot be used as a critical facility. (See Chapter 10 of City Code for definitions.) ☐ If in the Poudre River 100-year floodplain, the requirement to complete an Emergency Response and Preparedness Plan (ERPP) is discussed and the requirement for annual training drills and an annual update in the first quarter of every year is discussed. ☐ The report describes how the development is in compliance with the applicable floodplain regulation (Chapter 10 of City Code). (Examples: elevation of lowest floor above regulatory flood protection elevation, floodproofing, floodway regulation, erosion buffer zone regulation, no-rise, etc.) Fort Collins Utilities Floodplain Administration (970) 416-2632 Page 6 of 7 ☐ The type of foundation construction for the structures (i.e. slab-on-grade, crawl space, basement, etc.) is discussed in the report. ☐ The type of foundation matches with the lowest floor elevations and grading plan. ☐ If any of the garages are not going to be elevated above the regulatory flood protection elevation, the hydraulic venting requirements are discussed. ☐ For structures in the floodplain, a table is included (same table as on the Drainage/Grading Plan) that lists the following: ☐ City BFE at upstream end of structure ☐ FEMA BFE at upstream end of structure (if different than City BFE) ☐ Regulatory flood protection elevation ☐ Lowest floor elevation (bottom of basement or crawl space is considered lowest floor) ☐ Floodproofing elevation for non-residential structures (if applicable) ☐ Garage slab elevation ☐ HVAC elevation ☐ Elevations are referenced to the NAVD 1988 datum. ☐ If the floodplain use permit is not going to be submitted until the building permit is applied for, then a note must be included in the report that states the permit will be submitted at the time of building permit application. ☐ If floodproofing information is not submitted as part of the plans, then a note must be in the report stating that floodproofing information will be submitted at the time of the building permit application. ☐ A note is in the report stating that a FEMA elevation or floodproofing certificate will be completed and approved before the CO is issued. ☐ In the compliance section, Chapter 10 of City Code is listed. Floodplain Use Permit ☐ Floodplain Use Permit has been submitted for each structure. ☐ Permit fee has been submitted. ☐ All information on permit matches the plans. ☐ All information on permit meets floodplain regulations. Fort Collins Utilities Floodplain Administration (970) 416-2632 Page 7 of 7 FEMA CLOMR Approval ☐ FEMA has approved any necessary CLOMRs. ☐ The City has received copies of all updates to the FEMA submittal. Additional Comments: Floodplain terminology is defined in Chapter 10 of City Code. NOTE: Issues specific to individual sites may arise that result in additional requirements. These will be discussed during initial meetings with the applicant. Please refer to Chapter 10 of City Code for specific floodplain regulations. POLESTAR VILLAGE Preliminary Drainage Report APPENDIX B – HYDROLOGIC CALCULATIONS Subdivision:POLESTAR Polestar Village Location:Fort Collins 0 ARJ 6/22/22 OS1 10.72 100%2.94 27.4%45%7.78 32.7%40%0.00 0.0%2%0.00 0.0%60.1% EX1 19.89 100%0.00 0.0%45%0.00 0.0%40%0.60 1.2%2%19.00 1.9%3.1% TOTAL 30.61 23.1% 39797.01 COMPOSITE % IMPERVIOUS CALCULATIONS Basins Total Weighted % Imp.Basin ID Total Area (ac) % Imp. Area (ac) Lawns % Imp. Area (ac)Weighted % Imp. Paved Roads Weighted % Imp. Single Family Residential % Imp.Area (ac)Weighted % Imp. Gravel Roads % Imp.Area (ac)Weighted % Imp. X:\3970000.all\3979701\Excel\Drainage\3979701 Existing Drainage_Calcs.xlsm Page 1 of 1 6/22/2022 Subdivision:Polestar Project Name:Polestar Location:Fort Collins Project No.: Calculated By:ARJ Checked By:0 Date:6/22/22 A1 1.00 100%0.06 5.8%45%0.12 5.5%90%0.04 3.9%2%0.77 1.6%16.7% A2 0.60 100%0.17 29.0%45%0.00 0.0%90%0.14 21.4%2%0.28 0.9%51.4% A3 0.59 100%0.08 13.6%45%0.00 0.0%90%0.09 13.0%2%0.42 1.4%28.1% A4 2.14 100%0.70 32.5%45%0.00 0.0%90%0.50 21.0%2%0.94 0.9%54.4% A5 1.84 100%0.59 32.0%45%0.00 0.0%90%0.53 26.0%2%0.72 0.8%58.8% A6 0.97 100%0.60 61.9%45%0.00 0.0%90%0.04 3.9%2%0.33 0.7%66.5% A7 0.88 100%0.47 53.2%45%0.01 0.4%90%0.04 4.4%2%0.36 0.8%58.9% B1 0.98 100%0.28 28.1%45%0.00 0.0%90%0.24 22.2%2%0.46 0.9%51.3% B2 0.56 100%0.23 41.3%45%0.00 0.0%90%0.15 24.5%2%0.18 0.6%66.4% C1 0.28 100%0.03 10.3%45%0.00 0.0%90%0.14 45.7%2%0.11 0.8%56.8% C2 0.34 100%0.02 6.5%45%0.00 0.0%90%0.08 21.4%2%0.24 1.4%29.3% D1 3.00 100%1.01 33.6%45%0.00 0.0%90%0.44 13.2%2%1.55 1.0%47.8% D2 0.20 100%0.15 75.4%45%0.00 0.0%90%0.00 0.0%2%0.05 0.5%75.9% D3 0.19 100%0.15 75.7%45%0.00 0.0%90%0.00 0.0%2%0.05 0.5%76.2% D4 0.38 100%0.23 61.6%45%0.00 0.0%90%0.02 5.7%2%0.12 0.6%67.9% E1 1.59 100%0.40 25.2%45%1.10 31.1%90%0.00 0.0%2%0.09 0.1%56.5% E2 0.45 100%0.17 37.4%45%0.23 23.3%90%0.00 0.0%2%0.05 0.2%60.9% F1 4.05 100%0.08 1.9%45%0.61 6.8%90%1.00 22.2%2%2.36 1.2%32.0% Onsite Basins 20.02 48.1% OS1 8.33 100%2.02 24.3%45%6.31 34.1%90%0.00 0.0%2%0.00 0.0%58.3% OS2 2.39 100%0.92 38.7%45%1.47 27.7%90%0.00 0.0%2%0.00 0.0%66.3% Locust Grove Filing No. 3 - Tributary to Pond 10.72 60.1% *O-1 0.48 100%0.17 36.3%45%0.23 21.1%90%0.00 0.0%2%0.08 0.3%57.8% * Drains onto W. Orchard Place 39797.01 Weighted % Imp. Basins Total Weighted % Imp.Basin ID Total Area (ac) % Imp. Area (ac) Lawns % Imp. Area (ac)Weighted % Imp. Paved Roads and Walks Roofs Weighted % Imp. COMPOSITE % IMPERVIOUS CALCULATIONS % Imp. Area (ac) Single Family Lots % Imp.Area (ac)Weighted % Imp. X:\3970000.all\3979701\Excel\Drainage\3979701 Drainage_Calcs_Template_v2.07.xlsm Page 1 of 1 6/22/2022 Subdivision:Polestar Project Name:Polestar Location:Fort Collins Project No.:39797.01 By:ARJ Volume=1/3 x Depth x (A+B+(A*B)^0.5)Checked By:0 A - Upper Surface Date:6/22/22 B - Lower Surface Stage Stage Elevation Stage Surface Area Stage Volume Cumulative Volume Cumulative Volume (square feet)(cubic feet)(cubic feet)(acre feet) 0.00 5103.00 6927 0 0 0.00 1.00 5104.00 9586 8,220 8,220 0.19 2.00 5105.00 12299 10,915 19,135 0.44 3.00 5106.00 20974 16,445 35,580 0.82 4.00 5107.00 33686 27,080 62,660 1.44 5.00 5108.00 39386 36,499 99,159 2.28 6.00 5109.00 44121 41,731 140,890 3.23 7.00 5110.00 48393 46,241 187,131 4.30 8.00 5111.00 52614 50,489 237,620 5.46 9.00 5112.00 56915 54,750 292,370 6.71 10.00 5113.00 61334 59,111 351,481 8.07 11.00 5114.00 65877 63,592 415,073 9.53 12.00 5115.00 70587 68,218 483,291 11.09 13.00 5116.00 75853 73,204 556,495 12.78 14.00 5117.00 80,977 78,401 634,896 14.58 * Spillway at Elv 5115 Volume (acre feet)Volume Water Surface Elevation Stage 100-Year Detention 10.95 5114.91 11.91 POND VOLUME CALCULATIONS Scenic Views - EX Pond X:\3970000.all\3979701\Excel\Drainage\3979701 Drainage_Calcs_Template_v2.07.xlsm Page 1 of 2 6/22/2022 Subdivision:Polestar Project Name:Polestar Location:Fort Collins Project No.39797.01 By:ARJ Checked By:0 Date:6/22/22 POND VOLUME CALCULATIONS 5102.00 5104.00 5106.00 5108.00 5110.00 5112.00 5114.00 5116.00 5118.00 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00Elevation (ft)Pond Volume (ac-ft) Pond Stage-Storage X:\3970000.all\3979701\Excel\Drainage\3979701 Drainage_Calcs_Template_v2.07.xlsm Page 2 of 2 6/22/2022 Subdivision:Polestar Project Name:Polestar Location:Fort Collins Project No.:39797.01 By:ARJ Volume=1/3 x Depth x (A+B+(A*B)^0.5)Checked By:0 A - Upper Surface Date:6/22/22 B - Lower Surface Stage Stage Elevation Stage Surface Area Stage Volume Cumulative Volume Cumulative Volume (square feet)(cubic feet)(cubic feet)(acre feet) 0.00 5103.00 2851 0 0 0.00 1.00 5104.00 19792 10,052 10,052 0.23 2.00 5105.00 41018 29,767 39,819 0.91 3.00 5106.00 68204 54,038 93,857 2.15 4.00 5107.00 93685 80,608 174,465 4.01 5.00 5108.00 109896 101,683 276,148 6.34 6.00 5109.00 118814 114,326 390,474 8.96 7.00 5110.00 125940 122,360 512,834 11.77 Volume (acre feet)Volume Water Surface Elevation Stage 100-Year Detention 6.33 5108.00 5.00 POND VOLUME CALCULATIONS Polestar Interim Detention Pond X:\3970000.all\3979701\Excel\Drainage\3979701 Drainage_Calcs_Template_v2.07.xlsm Page 1 of 2 6/22/2022 Subdivision:Polestar Project Name:Polestar Location:Fort Collins Project No.39797.01 By:ARJ Checked By:0 Date:6/22/22 POND VOLUME CALCULATIONS 5102.00 5103.00 5104.00 5105.00 5106.00 5107.00 5108.00 5109.00 5110.00 5111.00 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00Elevation (ft)Pond Volume (ac-ft) Pond Stage-Storage X:\3970000.all\3979701\Excel\Drainage\3979701 Drainage_Calcs_Template_v2.07.xlsm Page 2 of 2 6/22/2022 Subdivision:Polestar Project Name:Polestar Location:Fort Collins Project No.: Calculated By:ARJ Checked By:0 Date:6/22/22 Tributary Area Width Slope % Imperv N-Imperv N-Perv Store Imperv.Dstore perv.Zero % imperv. Storage (max) Storage (min)Decay Rate Sub-basin *EX_Polestar Site 19.71 747.42 1.10%3.12%0.016 0.25 0.1 0.3 1 0.51 0.5 6.48 *Locust Grove Filing No. 3 10.72 406.53 0.60%60.12%0.016 0.25 0.1 0.3 1 0.51 0.5 6.48 *Modified sub-catchment 15 in Jacobs model Tributary Area Width Slope % Imperv N-Imperv N-Perv Store Imperv.Dstore perv.Zero % imperv. Storage (max) Storage (min)Decay Rate Sub-basin *Polestar Site 20.02 759.26 1.10%48.11%0.016 0.25 0.1 0.3 1 0.51 0.5 6.48 *Locust Grove Filing No. 3 10.72 406.51 60.00%60.12%0.016 0.25 0.1 0.3 1 0.51 0.5 6.48 *Modified sub-catchment 15 in Jacobs model SWMM INPUTS 39797.01 Basin inputs City of Fort Collins Default Inputs City of Fort Collins Horton inputs Existing SWMM INPUTS Basin inputs City of Fort Collins Default Inputs City of Fort Collins Horton inputs Proposed SWMM INPUTS X:\3970000.all\3979701\Excel\Drainage\3979701 Drainage_Calcs_Template_v2.07.xlsm Page 1 of 1 6/22/2022 A Westrian Company A Westrian Company 2 Year - Existing EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015) -------------------------------------------------------------- ************* Element Count ************* Number of rain gages ...... 1 Number of subcatchments ... 5 Number of nodes ........... 7 Number of links ........... 7 Number of pollutants ...... 0 Number of land uses ....... 0 **************** Raingage Summary **************** Data Recording Name Data Source Type Interval ----------------------------------------------------------------------- - 1 2_Year INTENSITY 5 min. ******************** Subcatchment Summary ******************** Name Area Width %Imperv %Slope Rain Gage Outlet ----------------------------------------------------------------------- ------------------------------------ 10 64.40 3028.00 20.00 2.0000 1 J10 11 23.10 3300.00 70.00 1.0000 1 313 13 2.90 2525.00 10.00 1.0000 1 313 Ex_Polestar_Site 19.71 747.42 3.12 1.1000 1 856 Locust_Grove_Filing_No_3 10.72 406.53 60.10 0.6300 1 23 ************ Node Summary ************ Invert Max. Ponded External Name Type Elev. Depth Area Inflow 2 Year - Existing ----------------------------------------------------------------------- -------- 856 JUNCTION 5104.00 8.00 0.0 J10 JUNCTION 5148.00 5.00 0.0 J110 JUNCTION 5117.80 7.20 0.0 23 JUNCTION 5102.27 7.00 0.0 J11 OUTFALL 5101.83 0.00 0.0 310 STORAGE 5120.40 7.60 0.0 313 STORAGE 5102.49 14.00 0.0 Yes ************ Link Summary ************ Name From Node To Node Type Length %Slope Roughness ----------------------------------------------------------------------- ---------------------- 10 J10 310 CONDUIT 1500.0 1.8403 0.0400 110_overflow J110 313 CONDUIT 530.0 2.5499 0.0400 110_pipe J110 313 CONDUIT 530.0 2.1344 0.0130 15 856 23 CONDUIT 150.5 1.1494 0.0400 W1 23 J11 WEIR W2 313 23 WEIR 310out 310 J110 OUTLET ********************* Cross Section Summary ********************* Full Full Hyd. Max. No. of Full Conduit Shape Depth Area Rad. Width Barrels Flow ----------------------------------------------------------------------- ---------------- 10 TRAPEZOIDAL 5.00 1300.00 2.55 510.00 1 12223.81 110_overflow 110_overflow 5.00 190.00 2.83 66.00 1 2254.68 110_pipe CIRCULAR 2.00 3.14 0.50 2.00 1 33.05 15 DUMMY 0.00 0.00 0.00 0.00 1 0.00 **************** Transect Summary 2 Year - Existing **************** Transect 110_overflow Area: 0.0056 0.0117 0.0184 0.0258 0.0337 0.0422 0.0513 0.0610 0.0712 0.0821 0.0936 0.1056 0.1182 0.1315 0.1453 0.1597 0.1747 0.1902 0.2064 0.2232 0.2405 0.2584 0.2770 0.2961 0.3158 0.3361 0.3570 0.3784 0.4005 0.4232 0.4464 0.4702 0.4947 0.5197 0.5453 0.5715 0.5982 0.6256 0.6536 0.6821 0.7112 0.7410 0.7713 0.8022 0.8337 0.8658 0.8984 0.9317 0.9656 1.0000 Hrad: 0.0334 0.0638 0.0920 0.1184 0.1436 0.1677 0.1909 0.2135 0.2354 0.2569 0.2779 0.2986 0.3190 0.3391 0.3590 0.3786 0.3981 0.4175 0.4366 0.4557 0.4746 0.4935 0.5122 0.5309 0.5494 0.5679 0.5864 0.6047 0.6231 0.6413 0.6596 0.6777 0.6959 0.7140 0.7320 0.7501 0.7681 0.7860 0.8040 0.8219 0.8398 0.8577 0.8755 0.8934 0.9112 0.9290 0.9468 0.9645 0.9823 1.0000 Width: 0.1685 0.1855 0.2024 0.2194 0.2364 0.2533 0.2703 0.2873 0.3042 0.3212 0.3382 0.3552 0.3721 0.3891 0.4061 0.4230 0.4400 0.4570 0.4739 0.4909 0.5079 0.5248 0.5418 0.5588 0.5758 0.5927 0.6097 0.6267 0.6436 0.6606 0.6776 0.6945 0.7115 0.7285 0.7455 0.7624 0.7794 0.7964 0.8133 0.8303 0.8473 0.8642 0.8812 0.8982 0.9152 0.9321 0.9491 0.9661 0.9830 1.0000 ********************************************************* NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. ********************************************************* **************** Analysis Options **************** Flow Units ............... CFS Process Models: Rainfall/Runoff ........ YES RDII ................... NO Snowmelt ............... NO Groundwater ............ NO Flow Routing ........... YES 2 Year - Existing Ponding Allowed ........ YES Water Quality .......... NO Infiltration Method ...... HORTON Flow Routing Method ...... DYNWAVE Surcharge Method ......... EXTRAN Starting Date ............ 01/01/2013 00:00:00 Ending Date .............. 01/02/2013 00:00:00 Antecedent Dry Days ...... 0.0 Report Time Step ......... 00:01:00 Wet Time Step ............ 00:00:10 Dry Time Step ............ 01:00:00 Routing Time Step ........ 5.00 sec Variable Time Step ....... YES Maximum Trials ........... 8 Number of Threads ........ 1 Head Tolerance ........... 0.005000 ft ********************* Control Actions Taken ********************* ************************** Volume Depth Runoff Quantity Continuity acre-feet inches ************************** --------- ------- Total Precipitation ...... 9.851 0.978 Evaporation Loss ......... 0.000 0.000 Infiltration Loss ........ 6.790 0.674 Surface Runoff ........... 2.818 0.280 Final Storage ............ 0.242 0.024 Continuity Error (%) ..... -0.000 ************************** Volume Volume Flow Routing Continuity acre-feet 10^6 gal ************************** --------- --------- Dry Weather Inflow ....... 0.000 0.000 Wet Weather Inflow ....... 2.818 0.918 Groundwater Inflow ....... 0.000 0.000 RDII Inflow .............. 0.000 0.000 External Inflow .......... 30.701 10.004 External Outflow ......... 31.982 10.422 Flooding Loss ............ 0.000 0.000 Evaporation Loss ......... 0.000 0.000 Exfiltration Loss ........ 0.000 0.000 Initial Stored Volume .... 0.000 0.000 Final Stored Volume ...... 12.308 4.011 Continuity Error (%) ..... -32.133 ************************* Highest Continuity Errors ************************* 2 Year - Existing Node 23 (-56.64%) Node 310 (9.56%) Node 313 (5.96%) *************************** Time-Step Critical Elements *************************** Node 23 (1.20%) ******************************** Highest Flow Instability Indexes ******************************** Link W1 (109) ************************* Routing Time Step Summary ************************* Minimum Time Step : 3.50 sec Average Time Step : 4.99 sec Maximum Time Step : 5.00 sec Percent in Steady State : 0.00 Average Iterations per Step : 2.44 Percent Not Converging : 0.00 Time Step Frequencies : 5.000 - 3.155 sec : 100.00 % 3.155 - 1.991 sec : 0.00 % 1.991 - 1.256 sec : 0.00 % 1.256 - 0.792 sec : 0.00 % 0.792 - 0.500 sec : 0.00 % *************************** Subcatchment Runoff Summary *************************** ----------------------------------------------------------------------- ------------------------------------------------------- Total Total Total Total Imperv Perv Total Total Peak Runoff Precip Runon Evap Infil Runoff Runoff Runoff Runoff Runoff Coeff Subcatchment in in in in in in in 10^6 gal CFS ----------------------------------------------------------------------- ------------------------------------------------------- 10 0.98 0.00 0.00 0.77 0.18 0.01 0.19 0.33 34.37 0.194 11 0.98 0.00 0.00 0.28 0.63 0.01 0.64 0.40 39.70 0.658 13 0.98 0.00 0.00 0.83 0.09 0.05 0.14 0.01 1.00 0.143 2 Year - Existing Ex_Polestar_Site 0.98 0.00 0.00 0.94 0.03 0.01 0.03 0.02 1.79 0.034 Locust_Grove_Filing_No_3 0.98 0.00 0.00 0.39 0.53 0.00 0.53 0.15 8.75 0.541 ****************** Node Depth Summary ****************** ----------------------------------------------------------------------- ---------- Average Maximum Maximum Time of Max Reported Depth Depth HGL Occurrence Max Depth Node Type Feet Feet Feet days hr:min Feet ----------------------------------------------------------------------- ---------- 856 JUNCTION 0.00 0.00 5104.00 0 00:00 0.00 J10 JUNCTION 0.02 0.44 5148.44 0 00:41 0.44 J110 JUNCTION 0.09 0.44 5118.24 0 01:26 0.44 23 JUNCTION 2.53 5.01 5107.28 0 20:01 5.01 J11 OUTFALL 0.00 0.00 5101.83 0 00:00 0.00 310 STORAGE 0.12 0.81 5121.21 0 01:26 0.81 313 STORAGE 11.85 13.04 5115.53 0 05:05 13.04 ******************* Node Inflow Summary ******************* ----------------------------------------------------------------------- -------------------------- Maximum Maximum Lateral Total Flow Lateral Total Time of Max Inflow Inflow Balance Inflow Inflow Occurrence Volume Volume Error Node Type CFS CFS days hr:min 10^6 gal 10^6 gal Percent ----------------------------------------------------------------------- -------------------------- 856 JUNCTION 1.79 1.79 0 00:40 0.0177 0.0177 0.000 2 Year - Existing J10 JUNCTION 34.37 34.37 0 00:40 0.331 0.331 -9.517 J110 JUNCTION 0.00 3.55 0 01:26 0 0.331 0.077 23 JUNCTION 8.75 29.65 0 05:05 0.154 6.65 -36.157 J11 OUTFALL 0.00 79.21 0 03:07 0 10.4 0.000 310 STORAGE 0.00 27.44 0 00:43 0 0.366 10.567 313 STORAGE 158.08 159.85 0 00:44 10.4 10.7 6.340 ********************** Node Surcharge Summary ********************** Surcharging occurs when water rises above the top of the highest conduit. --------------------------------------------------------------------- Max. Height Min. Depth Hours Above Crown Below Rim Node Type Surcharged Feet Feet --------------------------------------------------------------------- 856 JUNCTION 24.00 0.000 8.000 ********************* Node Flooding Summary ********************* No nodes were flooded. ********************** Storage Volume Summary ********************** ----------------------------------------------------------------------- --------------------------- Average Avg Evap Exfil Maximum Max Time of Max Maximum Volume Pcnt Pcnt Pcnt Volume Pcnt Occurrence Outflow Storage Unit 1000 ft3 Full Loss Loss 1000 ft3 Full days hr:min CFS ----------------------------------------------------------------------- --------------------------- 310 0.022 0 0 0 0.285 0 0 01:26 3.55 313 485.638 77 0 0 558.647 88 0 05:05 29.63 2 Year - Existing *********************** Outfall Loading Summary *********************** ----------------------------------------------------------- Flow Avg Max Total Freq Flow Flow Volume Outfall Node Pcnt CFS CFS 10^6 gal ----------------------------------------------------------- J11 53.43 30.24 79.21 10.421 ----------------------------------------------------------- System 53.43 30.24 79.21 10.421 ******************** Link Flow Summary ******************** ----------------------------------------------------------------------- ------ Maximum Time of Max Maximum Max/ Max/ |Flow| Occurrence |Veloc| Full Full Link Type CFS days hr:min ft/sec Flow Depth ----------------------------------------------------------------------- ------ 10 CONDUIT 27.44 0 00:43 2.14 0.00 0.10 110_overflow CHANNEL 0.00 0 00:00 0.00 0.00 0.50 110_pipe CONDUIT 3.55 0 01:26 5.27 0.11 0.61 15 DUMMY 1.79 0 00:40 W1 WEIR 79.21 0 03:07 0.01 W2 WEIR 29.63 0 05:05 0.52 310out DUMMY 3.55 0 01:26 *************************** Flow Classification Summary *************************** ----------------------------------------------------------------------- -------------- Adjusted ---------- Fraction of Time in Flow Class ---------- /Actual Up Down Sub Sup Up Down Norm Inlet 2 Year - Existing Conduit Length Dry Dry Dry Crit Crit Crit Crit Ltd Ctrl ----------------------------------------------------------------------- -------------- 10 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.31 0.00 110_overflow 1.00 0.03 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 110_pipe 1.00 0.01 0.00 0.00 0.97 0.00 0.00 0.02 0.97 0.00 ************************* Conduit Surcharge Summary ************************* ----------------------------------------------------------------------- ----- Hours Hours --------- Hours Full -------- Above Full Capacity Conduit Both Ends Upstream Dnstream Normal Flow Limited ----------------------------------------------------------------------- ----- 110_pipe 0.01 0.01 23.14 0.01 0.01 Analysis begun on: Wed Jun 22 16:54:44 2022 Analysis ended on: Wed Jun 22 16:54:44 2022 Total elapsed time: < 1 sec 100 Year - Existing EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015) -------------------------------------------------------------- ************* Element Count ************* Number of rain gages ...... 1 Number of subcatchments ... 5 Number of nodes ........... 7 Number of links ........... 7 Number of pollutants ...... 0 Number of land uses ....... 0 **************** Raingage Summary **************** Data Recording Name Data Source Type Interval ----------------------------------------------------------------------- - 1 100_Year INTENSITY 5 min. ******************** Subcatchment Summary ******************** Name Area Width %Imperv %Slope Rain Gage Outlet ----------------------------------------------------------------------- ------------------------------------ 10 64.40 3028.00 20.00 2.0000 1 J10 11 23.10 3300.00 70.00 1.0000 1 313 13 2.90 2525.00 10.00 1.0000 1 313 Ex_Polestar_Site 19.71 747.42 3.12 1.1000 1 856 Locust_Grove_Filing_No_3 10.72 406.53 60.10 0.6300 1 23 ************ Node Summary ************ Invert Max. Ponded External Name Type Elev. Depth Area Inflow 100 Year - Existing ----------------------------------------------------------------------- -------- 856 JUNCTION 5104.00 8.00 0.0 J10 JUNCTION 5148.00 5.00 0.0 J110 JUNCTION 5117.80 7.20 0.0 23 JUNCTION 5102.27 7.00 0.0 J11 OUTFALL 5101.83 0.00 0.0 310 STORAGE 5120.40 7.60 0.0 313 STORAGE 5102.49 14.00 0.0 Yes ************ Link Summary ************ Name From Node To Node Type Length %Slope Roughness ----------------------------------------------------------------------- ---------------------- 10 J10 310 CONDUIT 1500.0 1.8403 0.0400 110_overflow J110 313 CONDUIT 530.0 2.5499 0.0400 110_pipe J110 313 CONDUIT 530.0 2.1344 0.0130 15 856 23 CONDUIT 150.5 1.1494 0.0400 W1 23 J11 WEIR W2 313 23 WEIR 310out 310 J110 OUTLET ********************* Cross Section Summary ********************* Full Full Hyd. Max. No. of Full Conduit Shape Depth Area Rad. Width Barrels Flow ----------------------------------------------------------------------- ---------------- 10 TRAPEZOIDAL 5.00 1300.00 2.55 510.00 1 12223.81 110_overflow 110_overflow 5.00 190.00 2.83 66.00 1 2254.68 110_pipe CIRCULAR 2.00 3.14 0.50 2.00 1 33.05 15 DUMMY 0.00 0.00 0.00 0.00 1 0.00 **************** Transect Summary 100 Year - Existing **************** Transect 110_overflow Area: 0.0056 0.0117 0.0184 0.0258 0.0337 0.0422 0.0513 0.0610 0.0712 0.0821 0.0936 0.1056 0.1182 0.1315 0.1453 0.1597 0.1747 0.1902 0.2064 0.2232 0.2405 0.2584 0.2770 0.2961 0.3158 0.3361 0.3570 0.3784 0.4005 0.4232 0.4464 0.4702 0.4947 0.5197 0.5453 0.5715 0.5982 0.6256 0.6536 0.6821 0.7112 0.7410 0.7713 0.8022 0.8337 0.8658 0.8984 0.9317 0.9656 1.0000 Hrad: 0.0334 0.0638 0.0920 0.1184 0.1436 0.1677 0.1909 0.2135 0.2354 0.2569 0.2779 0.2986 0.3190 0.3391 0.3590 0.3786 0.3981 0.4175 0.4366 0.4557 0.4746 0.4935 0.5122 0.5309 0.5494 0.5679 0.5864 0.6047 0.6231 0.6413 0.6596 0.6777 0.6959 0.7140 0.7320 0.7501 0.7681 0.7860 0.8040 0.8219 0.8398 0.8577 0.8755 0.8934 0.9112 0.9290 0.9468 0.9645 0.9823 1.0000 Width: 0.1685 0.1855 0.2024 0.2194 0.2364 0.2533 0.2703 0.2873 0.3042 0.3212 0.3382 0.3552 0.3721 0.3891 0.4061 0.4230 0.4400 0.4570 0.4739 0.4909 0.5079 0.5248 0.5418 0.5588 0.5758 0.5927 0.6097 0.6267 0.6436 0.6606 0.6776 0.6945 0.7115 0.7285 0.7455 0.7624 0.7794 0.7964 0.8133 0.8303 0.8473 0.8642 0.8812 0.8982 0.9152 0.9321 0.9491 0.9661 0.9830 1.0000 ********************************************************* NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. ********************************************************* **************** Analysis Options **************** Flow Units ............... CFS Process Models: Rainfall/Runoff ........ YES RDII ................... NO Snowmelt ............... NO Groundwater ............ NO Flow Routing ........... YES 100 Year - Existing Ponding Allowed ........ YES Water Quality .......... NO Infiltration Method ...... HORTON Flow Routing Method ...... DYNWAVE Surcharge Method ......... EXTRAN Starting Date ............ 01/01/2013 00:00:00 Ending Date .............. 01/02/2013 00:00:00 Antecedent Dry Days ...... 0.0 Report Time Step ......... 00:01:00 Wet Time Step ............ 00:00:10 Dry Time Step ............ 01:00:00 Routing Time Step ........ 5.00 sec Variable Time Step ....... YES Maximum Trials ........... 8 Number of Threads ........ 1 Head Tolerance ........... 0.005000 ft ********************* Control Actions Taken ********************* ************************** Volume Depth Runoff Quantity Continuity acre-feet inches ************************** --------- ------- Total Precipitation ...... 36.945 3.669 Evaporation Loss ......... 0.000 0.000 Infiltration Loss ........ 11.603 1.152 Surface Runoff ........... 25.100 2.493 Final Storage ............ 0.242 0.024 Continuity Error (%) ..... -0.001 ************************** Volume Volume Flow Routing Continuity acre-feet 10^6 gal ************************** --------- --------- Dry Weather Inflow ....... 0.000 0.000 Wet Weather Inflow ....... 25.102 8.180 Groundwater Inflow ....... 0.000 0.000 RDII Inflow .............. 0.000 0.000 External Inflow .......... 30.700 10.004 External Outflow ......... 54.157 17.648 Flooding Loss ............ 0.107 0.035 Evaporation Loss ......... 0.000 0.000 Exfiltration Loss ........ 0.000 0.000 Initial Stored Volume .... 0.000 0.000 Final Stored Volume ...... 12.339 4.021 Continuity Error (%) ..... -19.354 ************************* Highest Continuity Errors ************************* 100 Year - Existing Node 23 (-27.22%) Node 310 (8.37%) Node 313 (3.94%) *************************** Time-Step Critical Elements *************************** Node 23 (5.03%) ******************************** Highest Flow Instability Indexes ******************************** Link W1 (93) ************************* Routing Time Step Summary ************************* Minimum Time Step : 1.95 sec Average Time Step : 4.96 sec Maximum Time Step : 5.00 sec Percent in Steady State : 0.00 Average Iterations per Step : 2.95 Percent Not Converging : 7.28 Time Step Frequencies : 5.000 - 3.155 sec : 99.62 % 3.155 - 1.991 sec : 0.37 % 1.991 - 1.256 sec : 0.01 % 1.256 - 0.792 sec : 0.00 % 0.792 - 0.500 sec : 0.00 % *************************** Subcatchment Runoff Summary *************************** ----------------------------------------------------------------------- ------------------------------------------------------- Total Total Total Total Imperv Perv Total Total Peak Runoff Precip Runon Evap Infil Runoff Runoff Runoff Runoff Runoff Coeff Subcatchment in in in in in in in 10^6 gal CFS ----------------------------------------------------------------------- ------------------------------------------------------- 10 3.67 0.00 0.00 1.29 0.72 1.65 2.37 4.14 268.82 0.645 11 3.67 0.00 0.00 0.42 2.52 0.69 3.20 2.01 206.98 0.872 13 3.67 0.00 0.00 1.22 0.36 2.08 2.44 0.19 25.73 0.666 100 Year - Existing Ex_Polestar_Site 3.67 0.00 0.00 1.77 0.11 1.79 1.90 1.02 37.85 0.517 Locust_Grove_Filing_No_3 3.67 0.00 0.00 0.78 2.15 0.69 2.83 0.82 53.08 0.772 ****************** Node Depth Summary ****************** ----------------------------------------------------------------------- ---------- Average Maximum Maximum Time of Max Reported Depth Depth HGL Occurrence Max Depth Node Type Feet Feet Feet days hr:min Feet ----------------------------------------------------------------------- ---------- 856 JUNCTION 0.00 0.00 5104.00 0 00:00 0.00 J10 JUNCTION 0.08 1.03 5149.03 0 00:43 1.03 J110 JUNCTION 0.56 1.24 5119.04 0 02:22 1.24 23 JUNCTION 1.83 7.00 5109.27 0 00:37 6.48 J11 OUTFALL 0.00 0.00 5101.83 0 00:00 0.00 310 STORAGE 1.55 3.58 5123.98 0 02:27 3.58 313 STORAGE 12.29 13.59 5116.08 0 02:16 13.59 ******************* Node Inflow Summary ******************* ----------------------------------------------------------------------- -------------------------- Maximum Maximum Lateral Total Flow Lateral Total Time of Max Inflow Inflow Balance Inflow Inflow Occurrence Volume Volume Error Node Type CFS CFS days hr:min 10^6 gal 10^6 gal Percent ----------------------------------------------------------------------- -------------------------- 856 JUNCTION 37.85 37.85 0 00:45 1.02 1.02 0.000 100 Year - Existing J10 JUNCTION 268.82 268.82 0 00:40 4.14 4.14 -8.307 J110 JUNCTION 0.00 14.43 0 02:27 0 4.14 0.015 23 JUNCTION 53.08 88.28 0 00:40 0.825 13.9 -21.398 J11 OUTFALL 0.00 210.65 0 00:40 0 17.6 0.000 310 STORAGE 0.00 214.67 0 00:43 0 4.51 9.135 313 STORAGE 343.38 348.21 0 00:40 12.2 16.3 4.101 ********************** Node Surcharge Summary ********************** Surcharging occurs when water rises above the top of the highest conduit. --------------------------------------------------------------------- Max. Height Min. Depth Hours Above Crown Below Rim Node Type Surcharged Feet Feet --------------------------------------------------------------------- 856 JUNCTION 24.00 0.000 8.000 ********************* Node Flooding Summary ********************* Flooding refers to all water that overflows a node, whether it ponds or not. ----------------------------------------------------------------------- --- Total Maximum Maximum Time of Max Flood Ponded Hours Rate Occurrence Volume Depth Node Flooded CFS days hr:min 10^6 gal Feet ----------------------------------------------------------------------- --- 23 0.06 44.38 0 00:37 0.044 0.000 ********************** Storage Volume Summary ********************** 100 Year - Existing ----------------------------------------------------------------------- --------------------------- Average Avg Evap Exfil Maximum Max Time of Max Maximum Volume Pcnt Pcnt Pcnt Volume Pcnt Occurrence Outflow Storage Unit 1000 ft3 Full Loss Loss 1000 ft3 Full days hr:min CFS ----------------------------------------------------------------------- --------------------------- 310 12.810 3 0 0 53.420 12 0 02:27 14.43 313 513.582 81 0 0 599.784 95 0 02:16 56.03 *********************** Outfall Loading Summary *********************** ----------------------------------------------------------- Flow Avg Max Total Freq Flow Flow Volume Outfall Node Pcnt CFS CFS 10^6 gal ----------------------------------------------------------- J11 47.00 58.63 210.65 17.647 ----------------------------------------------------------- System 47.00 58.63 210.65 17.647 ******************** Link Flow Summary ******************** ----------------------------------------------------------------------- ------ Maximum Time of Max Maximum Max/ Max/ |Flow| Occurrence |Veloc| Full Full Link Type CFS days hr:min ft/sec Flow Depth ----------------------------------------------------------------------- ------ 10 CONDUIT 214.67 0 00:43 2.79 0.02 0.40 110_overflow CHANNEL 0.00 0 00:00 0.00 0.00 0.50 110_pipe CONDUIT 14.44 0 02:28 6.56 0.44 0.81 15 DUMMY 37.85 0 00:45 W1 WEIR 210.65 0 00:40 1.00 100 Year - Existing W2 WEIR 56.03 0 02:16 0.79 310out DUMMY 14.43 0 02:27 *************************** Flow Classification Summary *************************** ----------------------------------------------------------------------- -------------- Adjusted ---------- Fraction of Time in Flow Class ---------- /Actual Up Down Sub Sup Up Down Norm Inlet Conduit Length Dry Dry Dry Crit Crit Crit Crit Ltd Ctrl ----------------------------------------------------------------------- -------------- 10 1.00 0.00 0.00 0.00 0.99 0.01 0.00 0.00 0.88 0.00 110_overflow 1.00 0.02 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 110_pipe 1.00 0.01 0.00 0.00 0.97 0.00 0.00 0.02 0.71 0.00 ************************* Conduit Surcharge Summary ************************* ----------------------------------------------------------------------- ----- Hours Hours --------- Hours Full -------- Above Full Capacity Conduit Both Ends Upstream Dnstream Normal Flow Limited ----------------------------------------------------------------------- ----- 110_pipe 0.01 0.01 23.32 0.01 0.01 Analysis begun on: Wed Jun 22 17:00:58 2022 Analysis ended on: Wed Jun 22 17:00:58 2022 Total elapsed time: < 1 sec 2 Year - Proposed EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015) -------------------------------------------------------------- ************* Element Count ************* Number of rain gages ...... 1 Number of subcatchments ... 5 Number of nodes ........... 8 Number of links ........... 8 Number of pollutants ...... 0 Number of land uses ....... 0 **************** Raingage Summary **************** Data Recording Name Data Source Type Interval ----------------------------------------------------------------------- - 1 2_Year INTENSITY 5 min. ******************** Subcatchment Summary ******************** Name Area Width %Imperv %Slope Rain Gage Outlet ----------------------------------------------------------------------- ------------------------------------ 10 64.40 3028.00 20.00 2.0000 1 J10 11 23.10 3300.00 70.00 1.0000 1 313 13 2.90 2525.00 10.00 1.0000 1 313 Polestar_Site 20.02 759.26 48.11 1.1000 1 856 Locust_Grove_Filing_No_3 10.72 406.53 60.10 0.6300 1 23 ************ Node Summary ************ Invert Max. Ponded External Name Type Elev. Depth Area Inflow 2 Year - Proposed ----------------------------------------------------------------------- -------- 856 JUNCTION 5104.00 8.00 0.0 J10 JUNCTION 5148.00 5.00 0.0 J110 JUNCTION 5117.80 7.20 0.0 J14 OUTFALL 5101.49 0.00 0.0 J11 OUTFALL 5101.83 0.00 0.0 23 STORAGE 5102.27 7.00 0.0 310 STORAGE 5120.40 7.60 0.0 313 STORAGE 5102.49 14.00 0.0 Yes ************ Link Summary ************ Name From Node To Node Type Length %Slope Roughness ----------------------------------------------------------------------- ---------------------- 10 J10 310 CONDUIT 1500.0 1.8403 0.0400 110_overflow J110 313 CONDUIT 530.0 2.5499 0.0400 110_pipe J110 313 CONDUIT 530.0 2.1344 0.0130 15 856 23 CONDUIT 150.5 1.1494 0.0400 2 23 J14 ORIFICE W1 23 J11 WEIR W2 313 23 WEIR 310out 310 J110 OUTLET ********************* Cross Section Summary ********************* Full Full Hyd. Max. No. of Full Conduit Shape Depth Area Rad. Width Barrels Flow ----------------------------------------------------------------------- ---------------- 10 TRAPEZOIDAL 5.00 1300.00 2.55 510.00 1 12223.81 110_overflow 110_overflow 5.00 190.00 2.83 66.00 1 2254.68 110_pipe CIRCULAR 2.00 3.14 0.50 2.00 1 33.05 15 DUMMY 0.00 0.00 0.00 0.00 1 0.00 2 Year - Proposed **************** Transect Summary **************** Transect 110_overflow Area: 0.0056 0.0117 0.0184 0.0258 0.0337 0.0422 0.0513 0.0610 0.0712 0.0821 0.0936 0.1056 0.1182 0.1315 0.1453 0.1597 0.1747 0.1902 0.2064 0.2232 0.2405 0.2584 0.2770 0.2961 0.3158 0.3361 0.3570 0.3784 0.4005 0.4232 0.4464 0.4702 0.4947 0.5197 0.5453 0.5715 0.5982 0.6256 0.6536 0.6821 0.7112 0.7410 0.7713 0.8022 0.8337 0.8658 0.8984 0.9317 0.9656 1.0000 Hrad: 0.0334 0.0638 0.0920 0.1184 0.1436 0.1677 0.1909 0.2135 0.2354 0.2569 0.2779 0.2986 0.3190 0.3391 0.3590 0.3786 0.3981 0.4175 0.4366 0.4557 0.4746 0.4935 0.5122 0.5309 0.5494 0.5679 0.5864 0.6047 0.6231 0.6413 0.6596 0.6777 0.6959 0.7140 0.7320 0.7501 0.7681 0.7860 0.8040 0.8219 0.8398 0.8577 0.8755 0.8934 0.9112 0.9290 0.9468 0.9645 0.9823 1.0000 Width: 0.1685 0.1855 0.2024 0.2194 0.2364 0.2533 0.2703 0.2873 0.3042 0.3212 0.3382 0.3552 0.3721 0.3891 0.4061 0.4230 0.4400 0.4570 0.4739 0.4909 0.5079 0.5248 0.5418 0.5588 0.5758 0.5927 0.6097 0.6267 0.6436 0.6606 0.6776 0.6945 0.7115 0.7285 0.7455 0.7624 0.7794 0.7964 0.8133 0.8303 0.8473 0.8642 0.8812 0.8982 0.9152 0.9321 0.9491 0.9661 0.9830 1.0000 ********************************************************* NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. ********************************************************* **************** Analysis Options **************** Flow Units ............... CFS Process Models: Rainfall/Runoff ........ YES RDII ................... NO Snowmelt ............... NO 2 Year - Proposed Groundwater ............ NO Flow Routing ........... YES Ponding Allowed ........ YES Water Quality .......... NO Infiltration Method ...... HORTON Flow Routing Method ...... DYNWAVE Surcharge Method ......... EXTRAN Starting Date ............ 01/01/2013 00:00:00 Ending Date .............. 01/02/2013 00:00:00 Antecedent Dry Days ...... 0.0 Report Time Step ......... 00:01:00 Wet Time Step ............ 00:00:10 Dry Time Step ............ 01:00:00 Routing Time Step ........ 5.00 sec Variable Time Step ....... YES Maximum Trials ........... 8 Number of Threads ........ 1 Head Tolerance ........... 0.005000 ft ********************* Control Actions Taken ********************* ************************** Volume Depth Runoff Quantity Continuity acre-feet inches ************************** --------- ------- Total Precipitation ...... 9.876 0.978 Evaporation Loss ......... 0.000 0.000 Infiltration Loss ........ 6.081 0.602 Surface Runoff ........... 3.478 0.345 Final Storage ............ 0.317 0.031 Continuity Error (%) ..... -0.001 ************************** Volume Volume Flow Routing Continuity acre-feet 10^6 gal ************************** --------- --------- Dry Weather Inflow ....... 0.000 0.000 Wet Weather Inflow ....... 3.478 1.134 Groundwater Inflow ....... 0.000 0.000 RDII Inflow .............. 0.000 0.000 External Inflow .......... 30.699 10.004 External Outflow ......... 21.108 6.878 Flooding Loss ............ 0.000 0.000 Evaporation Loss ......... 0.000 0.000 Exfiltration Loss ........ 0.000 0.000 Initial Stored Volume .... 0.000 0.000 Final Stored Volume ...... 12.285 4.003 Continuity Error (%) ..... 2.298 ************************* 2 Year - Proposed Highest Continuity Errors ************************* Node 310 (9.54%) Node 313 (5.94%) *************************** Time-Step Critical Elements *************************** None ******************************** Highest Flow Instability Indexes ******************************** All links are stable. ************************* Routing Time Step Summary ************************* Minimum Time Step : 4.50 sec Average Time Step : 5.00 sec Maximum Time Step : 5.00 sec Percent in Steady State : 0.00 Average Iterations per Step : 2.00 Percent Not Converging : 0.00 Time Step Frequencies : 5.000 - 3.155 sec : 100.00 % 3.155 - 1.991 sec : 0.00 % 1.991 - 1.256 sec : 0.00 % 1.256 - 0.792 sec : 0.00 % 0.792 - 0.500 sec : 0.00 % *************************** Subcatchment Runoff Summary *************************** ----------------------------------------------------------------------- ------------------------------------------------------- Total Total Total Total Imperv Perv Total Total Peak Runoff Precip Runon Evap Infil Runoff Runoff Runoff Runoff Runoff Coeff Subcatchment in in in in in in in 10^6 gal CFS ----------------------------------------------------------------------- ------------------------------------------------------- 10 0.98 0.00 0.00 0.77 0.18 0.01 0.19 0.33 34.37 0.194 11 0.98 0.00 0.00 0.28 0.63 0.01 0.64 0.40 39.70 0.658 2 Year - Proposed 13 0.98 0.00 0.00 0.83 0.09 0.05 0.14 0.01 1.00 0.143 Polestar_Site 0.98 0.00 0.00 0.50 0.42 0.01 0.43 0.23 17.23 0.438 Locust_Grove_Filing_No_3 0.98 0.00 0.00 0.39 0.53 0.00 0.53 0.15 8.75 0.541 ****************** Node Depth Summary ****************** ----------------------------------------------------------------------- ---------- Average Maximum Maximum Time of Max Reported Depth Depth HGL Occurrence Max Depth Node Type Feet Feet Feet days hr:min Feet ----------------------------------------------------------------------- ---------- 856 JUNCTION 0.00 0.00 5104.00 0 00:00 0.00 J10 JUNCTION 0.02 0.44 5148.44 0 00:41 0.44 J110 JUNCTION 0.09 0.44 5118.24 0 01:26 0.44 J14 OUTFALL 0.00 0.00 5101.49 0 00:00 0.00 J11 OUTFALL 0.00 0.00 5101.83 0 00:00 0.00 23 STORAGE 1.45 3.61 5105.88 0 08:22 3.61 310 STORAGE 0.12 0.81 5121.21 0 01:26 0.81 313 STORAGE 11.52 12.19 5114.68 0 03:05 12.19 ******************* Node Inflow Summary ******************* ----------------------------------------------------------------------- -------------------------- Maximum Maximum Lateral Total Flow Lateral Total Time of Max Inflow Inflow Balance Inflow Inflow Occurrence Volume Volume Error Node Type CFS CFS days hr:min 10^6 gal 10^6 gal Percent 2 Year - Proposed ----------------------------------------------------------------------- -------------------------- 856 JUNCTION 17.23 17.23 0 00:40 0.233 0.233 0.000 J10 JUNCTION 34.37 34.37 0 00:40 0.331 0.331 -9.531 J110 JUNCTION 0.00 3.55 0 01:26 0 0.331 0.078 J14 OUTFALL 0.00 26.48 0 08:22 0 6.88 0.000 J11 OUTFALL 0.00 0.00 0 00:00 0 0 0.000 gal 23 STORAGE 8.75 33.79 0 03:04 0.154 6.88 -0.000 310 STORAGE 0.00 27.48 0 00:43 0 0.366 10.551 313 STORAGE 158.10 159.86 0 00:44 10.4 10.7 6.315 ********************** Node Surcharge Summary ********************** Surcharging occurs when water rises above the top of the highest conduit. --------------------------------------------------------------------- Max. Height Min. Depth Hours Above Crown Below Rim Node Type Surcharged Feet Feet --------------------------------------------------------------------- 856 JUNCTION 24.00 0.000 8.000 ********************* Node Flooding Summary ********************* No nodes were flooded. ********************** Storage Volume Summary ********************** ----------------------------------------------------------------------- --------------------------- Average Avg Evap Exfil Maximum Max Time of Max Maximum Volume Pcnt Pcnt Pcnt Volume Pcnt Occurrence Outflow Storage Unit 1000 ft3 Full Loss Loss 1000 ft3 Full days hr:min CFS 2 Year - Proposed ----------------------------------------------------------------------- --------------------------- 23 45.867 9 0 0 142.765 28 0 08:22 26.48 310 0.022 0 0 0 0.285 0 0 01:26 3.55 313 461.496 73 0 0 497.055 79 0 03:05 33.46 *********************** Outfall Loading Summary *********************** ----------------------------------------------------------- Flow Avg Max Total Freq Flow Flow Volume Outfall Node Pcnt CFS CFS 10^6 gal ----------------------------------------------------------- J14 98.50 10.80 26.48 6.878 J11 0.00 0.00 0.00 0.000 ----------------------------------------------------------- System 49.25 10.80 26.48 6.878 ******************** Link Flow Summary ******************** ----------------------------------------------------------------------- ------ Maximum Time of Max Maximum Max/ Max/ |Flow| Occurrence |Veloc| Full Full Link Type CFS days hr:min ft/sec Flow Depth ----------------------------------------------------------------------- ------ 10 CONDUIT 27.48 0 00:43 2.14 0.00 0.10 110_overflow CHANNEL 0.00 0 00:00 0.00 0.00 0.50 110_pipe CONDUIT 3.55 0 01:26 5.28 0.11 0.61 15 DUMMY 17.23 0 00:40 2 ORIFICE 26.48 0 08:22 1.00 W1 WEIR 0.00 0 00:00 0.00 W2 WEIR 33.46 0 03:05 0.09 310out DUMMY 3.55 0 01:26 2 Year - Proposed *************************** Flow Classification Summary *************************** ----------------------------------------------------------------------- -------------- Adjusted ---------- Fraction of Time in Flow Class ---------- /Actual Up Down Sub Sup Up Down Norm Inlet Conduit Length Dry Dry Dry Crit Crit Crit Crit Ltd Ctrl ----------------------------------------------------------------------- -------------- 10 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.31 0.00 110_overflow 1.00 0.03 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 110_pipe 1.00 0.01 0.00 0.00 0.97 0.00 0.00 0.02 0.97 0.00 ************************* Conduit Surcharge Summary ************************* ----------------------------------------------------------------------- ----- Hours Hours --------- Hours Full -------- Above Full Capacity Conduit Both Ends Upstream Dnstream Normal Flow Limited ----------------------------------------------------------------------- ----- 110_pipe 0.01 0.01 23.14 0.01 0.01 Analysis begun on: Wed Jun 22 17:03:28 2022 Analysis ended on: Wed Jun 22 17:03:28 2022 Total elapsed time: < 1 sec 100 Year - Proposed EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015) -------------------------------------------------------------- ************* Element Count ************* Number of rain gages ...... 1 Number of subcatchments ... 5 Number of nodes ........... 8 Number of links ........... 8 Number of pollutants ...... 0 Number of land uses ....... 0 **************** Raingage Summary **************** Data Recording Name Data Source Type Interval ----------------------------------------------------------------------- - 1 100_Year INTENSITY 5 min. ******************** Subcatchment Summary ******************** Name Area Width %Imperv %Slope Rain Gage Outlet ----------------------------------------------------------------------- ------------------------------------ 10 64.40 3028.00 20.00 2.0000 1 J10 11 23.10 3300.00 70.00 1.0000 1 313 13 2.90 2525.00 10.00 1.0000 1 313 Polestar_Site 20.02 759.26 48.11 1.1000 1 856 Locust_Grove_Filing_No_3 10.72 406.53 60.10 0.6300 1 23 ************ Node Summary ************ Invert Max. Ponded External Name Type Elev. Depth Area Inflow 100 Year - Proposed ----------------------------------------------------------------------- -------- 856 JUNCTION 5104.00 8.00 0.0 J10 JUNCTION 5148.00 5.00 0.0 J110 JUNCTION 5117.80 7.20 0.0 J14 OUTFALL 5101.49 0.00 0.0 J11 OUTFALL 5101.83 0.00 0.0 23 STORAGE 5102.27 7.00 0.0 310 STORAGE 5120.40 7.60 0.0 313 STORAGE 5102.49 14.00 0.0 Yes ************ Link Summary ************ Name From Node To Node Type Length %Slope Roughness ----------------------------------------------------------------------- ---------------------- 10 J10 310 CONDUIT 1500.0 1.8403 0.0400 110_overflow J110 313 CONDUIT 530.0 2.5499 0.0400 110_pipe J110 313 CONDUIT 530.0 2.1344 0.0130 15 856 23 CONDUIT 150.5 1.1494 0.0400 2 23 J14 ORIFICE W1 23 J11 WEIR W2 313 23 WEIR 310out 310 J110 OUTLET ********************* Cross Section Summary ********************* Full Full Hyd. Max. No. of Full Conduit Shape Depth Area Rad. Width Barrels Flow ----------------------------------------------------------------------- ---------------- 10 TRAPEZOIDAL 5.00 1300.00 2.55 510.00 1 12223.81 110_overflow 110_overflow 5.00 190.00 2.83 66.00 1 2254.68 110_pipe CIRCULAR 2.00 3.14 0.50 2.00 1 33.05 15 DUMMY 0.00 0.00 0.00 0.00 1 0.00 100 Year - Proposed **************** Transect Summary **************** Transect 110_overflow Area: 0.0056 0.0117 0.0184 0.0258 0.0337 0.0422 0.0513 0.0610 0.0712 0.0821 0.0936 0.1056 0.1182 0.1315 0.1453 0.1597 0.1747 0.1902 0.2064 0.2232 0.2405 0.2584 0.2770 0.2961 0.3158 0.3361 0.3570 0.3784 0.4005 0.4232 0.4464 0.4702 0.4947 0.5197 0.5453 0.5715 0.5982 0.6256 0.6536 0.6821 0.7112 0.7410 0.7713 0.8022 0.8337 0.8658 0.8984 0.9317 0.9656 1.0000 Hrad: 0.0334 0.0638 0.0920 0.1184 0.1436 0.1677 0.1909 0.2135 0.2354 0.2569 0.2779 0.2986 0.3190 0.3391 0.3590 0.3786 0.3981 0.4175 0.4366 0.4557 0.4746 0.4935 0.5122 0.5309 0.5494 0.5679 0.5864 0.6047 0.6231 0.6413 0.6596 0.6777 0.6959 0.7140 0.7320 0.7501 0.7681 0.7860 0.8040 0.8219 0.8398 0.8577 0.8755 0.8934 0.9112 0.9290 0.9468 0.9645 0.9823 1.0000 Width: 0.1685 0.1855 0.2024 0.2194 0.2364 0.2533 0.2703 0.2873 0.3042 0.3212 0.3382 0.3552 0.3721 0.3891 0.4061 0.4230 0.4400 0.4570 0.4739 0.4909 0.5079 0.5248 0.5418 0.5588 0.5758 0.5927 0.6097 0.6267 0.6436 0.6606 0.6776 0.6945 0.7115 0.7285 0.7455 0.7624 0.7794 0.7964 0.8133 0.8303 0.8473 0.8642 0.8812 0.8982 0.9152 0.9321 0.9491 0.9661 0.9830 1.0000 ********************************************************* NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. ********************************************************* **************** Analysis Options **************** Flow Units ............... CFS Process Models: Rainfall/Runoff ........ YES RDII ................... NO Snowmelt ............... NO 100 Year - Proposed Groundwater ............ NO Flow Routing ........... YES Ponding Allowed ........ YES Water Quality .......... NO Infiltration Method ...... HORTON Flow Routing Method ...... DYNWAVE Surcharge Method ......... EXTRAN Starting Date ............ 01/01/2013 00:00:00 Ending Date .............. 01/02/2013 00:00:00 Antecedent Dry Days ...... 0.0 Report Time Step ......... 00:01:00 Wet Time Step ............ 00:00:10 Dry Time Step ............ 01:00:00 Routing Time Step ........ 5.00 sec Variable Time Step ....... YES Maximum Trials ........... 8 Number of Threads ........ 1 Head Tolerance ........... 0.005000 ft ********************* Control Actions Taken ********************* ************************** Volume Depth Runoff Quantity Continuity acre-feet inches ************************** --------- ------- Total Precipitation ...... 37.040 3.669 Evaporation Loss ......... 0.000 0.000 Infiltration Loss ........ 10.112 1.002 Surface Runoff ........... 26.612 2.636 Final Storage ............ 0.317 0.031 Continuity Error (%) ..... -0.001 ************************** Volume Volume Flow Routing Continuity acre-feet 10^6 gal ************************** --------- --------- Dry Weather Inflow ....... 0.000 0.000 Wet Weather Inflow ....... 26.612 8.672 Groundwater Inflow ....... 0.000 0.000 RDII Inflow .............. 0.000 0.000 External Inflow .......... 30.699 10.004 External Outflow ......... 44.241 14.417 Flooding Loss ............ 0.000 0.000 Evaporation Loss ......... 0.000 0.000 Exfiltration Loss ........ 0.000 0.000 Initial Stored Volume .... 0.000 0.000 Final Stored Volume ...... 12.287 4.004 Continuity Error (%) ..... 1.367 ************************* 100 Year - Proposed Highest Continuity Errors ************************* Node 310 (8.32%) Node 313 (3.90%) *************************** Time-Step Critical Elements *************************** None ******************************** Highest Flow Instability Indexes ******************************** All links are stable. ************************* Routing Time Step Summary ************************* Minimum Time Step : 4.50 sec Average Time Step : 5.00 sec Maximum Time Step : 5.00 sec Percent in Steady State : 0.00 Average Iterations per Step : 2.00 Percent Not Converging : 0.00 Time Step Frequencies : 5.000 - 3.155 sec : 100.00 % 3.155 - 1.991 sec : 0.00 % 1.991 - 1.256 sec : 0.00 % 1.256 - 0.792 sec : 0.00 % 0.792 - 0.500 sec : 0.00 % *************************** Subcatchment Runoff Summary *************************** ----------------------------------------------------------------------- ------------------------------------------------------- Total Total Total Total Imperv Perv Total Total Peak Runoff Precip Runon Evap Infil Runoff Runoff Runoff Runoff Runoff Coeff Subcatchment in in in in in in in 10^6 gal CFS ----------------------------------------------------------------------- ------------------------------------------------------- 10 3.67 0.00 0.00 1.29 0.72 1.65 2.37 4.14 268.82 0.645 11 3.67 0.00 0.00 0.42 2.52 0.69 3.20 2.01 206.98 0.872 100 Year - Proposed 13 3.67 0.00 0.00 1.22 0.36 2.08 2.44 0.19 25.73 0.666 Polestar_Site 3.67 0.00 0.00 0.85 1.72 1.06 2.78 1.51 108.72 0.756 Locust_Grove_Filing_No_3 3.67 0.00 0.00 0.78 2.15 0.69 2.83 0.82 53.08 0.772 ****************** Node Depth Summary ****************** ----------------------------------------------------------------------- ---------- Average Maximum Maximum Time of Max Reported Depth Depth HGL Occurrence Max Depth Node Type Feet Feet Feet days hr:min Feet ----------------------------------------------------------------------- ---------- 856 JUNCTION 0.00 0.00 5104.00 0 00:00 0.00 J10 JUNCTION 0.08 1.03 5149.03 0 00:43 1.03 J110 JUNCTION 0.53 1.05 5118.85 0 02:23 1.05 J14 OUTFALL 0.00 0.00 5101.49 0 00:00 0.00 J11 OUTFALL 0.00 0.00 5101.83 0 00:00 0.00 23 STORAGE 2.92 5.41 5107.68 0 02:20 5.41 310 STORAGE 1.54 3.58 5123.98 0 02:27 3.58 313 STORAGE 11.74 12.35 5114.84 0 01:43 12.35 ******************* Node Inflow Summary ******************* ----------------------------------------------------------------------- -------------------------- Maximum Maximum Lateral Total Flow Lateral Total Time of Max Inflow Inflow Balance Inflow Inflow Occurrence Volume Volume Error Node Type CFS CFS days hr:min 10^6 gal 10^6 gal Percent 100 Year - Proposed ----------------------------------------------------------------------- -------------------------- 856 JUNCTION 108.72 108.72 0 00:40 1.51 1.51 0.000 J10 JUNCTION 268.82 268.82 0 00:40 4.14 4.14 -8.320 J110 JUNCTION 0.00 14.44 0 02:27 0 4.14 0.015 J14 OUTFALL 0.00 34.41 0 02:20 0 12.5 0.000 J11 OUTFALL 0.00 29.36 0 02:20 0 1.95 0.000 23 STORAGE 53.08 161.79 0 00:40 0.825 14.4 0.000 310 STORAGE 0.00 214.89 0 00:43 0 4.51 9.075 313 STORAGE 343.73 348.61 0 00:40 12.2 16.3 4.060 ********************** Node Surcharge Summary ********************** Surcharging occurs when water rises above the top of the highest conduit. --------------------------------------------------------------------- Max. Height Min. Depth Hours Above Crown Below Rim Node Type Surcharged Feet Feet --------------------------------------------------------------------- 856 JUNCTION 24.00 0.000 8.000 ********************* Node Flooding Summary ********************* No nodes were flooded. ********************** Storage Volume Summary ********************** ----------------------------------------------------------------------- --------------------------- Average Avg Evap Exfil Maximum Max Time of Max Maximum Volume Pcnt Pcnt Pcnt Volume Pcnt Occurrence Outflow Storage Unit 1000 ft3 Full Loss Loss 1000 ft3 Full days hr:min CFS 100 Year - Proposed ----------------------------------------------------------------------- --------------------------- 23 147.478 29 0 0 324.836 63 0 02:20 63.77 310 12.717 3 0 0 53.469 12 0 02:27 14.44 313 473.904 75 0 0 508.570 81 0 01:43 85.73 *********************** Outfall Loading Summary *********************** ----------------------------------------------------------- Flow Avg Max Total Freq Flow Flow Volume Outfall Node Pcnt CFS CFS 10^6 gal ----------------------------------------------------------- J14 99.18 19.44 34.41 12.462 J11 33.01 9.15 29.36 1.953 ----------------------------------------------------------- System 66.10 28.60 63.77 14.416 ******************** Link Flow Summary ******************** ----------------------------------------------------------------------- ------ Maximum Time of Max Maximum Max/ Max/ |Flow| Occurrence |Veloc| Full Full Link Type CFS days hr:min ft/sec Flow Depth ----------------------------------------------------------------------- ------ 10 CONDUIT 214.89 0 00:43 2.79 0.02 0.40 110_overflow CHANNEL 0.00 0 00:00 0.00 0.00 0.50 110_pipe CONDUIT 14.44 0 02:27 6.55 0.44 0.76 15 DUMMY 108.72 0 00:40 2 ORIFICE 34.41 0 02:20 1.00 W1 WEIR 29.36 0 02:20 0.20 W2 WEIR 85.73 0 01:43 0.17 310out DUMMY 14.44 0 02:27 100 Year - Proposed *************************** Flow Classification Summary *************************** ----------------------------------------------------------------------- -------------- Adjusted ---------- Fraction of Time in Flow Class ---------- /Actual Up Down Sub Sup Up Down Norm Inlet Conduit Length Dry Dry Dry Crit Crit Crit Crit Ltd Ctrl ----------------------------------------------------------------------- -------------- 10 1.00 0.00 0.00 0.00 0.99 0.01 0.00 0.00 0.88 0.00 110_overflow 1.00 0.02 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 110_pipe 1.00 0.01 0.00 0.00 0.97 0.00 0.00 0.02 0.79 0.00 ************************* Conduit Surcharge Summary ************************* ----------------------------------------------------------------------- ----- Hours Hours --------- Hours Full -------- Above Full Capacity Conduit Both Ends Upstream Dnstream Normal Flow Limited ----------------------------------------------------------------------- ----- 110_pipe 0.01 0.01 23.32 0.01 0.01 Analysis begun on: Wed Jun 22 17:04:27 2022 Analysis ended on: Wed Jun 22 17:04:28 2022 Total elapsed time: 00:00:01 POLESTAR VILLAGE Preliminary Drainage Report APPENDIX C – HYDRAULIC CALCULATIONS Scenic Views Pond - Broad Crested Weir Project Description Crest LengthSolve For Input Data cfs348.61Discharge ft5,115.89Headwater Elevation ft5,115.00Crest Elevation ft0.00Tailwater Elevation GravelCrest Surface Type ft20.00Crest Breadth Results ft149.5Crest Length ft0.89Headwater Height Above Crest ft-5,115.00Tailwater Height Above Crest ft^(1/2)/s2.80Weir Coefficient 1.000Submergence Factor ft^(1/2)/s2.80Adjusted Weir Coefficient ft²132.3Flow Area ft/s2.64Velocity ft151.2Wetted Perimeter ft149.47Top Width Page 1 of 127 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 6/9/2022 FlowMaster [10.03.00.03] Bentley Systems, Inc. Haestad Methods Solution CenterScenic Views Pond.fm8 POLESTAR VILLAGE Preliminary Drainage Report APPENDIX D – WATER QUALITY CALCULATIONS Subdivision:Polestar Project Name:Polestar Location:Fort Collins Project No.:39797.01 Calculated By:ARJ Checked By:0 Date:6/2/22 Basin Area (ac)% Imp. A1 1.00 16.7% A2 0.60 51.4% A3 0.59 28.1% A4 2.14 54.4% A5 1.84 58.8% A6 0.97 66.5% A7 0.88 58.9% Total 8.01 50.0% WQ Pond Tributary Areas #1 - Rain Garden X:\3970000.all\3979701\Excel\Drainage\3979701 Drainage_Calcs_Template_v2.07.xlsm Page 1 of 6 6/6/2022 Subdivision:Polestar Project Name:Polestar Location:Fort Collins Project No.:39797.01 Calculated By:ARJ Checked By:0 Date:6/2/22 Basin Area (ac)% Imp. B1 0.98 16.7% B2 0.56 51.4% Total 1.54 30.0% WQ Pond Tributary Areas # 2- Rain Garden X:\3970000.all\3979701\Excel\Drainage\3979701 Drainage_Calcs_Template_v2.07.xlsm Page 2 of 6 6/6/2022 Subdivision:Polestar Project Name:Polestar Location:Fort Collins Project No.:39797.01 Calculated By:ARJ Checked By:0 Date:6/2/22 Basin Area (ac)% Imp. C1 0.28 56.8% C2 0.34 29.3% Total 0.62 40.0% WQ Pond Tributary Areas # 3 - Rain Garden X:\3970000.all\3979701\Excel\Drainage\3979701 Drainage_Calcs_Template_v2.07.xlsm Page 3 of 6 6/6/2022 Subdivision:Polestar Project Name:Polestar Location:Fort Collins Project No.:39797.01 Calculated By:ARJ Checked By:0 Date:6/2/22 Basin Area (ac)% Imp. D1 3.00 47.8% D2 0.20 75.9% Total 3.19 50.0% WQ Pond Tributary Areas # 4 - Rain Garden X:\3970000.all\3979701\Excel\Drainage\3979701 Drainage_Calcs_Template_v2.07.xlsm Page 4 of 6 6/6/2022 Subdivision:Polestar Project Name:Polestar Location:Fort Collins Project No.:39797.01 Calculated By:ARJ Checked By:0 Date:6/2/22 Basin Area (ac)% Imp. D3 0.19 76.2% D4 0.38 67.9% Total 0.57 70.0% WQ Pond Tributary Areas # 5 - Rain Garden X:\3970000.all\3979701\Excel\Drainage\3979701 Drainage_Calcs_Template_v2.07.xlsm Page 5 of 6 6/6/2022 X:\3970000.all\3979701\Excel\Drainage\3979701 Drainage_Calcs_Template_v2.07.xlsm Page 6 of 6 6/6/2022 Sheet 1 of 2 Designer: Company: Date: Project: Location: 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, Ia Ia =50.0 % (100% if all paved and roofed areas upstream of rain garden) B) Tributary Area's Imperviousness Ratio (i = Ia/100)i =0.500 C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time WQCV =0.17 watershed inches (WQCV= 0.8 * (0.91* i3 - 1.19 * i2 + 0.78 * i) D) Contributing Watershed Area (including rain garden area)Area = 348,916 sq ft E) Water Quality Capture Volume (WQCV) Design Volume VWQCV =cu ft Vol = (WQCV / 12) * Area F) For Watersheds Outside of the Denver Region, Depth of d6 =0.43 in Average Runoff Producing Storm G) For Watersheds Outside of the Denver Region,VWQCV OTHER =4,798 cu ft Water Quality Capture Volume (WQCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume VWQCV USER =cu ft (Only if a different WQCV Design Volume is desired) 2. Basin Geometry A) WQCV Depth (12-inch maximum)DWQCV =12 in B) Rain Garden Side Slopes (Z = 4 min., horiz. dist per unit vertical)Z =4.00 ft / ft (Use "0" if rain garden has vertical walls) C) Mimimum Flat Surface Area AMin =3489 sq ft D) Actual Flat Surface Area AActual =5093 sq ft E) Area at Design Depth (Top Surface Area)ATop =6271 sq ft F) Rain Garden Total Volume VT=5,682 cu ft (VT= ((ATop + AActual) / 2) * Depth) 3. Growing Media 4. Underdrain System A) Are underdrains provided?1 B) Underdrain system orifice diameter for 12 hour drain time i) Distance From Lowest Elevation of the Storage y =ft Volume to the Center of the Orifice ii) Volume to Drain in 12 Hours Vol12 =cu ft iii) Orifice Diameter, 3/8" Minimum DO = in Design Procedure Form: Rain Garden (RG) ARJ JR Engineering June 21, 2022 Polestar #1 - Rain Garden; Basins A1-A7 UD-BMP (Version 3.07, March 2018) Choose One Choose One 18" Rain Garden Growing Media Other (Explain): YES NO No. 1 Drainage_Calcs_Template_v2.07.xlsm, RG 6/21/2022, 2:11 PM Sheet 2 of 2 Designer: Company: Date: Project: Location: 5. Impermeable Geomembrane Liner and Geotextile Separator Fabric A) Is an impermeable liner provided due to proximity of structures or groundwater contamination? 6. Inlet / Outlet Control A) Inlet Control 7. Vegetation 8. Irrigation A) Will the rain garden be irrigated? Notes: Design Procedure Form: Rain Garden (RG) ARJ JR Engineering June 21, 2022 Polestar #1 - Rain Garden; Basins A1-A7 Choose One Choose One Choose One Sheet Flow- No Energy Dissipation Required Concentrated Flow- Energy Dissipation Provided Plantings Seed (Plan for frequent weed control) Sand Grown or Other High Infiltration Sod Choose One YES NO YES NO No. 1 Drainage_Calcs_Template_v2.07.xlsm, RG 6/21/2022, 2:11 PM Sheet 1 of 2 Designer: Company: Date: Project: Location: 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, Ia Ia =30.0 % (100% if all paved and roofed areas upstream of rain garden) B) Tributary Area's Imperviousness Ratio (i = Ia/100)i =0.300 C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time WQCV =0.12 watershed inches (WQCV= 0.8 * (0.91* i3 - 1.19 * i2 + 0.78 * i) D) Contributing Watershed Area (including rain garden area)Area =67,082 sq ft E) Water Quality Capture Volume (WQCV) Design Volume VWQCV =cu ft Vol = (WQCV / 12) * Area F) For Watersheds Outside of the Denver Region, Depth of d6 =0.43 in Average Runoff Producing Storm G) For Watersheds Outside of the Denver Region,VWQCV OTHER =677 cu ft Water Quality Capture Volume (WQCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume VWQCV USER =cu ft (Only if a different WQCV Design Volume is desired) 2. Basin Geometry A) WQCV Depth (12-inch maximum)DWQCV =12 in B) Rain Garden Side Slopes (Z = 4 min., horiz. dist per unit vertical)Z =4.00 ft / ft (Use "0" if rain garden has vertical walls) C) Mimimum Flat Surface Area AMin =402 sq ft D) Actual Flat Surface Area AActual =5617 sq ft E) Area at Design Depth (Top Surface Area)ATop =7505 sq ft F) Rain Garden Total Volume VT=6,561 cu ft (VT= ((ATop + AActual) / 2) * Depth) 3. Growing Media 4. Underdrain System A) Are underdrains provided?2 B) Underdrain system orifice diameter for 12 hour drain time i) Distance From Lowest Elevation of the Storage y =N/A ft Volume to the Center of the Orifice ii) Volume to Drain in 12 Hours Vol12 =N/A cu ft iii) Orifice Diameter, 3/8" Minimum DO =N/A in Design Procedure Form: Rain Garden (RG) ARJ JR Engineering June 21, 2022 Polestar #2 - Rain Garden; B1-B2 UD-BMP (Version 3.07, March 2018) Choose One Choose One 18" Rain Garden Growing Media Other (Explain): YES NO No. 2 Drainage_Calcs_Template_v2.07.xlsm, RG 6/21/2022, 2:15 PM Sheet 2 of 2 Designer: Company: Date: Project: Location: 5. Impermeable Geomembrane Liner and Geotextile Separator Fabric A) Is an impermeable liner provided due to proximity of structures or groundwater contamination? 6. Inlet / Outlet Control A) Inlet Control 7. Vegetation 8. Irrigation A) Will the rain garden be irrigated? Notes: Design Procedure Form: Rain Garden (RG) ARJ JR Engineering June 21, 2022 Polestar #2 - Rain Garden; B1-B2 Choose One Choose One Choose One Sheet Flow- No Energy Dissipation Required Concentrated Flow- Energy Dissipation Provided Plantings Seed (Plan for frequent weed control) Sand Grown or Other High Infiltration Sod Choose One YES NO YES NO No. 2 Drainage_Calcs_Template_v2.07.xlsm, RG 6/21/2022, 2:15 PM Sheet 1 of 2 Designer: Company: Date: Project: Location: 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, Ia Ia =30.0 % (100% if all paved and roofed areas upstream of rain garden) B) Tributary Area's Imperviousness Ratio (i = Ia/100)i =0.300 C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time WQCV =0.12 watershed inches (WQCV= 0.8 * (0.91* i3 - 1.19 * i2 + 0.78 * i) D) Contributing Watershed Area (including rain garden area)Area =27,007 sq ft E) Water Quality Capture Volume (WQCV) Design Volume VWQCV =cu ft Vol = (WQCV / 12) * Area F) For Watersheds Outside of the Denver Region, Depth of d6 =0.43 in Average Runoff Producing Storm G) For Watersheds Outside of the Denver Region,VWQCV OTHER =273 cu ft Water Quality Capture Volume (WQCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume VWQCV USER =cu ft (Only if a different WQCV Design Volume is desired) 2. Basin Geometry A) WQCV Depth (12-inch maximum)DWQCV =12 in B) Rain Garden Side Slopes (Z = 4 min., horiz. dist per unit vertical)Z =4.00 ft / ft (Use "0" if rain garden has vertical walls) C) Mimimum Flat Surface Area AMin =162 sq ft D) Actual Flat Surface Area AActual =760 sq ft E) Area at Design Depth (Top Surface Area)ATop =1937 sq ft F) Rain Garden Total Volume VT=1,348 cu ft (VT= ((ATop + AActual) / 2) * Depth) 3. Growing Media 4. Underdrain System A) Are underdrains provided?2 B) Underdrain system orifice diameter for 12 hour drain time i) Distance From Lowest Elevation of the Storage y =N/A ft Volume to the Center of the Orifice ii) Volume to Drain in 12 Hours Vol12 =N/A cu ft iii) Orifice Diameter, 3/8" Minimum DO =N/A in Design Procedure Form: Rain Garden (RG) ARJ JR Engineering June 21, 2022 Polestar Village Rain Garden No. 3; Basins C1-C2 UD-BMP (Version 3.07, March 2018) Choose One Choose One 18" Rain Garden Growing Media Other (Explain): YES NO No. 3 Drainage_Calcs_Template_v2.07.xlsm, RG 6/21/2022, 2:17 PM Sheet 2 of 2 Designer: Company: Date: Project: Location: 5. Impermeable Geomembrane Liner and Geotextile Separator Fabric A) Is an impermeable liner provided due to proximity of structures or groundwater contamination? 6. Inlet / Outlet Control A) Inlet Control 7. Vegetation 8. Irrigation A) Will the rain garden be irrigated? Notes: Design Procedure Form: Rain Garden (RG) ARJ JR Engineering June 21, 2022 Polestar Village Rain Garden No. 3; Basins C1-C2 Choose One Choose One Choose One Sheet Flow- No Energy Dissipation Required Concentrated Flow- Energy Dissipation Provided Plantings Seed (Plan for frequent weed control) Sand Grown or Other High Infiltration Sod Choose One YES NO YES NO No. 3 Drainage_Calcs_Template_v2.07.xlsm, RG 6/21/2022, 2:17 PM Sheet 1 of 2 Designer: Company: Date: Project: Location: 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, Ia Ia =50.0 % (100% if all paved and roofed areas upstream of rain garden) B) Tributary Area's Imperviousness Ratio (i = Ia/100)i =0.500 C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time WQCV =0.17 watershed inches (WQCV= 0.8 * (0.91* i3 - 1.19 * i2 + 0.78 * i) D) Contributing Watershed Area (including rain garden area)Area = 137,650 sq ft E) Water Quality Capture Volume (WQCV) Design Volume VWQCV =cu ft Vol = (WQCV / 12) * Area F) For Watersheds Outside of the Denver Region, Depth of d6 =0.43 in Average Runoff Producing Storm G) For Watersheds Outside of the Denver Region,VWQCV OTHER =1,893 cu ft Water Quality Capture Volume (WQCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume VWQCV USER =cu ft (Only if a different WQCV Design Volume is desired) 2. Basin Geometry A) WQCV Depth (12-inch maximum)DWQCV =12 in B) Rain Garden Side Slopes (Z = 4 min., horiz. dist per unit vertical)Z =4.00 ft / ft (Use "0" if rain garden has vertical walls) C) Mimimum Flat Surface Area AMin =1376 sq ft D) Actual Flat Surface Area AActual =2720 sq ft E) Area at Design Depth (Top Surface Area)ATop =5487 sq ft F) Rain Garden Total Volume VT=4,103 cu ft (VT= ((ATop + AActual) / 2) * Depth) 3. Growing Media 4. Underdrain System A) Are underdrains provided?2 B) Underdrain system orifice diameter for 12 hour drain time i) Distance From Lowest Elevation of the Storage y =N/A ft Volume to the Center of the Orifice ii) Volume to Drain in 12 Hours Vol12 =N/A cu ft iii) Orifice Diameter, 3/8" Minimum DO =N/A in Design Procedure Form: Rain Garden (RG) ARJ JR Engineering June 21, 2022 Polestar Village Rain Garden No. 4; Basins D1-D2 UD-BMP (Version 3.07, March 2018) Choose One Choose One 18" Rain Garden Growing Media Other (Explain): YES NO No. 4 Drainage_Calcs_Template_v2.07.xlsm, RG 6/21/2022, 2:21 PM Sheet 2 of 2 Designer: Company: Date: Project: Location: 5. Impermeable Geomembrane Liner and Geotextile Separator Fabric A) Is an impermeable liner provided due to proximity of structures or groundwater contamination? 6. Inlet / Outlet Control A) Inlet Control 7. Vegetation 8. Irrigation A) Will the rain garden be irrigated? Notes: Design Procedure Form: Rain Garden (RG) ARJ JR Engineering June 21, 2022 Polestar Village Rain Garden No. 4; Basins D1-D2 Choose One Choose One Choose One Sheet Flow- No Energy Dissipation Required Concentrated Flow- Energy Dissipation Provided Plantings Seed (Plan for frequent weed control) Sand Grown or Other High Infiltration Sod Choose One YES NO YES NO No. 4 Drainage_Calcs_Template_v2.07.xlsm, RG 6/21/2022, 2:21 PM Sheet 1 of 2 Designer: Company: Date: Project: Location: 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, Ia Ia =70.0 % (100% if all paved and roofed areas upstream of rain garden) B) Tributary Area's Imperviousness Ratio (i = Ia/100)i =0.700 C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time WQCV =0.22 watershed inches (WQCV= 0.8 * (0.91* i3 - 1.19 * i2 + 0.78 * i) D) Contributing Watershed Area (including rain garden area)Area =24,829 sq ft E) Water Quality Capture Volume (WQCV) Design Volume VWQCV =cu ft Vol = (WQCV / 12) * Area F) For Watersheds Outside of the Denver Region, Depth of d6 =0.43 in Average Runoff Producing Storm G) For Watersheds Outside of the Denver Region,VWQCV OTHER =455 cu ft Water Quality Capture Volume (WQCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume VWQCV USER =cu ft (Only if a different WQCV Design Volume is desired) 2. Basin Geometry A) WQCV Depth (12-inch maximum)DWQCV =12 in B) Rain Garden Side Slopes (Z = 4 min., horiz. dist per unit vertical)Z =4.00 ft / ft (Use "0" if rain garden has vertical walls) C) Mimimum Flat Surface Area AMin =348 sq ft D) Actual Flat Surface Area AActual =1323 sq ft E) Area at Design Depth (Top Surface Area)ATop =2710 sq ft F) Rain Garden Total Volume VT=2,016 cu ft (VT= ((ATop + AActual) / 2) * Depth) 3. Growing Media 4. Underdrain System A) Are underdrains provided?2 B) Underdrain system orifice diameter for 12 hour drain time i) Distance From Lowest Elevation of the Storage y =N/A ft Volume to the Center of the Orifice ii) Volume to Drain in 12 Hours Vol12 =N/A cu ft iii) Orifice Diameter, 3/8" Minimum DO =N/A in Design Procedure Form: Rain Garden (RG) ARJ JR Engineering June 21, 2022 Polestar Village Rain Garden No. 5; Basins D3-D4 UD-BMP (Version 3.07, March 2018) Choose One Choose One 18" Rain Garden Growing Media Other (Explain): YES NO No. 5 Drainage_Calcs_Template_v2.07.xlsm, RG 6/21/2022, 2:22 PM Sheet 2 of 2 Designer: Company: Date: Project: Location: 5. Impermeable Geomembrane Liner and Geotextile Separator Fabric A) Is an impermeable liner provided due to proximity of structures or groundwater contamination? 6. Inlet / Outlet Control A) Inlet Control 7. Vegetation 8. Irrigation A) Will the rain garden be irrigated? Notes: Design Procedure Form: Rain Garden (RG) ARJ JR Engineering June 21, 2022 Polestar Village Rain Garden No. 5; Basins D3-D4 Choose One Choose One Choose One Sheet Flow- No Energy Dissipation Required Concentrated Flow- Energy Dissipation Provided Plantings Seed (Plan for frequent weed control) Sand Grown or Other High Infiltration Sod Choose One YES NO YES NO No. 5 Drainage_Calcs_Template_v2.07.xlsm, RG 6/21/2022, 2:22 PM POLESTAR VILLAGE Preliminary Drainage Report APPENDIX E – REFERENCES CONCEPTUAL DESIGN PLAN & PROFILE CANAL IMPORTATION BASIN N SHEET 1SHEET 2SHEET 3Ä2þ245ac.Ä2þ982ac.Ä2þ903ac.Ä2þ507ac.Ä2þ17.7ac.Ä2þ66.9ac.Ä2þ1065ac.Ä2þ5538ac.Ä2þ1530ac.Ä2þ9912ac.Ä2þ9533ac.Ä2þ5832ac.Ä2þ5494ac.Ä2þ8918ac.Ä2þ6842ac.Ä2þ7230ac.Ä2þ8213ac.Ä2þ5777ac.Ä2þ9218ac.Ä2þ4115ac.Ä2þ4681ac.Ä2þ3424ac.Ä2þ422.2ac.Ä2þ718.4ac.Ä2þ339.1ac.Ä2þ521.3ac.Ä2þ230.4ac.Ä2þ812.9ac.Ä2þ229.7ac.Ä2þ132.9ac.Ä2þ199.6ac.Ä2þ143.3ac.Ä2þ912.8ac.Ä2þ677.9ac.Ä2þ947.9ac.Ä2þ937.6ac.Ä2þ875.6ac.Ä2þ980.8ac.Ä2þ367.2ac.Ä2þ397.3ac.Ä2þ336.7ac.Ä2þ373.1ac.Ä2þ382.3ac.Ä2þ408.8ac.Ä2þ52135ac.Ä2þ514.4ac.Ä2þ613.3ac.Ä2þ624.9ac.Ä2þ633.5ac.Ä2þ658.2ac.Ä2þ4414.5ac.Ä2þ1088.8ac.Ä2þ1217.8ac.Ä2þ2122.2ac.Ä2þ1725.5ac.Ä2þ5932.8ac.Ä2þ2028.6ac.Ä2þ5132.8ac.Ä2þ7204.6ac.Ä2þ4230.9ac.Ä2þ5030.6ac.Ä2þ2224.7ac.Ä2þ1613.7ac.Ä2þ1851.1ac.Ä2þ4331.2ac.Ä2þ5631.5ac.Ä2þ1123.1ac.Ä2þ8207.5ac.Ä2þ1167.7ac.Ä2þ5335.8ac.Ä2þ5730.9ac.Ä2þ5433.2ac.Ä2þ2246.4ac.Ä2þ5233.1ac.Ä2þ4955.4ac.Ä2þ1183.3ac.Ä2þ5191.6ac.Ä2þ5290.7ac.Ä2þ6611.8ac.Ä2þ5693.4ac.Ä2þ6926.2ac.Ä2þ7532.8ac.Ä2þ5792.8ac.Ä2þ5590.9ac.Ä2þ5090.9ac.Ä2þ5391.2ac.Ä2þ8110.3ac.Ä2þ9713.4ac.Ä2þ5981.7ac.Ä2þ5888.9ac.Ä2þ7130.4ac.Ä2þ5201.7ac.Ä2þ5505.7ac.Ä2þ5702.3ac.Ä2þ7026.5ac.Ä2þ8823.4ac.Ä2þ7313.5ac.Ä2þ5302.5ac.Ä2þ8319.6ac.Ä2þ9610.3ac.Ä2þ5604.3ac.Ä2þ7413.9ac.Ä2þ5873.9ac.Ä2þ8615.3ac.Ä2þ5807.2ac.Ä2þ5409.7ac.Ä2þ4732.9ac.Ä2þ7626.5ac.Ä2þ5082.1ac.Ä2þ5062.4ac.Ä2þ5073.7ac.Ä2þ3027.4ac.Ä2þ9112.6ac.Ä2þ1225.4ac.Ä2þ8518.5ac.Ä2þ1213.7ac.Ä2þ8458.4ac.Ä2þ2858.4ac.Ä2þ4245.1ac.Ä2þ4326.8ac.Ä2þ4912.8ac.Ä2þ1302.8ac.Ä2þ1311.5ac.Ä2þ3114.3ac.Ä2þ4849.8ac.Ä2þ1234.5ac.Ä2þ1246.2ac.Ä2þ1416.3ac.Ä2þ3511.7ac.Ä2þ2953.7ac.Ä2þ2621.8ac.Ä2þ4550.3ac.Ä2þ2797.1ac.Ä2þ3233.2ac.Ä2þ5433.7ac.Ä2þ2513.9ac.Ä2þ5510.9ac.Ä2þ5711.6ac.Ä2þ5613.1ac.Ä2þ1438.4ac.Ä2þ5955.2ac.Ä2þ5814.4ac.Ä2þ6058.4ac.Ä2þ6413.1ac.Ä2þ13951.2ac.Ä2þ14056.8ac.Ä2þ11124.6ac.Ä2þ11018.5ac.Ä2þ10914.7ac.Ä2þ11313.5ac.Ä2þ11211.1ac.Ä2þ11414.1ac.Ä2þ11520.1ac.Ä2þ11711.2ac.Ä2þ58915.6ac.Ä2þ19528.9ac.Ä2þ29510.6ac.Ä2þ11924.6ac.Ä2þ97810.8ac.Ä2þ21923.8ac.Ä2þ12034.4ac.Ä2þ57810.3ac.Ä2þ59711.1ac.Ä2þ13333.3ac.Ä2þ13214.5ac.Ä2þ13430.9ac.Ä2þ14211.5ac.Ä2þ13872.1ac.Ä2þ53155.4ac.Ä2þ135127.9ac.Overland TrailOverland TrailTaft Hill RoadLaporte AvenueElizabeth StreetMulberry StreetMulberry StreetProspect RoadDrake RoadTaft Hill RoadShields StreetProspect RoadShields StreetDrake RoadINDEXDATE:PROJECT NUMBER:CHECKED BY:DESIGNED BY:DRAWN BY:BNAMMCAMHCOFC2012.0107/01/2014³LegendSubbasinSheet BoundaryCITY OF FORT COLLINSCANAL IMPORTATION HYDROLOGIC CONVERSIONFROM MODSWMM TO EPA SWMM 5.0INDEX MAP0 800 1,600400Feet Civil ƒ Water Resources ƒ Environmental 375 East Horsetooth Road, Building 5, Fort Collins, CO 80525 Phone (970) 226-0120 / Fax (970) 226-0121 www.acewater.com Civil ƒ Water Resources ƒ Environmental 375 East Horsetooth Road, Building 5, Fort Collins, CO 80525 Phone (970) 226-0120 / Fax (970) 226-0121 www.acewater.com COFC2012.01_CI Basin Hydrologic Conversion_Report.docx 12 Anderson Consulting Engineers, Inc. Table 3.2 100-Year Peak Discharge Comparison Table. SWMM ID Discharge (cfs) Percent Change from Previous Study Location Mulberry Flow Path 304 114.9 6.4 Golf Course Pond 205 641.3 28.3 Taft Hill Road 3 463.3 57.1 U/S of Briarwood Road Plum Flow Path 850 50.6 -4.5 Skyline Drive 852 63.8 -17.1 Glenmoor Drive 220 434.6 -13.4 East edge of Taft Hill Road 853 407.0 -16.4 West edge of Taft Hill Road 118 352.2 -11.3 854 354.9 -25.9 Ponderosa Drive 855 192.6 10.1 Pear Street 315 193.3 49.8 Kimball Detention Pond 856 200.4 36.3 Kimball Road 113 154.5 51.5 Elizabeth Flow Path 445 10.5 101.9 Elizabeth/City Park Intersection 444 200.5 0.3 Elizabeth/City Park Intersection Clearview Flow Path 861 226.5 6.3 272 257.8 -25.1 862 334.5 -10.1 Clearview Ave. 276 390.5 -42.9 Clearview Ave. and Taft Hill Road 863 405.8 -40.1 879 426.0 -41.6 871 396.8 13.0 Canal Importation Flow Path 242 526.1 -2.4 Confluence w/ Spring Creek 244 521.9 -2.6 Shield Street 241 481.4 0.7 864 436.4 -6.6 Heatheridge Road 40 429.1 -7.5 27 718.7 44.3 Fairbrooke Pond 860 196.3 -3.3 867 256.7 -9.9 COFC2012.01_CI Basin Hydrologic Conversion_Report.docx 13 Anderson Consulting Engineers, Inc. FIGURE 3.1 COFC2012.01_CI Basin Hydrologic Conversion_Report.docx 2 Anderson Consulting Engineers, Inc. P-1 P-2 P-3 P-4 P-5 P-6 TH-1 TH-2 W. Elizabeth Street W. Plum Street Orchard Place Kimball RoadOVERLAND TRAILTAFT HILL RD.W. MULBERRY ST. W. ELIZABETH ST. SITE LEGEND: INDICATES APPROXIMATE LOCATION OF TEMPORARY PIEZOMETER INDICATES APPROXIMATE LOCATION OF EXPLORATORY BORING P-1 TH-1 J.R.ENGINEERING, LLC POLESTAR VILLAGE PRELIM CTL I T PROJECT NO. FC10101-115 FIGURE 1 Locations of Exploratory Borings VICINITY MAP FORT COLLINS, COLORADO NOT TO SCALE 300' APPROXIMATE SCALE: 1" = 300' 150'0' P-1 P-2 P-3 P-4 P-5 P-6 TH-1 TH-2 W. Elizabeth Street W. Plum Street Orchard Place Kimball Road(18.5) (4.5) (22)(10) (21.5) (3.5) (20.5) (22.5) [5097.8] [5106.7] [5089.8][5096.0] [5115.1] [5091.0] [5088.3] [5095.0] LEGEND: INDICATES APPROXIMATE LOCATION OF TEMPORARY PIEZOMETER INDICATES APPROXIMATE LOCATION OF EXPLORATORY BORING INDICATES ESTIMATED DEPTH TO GROUNDWATER IN FEET INDICATES ESTIMATED GROUND WATER SURFACE ELEVATION P-1 (10) TH-1 [5096] J.R.ENGINEERING, LLC POLESTAR VILLAGE PRELIM CTL I T PROJECT NO. FC10101-115 FIGURE 2 Groundwater Depth and Elevation 300' APPROXIMATE SCALE: 1" = 300' 150'0' P-1 P-2 P-3 P-4 P-5 P-6 TH-1 TH-2 W. Elizabeth Street W. Plum Street Orchard Place Kimball Road(7) [5109.3] (11) [5100.8] (5.5) [5100.5] (11) [5099.8] (12) [5103.5] (10.5) [5108.1] (8) [5103.2] (12) [5100.5] LEGEND: INDICATES APPROXIMATE LOCATION OF TEMPORARY PIEZOMETER INDICATES APPROXIMATE LOCATION OF EXPLORATORY BORING INDICATES ESTIMATED DEPTH TO BEDROCK IN FEET INDICATES ESTIMATED GROUND BEDROCK ELEVATION P-1 TH-1 J.R.ENGINEERING, LLC POLESTAR VILLAGE PRELIM CTL I T PROJECT NO. FC10101-115 FIGURE 3 Bedrock Depth and Elevation 300' APPROXIMATE SCALE: 1" = 300' 150'0' [5103.2] (8) 5,075 5,080 5,085 5,090 5,095 5,100 5,105 5,110 5,115 5,120 5,075 5,080 5,085 5,090 5,095 5,100 5,105 5,110 5,115 5,120 40/12 38/12 50/12 50/8 50/7 WC=14.1DD=121SW=4.4 WC=13.6DD=124SW=1.9 SS=0.170 P-1 El. 5116.3 39/12 42/12 50/10 50/9 50/9 WC=15.5DD=120SW=7.3 WC=13.1DD=124SW=2.8 WC=13.9DD=121-200=99UC=20,800 WC=14.3DD=124SW=2.1 P-2 El. 5111.8 14/12 44/12 39/12 32/12 50/9 WC=14.2DD=124SW=7.8 WC=15.3DD=118SW=4.5 P-3 El. 5106.0 50/10 20/12 50/8 50/11 50/7 WC=2.2-200=23SS=<0.01 WC=14.5DD=119SW=3.7 WC=13.3DD=126SW=3.9 WC=16.1DD=117SW=2.3 WC=14.8DD=125SW=3.3 P-4 El. 5110.8 25/12 35/12 50/9 50/9 50/8 WC=13.5DD=122SW=6.1 WC=13.9DD=121-200=100UC=17,250 WC=13.9DD=122SW=2.1 P-5 El. 5115.5 8/12 22/12 50/6 50/6 50/5 WC=17.0 -200=61 WC=13.1DD=120SW=0.0 LL=34 PI=18 P-6 El. 5118.6 11/12 50/12 50/12 50/9 50/7 WC=15.1 -200=44 WC=13.7DD=124SW=4.3SS=0.050 WC=15.3DD=120SW=2.0 LL=30 PI=14 TH-1 El. 5111.2 29/12 38/12 50/10 50/9 50/9 WC=14.8DD=122SW=3.1 WC=14.7DD=122 WC=14.6DD=124SW=3.3 WC=14.8DD=123SW=4.4 TH-2 El. 5112.5 ELEVATION - FEETFIGURE 4 DRIVE SAMPLE. THE SYMBOL 40/12 INDICATES 40 BLOWS OF A 140-POUND HAMMER FALLING 30 INCHES WERE REQUIRED TO DRIVE A 2.5-INCH O.D. SAMPLER 12 INCHES.ELEVATION - FEETWATER LEVEL MEASURED ON SEPTEMBER 24, 2021. SAND, CLAYEY, MOIST, MEDIUM DENSE TO DENSE, RED-BROWN (SC) 2. 3. FILL, GRAVEL, SAND, CLAY, SILT, MISC. DEBRIS, WHITE, PINK, GRAY, TAN THE BORINGS WERE DRILLED ON SEPTEMBER 22, 2021, USING 4-INCH DIAMETER CONTINUOUS-FLIGHT AUGERS AND A TRUCK-MOUNTED DRILL RIG. 1. LEGEND: NOTES: CLAY, SANDY, MOIST, STIFF TO VERY STIFF, RED-BROWN, TAN (CL) WEATHERED CLAYSTONE, SANDY, MOIST, FIRM TO MEDIUM HARD, RED-BROWN, TAN, GRAY CLAYSTONE, SANDY, MOIST, MEDIUM HARD TO HARD, BROWN, GRAY, OLIVE WATER LEVEL MEASURED AT TIME OF DRILLING. BORING ELEVATIONS WERE SURVEYED BY A REPRESENTATIVE OF OUR FIRM REFERENCING THE TEMPORARY BENCHMARK SHOWN ON FIGURE 1. THESE LOGS ARE SUBJECT TO THE EXPLANATIONS, LIMITATIONS AND CONCLUSIONS IN THIS REPORT. 4. Summary Logs of Exploratory Borings WC DD SW -200 LL PI UC SS - - - - - - - - INDICATES MOISTURE CONTENT (%). INDICATES DRY DENSITY (PCF). INDICATES SWELL WHEN WETTED UNDER OVERBURDEN PRESSURE (%). INDICATES PASSING NO. 200 SIEVE (%). INDICATES LIQUID LIMIT. INDICATES PLASTICITY INDEX. INDICATES UNCONFINED COMPRESSIVE STRENGTH (PSF). INDICATES SOLUBLE SULFATE CONTENT (%). J.R. ENGINEERING, LLC POLESTAR VILLAGE PRELIM CTL | T PROJECT NO. FC10101-115 SW=3.8 J.R. ENGINEERING, LLC POLESTAR VILLAGE PRELIM CTL | T PROJECT NO. FC10101-115 Conceptual Underdrain Detail FIGURE 5 POLESTAR VILLAGE Preliminary Drainage Report APPENDIX F – MAPS A Westrian CompanyKnow what'sbelow.before you dig.CallR A Westrian CompanyKnow what'sbelow.before you dig.CallR A Westrian CompanyKnow what'sbelow.before you dig.CallR ELIZABETH STPLUM STOVERLAND TR ORCHARD PLA Westrian CompanyKnow what'sbelow.before you dig.CallR ELIZABETH STPLUM STOVERLAND TR ORCHARD PLA Westrian CompanyKnow what'sbelow.before you dig.CallRW PLUM STW. ORCHARD PLLOCUST GROVE DRIVE W PLUM ST A Westrian CompanyKnow what'sbelow.before you dig.CallRELIZABETH STPLUM STOVERLAND TR ORCHARD PLW PLUM STW. ORCHARD PLLOCUST GROVE DRIVE W PLUM ST POLESTAR VILLAGE Preliminary Drainage Report APPENDIX G –LID EXHIBIT A Westrian CompanyKnow what'sbelow.before you dig.CallRELIZABETH STPLUM STOVERLAND TR ORCHARD PLW PLUM STW. ORCHARD PLW PLUM ST LOCUST GROVE DRIVE