HomeMy WebLinkAboutWEBERG PUD - FINAL - 76-88G - SUBMITTAL DOCUMENTS - ROUND 1 - DRAINAGE REPORTMf:WINC
Engineering Consultants
2900 South College Avenue
Fort Collins, Colorado 80525
303/226-4955
June 5, 1989
Ms. Susan Hayes
Storm Drainage Department
City of Fort Collins
P.O. Box 580
Fort Collins, Colorado 80522
RE: FINAL DRAINAGE REPORT FOR THE WEBER P.U.D.
Dear Susan:
The Weberg Furniture site is located about 1/2 mile south of Har-
mony Road on the west side of Highway 287 (College Avenue in Fort
Collins) in Larimer County Colorado. Annexation is currently
underway to bring this site within City limits. More specifi-
cally this location is in the east half of Section 2, Township 6
North, Range 69 West of the 6th Principal Meridian.
This site currently is occupied by a residence with a large open
grass field between it and College Avenue. The general slope of
the property is at about 1% to 3% in a southeasterly direction.
Existing drainage from this site flows in two directions. Basin
H1 (on plan in pocket) drains to a drainageway that exists just
south of this basin. Basin H1 is offsite and to the west of this
site with an exception of proposed Basin A. Proposed Basin A
will drain, however, in the direction of Highway 287. Drainage
from Basin H2 drains directly into Highway 287. Calculations for
the existing flows from Basin H2 is shown in the Appendix.
Offsite flows from the north currently are captured into a
drainage swale near the north property line. This drainage swale
meanders on and off this property but exists primarily north of
property line. The development of Lot 2 will require redefining
this swale north of this site or make provisions for the offsite
flows to safely pass through this site.
The flows that enter highway 287 will drain in the existing curb
and gutter as they travel south of the site. At a point about
400 ft. south of this site, an inlet will intercept some of the
flows. This inlet collects the flows into a pipe which
transports them to the east side of Highway 287, where the pipe
daylights. The flows then sheet flow to a roadside ditch within
the Fossil Creek Meadows Subdivision. Roadside ditches, along
Other Offices: Vail, Colorado 303/476-6340 • Colorado Springs, Colorado (719) 598-4107
with culverts under existing roads within the subdivision, direct
the flows to Fossil Creek. Flows that were not intercepted by
the first inlet in Highway 287 will continue down the hill to
another inlet. This inlet collects the flows to a pipe system
which finally drains directly into Fossil Creek.
This property is a part of the Fossil Creek Major Drainage Basin
which is explained in the Fossil Creek Drainage Basin Master
Drainageway Planning Study, by Simons, Li and Associates, Inc.
August, 1982. Based on the above report, The City of Fort Col-
lins does not require any storm water detention from this site in
a totally developed condition. If drainage flows are directed to
the ponds southwest of this site, however, the City Stormwater
Utility Department requires an agreement with the downstream
property owners to accept the additional runoff generated without
detention. Such an agreement would involve all property owners
between this site and Fossil Creek. This requirement is noted
for the future development of the property to the west. No
runoff is anticipated to flow to this area according to the final
design, therefore no agreement is required for the Weberg site.
Drainage water from this site flowing onto Highway 287 is
required to limited to the historic runoff rate as stated in a
letter to the City of Fort Collins,from the Colorado State High-
way Department dated October 7, 1988.
The approach that this report pursues is to release flows from
this site at existing(historic)rates with these flows outfalling
into Highway 287. This would require some storm water detention
to keep the developed flows from exceeding existing flow rates.
The final design proceeded based on this design requirement.
The first design step is to calculate existing flows in Highway
287 to ensure that these flows do not already exceed the City of
Fort Collins criteria during a 10 year storm. The allowable flow
rate in Highway 287 at the south of this site based on Manning's
formula is 18.9 cfs. Applying a city safety factor of 0.73
brings this flow rate to 13.8 cfs. This available flow rate is
greater than existing flows of 13.1 cfs (see calculations in
appendix) and therefore is within City requirements.
Local streets are checked for the required curb flow capacity for
the initial and major storms. In both cases the designed street
meet the City's capacity requirements. The flows from these
streets will enter the proposed detention areas through the park-
ing access locations, inlets, or sidewalk culverts.
The next design step is to create detention ponds for the
developed basins in order to reduce developed flows to existing
rates. In order to approximate existing flows, the 10 and 100
year developed storms were calculated for release rates and
detention requirements.
The calculations for Basins A, B, C, D, and E show that ponds are
necessary, in these basins, to reduce flows to existing rates of
Basin H2. The results of the calculations are shown in the fol-
lowing table:
7j
U
(cfs)
100 YEAR
EXISTING
AND DESIGN
STORM MAX.
FLOW RATE
(Ac.-Ft.)
PROPOSED
100 YR
DETENTION
POND VOLUME
(cfs)
10 YR
EXISTING
AND DESIGN
STORM MAX.
FLOW RATE
(Ac.-Ft.)
PROPOSED
10 YR
DETENTION
POND VOLUME
Basin
"A"
1.2
0.14
0.6
0.08
Basin
"B"
0.6
0.07
0.3
0.04
Basin
"C"
0.9
0.11
(roof top
0.4
0.06
storage)
Basin
"D"
0.8
0.10
(roof top
0.4
0.06
storage)
Basin
"E"
2.1
0.26
1.1
0.14
Basin
"F"
1.7
----
___
Basin
H2
7.5
----
NOTE: The release rate calculations (existing 100 year flows)
can be seen in appendix.
All of the basins will either have ground surface or roof top
detention facilities. The stage release (10 and 100 year storms)
structure is designed and shown in the Appendix. The structures
are of either an orifice type or weir type design.
Local streets were checked for curb flow capacity and found to be
within City criteria. The flows from these streets will enter
developed basins through parking lot access locations, inlets, or
sidewalk culverts. The sidewalk culvert for Basin "b" is shown
in the Appendix.
Storm water from this proposed development drains into a water
quality facility prior to draining from this site. Table 1, in
Appendix, from the paper, National Perspectives on Urban Runoff
Technologies, by Larry A. Roesner, Ph.D., P.E. of CDM, shows dif-
ferent types of facilities that can be used along with the
average amount of pollutants that they remove. The facility
chosen for this development is the infiltration type. This type
of facility, as shown on Table 1, removes on the average 90% of
the following pollutants:
A) Suspended Solids
B) Phosphorous (P)
C) Dissolved P
D) Nitrogen (N)
E) Lead
F) Zinc
The infiltration facility design for this development is a water
quality control berm. This berm is at the pond outlet pipes.
The berm consists of redwood post and synthetic filter fabric
connected to wire fencing material with gravel bermed up on both
sides (see plan in pocket for detail). The gravel will be
visually monitored once a year and replaced on an as needed
basis.
CONCLUSIONS AND RECOMMENDATIONS
The grading and drainage facilities shown on the drainage plan
should be complied with and will provide for the safe transport
of storm drainage water through the site.
The calculations which support this design approach appear the
the Appendix of this report.
Sincerely,
Brian Cole, P.E.
Project Engineer
REFERENCES
1) Fossil Creek Drainage Basin Master Drainageway Planning
Study, by Simons, Li and Associates, Inc. August, 1982.
2) Storm Drainage Design Criteria and Construction Standards,
by the City of Fort Collins, May, 1984.
3) Letter to Ms. Linda Ripley of the City of Fort Collins Plan-
ning Department from the State of Colorado Division of Highway
(DOH File 45100), October 7, 1988.
4) National Perspectives on Urban Runoff Technologies, by Larry
A. Roesner, Ph.D., P.E. of CDM, this paper is from; Urban Runoff
Water Quality Seminar by the American Public Works Association,
American Society of Civil Engineers, American Water Resources As-
sociation and Urban Drainage and Flood Control District.
cc: 322-002
I ivi NA B
Do i T we for
omwUl"M
PJUNP5 10
•
•
APPENDIX
7-
I
1-.1ANI F.',j VICINITY MAP
Pi
FOMI.
A J..
IT
1.
t M•t• ' 1w., ''_ ('- r ,� r "'�... Li.. �., Il �it``.A ...1, i�.D,I I •ram+"" i%
i ,t' I' ; ��,l�l� .: }IL. II `9II •• II/ t I i� 1 .:'�, ` .l. •L.�,\ti` .,�.
L
14
ill 3 Yj
Lf C :-4 �
Lj L
. . . ........
lull -,If
j
.. 7-j L
A".%
tit,
L • Y ;.gap IN
I v
7 . .... JAI.
2
3
Rt ETOOTH
r�H 0 '
Ad.
ell
L k.
4
e�4 �;t:�4AS-
'w" - g,
v
ov
HARMONY ROAD
\�'. r' SITE LOCATION lt�, r,
16
2
rwil � ' I 1 '� ''� .� . I t .. � t i .% t = 1 » `'yPi� •fir• 6 . P ;,
s,
rk
� 6T 0
0
T
MEIN
HE
FORM 5
RINC
Engineering Consultants
CLIENT I % �-- q-) L (L (L
PROJECT w G-`�- G n •V -d .
CALCULATIONS FOR
108 NO.
MADE BY - DATE CHECKED BY DATE SHEET OF
T:§INC
Engineering Consultants
#A 0
CLIENT -
PROJECT
MADE BY
DATE
CALCULATIONS FOR
CHECKED BY DATE
HISTORIC FLOWS TO HIGHWAY 287
...I BASIN H
1-4
4-4
-
} fit
PL S Pt4. Z (b Z:Z Sec G
1
00
a I +� +-
r r�
I
+ft
_
I
Q io-4 I
_ - F T1— r
{ FI 1
I r
- I
Z3,Zt P'LL L)
i -
/Y\. E-'', 7E,
.... 1 I ..
Her Paik� .
ARMONY ROAD -- -� ba
k
J
r ,
BASIN "H" I ^ ..
. ,.. .) •`. _._ _�� II � � t � 1. ! � .. _ ..I
�j A3,
-r LU-Wb I N A R ARTERIAL STREET
CLIENT ,
!Nv-- PROJECT
Engineering Consultants \MADE BY
NO.
CALCULATIONS FOR
DATE CHECKED BY DATE SHEET OF
N
4.
m
tT
It
ik
Ct
N
�O
-
o o .ry
N!•�
I.t '. �..•. O
{ 1 `N }:N
tll-III-;._o! t.;,•II, .daQ � ,
t• 1 f I 1 t 1
..,.� ....
y I i tJ.!.� }
• CLIENT i
JOB N0.
!NC PROJECT
CALCULATIONS FOR
Engineering Consultants MADEBY DATE
CHECKED BY DATE SHEET OF
i! ��-t� 1.-f <_7 ��"�- i ` I .j •_ -�-J- ,\ , . T .i..;.. , _'- f --
I.
,..;..,
r
: I
. ....... ....:..
1 .-... ,...:. 1 ,�
1. �? L.'r.j._�.Z 0 _r ,.'7 i' ••" L i��l 1a. � �yi` � I ... 1
, ` I i
� A�EE A . � l l i 0`4 ' -t-• ��-.�,`:5. ;._`_•,.. -� icji-�� ... � �' ;-t.- ..!- j_.
l °1 b. \
-t
t � `'t: L I L�•� I
;Q.aLa c_T
, .., 1' I ! I t I .� I 1 F, •F•t•-...i..: ..1 ..}.., .�..i L �;I
C� J L r +
� Q i � �,7 2Z. ,•` , ; a 3t -, , , trZt ; i.: i
.
4.
A.
• I
I
S
rz
Quo i:OZafZ a o305, C1: _ I
Q400 313,7
C fil
i..._. . `.. NI�TO(�l� C.. .;.. ..;.-_1 i � t I -, I I• . .,. I . %1 ,
{=7
U
zo
Ntx
Oo
W UU
>z
b
N
x
a �
Q
CD,0�0
O
cn
Cl
0
C)
00
C
O
N
N
O
C?
O
.-.
oo
O
f-+
M
O
~
VI
0 o a.
N
rz
o
\0
GO
O
O
A
N
o
v
�
8�
o
H
.
M
~
V
0
0
n
c
U
C
�
U
A
W
W
U
u
¢
w
C
y
L'
_
00
Ct1
0 cz
iZ
q�5
Caw,
�3y
FR-ot-�;
CDM
0
MASS DIAGRAM METHOD
for
DETENTION VOLUMES
PROJECT: WEBERG
COMMENTS: 100 YEAR STORM
MAXIMUM ALLOWABLE RELEASE (CFS) =
RATIONAL EQUATION: Q = CIA
C=
TIME OF CONCENTRATION =
A(area) =
1.08
TIME CA I INFLOW OUTFLOW STORAGE
(sin) (in/hr) (cu ft) (cu ft) (cu ft) (ac ft)
_____________________________________________________________________
5 1.08 9 2916 360 2556 0.058677
10 1.08 7.3 4730.4 720 4010.4 0.092066
15 1.08 6 5832 1080 4752 0.109090
20 1.08 5.2 6739.2 1440 5299.2 0.121652
25 1.08 4.6 7452 1800 5652 0.129752
30 1.08 4.15 8067.6 2160 5907.6 0.135619
35 1.08 3.8 8618.4 2520 6098.4 0'14
40 1'08 3.5 9072 2880 6192 0.142148
45 1.08 3.25 9477 3240 6237 0.143181~°-)N<
50 1.08 3 9720 3600 6120 0.140495
55 1.08 2.8 9979.2 3960 6019.2 0.138181
60 1.08 2.6 10108.8 4320 5788.8 0.132892
70 1.08 2.3 10432.8 5040 5392.8 0.123801
80 1.08 2.05 10627.2 5760 4867.2 0.111735
90 1.08 1.85 10789.2 6480 4309.2 0.098925
100 1.08 1.7 11016 7200 3816 0.087603
110 1.08 1.55 11048'4 7920 3128.4 0.071819
120 1'08 1'45 11275.2 8640 2635.2 0.060495
o)
bD
� v
/
_
n
0
BASIN °��"
������uu� u�
MASS DIAGRAM METHOD
for
DETENTION VOLUMES
PROJECT: WEBERG
COMMENTS: 100 YEAR STORM
�--> t-v�cope-c�
MAXIMUM ALLOWABLE
RELEASE (CFS) =
0.6
RATIONAL
EQUATION:
Q = CIA
C =
1
A(area)
= 0.53
TIME OF CONCENTRATION
=
TIME
CA
I
INFLOW
OUTFLOW
STORAGE
(min)
_____________________________________________________________________
(in/hr)
(cu ft)
(cu ft)
(cu ft)
(ac ft)
5
0.53
9
1431
180
1251
0.028719
10
0.53
7.3
2321.4
360
1961.4
0.045027
15
0.53
6
2862
540
2322
0.053305
20
0.53
5.2
3307.2
720
2587.2
0.059393
25
0.53
4.6
3657
900
2757
0.063292
30
0.53
4.15
3959.1
1080
2879.1
0.066095
35
0.53
3.8
4229.4
1260
2969.4
0.068168
40
0.53
3.5
4452
1440
3012
0.069146
45
0.53
3.25
4650.75
1620
3030.75
0.069576~°-41
50
0.53
3
4770
1800
2970
0.068181
55
0.53
2.8
4897.2
1980
2917.2
0.066969
60
0.53
2.6
4960.8
2160
2800.8
0.064297
70
0.53
2.3
5119.8
2520
2599.8
0.059683
80
0.53
2.05
5215.2
2880
2335.2
0.053608
90
0.53
1.85
5294.7
3240
2054.7
0.047169
100
0.53
1.7
5406
3600
1806
0.041460
110
0'53
1.55
5421.9
3960
1461.9
0.033560
120
0.53
1.45
5533.2
4320
1213.2
0.027851
AL
�T---------------
\
-----�'
zgom com
�.
, ` I
vv*
Z o .�
L L 'J. ^
' |
| � `
| .
|
pp~
����4�0�� =��"
u����mu� ��
MASS DIAGRAM METHOD
ror
DETENTION VOLUMES
PROJECT: WEBERG
COMMENTS: 100 YEAR STORM
MAXIMUM ALLOWABLE RELEASE (CFS) = 0.9
RATIONAL EQUATION: Q = CIA
C = 1 A(area) = 0.81
TIME OF CONCENTRATION =
TIME
CA
I
INFLOW
OUTFLOW
STORAGE
_____________________________________________________________________
(min)
(in/hr)
(cu ft)
(cu ft)
(cu ft)
(ac ft)
5
0.81
9
2187
270
1917
0,044008
10
0.81
7.3
3547.8
540
3007.8
0,069049
15
0.81
6
4374
810
3564
0.081818
20
0.81
5.2
5054.4
1080
3974.4
0.091239
25
0.81
4.6
5589
1350
4239
0,097314
30
0.81
4.15
6050.7
1620
4430.7
0.101714
35
0.81
3.8
6463.8
1890
4573.8
0.105
40
0.81
3.5
6804
2160
4644
0.106611
45
0.81
3.25
7107.75
2430
4677.75
0.107386--4�
50
0.81
3
7290
2700
4590
0.105371 '
55
0.81
2.8
7484.4
2970
4514.4
0.103636
60
0.81
2.6
7581.6
3240
4341.6
0'099669
70
0.81
2.3
7824.6
3780
4044.6
0.092851
80
0.81
2,05
7970.4
4320
3650.4
0.083801
90
0.81
1.85
8091.9
4860
3231.9
0.074194
100
0.81
1.7
8262
5400
2862
0.065702
110
0'81
1.55
8286.3
5940
2346.3
0.053863
120
0'81
1'45
8456.4
6480
1976.4
0.045371
-�p
.
.
cr-�
' o .��~
/
0
��������� n��n
��uw���ux"m ��
MASS DIAGRAM METHOD
for
DETENTION VOLUMES
PROJECT: WEBERG
COMMENTS: 100 YEAR STORM
MAXIMUM ALLOWABLE RELEASE (CFS) = 0.8
RATIONAL EQUATION: Q = CIA
C = 1 A(area) = 0.75
TIME OF CONCENTRATION =
TIME CA I INFLOW OUTFLOW STORAGE
(min) (in/hr) (cu ft) (cu ft) (cu ft) (ac ft)
_____________________________________________________________________
5 0,75 9 2025 240 1785 0.040977
10 0.75 7.3 3285 480 2805 0.064393
15 0'75 6 4050 720 3330 0.076446
20 0'75 5.2 4680 960 3720 0'085399
25 0.75 4.6 5175 1200 3975 0,091253
30 0.75 4.15 5602.5 1440 4162.5 0.095557
35 0.75 3.8 5985 1680 4305 0-098829
40 0'75 3.5 6300 1920 4380 0.100550
45 0.75 3.25 6581.25 2160 4421,25 0.101497-----)�-
50 0.75 3 6750 2400 4350 0.099862
55 0.75 2.8 6930 2640 4290 0.098484
60 0.75 2.6 7020 2880 4140 0.095041
70 0.75 2.3 7245 3360 3885 0.089187
80 0.75 2.05 7380 3840 3540 0.081267
90 0.75 1.85 7492.5 4320 3172.5 0.072830
100 0.75 1.7 7650 4800 2850 0.065426
110 0.75 1.55 7672.5 5280 2392.5 0.054924
120 0'75 1.45 7830 5760 2070 0.047520
-1 A -?7 -
�£P7*
&`
o�-- --- ~-- --------- --- --- -
» `=O, r"^�
T'� A i�
��������� °��" .
��u����ou� �~ ���- /(��.z�1:_j�2b
MASS DIAGRAM METHOD
for
DETENTION VOLUMES
PROJECT: WEBERG
COMMENTS: 100 YEAR STORM
MAXIMUM ALLOWABLE RELEASE <CFS> = 2,1
RATIONAL EQUATION: Q = CIA
C = 1 A(area)
TIME OF CONCENTRATION =
TIME
CA
I
INFLOW
OUTFLOW
STORAGE
(min)
_____________________________________________________________________
(in/hr)
(cu ft)
(cu ft)
(cu ft)
(ac ft)
5
1.94
9
5238
630
4608
0.105785
10
1.94
7.3
8497.2
1260
7237.2
0.166143
15
1.94
6
10476
1890
8586
0.197107
20
1.94
5.2
12105.6
2520
9585.6
0.220055
25
1.94
4.6
13386
3150
10236
0.234986
30
1.94
4.15
14491.8
3780
10711.8
0.245909
35
1.94
3.8
15481.2
4410
11071.2
0.254159
40
1.94
3.5
16296
5040
11256
0.258402
45
1.94
3,25
17023.5
5670
11353.5
0'260640-Ae
50
1.94
3
17460
6300
11160
0.256198
55
1.94
2.8
17925.6
6930
10995.6
0.252424
60
1.94
2.6
18158.4
7560
10598.4
0.243305
70
1.94
2.3
18740.4
8820
9920.4
0.227741
80
1.94
2.05
19089,6
10080
9009.6
0.206831
90
1.94
1.85
19380.6
11340
8040.6
0.184586
100
1.94
1.7
19788
12600
7188
0.165013
110
1.94
1.55
19846.2
13860
5986.2
0.137424
120
1'94
1.45
20253.6
15120
5133.6
0'117851
~0 :_
\.
`�_/�^.�.�
`- �
BASIN "A"
MASS DIAGRAM METHOD
f nr
DETENTION VOLUMES
PROJECT: WEBERG
COMMENTS: 10 YEAR STORM
MAXIMUM ALLOWABLE RELEASE (CFS) = 0.6
RATIONAL EQUATION: Q = CIA
C = 0.85 A (area) = 1 . oe
TIME OF CONCENTRATION =
TIME
CA
I
INFLOW
OUTFLOW
STORAGE
(min)
(in/hr)
(cu ft)
(cu ft)
(cu ft)
(ac ft)
5
o. g 18
5.65
1556.01
100
1376.01
0. c_1315e8
10
0. 918
4.4
2423.52
360
2063.52
0.047171
15
0.918
3.7
3056.94
540
2516.94
0 . 05778t i
20
0.918
3.25
358U. 2
720
2960.2
0.065661
25
0.918
2.85
3924.45
900
3024.45
0.069431
3o
o . 918
2.6
4296.24
1080
3216.24
0. 073834
35
0.918
2.35
4530.33
1260
3270.33
0.075076
40
0.919
2.2
4847. 04
1440
3407. 04
0. 078214a-')E
45
c_> . 918
2
4957.2
1620
3337.2 2
0.076611
50
0.918
1.%
5094.9
1800
3294.9
0.075640
55
0.918
1.75
5301.45
198o
3321.45
0.07625
60
0.918
1.63
5386.824
2160
3226.824
0.074077
70
o. 918
1.44
5552. 064
2520
3032.064
0.069606
80
0.918
1.3
5728. 32
2880
2e48.32
0. 065388
90
i i . 918
1.2
5948.64
3240
27o8. 64
0.062181
100
0.919
1 . 1
6058. 8
3600
2458. 8
0.056446
110
0.918
1
6058.8
3960
2o98.8
0.048181
12� i
o . 91. 8
0.9
5948. 64
4.320
1628. 64
i y . 027388
���&��N�� "��"
��m�u°�mw�m ��
MASS DIAGRAM METHOD
for
DETENTION VOLUMES
PROJECT: WEBERG
COMMENTS: 10 YEAR STORM
MAXIMUM ALLOWABLE
RELEASE (CFS)
RATIONAL
EQUATION:
Q = CIA
C =
0.85
A(area)
= 0.53
TIME OF CONCENTRATION
=
?
TIME
CA
I
INFLOW
OUTFLOW
STORAGE
(min)
_____________________________________________________________________
(in/hr)
(cu ft)
(cu ft)
(cu ft)
(ac ft)
5
0.4505
5.65
763.5975
Q
673.5975
0.015463
10
0.4505
4.4
1189.32
180
1009.32
0.023170
15
0.4505
3.7
1500.165
270
1230.165
0.028240
20
0.4505
3.25
1756.95
360
1396.95
0.032069
25
0.4505
2.85
1925.887
450
1475.887
0.033881
30
0.4505
2.6
2108.34
540
1568.34
0.036004
35
0.4505
2.35
2223.217
630
1593.217
0.036575
40
0.4505
2.2
2378.64
720
1658.64
0.038077----)<
45
0.4505
2
2432.7
810
1622.7
0.037252
50
0.4505
1.85
2500.275
900
1600.275
0.036737
55
0.4505
1.75
2601.637
990
1611.637
0.036998
60
0.4505
1.63
2643.534
1080
1563.534
0.035893
70
0.4505
1.44
2724.624
1260
1464.624
0.033623
80
0.4505
1.3
2811.12
1440
1371.12
0.031476
90
0.4505
1.2
2919.24
1620
1299.24
0.029826
100
0.4505
1.1
2973.3
1800
1173.3
0.026935
110
0.4505
1
2973.3
1980
993,3
0.022803
120
0.4505
0.9
2919.24
2160
759.24
0.017429
����*���� =���
���m��mm� �� L�-tDpLc�,
MASS DIAGRAM METHOD
for
DETENTION VOLUMES
PROJECT: WEBERG
COMMENTS: 10 YEAR STORM
MAXIMUM ALLOWABLE RELEASE (CFS) = 0.4
RATIONAL EQUATION: Q = CIA
C =
0.85
A(area) =
0.81
TIME OF CONCENTRATION
=
?
TIME
CA
I
INFLOW
OUTFLOW
STORAGE
(min)
(in/hr)
(cu ft)
(cu ft)
(cu ft)
(ac ft)
_____________________________________________________________________
5
0.6885
5.65
1167.007
120
1047.007
0.024035
10
0.6885
4.4
1817.64
240
1577.64
0.036217
15
0.6885
3.7
2292.705
360
1932.705
0.044368
20
0.6885
3.25
2685.15
480
2205.15
0.050623
25
0.6885
2.85
2943.337
600
2343.337
0.053795
30
0.6885
2.6
3222.18
720
2502.18
0.057442
35
0.6885
2.35
3397.747
840
2557.747
0.058717
40
0.6885
2.2
3635.28
960
2675.28
0.061415--f(L
45
0.6885
2
3717.9
1080
2637.9
0.060557
50
0.6885
1.85
3821.175
1200
2621.175
0.060173
55
0.6885
1.75
3976.087
1320
2656.087
0.060975
60
0.6885
1.63
4040.118
1440
2600.118
0.059690
70
0.6885
1.44
4164.048
1680
2484.048
0.057025
80
0.6885
1.3
4296.24
1920
2376.24
0.054550
90
0.6885
1.2
4461.48
2160
2301.48
0.052834
100
0.6885
1.1
4544.1
2400
2144.1
0.049221
110
0.6885
1
4544.1
2640
1904.1
0.043712
120
0-6825
0.9
4461.48
2880
1581,48
0'036305
'
������N�� =��"
��m=���mu� ��
MASS DIAGRAM
METHOD
for
DETENTION VOLUMES
PROJECT:
WEBERG
COMMENTS:
10 YEAR STORM
MAXIMUM ALLOWABLE RELEASE (CFS)
=
0.4
RATIONAL
EQUATION: Q
= CIA
C =
0.85
A(area) =
0.75
TIME OF CONCENTRATION
=
?
TIME
CA
I
INFLOW
OUTFLOW
STORAGE
(min)
_____________________________________________________________________
(in/hr)
(cu ft)
(cu ft)
(cu ft)
(ac ft)
5
0.6375
5.65
1080.562
120
960.5625
0.022051
10
0.6375
4.4
1683
240
1443
0.033126
15
0.6375
3.7
2122.875
360
1762.875
0.040470
20
0.6375
3.25
2486.25
480
2006.25
0.046057
25
0.6375
2.85
2725.312
600
2125.312
0.048790
30
0.6375
2.6
2983.5
720
2263.5
0.051962
35
0.6375
2.35
3146.062
840
2306.062
0.052939
40
0.6375
2.2
3366
960
2406
0.055234+--0-
45
0.6375
2
3442.5
1080
2362.5
0.054235
50
0.6375
1.85
3538.125
1200
2338.125
0.053675
55
0.6375
1.75
3681.562
1320
2361.562
0.054214
60
0.6375
1.63
3740.85
1440
2300.85
0.052820
70
0.6375
1.44
3855.6
1680
2175.6
0.049944
80
0.6375
1.3
3978
1920
2058
0.047245
90
0.6375
1.2
4131
2160
1971
0.045247
100
0.6375
1.1
4207.5
2400
1807.5
0.041494
110
0.6375
1
4207.5
2640
1567.5
0.035984
120
0'6375
0.9
4131
2880
1251
0'028719
��
�� 0
������N�� ~��" u�����mu� �� 1)E\1 Eucpbc�
MASS DIAGRAM METHOD
for
DETENTION VOLUMES
PROJECT: WEBERG
COMMENTS: 10 YEAR STORM
MAXIMUM ALLOWABLE RELEASE (CFS)
RATIONAL EQUATION: Q = CIA
C = 0.85 A(area) = 1.94
TIME OF CONCENTRATION = ?
TIME
CA
I
INFLOW
OUTFLOW
STORAGE
(min)
(in/hr)
(cu ft)
(cu ft)
(cu ft)
(ac ft)
_____________________________________________________________________
5
1.649
5.65
2795.055
330
2465.055
0.056589
10
1.649
4.4
4353.36
660
3693.36
0.084787
15
1.649
3.7
5491.17
990
4501.17
0.103332
20
1.649
3.25
6431.1
1320
5111.1
0.117334
25
1.649
2.85
7049.475
1650
5399.475
0.123954
30
1.649
2.6
7717.32
1980
5737.32
0.131710
35
1.649
2.35
8137.815
2310
5827.815
0.133788
40
1.649
2.2
8706.72
2640
6066.72
0.139272=-��'
45
1.649
2
8904.6
2970
5934.6
0.136239
50
1.649
1.85
9151.95
3300
5851.95
0.134342
55
1.649
1.75
9522.975
3630
5892.975
0.135284
60
1.649
1.63
9676.332
3960
5716.332
0.131228
70
1.649
1.44
9973.152
4620
5353.152
0.122891
80
1'649
1.3
10289.76
5280
5009.76
0.115008
90
1'649
1.2
10685.52
5940
4745.52
0.108942
100
1.649
1.1
10883.4
6600
4283.4
0.098333
110
1.649
1
10883.4
7260
3623.4
0.083181
120
1'649
0.9
10685.52
7920
2765.52
0.063487