Loading...
HomeMy WebLinkAboutTIMBERLINE FARM MASTER PLAN - 42-89 - SUBMITTAL DOCUMENTS - ROUND 1 - DRAINAGE REPORT0 MASTER DRAINAGE REPORT FOR TIMBERLINE FARM P.U.D Project No. 248.8 July 1989 Prepared For: G T Land, Inc. 3555 Stanford Road Fort Collins, CO 80521 Prepared By: Engineering Professionals, Inc. 2000 Vermont Drive Fort Collins, CO 80525 1 ® � r TABLE OF CONTENTS 1 r1.0 Location .............................................. 1 2.0 Existing Conditions .................. .................... 1 3.0 Proposed Drainage ....................................... 1 4.0 Fox Meadows Basin Master Plan Modifications 1 4.1 Impacts of Fox Meadows Basin Master Plan Modifications ........... 4 1 1 6.0 Conclusion ............................................ 6 APPENDIX: Calculations 1 Revised Fox Meadows Basin 100 Year SWMM Run r 1 r 1 r Revised Fox Meadows Basin 2 Year SWMM Run MASTER DRAINAGE REPORT FOR TIMBERLINE FARM P.U.D. 1.0 Location Timberline Farm consists of the west half of the southwest quarter of Section 32, T7N, R68W. The site is bounded by Timberline Road on the west, Harmony Road on the south, Caribou Road on the north and Harmony Village Mobile Home Court on the east. The property is located in reach 2 of the Fox Meadows Drainage Basin. 1 2.0 Existing Conditions The 80 acre site has historically been used for agricultural purposes. Presently a portion of the tract is being farmed with the remainder uncultivated. Several irrigation laterals cross the property. The property is currently made up of three subbasins - the north and east 2/3 of the site draining toward the north; the west central 10 acres, draining to the west into the "Chandler sump"; and the south 1/3 draining toward the east. The historical drainage basins and flows for the site are identified on the Master Drainage Plan (back pocket). The property has slopes of 0.5% to 3% with the north portion being the steepest. There is no offsite drainage onto the site, nor is there any _ designated floodplain located within the site. A swale has been constructed from the northeast corner of the site to the east along the south side of Sunstone Village Filing No. 1 which directs flows to the Harmony Village Mobile Home Court detention pond. This swale was specifically constructed to handle existing 2 year event runoff from Timberline Farm. 3.0 Proposed Drainage The 80 acre site will be divided into 5 subbasins which will result in a minor modification of the existing Fox Meadows Basin Master Plan. This modification is discussed in detail further in this report. 1 Basin 1. Basin 1 consists of approximately 30 acres located at the south end of the site including parcels E, G, and a portion of Phase B. This basin will drain to the west into a detention pond to be located in the northwest corner of parcel B. The detention pond has been preliminary sized at 2.9 acre-feet. Flows released from the detention pond will be directed along the west property in a pipe and overflow swale into detention pond 2. Basin 2 Consisting of approximately 29 acres, basin 2 will drain to the northeast into detention pond 2, preliminarily sized at 4.4 acre feet. Flows released from this pond, at a maximum rate of 11 cfs, and will be directed into the swale along the south end ' of Sunstone Filing No. 1 into the Harmony Village Mobile Home Park detention pond and ultimately into the Sunstone regional detention pond. Runoff released from detention pond 2 (from basin 1 and 2) will be accordance with the current Fox ' Meadows Basin Drainage Master Plan. Basin 3 Basin 3 consists of approximately 7.5 acres located within area denoted as Phase C on the Master Plan. This basin currently drains to the Chandler sump. Runoff from this basin will be directed to the west where it will be detained prior to being discharged into the 42" storm sewer being constructed along the east side of Timberline Road. This pipe will convey runoff to the open channel located along the north side of the Sunstone development and into the Sunstone .' regional detention pond. The maximum release rate and detention pond volume for this basin are 6 cfs and 0.7 acre feet respectively.. Basin 4 Basin 4 is located at the northwest corner of the site and includes most of Phase D and a small portion of Phase A. This basin will drain to the northwest and will be released to the 42" pipe along the west side of the site and to the Sunstone detention pond in the same manner as basin 3. The maximum release rate and detention pond volume for this basin are 6 cfs and 0.7 acre feet respectively. 2 Basin 5 Consisting of approximately only 4 acres, basin 5 includes the area immediately south of Caribou Drive which will drain directly onto this street. Runoff from this basin will be directed to the Sunstone regional detention pond by Caribou Drive. Street capacities for both the 2 and 100 year storm have been calculated to be adequate with this additional flow (refer to appendix). 1 4.0 Fox Meadows Basin Master Plan Modifications Drainage master planning for the Fox Meadows Basin was first completed in ' 1981 with the Fox Meadows Basin Drainage Master Plan. This plan was later revised as presented in Updated Hydrology for the Fox Meadows Basin Master Plan, dated October 21, 1987, both prepared by Resource Consultants, Inc. The current plan assumes that all runoff from the 80 acre site will be directed to the north east corner of the site, detained, and released at a maximum rate of 11 cfs, well below the 2 year historic runoff rate for the site. Because of the large detention pond volumes and extensive earthwork required to make the site conform to the existing Master Plan, alternatives were investigated. Numerous drainage schemes for the site were evaluated utilizing the SWMM model for the basin. Presented herein is a modification to the Fox Meadows Basin Master Plan which utilizes the capacity of existing and planned facilities while providing a more workable drainage scheme for the site. The 2 and 100 year developed conditions SWMM runs for this modification are located in the appendix. The site is divided into two basins in the current Master Plan, 13 and 14, as identified on the 1987 Update SWMM network schematic (figure 1). For the Timberline Farms Drainage Master Plan the site has been divided into five basins as discussed above. These basins are delineated on the Master Drainage Plan (back pocket) and the revised SWMM network schematic (figure 2). Three detention ponds have been ' added to the model. corresponding to ponds 1, 3, and 4 on the Timberline Farms Master Plan. Pond 2 corresponds to the existing pond 306 in the SWMM model. The following table relates the Timberline Farms Master Plan basins and detention ponds to n 1 the subareas and reservoirs incorporated into the revised Fox Meadows Basin SWMM Model. 3 Timberline Farms Master Plan Basin Designation 1 2 3 4 5 Timberline Farms Master Plan Detention Pond Designation 1 2 3 4 Revised Fox Meadows SWMM Subarea designation 14 13 39 40 included with 17 Revised Fox Meadows SWMM reservoir designation 310 306 312 311 The change in 100 year peak flows downstream of the Timberline Farm resulting from the modifications are identified in the following table: Drainage Element 42" Pipe @ Timberline Road Swale North of Sunstone Sunstone Detention Pond Channel east of Fox Meadows Flow west of CR #9 SWMM Element No. 113 210 143+302 116 4 Peak flow (cfs) Master Plan Revised Master Plan 47 cfs 53 cfs 68 cfs 79 cfs 29 A -Ft 29.2 A -Ft 86 cfs 100 cfs 94 cfs 111 cfs No Text 0 t PON 1 c 1 ,e 9 1 :1 O -n.0�4 ,u t 4.0 13(l® 39 1 1 T)MBERLINE " FARM<@> 1 .%y�.+ .w t� li►y�.��l� =11� �I,= _ I7 16 4gl 21 74 157f !I i+ HaRMONv R R68W FIGURE :2 - REVISED FOX MEADOWS BASIN MASTER PLAN SWMM SCHEMATIC 1 • • 1 4.1 Impacts of Fox Meadows Basin Master Plan Modifications _ The capacity of drainage facilities downstream of the site, both existing and proposed, were evaluated to confirm that the their capacities would not be exceeded for during the major storm. The following discussion addresses each component of the downstream drainage system which is impacted by the modifications to the basin master plan. 42" Pipe_Alon4 Timberline Road The purpose of the 42" pipe along Timberline is to provide an outlet for the Chandler Sump detention pond (SWMM element 108). In order to assess the effect additional flow would have on this pipe the hydraulic grade line for the pipe with 53 cfs flow was determined (calculations are in the appendix). The calculated hydraulic grade line is below the existing ground level up to the Chandler sump. The hydraulic grade line at the Chandler sump is at elevation 4950.9 which should allow for construction of this detention facility without excessive berming. Channel. North of Sunstone The channel north of Sunstone conveys flows from the 42' pipe along Timberline Road to the Sunstone Village detention pond. The pond has recently been constructed and a review of the design drawings reveals the capacity of the swale to be in excess of 100 cfs. The culvert crossing at. Caribou Road will create a maximum headwater of 4934.9 with the Sunstone pond at peak stage. The final grading plan of the area upstream of this culvert shows the adjacent houses to have a floor elevation more than 1 foot above the culvert headwater. The section of this channel between Timberline Road and Sunstone Village has yet to be constructed. This section of channel should be designed fora 100 year flow of 79 cfs as opposed to the current master plan flow of 68 cfs. Sunstone Detention Pond The "as built" volume calculations for this detention facility prepared by Landmark Engineering dated May 26, 1988, indicate that the existing volume of the pond is 29.4 acre feet. This volume is developed at a high water elevation of 4934.5. This calculated volume is adequate to hold the necessary volume of 29.2 acre feet. Downstream of Sunstone Detention Pond Runoff released from the Sunstone Village detention pond is conveyed to the north and east by a 30" pipe. As the pipe is inadequate to handle the 100 year flow, some overland flow will occur in this event. It has been assumed by previous studies that residential development would occur in this area and the over land flow would be handled by the streets. The SWMM run indicates that 38 cfs will be handled by the pipe (element 143) and 56 cfs will flow through the streets (element 302). The capacity of a local street at 0.4% is approximately 80 cfs with flow 0.5 feet above the curb, consequently the 56 cfs flow requirement should not overly burden any future development. Street Flows within Sunstone Village Basin 5 will discharge runoff directly onto Caribou Drive. These flows were unanticipated during the design of Sunstone Village and consequently adequate street and inlet capacity for the effected areas was verified. Calculations are contained in the appendix. 6.0 Conclusion The proposed Timberline Farm Drainage Master Plan was prepared accordance with the City of Fort Collins Storm Drainage Criteria. The proposed modification to Fox Meadows Basin Drainage Master Plan will result in a more practical drainage solution for the site while not negatively immpacting downstream properties. ENGINEERING PROFESSIONALS, INC. Steven L. Kraushaar. P.E. L E APPENDIX 7 Gfz 4,q, 44 loSS u IMGtN,\VLG LS y z �4.4 ,L� e�av C v1_W' • Co r�� CIA wouk�, -04l�f Jv��l�o� fosse 4 cis o� 7'q �- S A.s SO wit Qt- Po�c��� o w C> UAQ. \ C. u.. i J �� t/�O,nn.�� iG. ��,• l \ = T cA T ( C o t1Ulk C U l l 34.S 4g34,q cr�.ro�s No Text S C �` 6� E Ctl r zrr __ LK- �ree��4e 'bC> �eo,r 0.t�oc�.Solo� Cca�� Q.z QA pj2,. �OCA. sic ,v4 , OIKt'0. uj VII = 2 2 .� �03� + Z9.' lot . �22 vj �1 o Zz EdVIRONJMENTAL PROTECTION AGENCY — STORM DATER MANAGEMENT MODEL — VERSION PC.I DEVELOPED BY METCALF + EDDY, INC. UNIVERSITY OF FLORIDA � � Z-g' `g l WATER RESDI_IRCES ENGINEEERS. INC. (SEPTEM ER 1970) UPDATED BY 11IVE11ITY OF FLORIDA 1111E 19731 tHYDROLOGIC ENGINEERING CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION'', CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING CORPORATION (MARCH 1985, JULY 1985) 0 "E OR DISK ASSIGNMENTS JIN(1) JIN(2) JIN(3) JIN(4) JIN(5) JIN(6) JIM17) JIN(8) JIN(9) JIN(10) 2 1 0 0 0 0 ;; 0 t1 1 JOUT(1) 1OUT(2) JOUT(3) JOUT(4) JOUT(51 JOUT(5) JOUT(7) JOUT(o) JUT(?) JOUT110) 1 2 0 (a it 0 0 1I 0 0 NSCRAT'(1) NSCRAT(2) NSCRAT(3) NSCRAT(4) NSL;RAT(5) i� 4 WATERSHED PROGRAM CALLED i E14TRY MADE TO RUNOFF MODEL $11 ISIN H ... FOX MEADDJS BASIN .. 2 YEAR FULLY DEVELOPED CONDITIONS ... UPDATED MAY 1?89 FOR ANTICIPATED CONDITIONS 0> DER OF TIME STEPS 96 0 EGRATION TIME INTERVAL (MINUTES) 5,00 10 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH u 24 RAINFALL STEPS, THE TIME INTERVAL IS 5.00 MINUTES )FOR RAINSA6E NUMBER I RAINFALL HISTORY IN INCHES PER HOUR .12 .36 .48 .60 .84 1.80 3.24 1.08 .84 ,48 .36 .36 .36 .24 24 24 ,24 .12 .12 12 .12 .12 .12 .12 1' H ... FOX MEADOWS BASIN Y._Hn FULLY DEVELOPED D CONDITIOdS . rSId DATED MAY 1997 FOR ANTICIPATED CONDITIONS SWAREA CUTTER WIDTH AREA PERCENT ELOSRESISTANCE FACTOR SURFACE STORAGEIIN) 1 !TRATION RATE(INiHR) SAGE ' Et OR MANHOLE tFI} IACI IMPEP,V. iFT:' IMPERV. Fay;'. IMF'ErV. FEFV M: �' 1 MINIMUM DECAY RATE NO 1 3 50U. 10.0 40.0 .0130 t116 -)p ,ior, 'i!C! 3.:C! �!� CC!18Ci 1 2 2 2000. 23.0 .0 U150 .016 250 3,00 .50 .0i+190 1 5600. 58.5 41.0 .0070 .016 .250 00 .50 .00180 1 4 6000. 80.1 46:U ,0050 C!ib cSU '1fiG 1C! ! ;3pC, 30C! 3.00 .50 .00180 1 5 5 4800. 64.3 69.0 .0030 .016 ,25C! 1UG ,3010 7,00 .50 .00180 1 9 1800. 12.8 80.0 .0070 .016 .250 ,100 3.00 .50 .00180 1 log 2700. 55.8 40.0 .0110 .016 2`_0 SUO .300 3fjfi 310A 50 00180 1 8 6 1400. 14.5 .ti GILC! .016 2`0 .11011) TUG 3.00 .50 .00180 1 9 11 1700. 90.0 2.0 G070 016 .250 ,100 .300 3.00 .50 .0018G i 101 2200.. 78.1 48.0 .0090 ,f}16 .250 .1G0 .3U0 3.00 .50 .00180 1 1 14 5000: 8i},2 42.0 004U fJ16 ,250 1Cr 300 =,UC! 50 0018!:� 1 12 200 2600. 41.9 40.0 .6020 .016 .250 .100 .300 3.00 .50 .00180 1 lib 2750. 27,2 40.0 .0150 .016 ,25U .1C!0 0C! ,00 .50 .00180 1 �4 120 1080, 30.5 40.0 .0060 016 .250 iC!0 .300 3,00 .50 .00180 1 15 21 2800. 38.6 40.0 0 0 70 ro« �nr s ,1Clio :: 50 180 1 122 I400. 26.'s 50,0 C!Ugi} 015 250 .100,._;±!Ci ,.00 .50 .00.180 1 06 7 119 2000. 42.,1 40.0 .0060 .016 .25G .100 ..300 3.1)0 .50 .00180 1 8 124 4800. 103.0 40.0 .0080 .016 250 .100 ,300 3.00 .50 .00100 i 4 44 250G, 2.4 50.0 .0070 016 250 ,1Of'! 300 ..13100 .5.0 ,00180 1 1 125 3200. 66.3 40.0 .0040 1016 ,250 ,100 .300,'.UU .50 100190 i 3 126 4000. 61.3 40.0 0070 016 250 too 'si}0 3.U0 0 .00180 1 24 127 2bUC!. 10.6 40.0ijfi.30 !?1.6 .25G It?U 3f}C! 3.00 .50 .00180 1 5 46 1500. 17.5 40.0 .0800 ,016 .250 .i0G 30fi 3.00 .50 .00180 1 16 47 1800. 7.4 20.0 10100 .016 25C! .100 .300 3.0f} .50 .00180 1 27 204 600, 14.5 40.01 .0400 016 .250 ,100 1300 3.00 .50 .00180 1 ^B 204 1900. 37.1 40.0 .0600 .016 .250 .100 .300 3.00 .50 100,80 1 N9 131 2800. 37.9 40.0 0060 .016 .100 300 3.00 .50 .00180 1 o 50 2000. 20.1 0.0 .1100 1016 .250 250 100 7.00 .50 ,00180 1 31 12B 5000. 87:9 40.0 .Gf,go .016 .250 .100 .300 7,66 .50 .00180 1 '2 36 3200, 40.0 40.0 0750 .016 3.00 .50 .00180 1 3 38 3000. 30.4 70.0 .0050 Oi6 .25+? 2=G .10G 100 .300 300 ':.00 .50 .00190 1 34 41 5600. 95.6 50.0 .OUSG 016 i} .1U0 .7700 3.00 .50 .00180 1 51 1200. 11.1 20.0 .0800 .016 .250.1C!0 .300 3.00 .50 .0018U 1 ° f5 6 54 400. 8.1 37.0 ,G20G .016 .250 .100 .300 3.00 .50 .OU18U 1 37 307 1000. 21.0 40,0 .0!?80 .016 2.51} .iUU .300 7.00 .50 .00180 1 Ta 308 lUG. 35.0 40.0 .0010 .016 :250 .IG:O .300 3.00 .50 .00180 1 9 N 312 900. 7.3 50.0 ,0200 .016 .250 .1010 ._,00 3.C�o) 50 .00180 1 o 311 900. 7.0 50.0 .0200 .016 .250 .IOC! .300 3:G0 .50 .00190 i :'TOTAL NUMBER OF SUHCATCHMENTS, 3G "JAL 1 TRIBUTARY AREA (ACRES), 11497.40 SIN H ... FOX MEADOWS BASIN .. 2 YEAR FULLY DEVELOPED CONDITIOIS .. DATED MAY 1989 FOR ANTICIPATED CONDITIONS It$ CONTINUITY CHECK FOR SUBCATCHMEMT RCL'TING IN UDSWM2-PC MODEL Its WATERSHED AREA (ACRES) 14 7.400 AL RAINFALL ( INCHES) `TOTAL INFILTRATION (INCHES) .484 JAL WATERSHED OUTFLOW iINCHES) .405 AL SURFACE STORAGE AT END OF STROM (INCHES) .172 ERROR IN CONTINUITY, PERCENTAGE OF RAINFALL .001 SIN H ,. FOX MEADOWS BASId 2 YEAR FULLY DOPED CONDITIONS DATED MAY 1999 FOR ANTICIPATED CONDITIONS WIDTH INVERT SIDE SLOPES OVERBANK/SURCHARGE GUTTER NDP NP OR DI.AN LENGTH SLOPE HORI? TO VERT MANNING DEPTH JK ITER BER CONNECTION (FT) (FT) (FT/FT) L R N (FT) 2 9 1 CHANNEL 5.0 2000. .0020 2.5 2.5 035 100.00 1 3 4 0 4 CHANNEL 2.0 2600. .0060 33.tt 33.0 .016 150 1 OVERFLOW 40.0 2600. i0060 010 30.0 .040 100.00 4 15 7 0 5 PIPE 2.0 20no, OVERFLOW 2.0 2000. .0060 .0060 10 33.0 .0 33,0 .013 .020 2.UO 100.00 I 7 0 1 CHANNEL 5.0 4800. .0050 3.0 3.0 .040 100.00 1 6 7 0 1 CHANNEL 5 1?001 .0050 i.0 1.0 .020 100.00 1 7 10 5 2 PIPE .0 50. .0100 .0 .0 .013 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 1,5 1.7 8.0 11.0 16.0 82.0 22.0 176.0 9 0 1 108 0 5 1 2 CHANNEL 5,0 1161, PIPE 3.0 60. _0020 0050 2,5 ,11) 2.5 0 .035 .015 101,00 3.00 1 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW n ,0 ..'? 1.6 23.0 4.0 35.0 7.7 45.0 1 101 3 1 CHANNEL .0 31. .000 .0 .0 .023 101 0 1 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 4.2 8.0 17.4 24.0 15 0 1 CHANNEL 2.0 20Q0 . 0060 30.0 30.0 .016 100.00 1 �4 5 116 5 2 PIPE .0 85, .0075 .0 .0 .013 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 11 122 ,0 0 14.0 1 1.0 14.0 3.Q 15.0 CHANNEL 2.0 1500. 6.2 .0650 23.0 70.0 8.2 30.0 108.0 .016 100.00 1 2 133 3 2 PIPE .0 100. .0100 .0 .0 .023 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .6 63.0 1.4 179.0 15 38 0 i CHANNEL 8.0 2000. 0030 3.0 3.0 .040 100.00 1 36 37 0 1 CHANNEL 2.0 1400. .0050 30.0 30.0 .016 100.00 1 .17 38 10 RESERVOIR 2 STORAGE IN PIPE .G 100. ACRE-FEET VS SPILLWAY OUTFLOW .0100 10 .0 .023 .01 0 .0 10 .2 7,� .9 21.5 2.8 28.3 7.4 31.2 39 9.9 0 34,2 1 1i.1 34.5 12.5 60.0 CHANNEL� ,) 1900. I5.0 .0060 320.0 3.0 3.0 .040 100.00 1 18 9 40 9 2 PIPE .0 100. .0100 ,0, 0 023 .01 0 RESERVOIR .0 STORAGE IN .0 ACRE-FEET VS SPILLWAY OUTFLOW .5 19.5 1.9 59.6 4.0 85.5 7.2 106.3 10.3 125.5 16.6 139.5 17.5 141.5 18.0 200.0 40 42 0 1 CHANNEL 6.0 1100. .0040 3.0 3.0 .040 106.00 1 1 2 42 203 0 4 1 2 CP.ANNEL 2,0 2800. PIPE .0 100. .CIO 60 .0100 34.0 0 30." .0 .016 .023 100.00 .01 1 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 145 .0 0 .0 1 5,5 23.0 13.3 24.0 CHANNEL 2.0 2600. 24.0 .004i! 1200.0 3.0 7,0 .040 100.00 1 14 6 202 0 1 CHANNEL 25,0 1500. .0004 3.0 3,0 .030 100.00 1 47 48 0 1 CHANNEL 2.0 1800. .0200 5.0 10.0 .040 100.00 1 49 0 1 CHANNEL 25.0 700. .0004 3.0 3.0 .030 100.00 1 I8 9 5G 0 1 CHANNEL 25 0 1900. .0004 3.0 3.0 030 100.00 1 ,0 51 0 1 CHANNEL 25.0 2200. .0004 3.0 7,0 .030 100.00 1 sl 4 203 48 0 3 1 1 CHANNEL 25.0 1300. CHANNEL 1.0 40, .0004 10200 3.0 .0 3.0 ,0 .030 .023 100.00 1,00 1 U RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .7 .0 1.4 100.0 �1 112 0 5 PIPE 2.0 900. OVERFLO-11 �;, 900. .Q080 i!f!ar, .6 31i0 .01 10.0 .013 .016 2.00 10,0 1 0 i 108 113 3 4 PIPE .0 2400. .0024 :! .0 .013 .01 0 �2 113 5 2 PiF'E 10 i00. 0100 U 6 013 .01 0 RESERVOIR STORAGE IN ACRE -FEE. SPILL14AY OUTFLOW .0 .0 4.0 .0 1,0 20.0 12.0 35,0 19.0 1000.0 3 21+0 0 5 P'IPE 2.0 ?6jti+.t, .0040 10 .0 .U13 2.00 1 OVERFLOW 5.6 2660. .0640 4.0 4.0 .040 100.00 6 145 0 5 PIPE 0 2600. .0050. .0 .0 .01' 3,0.0 1 OVERFLOW 5.0 2600, .0050 4,0 4.0 .040+ 10t0.00 306 0 5 PIPE 1.5 1100. UiUO .0 .0 .01:• 1.50 1 Ia OVERFLOW 2.'J 1100, 0I00 30.4 36.0 016 100,00 119 210 0 5 PIPE 2,U 1500. .0030 ,0 .0 .013 2.00 1 OVERFLOW 2.0 1500. .0030 30.0 30.0 .016 100.00 0 310 0 1 CHANNEL 2.0 1000._ .0100 30.0 30.0 .016 100,00 1 2 303 0 5 PIPE 2.0 1300. .0060 .0 .0 .013 2.00 1 OVERFLOW 2,0 130it, 0060 30.0 30.0 .016 100.00 '? 210 4 2 PIPE .0 50. .0100 .0 10 .Oi3 .01 0 RESERVOIR STORACE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .. 11.0 6.2 24.0 8.0 150.0 4 2.11 0 1 CHANNEL 21 0 2400, 0050 30.0 30.0 .016 100.00 1 5 213 0 1 CHANNEL 2.0 2600. .0040 30.0 30.0 .016 100.00 1 126 214 0 1 CHANNEL 2.0 2000. .0040 30.0 30.0 ,01E 100.00 1 1 35 0 1 CHANNEL 2,0 1300. .iiObU 30,0 30,0 .016 100.00 1 8 215 U 1 CHANNEL 2.0 2600. .0040 30.0 30.0 .016 100.00 1 •i 32 0 1 CHANNEL 2.0 1200, .0040 3010 30.0 .016 100,00 1 133 50 0 2 P'IPE 1.5 100. .0100 .0 .0 .013 1.50 1 116 0 5 PIPE 2-.5 1200. .0060 .0 .0 .013 2.50 1 �3 0'iERFL011) 5.0 1:'00. .0060 4.0 4.0 ,040 100.00 145 202 0 5 PIPE 3.5 1200. .0200 .0 .0 .013 3.50 1 OVERFLOW 2.': 1200, .0200 4.0 4.0 .040 100.00 0 210 0 1 CHANNEL 2.0 2200, ,0040 30.0 30.0 .016 100.00 1 ..2 0 0 1 CHANNEL 5.0 2000. . t?0t30 4.0 4.0+ .040 100.00 1 3 0 01 CHANNEL 5.0 1800. .0030 4.0 4.0 ,040i00.00 1 to 2ih 0 1 CHAT `dEL . � "ZOO.!�lii! 30.03i,,0.016 l+ i;,00 1 300 6 2 PIPE .0 16. .6015 .0 .0 .013 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 16,0 3.0 15:.0 5.0 32.0 20.0 38.0 29.0 86.0 34.0 336.0 �1 145 3 2 PIPE .+J 60. 0 (t .0i3 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 15.0 6.0 16.0 13.0 18.0 3 35 0 2 PIPE 2.0 100. 0100 ,0 10 .013 2.U0 1 4 35 0 2 PIPE 2.0 too. 10100 .0 .0 .017) 2.00 1 5 35 0 2 PIPE 2,0 .100. .0100 .0 10 .013 2..00 1 6 50 0 2 PIPE 1.5 10+J. .0100 .0 ,0 1013 1.50 i 0 301 .3 3 n 1. .0010 .!) .0 .001 /0.00 302 DIVERSION TO GUTTER NUMBER 302 - TOTAL 0 VS DIVERTED Ca IN CFS .0 .0 38.0 10 86.0 48,0 11 143 0 .0 1. .00.10 .0 .0 .001 10.00 1 302 116 0 3 .0 1. .0010 10 ,U .001 10.00 1 3 304 3 3 .0 1. .0010 .0 .0 .001 10.00 305 DIVERSION TO GUTTER NUMBER 305 - TOTAL 0 VS DIVERTED 0 IN CFS .0 .0 60.0 .0 150.0 50.0+ 304 123 0 3 .0 1. .0010 .0 .0 .00i 10.60 1 5 123 0 3 .0 1. .00i0 .0 .0 .0t0i 10.00 1 6 307 0 2 PIPE 11.5 100. .0100! .0 .0 .013 2.00 1 307 123 0 1 CHANNEL .0 1000. ,0050 6.0 6.0 .020 100.00 1 9 309 0 1 CHANNEL 2.0 1400. .0070 30,0 30.0 .020 100.00 1 119 4 3 2 PIPE 0 165. .0060 .0 .0 .013 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 10 25.0 2.0 35.0 L,5 500.0 o10 1.18 0 2 PIPE 1.3 1001 .6120 10 .0 .013 2.00 1 il 113 0 2 PIPE 1.6 20. .0020 .0 10 .013 2.50 1 312 113 0 2 PIPE 1,6 20, .0020 .0 .0 .013 2.50 1 '.tAL NUMBER 1 OF GUTTERSIPIPES, 11 wauB�.6z3Ga,»£a� ...z.. . 26R .,� w:b 3=G6Q w4H26 . m. .�&ID MAY lg9FOR ANTICIPATED CONDITIONS iANGEMENT OF 2Rq;9DS AND&252ne5 GUTTER 9R2m¥gR9lER ' 2 ( 0 0 0 0 0 9 . 9 0 0 0 0 r 9 0 0 0 9 0. 4 3 309 9 0 9 0 00§ 0 5 ( 0 9 0 9 0 0 9 9 9 6 0 0 0 0 § 9 0 9 0 0 7 4 5 6 0 0 0 0 0 0 0 � 9 2 q 0 9 a \ 0 9 0 § m 7 0 0 0 9 0 9 0 0 0 ; O 0 0 9 0 0 0 0 9 0 A @ 0 9 9 0 0 0 9. 0 9 # b R 9 0 06 0 9 0 9 a � 21 U a e O n 0 q 9 / e 2 51 0 0 0 0 0 9 a 0 \ }! 12 G! 54 SB , 9 0 9 0 » 36 0 0 9 0 0 0 0 9 0 9 g 36 0 9 9 0 0 0 0 0 0 3 3 2 § 9 9 0 A A 0 0 . 9 # 9 2 0 9 0 0 0 0 9 ; 40 39 0 0 0 0 0 0 9 0 0 t 9 9 0 0 0 0 0 9 0 9 Q 40 A 9 9 0 0 r 9 0 B q 0 9 0 9 91 o g 0 0 46 h 0 0 0 0 0 0 0 0 R 47 0 0 9 0 . 0 0 9 e 0 . # Q 54 0 0 0 0 0 9 0 0 q. # 0 0 0 0 9 0 0 0 0 50 a 12 26 0 9 i 0 0 0 0 ' 0 0 0 0 0 0 0 0 51 2 @ 0 TRIBUTARY 2§qQ E§(A)E 2 e 0 0 0 9 0 0 0 0 2.0 ! ! § § 0 0 0 0 9 4 69& a 9 0 0 0 0 0 0 9 0 1833 5 0 0 0 0 0 0 0 0 0 64.3 B 9 9 0 0 0 0 0 9 0 14.5 0 9 0 0 0+ 0 0 9 0 262.4 6 0 0 0 0 0 ; 9 C 0 35. . § 9 0 a 0 0 0 9 0 9 0 262J 9 9 9 0 0 0 0 0 9 a 9010 2 9 0 0 0 9 0 0 7 9 80.2 0 0 9 0 0 0 0 0 0 080 2 O a @ 9 0 0 0 0 0 0 2.6 0 0 0 0 0 9 0 0 9 ( 7.9 0 0 0 0! 0 0 0 0 0 26.1 2 0 9 0 0 0 0 0 . 0 40.0 0 0 0 0 0 0 0 9 9 0 40.0 % 0 0 0 9 0 9 0 0 0 56.5 9 0 0 f 0 0 0 9 0 0 56.5 ! 0. 0 0 9 9 0 0 0 0 26.5 J 0 9 0 9 0 9 @ 0 0 e3 a 9 0 e 0 0 0 9 0 0 m\! R 0 0 § # 0 0 9 0 0 £4 3 0 0 9. 9 0 9 0 0 9 R 3 S 0 0 9 0 0 0 0 0 0 9.4 0 § 0 0 0 0 0 0 0 9 2.5 o 0 0 0 9 9 0 9 9 9 17.5 9 § 9 9 .0 0 0 0 0 9 127.1 35 ' 0 9 e a 0 0 0 EE2 H 0. 0 0 0 0 §� ) 0 D o 0 o 0 § § 0 o. o R! 0 9 0 0 Cl 0 0 0 0 12 112 a! 22 0 0 0 0 0 0 R !q 39 0 n 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e 0 [ 0 2 0 0 0 0 0 0 § 0 0 #■ 305 307 0 0 0 0 0 0 0 @ ) § a 9 » a 0 0 0 0 0 0 0 0 0 ; 0 0 0 0 r 0 0 e § q 0 0 e 0 0 0 0 0 0 0 § 0 0 0 0 0 o 0 a § 9 B § 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 71 0 0 0 0 0 a 0 0 0 A 26 g! 0 0 0 0 0 0 0 0 0 A 0 0 0 0 0 0 % !@ 0 0 9 a .S 0 0 9 @ e 0 0 0 0 0 i 0 0 e 9 4 0 0 0 0 0 0 0 H; 117 e; /q 0 0 0 0 0 0 24 0 0 0 0§ 0 0 0 0 !a 0 0 0 o 0 0 0 0 0 26 0 0 » 0 0 0 0 e 0 !a 0 0 0 0 0 0, 0 0 0 24 0 0 0 0 0 0 0 0 0 21 0 0 0 6 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 9 \ § 0 0 0 0 0 0 0 m 0 0 0 0 0 0 e 0 0 !@ 3 70 a 9§ 9§§§ o Q&2 0 0 0 0 0 0 0 0 0 0 !@. § 9 § 9 9 a 0 0 i 0 5.00.6 9 e 9 ( 0 0 0 0 0 808.4 E 0 § 0 0 0 0 0 0 t 57.7 R ) a 0 0 0 0 0 0 0 9 a G § 0 0 t 0 0 0 030 a b 0 0 0 0 0 0 t 0 0 64.9 t i t 0 0 0 0 0 0 0 A&§ g 0 0 0 0 0 0 0 0 0 103.0 2@ 0 d 0 0 0 0 0 0 66.3 2 e u e 0 0 0 0 0 0 61.3 S r 0 0 0 0 0 0 0 0 10.6 . 0 0 0 0 0 0 0 a 087 a 2 0 0 0 0 0 0 0 0 i 37.9 0 § 0 0 0 0 0 0 0 0 37.9 9 0 0 0 0 0 0 0 0 0 26.2 9 § § p 0 0 0 0 0 913.8 g ' 0 0 0 0 0 0 0 0 41.9 0 0@ 0 v 0 0 0 0 0 g}j o d a § E o 0 0 0 0 S&! 2 e R 9 e e 9 0 0 0 g/ § o o e 0 0 0 0 0 0 28.2 r 0 e 0 0 0 0 0 0 0 103.0 0 0 0 o 0 0 0 0 0 0 66.3 0 0 t e i 0 0 0 0 061 2 0 0 0 0 0 0 0 0 0 0 87.9 0 0 0§ 0 .0 0 00 0 S» 0 e 0 0 0 0 0 0 0 0 7282 0 0 0 o 0 00 0 o, 0 2E2 § a e P§§ a a 0 0 » 304 303 0 0 0 0 0 60. o D 305 0 0 0 0 0 0 0 0 0 0 306 118 0 0 0 0 0 0 Q i! 0 .307 306 0 0 0 0 0 0 0 iy 0 308 0 0 0 0 0 0 0 0 0 0 309 308 0 0 0 0 0 0 0 0 0 310 120 0 0 0 0 0 0 0 0 0 311 0 0 0 0 0 0 0 0 0 0 312 0 0 0 0 0 0 0 0 0 0 1� SIN H ... FOX MEADOWS BASIN .. 2 YEA!' FULLY DEVELOPED CONDITIONS ... DATED MAY 1989 FOR ANTICIPATED CONDITIONS. IROGRAPHS ARE LISTED FOR THE FOLLOWING 1.3 CONVEYANCE ELEMENTS 0 0 f! 0 do 0 0 0 0 0 64.9 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 57.7 77 0 0 0 0 0 0 0 0 0 73.7 39 0 0 0 0 0 0 0 0 0 35.0 0 0 0 0 0 0 0 0 (1 0 35.0 0 0 0 0 0 n 0 0 0 0 30.5 40 0 0 r; n ,) Q 0 0 0 7.0 39 0 0 0 0 0 0 0 0 0 7.3 tTHE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET 15.) DENOTES STORAGE IN AC -FT FOR DETENSION DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOV. (I) DENOTES GUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYDROGRAPH (D) DENOTES DISCHARGE IN CF5 DIVERTED FROM THIS GUTTER (0) DENOTES STORAGE IN AC -FT FOR SURCHARGED GUTTER TIME(HR/MIN) 11 112 108 306 123 210 302 211 15 1 310 311 312 0 5. 0. 0. 0. 0. 0. 0. !). 0• 0. .0(S) .0(9) 10(5) ,0() 0(S) 0(S) 0() .)(5) ,0(5) 0, 0. 0 .0( ) t!1 1 D( } 145 0. 10. 0. 0. 0. 0, 0, !?> 0, 0. 0. 0. .0(S) .0(5) 0. 0. 0. 15. 0. 0. 0. 0; 0, 0. 0, 0 .0(S) 10(S) .0(S) () 0(S) ,0(5) .0() 0(S) 20. 0. 0. 0. 0, 0. 01 0, (i. 0. 0. ,0(5) 0(S) 0(S) .1() !?(5) D(S) .0() .0(5) .0(S) .0.( ) 0. 0. 0, .0(! .i( 0 25. 0. 0. 7. 2. 0.. 3. 0. 1. :. �. 0. z, 2. .z( 1 .7( 1 .7( 1 0. 0. 22, 16. 1). 6. 6. 5. .0(5) AM .O(S) 1.2{ i i(S) .0(5) ,0( } 0(S! .0(S) .5( 1 3. 5. 6. ,5( ! 1..3( 1 1.3( ) 0. 36. li. 8. 16, 0. 15. 14. 23. .1(S) .2(5) ,1(S) O(0) .2(S) .1(5) ,o( i ,O(S) INS) .9( 1 8. 6. 6. .0{0) .0(0) .0(0) 0, 0. 36. 11. I1, 16, 0, 15. 14.. 39. 11(5) .6(5) ,1(S) .1(0) 5(S) .4C5) ,O( ) .2(8) :2.(S! 1.31 ) 8. 6, 6. .110) .0(0) .0(0) 0. 0. 36, 1.1. 121 16, 0, 15. 14. 43.. AM 9(5) .1(S) .2(0) ,8(10) .8(5) .Ol ) 4(5) 4(.5) 1.3( ) 8, 6. 6. 1(0) .0(0) .0(0) O. O, 36. il, i3. IE, 14. 45. .1(5) 1.2(5) .0(S) -3(0) 1.115) 113(S) 0( } 7(5) .6(S) 1.4( } G. 5. 6. .2(0) 1.1( ) .O(0) 0. 0. 19, 11. 13 16. 0. 15. 14. 46. .1(S) 1.5(5) O(S) .3(0) 1.4(9) 1..7(5) .0( ) .9(S) .7(S) 1..4( ) 8. 0. 2. .2(0) ,O( } .7( ) 0. O. 16. 11. 14. 16. 0. 15. 14. 46, .1(5) 1.7(S) O(S) 4(0) 1.615) 2,2(S) O( 1 1,0(5) .8(3) 1,4( } 8. 3. 1. .2(0) :8( ) 5( ! 0. 0. 19. 1.1. 14, 16, 0. 15. 14. 46. .1(9) 119(S) .O(S) .4(0) 1,7(S) 2.5(S) 0( ) 1.1(5) .9(5) 1.4( ) S. 0. 2. ,2(0) .1( 1 .6( ) 0. 0. 16. 11, 14. 16, 0, 15. 14. 46. .I(S) 2.0(6) .0(5) AM 1,9(S) 2.9{5} ,0( ) 1.2(S) 1:O(S) 1,4( 1 8. 2. 1. .2(0) .7l ) .4( ) 0. O. 19, ll. 15. 17. 0. 15. 14. 46. AM 2.2(S) .O(S) ,4(0) 2.U(5) 3.2(S) 0( ) i.3(S) l,fi(S} 1,4( } .2(0) .0( } .5( ) 0. 0. 16. 11, 15. 19. ;7, 15, 14. 47. .1(0) ^.7( ) .4( ) U. U. 20. 11. 15. 21. 0. 15. 14. 48. .1(S) 2.3(S) Uis) 5fO) 2.1(S) 3.6(S) .0( ) 1.3(S) 1.0(S) 1.4( ) 8. 0. 1, .1(0) .2( ) .5( ) 0. 0. 16, 11, 15. 23, +, 15, 14. ,1(S) 2.4!Sl ±!iS! 5(0) 2,1(5) '.BiS) 0( 1.4( ) S. 1. 1. .1(0) .6( 0. 0. 19. 11. 1 24. 0. 15. .I(S) 2.5(S) .0(S) 5!0) 2.2(S) 0(S) .0( ) 1.3tS) .4(S) 1.5( ) 8. 0, 1. U. 16. 11. 15. 2u. U. 15, 14. C;3, .1fS) 2,6(9) .0(9) .5(0) 2,2(5) 4.1(9) .o( i 113(S) .9(S) 1.5( } S. 1. 0, .0(0) .5( ) 13( ) 0. 0. 19. 11, 15. 26. U. 15. 14, 54. .0(5) .5(0) 2.2(5) 4,3(9) .0( ) 1.2(S) .9(S) 1.5`( ) 3. 0. 1. .6( ) .1( ) .41 1 0. +?. 17, 1.1. 1 , 27, U. 15. 14, 55. .its) 2.7(S) .0(S) M M 2.2(S) 4,4(S) M ) 1.2(S) .B(S) 1.5( ) 2. 1. U ,4( ) A( ) .3( ) 0. U. 2U. 11. 15, 29. U. 15. 14. 56. Ms) 2.7(5) .0(9) .4(0) 213(S) 4.5(9) .0( ) 1.2(9) .8(S) 1,5( ) 3. 0. 1. .5( U. 0. 17. il. 1` 29. U. 15. 14. 57. AM 2.8(S) .0(9) .3(0) 2.3(S) 4.6(S) .0( ) 1.liS) .7(a) 1.51, ) 2. 1. 0. 0. 19. 11. 15. 29. 0. 15. 14, 56. .1(S) 2.8(S) o(S) .3(0) 2.3(S) 4.7(S) .U( ) 1.U(S) .7(S) 1.6( ) 2, 0. 0. .5( U. 0. 16. 11. 15. 3Cf. 0. 15. 14. 58, .1(S) 2,8(S) M) .20 2,3(S) 4.7(S) IN ) 1.0(S) .6(S) 1.3( ) 1. 0. 0. .4( ) .3( ) .2( 1 0. 19. 11. 15. 14. `_•9. 2. i?. t?. 0. 0. 16. 11. 15. 31. 0. 15, 14. 59. ,1(5) 2.9(s) .0(5) HQ) 2.3(9) 4,9(S) +?f l ,9(.5) .5(S) 1.6( ? 1. 0. 0. .3f ) .2( ) .1t ? ls. 11. 15. 31, 0. 15. 14. 60. .1(S) 2.9(s) .Ots) .0(0) 2.3fS) 4.9;5) .0( ) .9(S) .4ty? 1.6( ) 1. .3( 0. 0. 15, 31 15, 32, O. 15. 14. 60. .its) 2.9(5) ,0(S) 5( } 2.2(S) 4.9(S) M ) M ) ..3(S) 1.6( ? 1. 0. 0. .3( ) .2( ) 1t ) 0. 0. 18. 0: 15, 32. 0. 15. 14. 61. 11(s) 3.0(S) .0(s) ,1f ) 2,2Cs) 5,0fS) .{;( ) .6(s) 2(S) 1,6( ) 1. 0. 0. .Its) 3.0(s) !}(s? 4! ? 2.1(S) 5,0(5) Ol ) .5(S) .2(S) 1.6( ) 1. 0. 0. ,2( ) .1( ) 0. 0. 17. 0. 15. 32. 0. 15. 14. 61. .its) 3,Ots) .0(s) .2( ) 2.0(S) 5,0(S) ,0{ ? ,5(9) .Ifs) 1.6( ) 1. 0. 0. 0. 0. 15, 1. 15. ,2, 0. 15. iv, 60. .1{s) 3.0(5) Ms) 14l ) 2.015? 5.0(S) ,O( ? .4(S) .O(s) 1.6( ) 0. 0. 0. .2( ) .1( ) .1( ) 0. 0. 17. 0. 14. 32. 0. 15. 0. 56.. .Its) 3:0(s) .0(5) .2( ) 1.9(S) 5,.0(S) .0( ) .3(s) .Ots) 1.5( ) 0. 0. 0. 0. 0. 14. 1. 14. 32. 0, 15, 3, 51, .Its) 3.0(s) .0(s) .3( l i.s(sl 5.0(s) ,(?{ ) .2(5) .O(S) 1,5t ) 0. 0. 0. .2( ) .I( ) .1( ) 0. 0. 17. 0. 14. 115, t_,. 49. .Its) 3.0(s) O(S) .2( ) 1.1(3) 5,05) ,0( ) ,1(S) .6(9) J. 0. I!, 0. 0. 16. 0, 14. IL 0. 0. 0. 37. .1(S) 3.0(8) .0(S) 21 ) 1,5(5! 5.0(S) 0( ) INS) O(S) 1.2( } 0. 0. 0. 0. 14. 32, 0, °. L. ... .1(S) 3.0(9) 10(Sr .2i) 1,4(S) 5.0(S) ,(q } N S) O(5} 1,)( } 0. 0, 0 it, 16.!: ), 34. 0(S) .2() 1.4(S) 5.0(S) .0t ! INS) ME) 1.2( } 0. O, 0. .2() M } ,O( } 0, 0. 13. 0. 13. 32_ 0. 1. 34. ..l(S) 3.1(S) .O(S) 2(} 1,3{S} 5,0{g} IN.O(S) 1.2( ) 0. 0. U. .1() IN 01} 0. 0. 16. !?, 13. 32, 0. 0. 0. 34. .1(5) 3.1(S) 0(S 1.2(5) 5.0(5) .0() 0(S) .'!(S? 1.2( } 0. 0. 0. U 0, 13. 3 2 �, �. .1{S} 3.1!S} .t!!S} 2(} 1,1(S) 5.1ES) IN ,O(S) .0(5) IM ) 0. 0. 0. 0. 0. 15, 0. 13. 32. 0, 0. O. 33. .O(5) .2() I'M', 4.9(S) A( O(S) MS) 112( } 0, 0. .I( 0, 0 12. +:. 12. .I(S) 3.1(5) .O(5) .1O .9(5) 4.9(5) M .ills) .0(5) 1.1( ) 0. O ,OO M) .. t�, . 3. .1!S! 3.1(8) .01(S) H .9ip 4,9(S) ,O( ! INS) ME) 1,1( } 0. 0. 0. .1{ } ,0! ) .0( ) 0. 0. 12. 0. 12. 31, 0. 1. 1. 32. AM 3.1(S) OHO) ,it ! B(S) 4.9(5) Oi) ,O(S) ,O(S) 1.1( ) ��. 0. 15. 0. 12. 31. 0. 0. 0. 32. 0. 12, 0. 12, 31. 0. i. i. 32. .1(S? 3.1(S) .O(S) .1( I .6(9) 4.8(9) .0i l O(S) .O(S) 1.1( ) 0. 0. 0. .li) 0. 0. 14, 0. 12. 30. 0. 0. 'l2. .1(s) 3.1(S) .0(5) .1() .5(3I 4.8(S) 0(I ,tits} IMP 1.1( } 0. 0. 0. .1(! M 0, o. 11. 0, H. 30. 0. 1. 1. 31. .Ills) 3.1(s) .()IS) 1() 5(3) 4,7(S) .Ot ) INS) .0(s) 1.1( ) 0. 0. 0. 0. 0. 14. O. 11. 30. 0, i!. 0. 31. .Il(s) 3.1(5) so(s) .1() .4(S) 4,7(S) IN 10(s) ,O(s) 1.1( 0. 0. 0. .1(i ,0! l IN ) 0. 0. 11. 0, l.l. 2?, ?. i, 0. 30. .1(S) 3.1(S) .O(S) .i() 3!SI 4.7(6) .0{ } O(P .O(S) 1.1( } 0. ,1{) 0. 0. 13. 0. 9. 29. 0, 0, 0, 30. .1(s) 3.1(s) .0(s) .1( ) .3(s) 4.6(:3) .oi 0. 0. 0. 0. 0. 10. 0. 7, 1(S) 3,1(S) .o(S) 1l I 2!S! 4.6(S) ,;?! ! 10(S) AM I,1( } 0, 0. 0. 1! ! .0! l of ) 0. 0. 13. 6. 28. 0. i!, 0. 29. .i(S) 3,1(S) .0{S) A( .2(9) 4,5(S) .!! ) O(S) .0(s) 1.1( ) 0, 0. 0. 0. 0. 10. 0, 4. 27. 0. 0. .O(S) 1O .1(10) 4.4(5) .0( N S) INS) 1.1( } 0. 0. t!, .1() .tl{ } .0( ) 0. 0. 13. ?. 4. 27, 0. 0. 0. 28. .11Sf 3.1(S) .0(9) if) .Ills) 4,4(3) Oi ) .0(5) O(S) 0. 0. 0. 0. 0. 10. 0. 3. 26. 0. 0, 0. 28. H ) .Of 1 IN ) 5. 0. 0. 12. 0. L. 46. Q. 0. 0. 27. .1(S) 3.1(S) INS) .1(} i(S) 4.?lS) .G!{ } .O(5} 01.(z) 0, 0. 0. all) IN IN 5 iG. 0. Q. 9, !?, a.. L5. 0. 0. 0. 26. ' .i(5) 3.i(S) .0(5) .1( .0{S) 4.1151 IN } .0 Si Q(S) 1.Qt 1 Q. 0. 0. .1f 1 .0{) .Ot ) J 15. 0. 0. 12. 0. 1.. 24. G. Qa 0. 26. 1t } t!(S�:!?(} .+!f�l 0;5} 1.Q{ } .Of ) 20. Cf. 0. 9. 0. 1. 24. Cl. Q. 0. 25. al(5) 3.1(S) O(S) H 0(5) 410(5) M } ,0{S) ,0(S) 1.M } 0: 0. G. sot 25. /:1(l l!a 0. 12. 0. 1. 2., !!. _!, 0. 24: .i(S) 3.1(S) 10 S} .1( } ,G{5) '.9(5) ?f ) A tS) O(5) 1.0( } 30. 0. 0. 9. 0. 1. 22. 0. :i. 24. .1(S) 3.1(5) .0(5) .1( ) 10(5) 3.8(S) IN } a!?(S) A(s) i.Ql } 0. 0. 0. 5 35. 0. 0. 11. 0. 1. 2' O, 0. 0. 23. 1(5) 3.1(s) O(S) H a0(5) 3.7(5) :0f ) .G!lS) 10(5) 1.01 0. 0. 0. H IN IN 40: 0. 0. 9. 0. Q. 21. 0. 0. 0. L2. .1(5) 3.2(S) AM .1() INS) 3.6(5) .0() INS) :i!tS} .9( ) Q. 0. 0. :1l) IN of 45. 0. G. 11. 0. 0. 21. 0. 0. 0. 22. .1(5) 3:2(5) :!?(S) .H } .0(s) 3.6(S) At 1 G(S) INS} M ) l{) .0( ) M ) 50, 0. 0. G. G: 0. 20, 0. 0. 0. 21. .l(S) 3.2(9) 0(5) A( ) INS) 3.5(5) M► .0(S) .0(S) .9( ) IN 5 55. 0. Q. 11. 0. 0, 20. 0. 0. Q. 21. 19. 0. 0. O. 20. .1(s) 3.2(6) .O(S) .1( .O(S) 3A(S) IN i .0(s) .0(S) .9( ) 0. 0. 0. .I() Of .0( ) 0. 0. 11. 0. 0. 19 0. 0. 0. 20. .1(s) 3.2(S) .O(s) .I() .O(s) 3.3(9) .0(1 .0(5) .0(S) .9( t 0. 0. 0. 0. 0. 8. 0. 0. 18. 0. 0. 0. 19. .1(S) 4j.2(S) O(S) ,i(} O(S) a.3(5t .0( ) .O(s) 0(s) 0. 0. 0. .1(1 .0(1 .0( } 0. 0. 10, 0. 0. 18. 0. 0, 0. 19. .115) 3.2(S1 INS) .1(! .O(S) 3.2(S) O(} O(St ,0(S! .9t 1 0. 0. O, .1(1 .0(} ,O( ! 0. 0. 7. O. 0. 17. 0. 0. 0. 18. .1(s) 3.2(S) ,O(s) .1( INS) 3.1(S) .00 ,O(s) .O(S) .8( ) 0. 0. 0. 0. 0. 10, 0. 0. 11, 01 .ills) 3.2(9) .O(s) IO .O(5) _.1(31) .0(} INS) .0(S) .8( } 0. 0. 0. .O(t .0(! .0{ l 0. 0. 7. 0. 0. 16, 0. 0. 0. 17. .1(S) 3.2(5) O(s) .1(1 O(S) 3.0(9) .0() .O(s) .Oils) .8( 3 0. .0( .0(t Oil t 0. 0. 10, 0. 0. 16. 0. 0. O. 17, AM 3.2(S) .O(S) A( O(s) 3.0(s) .0(! AM O(S) .8(. } O. 0. 0. .O( ) .0( ) ,Ol ) 0. 0. 7. O. 0. 16. 0. 0. 0. 16. AM 3.2(S) .O(S) .1l 1 .0(S) 2.9(S) IN MIS) .O(Sl .8( ) 0. 0. O, 0. 0. 9. 0. 0. 16, 0. 0. 0. 16. .1(s) 3.21S) .O(S) .1() .O(s) 2.9(s) .0( .O(s) INS) .8( ) 0. 0. 0. u (). u. 1 0. ) .0() .N .o( 0. U. 9. 0. 0. i6: 0. 0, ±l. 16. .1(S) 3.2(S) .0113) :0( ) :0!S) M(S) ,`?!) 0(S} lots) .8( ) 0. 0. 0. 0. 0. 6. 0. 0: 16. 0. 0, 0. 16. .1(S) 3.2(S) .0(S) ,0!) 0l5) 2.7(S) 10() ,0(S) 10(S) 8( ) 0. .0() .0!) IN , 0. 0. 91 0. 0., 16. 0. 0. 0. 16. .1(5) 3.2(S) .0(s) .0(1 .0!S) 2.7(S) IN .0!S) .0(S) A( ) 0. 0. 0. 0. 0. 6. 0. 0, 16. 0. 0, 0. 16. ,1(S) 3.215) O(S) .0() INS) 2.6(S) :0() :0(S) INS) .8( ) 0. 0. 0. IN .0!) M) 0. 0. 9. 0. 0. 16. 0. 0. 0. 16. .1(5) 3.2(S) .0(S) .0(1 .0!S) 2.6(S) .0!) .0(S) .0(s) .8( ) 0. 0. 0. IN 6. 0. 6. 0. 0. 16. 0, 0. Cl. 16: .1(S) 3.2(S) 0(S) .0(1 .0(S') 2.5(S) M .0(S) .0(S) .9( ) 6. 0. 0. .0() M IN ) 0. 0. 9. 0. 0. 16. 0. 0. 0. 16, .1(S) 3.2(S) .0(S) A( INS) 2.4(S) .0() .0(S) INS) :8( ) 0. 0. 0. 0. 0. L. 6. 0. 16. 0. 0. 0. 16. .1(5) 3.2(S) 0(S) .Ol ? .0(S) 2.4(S) .0( ) .0(S) .0(S) .8( ) 0. 0. 0. IN ) M ) .0( ) 0. 0. 8. 0. 0. 16. 0. 0: 0. 16. .1(S) 3.2(5) ,Ng 0{ } is{S) 2.3{S) 0i) OiS) :0(S) .8( ) 0. 0. ±?. .0() IN 0. 0. 5. 0. 0. 16. 0. 1) 6. 16. .1(S) M (S) .0(5) .0O .0(S) 2.3(9) .0(} .ti(S) ,0!5) 0 ) 0, 0. 0. J. .0( ) !'• .0( ) !' .Ot } 7 50. 01 0. 5. 0. 0. 16. 0. 0. 0. 16. .1(S) 3.2(S) .0(5) ,0( } .O(S) 2.ttS) .O( ) .O(5) 04S) 0. 0. 0. .0( ) .0( ) .0( } 55. 0. 0. S. 0. 0. 16. 0. 0. 0. 16. l(S) 3,2(5) .O(S) 01 ) 1(9) 2,111) .O( f 0(S) 0(8) .8( 0. 0. 0. 0. 5. 01 0. 16. 0. 0. 0. 16. .1(5) 3.2(S) .0(5) 10( ) 0(S) 2.O(S) .0( ) .0(S) .O(S) .8( } 0. 0. 0. .0( 1' SIN H ... FOX MEADOWS BASIN .. 2 YEAR FULLY DEVELOPED CONDITIONS .. DATED MAY 1989 FOR ANTICIPATED CONDITIONS PEAR FLOWS, STAGES AND STORAGES OF GUTTERS AND DETENISION DAMS $�l ONVEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (HR!M1N) 308 14. .4 0 CO. 120 19. .4 0 40. 309 14, .0 0 50. ? 34. .5 0 45. 310 8. 1,3 .2 1 0. 21 24. .5 0 40.. 6 0. 1 30, 30. 1.3 0 55. '5 4 82. 2.S 0 J0 118 27. 1.9 0 401. 122 11 35, 0. 2.4 .0 1 0 45:. 2 15. 7 16. .0 7.5 2 25. 306 1.1. 1.5 .5 1 40. 303 35. (DIRECT FLOG) 0 45. 101 55. 2.5 0 40. 10 16. 1.3 2 25. 307 27. 1.1 0 40. 305 0. (DIRECT FLOW) 0 0, 304 35. (DIRECT FLOW) 0 45. 112 6, 1.6 .0 0 40. 311 6. 1.6 .0 0 40. 112 0. .!1 3.2 8 0. 108 36. .0 .1 0 40. 128 42. .7 0 45. 1 126 32 .6 Q 45• 125 27. .6 0 501 200 17. .5 0 50. 123 15, .0 2.3 2 10, 119 22. 2.4 0 45. ,,.T ,- TA T , .. 11. �ii :!s 24. Z.a .4 ! 24 24. %a u a Sa 24. so a § /. E7 a 2 § 40 2» 2, .r c@ ! e e! S. 3 e #. 9 4. 1.9 3 a #. 3. 2 r A. �R 2 Q. . » 5 § %. 3 72 .0 i D. 21 3■ 2, 2, 1111111 11111 » 3 9 ` �\ £ R, & .2 e 50 . Q S .4 a S. # 92. 1.9 ! \. 3! 2, (DIRECT%a; ! 5 H <. .6 n @. 26 H. K§ 3 ! g! H. R§ 9 1 t 49 2 1 2. 9 E4 9, 52. 2 2,5 .7 ! e 3e 45. 22 G (D!ES FLOW) Cl G 143 £. I! : m. 2 @. z Ge 1 S. k 24. R« ! \. 4 e. 2 e @. k g, s9 ! @. 51 g. » K! ! 5. H§ 46. a4 : g. 44 R J ! g. � 2 2. J \ /. 42 23. 2 9.3 ; s !« 2. R& 2 q. 4 4 .4a 9, 2 G 2 2 2. 23 «. 1.7 2 m. \ � a2 9 g. e. 2.9 K» 2 § <. q, � I i I PROGRAM RBA@ CALLED � I � I I I E I i ENVIRONMENTAL PROTECTION AGENCY - STORM WATER MANAGEMENT MODEL - VERSION PC.! wGl v v� C e_Gr` DEVELOPED BY METCALF EDDY, INC. UNIVERSITY OF FLORIDA ( Z �` �c�- WATER RESOURCES ENGINEEERS, INC. (SEPTEMBER 1970) UPDATED BY UNIVERSITY OF FLORIDA (JUNE 147-) HYDROLOGIC ENGINEERINS CENTER, CORPS OF ENGINEERS MISSOURI RIVER DIVISION, CORPS OF ENGINEERS (SEPTEMBER 1974) BOYLE ENGINEERING %CAR?OP.ATION ("ARCH 198=, JULY 19851 iOTJ OR DISK ASSIGNMENTS JIN(1) JIN(2) JIN() JINi4) JIN(5) JTN( 6) JTNf) JIN(8) 1IN(9) IN( If")) 2 1 () fI ' JOUT(1) JOUT(2) JOUT(3) JOUT(4) JOUT (5) JOUT(6) JOUT(71 JOUT(8) JI)UT(9) JOUT(10) 1 2 0 fi ri 0 0 0 } 0 NRICRAT(1) NECR'AT(2) NSCRAT(7) ;''SCRUT(Q) p4CCFA7j5) 4 0 0 0 1 1�ERSHED PROGRAM CALLED .Ill ENTRY MADE TO RUNOFF MODEL !It BASIN H ... FO;; MEADOWS BASIN ..106 YEAR FULLY DEVELOPED CONDITIONS ... (DATED MAY 1989 FOR ANTICIPATED CONDITIONS IfBER OF TIME STEPS 96 EGRATION TIME INTERVAL (MINUTES) 5.0 1.0 PERCENT OF IMPERVIOUS AREA HAS ZERO DETENTION DEPTH 24 RAINFALL STEPS, THE TINE INTERVAL IS 5.00 MINUTES CI RAINGAGE NUMBER 1 RAINFALL HISTORY IN I)CHES PER HOUR .60 .96 .1.44 1.68 3.O;) 5.04 9.00 3.72 2.16 1.56 1.211 .84 .60 .48 36 '4 IN '4 .24 .24 .24 .24 .12 .12 1, GGCifJ 41 Fly FSFAt?Plbl; RA91N ..100 "'FAR FUi LY DEVELOPED CONDITION'S _ _ 111 GUTTER WIDTH AREA PERCENT SLOPE RESISTANCE FACTOR SURFACE STORAGE(IN) N ER OR MANHOLE (FT) (AC) IMPERV, (FT!FT) IMPERV. PER', JMPERV. FERV. 1 3 500. 10.0 40.0 .013t! .016 250 .100 .300 2 2 2000. 23.0 .0 01:50 .016 �1 c_•. .100 3111, 3 5600. 58.5 41.0 Ot07!) 016 .250 100 300 4 6000, 80.1 46,0 .00510 .016 .250 .10,0 ,.'_,ii0 5 5 4800. 64.3 69.0 .0030 .016 .2501 1(11 3i;i, �6 9 18((), 12,8 tj ,0070 1��(a �7 108 27(!0. 55,8 4i!:;! _111f; :,16 016 :75; `0 l !{! ::;f!tl 700 8 6 1400. 14.5 ! 61210 .016 .25+0 .100 .300 9 11 1700. 90.0 2.0 .0070 .016 .2510 too ,300 ! 101 2200. 78.1 48.11 A090 . irl 6 .250 . i 00 , 300 1 14 5000. 80.2 42.0 .0040 .016 .250 .100 .300 12 200 2600. 41.9 46,6 O020 .016 250 .100 .300 118 2750. 27.2 40.0 0,150 .016 .25+0 .100 17 O 120 1080. 30.5 4 !:0 0060 .0.16 .250 .100 Sinn 15 21 2900. 39. 6 40.0 :!!; U 016 .250 .10 300 122 1400, 26.3 40.0 .0060 .016 .250 1!.?0 .30U 119 2000. 42.1 40.0 .0060 .016 .250 .10.0 .-00 8 124 4SOO. 103.0 40v .0080 .016 .250 .100 .300 9 44 2500. 2.4 50.0 , +07i1 .016 .250.106 , .300 1 125 3200, 66.3 40.0 0 !4 ! 616 .25i? .100, 3 00 126 4000. 61.:3 40.0 0070 .016 250 .100 ,300 24 127 2600. 10.6 40.0 .0030 .016 .250 :100 3iu1 ®5 46 1500. 17.5 40,0 ,0800 .016 .100 .-,00 47 1800. 9.4 20.0 .+1100 .016 ,250 250 .100 : 300 27 204 600. 5, 14.., 0 0 4�:.. l0 00 ,�4:.: 1 6 .Ll .2_�. 50 100 .,�:. 7 ,.00 9 204 1900. 3, 1 40.0 .0600 .016 .250 .100 . 360 19 131 28t)i1. 37.9 40.0 .00bO .016 .250 .100 .300 a.0 50 2000, 20.1 40.0 .1100 .016 .250 .100 :300 71 129 50t!0. 81.9 4t),(! 004iy U: Olb 250 .10! oo 36 3200. 40.0 40.6 10750 616 .250 .100 .300 a 36 3.000, 30.4 70.0 0050 016 .25i! loft30ty 34 41 5600, 95.6 5+0.0 ,0050 .1016 .250 .100 .300 51 1200. 11.1 20.0 ,0800 1016 .250 .1!?0 !70 54 400. 8.1 37.0 .0200 .016 .250 .100 .300 �� �. :.n7 � IOfK.. �1,0 ! 40,? � ! fir, .,,...: :0l6 ,n 25 ,��, i+i+ ,i:: z,. .,+al ,_.. 308 700, 35.0 4(,.0 .0070 016 .250 .100 .300 312 90+1. 7.3 50,0 0200 .016 . 5- .100 .300 31.1 900. 7.0 50.0 0200 .016 .250 .100 ,300 [!TOTAL NUMBER OF SUBCATCHMENTS, 38 OTDTAL TRIBUTARY AREA (ACRES), 1497.40 11 IN H ... FOX MEADOWS BASIN ..100 YEAR FULLY DEVELOPED CONDITIONS .. ATED MAY 1989 FOR ANTICIPATED CONDITIONS 1 $I$ CONTINUITY CHECK FOR 5UBCATCHMEMT ROUTING IN UDSWM2-FC MODEL r� ERSHED AREA (ACRES) 1497.400 AL RAINFALL (INCHES) 2.870 1lAL INFILTRATION (INCHES) .558 TOTAL WAIERSHED OUTFLOW (ITCHES) 2,0.52 INFILTRATION RATE(INlHR) MAXIMUM MINIMUM DECAY RATE .51 .50 .00180 .51 .50 .00180 .51 .50 .00190 .51 .50 .0-0181a .i1 50 .00180 .51 .50 Vvl9i+ .51 .50 .00180 .51 r50 .00190 .51 .50 ,00180 .51 .50 '00180. .51 .50 .00180 .51 .50 .00180 51 .50 .fit) 1B!: 51 .50 .00190 .51 :50 +,0180 .51 .50 .00180 51 .50 .O ?180 .51 :50 .00160 .51 .50 .00180 51 .50 .001Bo .51 .50 .00}8!) 51 .50 .00180 51 .510 100180 5i .52 .00180 51 .50 .00180 .51 .50 :00180 .51 .50 .00100 .51 .50 .00180 :l .50 .001.80 .51 iy .00190 .51 .50 .00180 _ 1 .1 .50 .00190 .51 .50 .00180 .51 .50 .00180 .51 .50 .00180 .51 .50 .00190 "IUTAL SURFACE STiO AGE AT C!:f: OF STROM (INCHES) 270 JOR orioi IN CONTINUITY, PERCENTAGE OF RAINFALL i ISIN H ... FOX MEADOWS BASIN ..100 YEAR FULLY DEVELOPED CONDITIONS ... UPDATED MAY .1987 FOR ANTICIPATED CONDITIONS WIDTH INVERT SIDE SLOPES OVERIANK/SI!RCHARGE G TER GUTTER NDP NP OR DIAM LENGTH SLOPE HOR17 TO VERT MANNING DEPTH dK N PER CONNECTION (FT) (FT) (FT/FT) L R N (FT) L 9 C 1 CHANNEL J.? 4.00, .4 .,� .._ J_1 1.0.0. 1 3 4 0 4 CHANNEL 2.0 2600. 0060 33,0 33.0 .016 .50 1 OVERFLOW 40.0 2600, .0060 30.0 30.0 .040 100.00 14 7 0 PIPE 2.0 2000. .0060 .0 .0 .013 2.00 1 OVERFLOW 2.0 20001 0060 3310 33.0 .020 100.00 7 C} I CHANNEL 5.0 4800, .0050 17 3.0 .04+.? 100.00 i 15 6 7 0 ! CHANNEL .5 ! 900. .0050 1.0 1.0 .020 100.00 I 7 lC! 5 2 PIPE .0 50. .0100 fl .013 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW: .0 .0 1.5 1.7 8.0 j7.0 16.0 82.0 22.0 196.0 9 0 0 1 CHANNEL 5.0 1600, 002C! 2nu .5 2.5 .0.35 100.00 1 10 108 5 4 PIPE '.!? 60. .0.050 ,0 .0 .015 3.00 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .3 .0 1.6 23.0 4.0 35.0 7,7 45.0 11 101 3 1 CHANNEL .C! 31. .0100 .0 C! .023 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 4.2 8.0 17.4 24.0 4 15 0 1 CHANNEL 2.0 20001 .6060 30,0 30.0 .016 100.00 1 15 116 5 PIPE .0 85. .0075 .0 .0 .013 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 14.0 1.0 14.0 3.0 15.0 6,2 23.0 8.2 109.0 21 122 0 1 J,60 . CHANNEL 2,0 14i�r� .00503'."!.0 3010 .016 100.001 133 3 2 PIPE .0 100. .0100 .0 0 1023 .01 0 �2 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .6 63.0 1.4 179.0 5 38 0 1 CHANNEL 8.6 200C!. .0030 3.0 3.0 .040 100.00 1 6 37 0 1 CHANNEL 2.0 1400. .0050 30.0 30.0 .076 100.00 1 7 38 10 2 PIPE .0 100. 010C1 10 .0 .on .01 0 RESERVOIR STORAGE IN ACRE-FEET US SPILLWAY OUTFLOW .0 .0 .2 7.5 .9 1.5 2.8 25.7 5.1 28,3 7,4 31.2 9.9 34.2 11.1 34.5 12.5 60.0 15.0 320.0 38 a9 0 1 CHANNEL 8.0 1900. 0060 3.0 3.0 .040 100.00 1 19 40 9 RESERVOIR 2 STORAGE IN PIPE .0 100. ACRE-FEET V5 SPILLWAY OUTFLOW .0100 .0 .0 .023 101 0 .0 .0 .5 19.5 1.9 59.6 4,0 85.5 7.2 106.3 10.3 125.5 16.6 139.5 17.5 141.5 18.0 200.0 0 42 0 1 CHANNEL 6.0 1100, .0040 310 3.0 .040 1100.00 1 11 42 0 1 CHA°�NE 2.0 2800. 0060 3010 30.0 .016 100.00 1 42 203 4 2 PIPE .0 100. .0!00 .0 .0 .023 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW 5.5 23.0 13.3 24.0 24.0 100.0 .0 .0 44 145 0 1 CHANNEL 2.0 2600. .0040 3.0 3.0 040 100.00 1 6 202 0 1 CHANNEL 25.0 1500. .0004 3.0 310 .030 100100 1 7 48 0 1 CHANNEL 2.0 iB116. .0200 5.0 10.0 040 100.00 1 8 49 0 1 CHANNEL 25.0 700. .0004 3.0 3.0 .030 100.00 1 49 no 0 1 CHANNEL 25.0 1900. .0004 3.0 3.0 .0.130 100.00 1 0 51 0 1 CHANNEL 25,0 2200. 0004 3.0 3.0 .00 100.00 1 1 103 0 _ NM 2`.,0 ! OQ CHA;�,.EL . .. , .00i!4 -.0 3.0 .03C! 100.00 1 54 49 3 1 CHANNEL 1,!1 01 0260 t! ,n z 1.00 0 .0 .0 .i it 1.4 100.0 112 0 5 PIPE 2.0 900. :0080 .0 i. ® :013 2.00 1 OVER, OW 2.0 900. 0081- 30.0 30.0 :016 10!0.00 113 3 2 PIPE .0 2400. .0024 .0 .0 .013 .01 0 RESERVOIR STORAGE I14 ACRE-FEET VS SPILLWAY OUTFLOW .0 36.0 5.0 36.0 30.0 48.0 113 5 2 PIPE 0 100. .01,00 .1 .0 .013 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 4.0 .0 7.0 20.0 12.0 v.0 19,0 I000.0 210 0 5 FIFE 2.0 2600. .0040 0 0 .013 2.00 1 OVERFLOW 5.0 2600. 0040 4.0 4.0! .040 100.00 145 0 5 PIPE 3.0 2600. .0050 .0 .0 .0i3 3.00 1 OVERFLOW 5.0 2600, .0050 4,0 4.0 .040 100.00 306 0 5 RIPE 1.5 1700. .0100 .0 .0 .013 1.50 1 OVERFLOW 2.0 1700. 0100 30.0 30.0 .016 100.00 210 0 5 PIPE 2.0 1500. .0030 .0 .0 .0131 2.00 1 OVERFLOW 2.0 1500, .0030 30.0 30.0 .016 100.00 310 0 1 CHANNEL 2.0 1000. 0100 30:0 30.0 .016 100.00 1 303 0 5 PIPE 2.0 1300. .0060 .0 .0 .013 2.00 1 OVERFLOW 2.0 1300. .0060 30.0 30.0 .016 100.00 210 4 2 PIPE .6 50. 10100 .0 .0 .013 .01 0 RESERVOIR STORAGE iN ACRE-FEET VS SPILLWAY OUTFLOW .0 .0 .3 11.0 6.2 24.0 8.0 150.0 211 0 1 CHANNEL 2.6 2400. .0050 30.0 30.0 .016 100.00 1 2113 0 1 CHANNEL 2.0 2600. .0040 30.0 30.0 .016 100.00 1 214 0 1 CHANNEL 2.0 2000. .0040 30.0 30:0 .016 100.00 1 35 0 1 CHANNEL 2,0 1300, .0060 30.0 30.0 .016 100.00 1 215 0 1 CHANNEL 2.0 2600. .0(,40 30.0 30.0 .016 100.00 1 32 0 1 CHANNEL 2.0 1200. .0040 30.0 30.0 .016 i00.00 1 50 0 2 PIPE 1.5 1010. .0100 .0 .0 .013 1.50 1 116 0 5 PIPE 2.5 1200. .0060 .0 .0 .0i3 2.50 1 OVERFLOW 5.0 1200: .0060 4.0 4.0 .040 100.00 202 0 5 PIPE 3.5 1200. .02f,0 .0 i' 01.3 3,50 1 OVERFLOW 2.0 1200. .0200 4.0 4.,0 .04O 100.00 210 0 1 CHANNEL 2.0 2200. .0040 30.0 30.0 .016 100.00 1 0 0 1 CHANNEL 5.0 2600. 10030 3.0 4.0 .040 100.00 1 n 0 1 CHANNEL 5.0 1800, .0030 4.0 4.0 .040 100.00 1 216 0 1 CHANNEL 2.0 1900. .0i00 30.0 30.0 .016 100.00 1 300 6 2 PIPE .0 76, .0015 .0 .0 .03 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY !13UTFI-OW ,0 16.0 3.0 16.0 5.0 32.0 20.0 38.0 29.0 86.0 340 336.0 145 3 2 P1Pf .0 80. 0!300 .0 .0 .013 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 15.0 6.0 16.0 13.0 18.0 35 0 2 PIPE 2.0 100. .0100 .0 .0 .013 2.00 1 35 0 2 PIPE 2.0 100. ,0100 .0 ,0 .013 2.00 1 35 0 2 PIPE 2.0 100. .0100 !i .0 .013 2.00 1 50 0 2 PIPE 1.5 100. ,0100 .0+ .0 .013 1.50 1 301 3 3 .0 1. :0010 .0 .0 .001 10.00 302 DIVERSION TO BUTTER NUMBEn 302 - TOTAL 0 VS DIVERTED 0 IN CFS .0 :7 38.0 ,0 86.0 48,0 143 0 3 .0 1. ,6010 .0 .0 .001 10.00 1 116 0 3 .0 1. 10010 .0 :0 .001 10.00 1 304 3 3 .0 1. .0010 .0 0 .001 10.00 305 DIVERSION TO GUTTER NUMBER 305 - TOTAL 0 VS DIVERTED 0 ICJ CPS .0 .0 60.0 .0 160.0 50.0 123 0 3 .0 1. .0010 .0 :0 .001 10.00 1 123 0 3 .0 i, 0010! .0 .0 OOi i0.0+0 1 307 0 2 PIPE 1.5 100. .0100 .0 .0 .013 2.00 1 123 0 1 CHANNEL .0 1000, 10050 6.0 6.0 .020 100:00 1 3.9 0 1 CHANNEL 2.0 1400 !, t 7r! .1 i 30 `+ .02111 0010 4 3 2 PIPE .0 165. 00601 .0 .0 .013 .01 0 RESERVOIR STORAGE IN ACRE-FEET VS SPILLWAY OUTFLOW .0 25.0 2.0 35.0 2.5 500.0 i1A n 2 PIPE 1.1 i00, nt? ri A Ail 7 An _ 512 12.50 AL NUMBER E m9eeHR\ # ISINNe.@XMEADO BASIN .2(YEAR FULLY E«QFIE CONDITIONS.. UPDATED MAY !#9FOR ANTICIPATED CONDITIONS � AMI+EEg J gE@2«gsAND GUTTERS/PIPES GUTTER 95@@¥k2m2mE TRIBUTARY SUBAREA c%@o 2 0 0 § 0 § 0 § 0 § 0 2 0 0 § 0 0 0 9 0 0 232 ; r 9 e § e A e § § a! ! a @ a ' a c ) g 3 � � 3 77 � � 9 a � 9 n rl 4 e a \ � . 9 � n o @t& 5 0 9 0 9 9 0 90 0 0 5 0 0 0 0 0 9 0 0064J & 0 0 0 0 0 0 9 0 0 0 B 0 A 0 0 9 e 0 0 9 14.5 7 4 5 & 0 f 9 0 9 0 9 0 0 9 9 0 0 u . 0 0 #!J 9 2 0 0 0 00 A 9 A 96 0 A§ 00 0 0@0 33 b 7 0 0 0 A 0. 00 9 0 00 0 0 0 9 e 9 0 262.4 H 2 0 0 § r 9 . 9. 0 0 7 0 2 9 0 0 . 9 0 0 90.0 H 9 § 0 0 0 § 0 0 0 9 B 9 9 A @ A 0 9 0 9 9 2 5 @ a 0 0 0 9 0 0 90 0 9 9 0 9 0 9 0 9 0 80.2 / 9 0 0 0 0 0 9 9 0 0 b 0 9 0 9 0 § n 0 9 3 3 2 G! 0 0 0 0 § 0 9 0 0 0 0 0 0 9 0 9 - 0 9 2.9 3 12 213 214 25 0 A 9 9 0 § 0 0 0 0 9 0 9 9 0 0 261 a 0 0 0 ' 9 0 0 0 a 9 2 o e o 9 0 0 0 0 0 40.0 ; 7 a 0 0 0 0 90 A v 0 0 A 0 9 00 0 0 0 0 42 # 3 9 0 0 § 0 9 9 o i 2 0 9 § § 9 9 0 9 0 263 2 2 0 0 9 A 0 0 . § 00 § 9 § 0 § 9 0 0 9 296.5 40 9 0 9 9 0 § 9 0 o § 0 0 § 0 0 0 0 ! 0 , 296.5 t 0 0 0 0 9 9 0 § 0 § g 0 0 0 0 0 0 A 0 0 95.6 42 4041 00, B 9 9. 0 0 0 a§ 0 9 9. 2 COS! 44 9 9 r q R . § o § 019 9 9 0 0 0 0 0 0 0 2.4 # 0 0 00 9 0 00 0 0 2 0 0 0 9 0 9 0 0 0 17.5 g 0 e 0 t 0 1 9 1 0 1 5 e 0 9 1 9 e 0 o 0 9,1 49 47 54 0 0 0. il 0 0 0 § 0 0 0 0 9 0 0 0 17.5 @ E! a& 9 9 0 r 0 0 2 0 0 9 0 0 00 0 0 et! S a 0 t n 0 0 In 9 2 0 0 0 0 0 0 9 0 0 i;& 2 0 0 0 0 9 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 a! H 0 0 9 0 § o § 9 § m 0 0 0 0 0 0 9 0 0 Es! D 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 9 0 3 £2 R! 0 0 0 0 0 i 9 0 a 0 9 9 ) 0 0 9 9 9 0 ba! !g 22 2{ 312 0 0 0 0 0 n 0 0 0 0 0 0 0 9 0 y«& 5 @a 302 § n 0 0 0 0 0 0 0 f"i 0 0. A 0 0 808.4 21) 0 0 9 0 a ) 0 0 9 E § 0 0 0 a 0 0 0 0 57,7 e § 0 0 0 0 0 0 0 9 2 0 f § 0 9 0 9 C, 42] d 0 0 e 0 0 0 0 0 )& 0 9 0 0 0 0 30.5 2 0 0 0 9 9 0 .0 0 9 50 0 9 0 0 90 0 9 64.9 74 33 307 0 0 0 @ 0 0 0 9 o 0 0 0 0 a 143.6 9 0 0+ 9 0 9 R a e 0 e a a o 0 9 0 103.0 0 0 0 9 a0 9+ 0 021 9 0 0 0 A, 9 0 0 0 66,3 9 0 9 9 0§ a 0 0 g @ o 0 0 06 0 0 0 61.3 0 o 0 @ 0 0 0 0 9 0 24 0 0 9 0 0 a. 0 0 0 10.6 0 e 0 9 0 0 0 0 0 9 t 0 e 9 0 0 0 0 0 § 87.9 a a 9 0 R 9 n 9 n ! 2 § 9 A e 0 0 0 0 0 37.9 20 0 CI0 0 0 0 0 n G 9 9 @ 9 U g 3 71 0$ 0 0 9 0 0 0 0 0 0 0 0 o 9 0 0 0 0 728,2 44 26 21 9 , 0 0 0 9 0 0 9 0 0 0 . 0 0 0 0 9131se 0 0 b 0 0 9 0 0 0 9 g 0 0 0 9 0 0 9 0 0 @ a % 145 0 9 0 9 0 0 0 0 0 0 9 0 i 0 0 0 0 2 R! Q 5 0 0 9 0 0 0 9 0 9 9 0 0 o 0 9 9 0 0 20.3 0 0 0 .0 0 0 9 9 0 0 2 2 0 0 0 9 0 9 . 0 51.6 H; 119 12 200 9 0 9 9 0 0 9 0 0 0 9 9 0 9 0 0 !3 2 2+ 0 0 0 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 103.0 D; 0 0 0 0 2 0 0 r 0 0 0 0 9 o 0 0 0 0 i 66.3 2& 0 0 r 9 0 0 9 9 0 0 9 9 § e 0 9 0 ! 0 @ 3 22 0 0 0 0 0 9 0 0 0 0 9 0 9 0 0 0 0 0 9 87.9 S� . 0 0 . 0 § 9( 0 0 e . ) § e0 0 51.6 -' � �N�� 3Vl �0 V V O O O 0���� O V V 0 0 0 0 V ���k0 V V �8.2 ~�' ' 302 O V 0 V V V 0 0 o 0 V V V V V V V V O V .V 303 122 V 0 V 0 0 0 0 V V V V V V V V O 0 V 0 64,9 311 103 V V V V V V 0 V V V O V V V O V V V V 64.9 305 V V 0 V V V 0 V V 0 V 0 0 V 0 V V V V V .V � ` � 306 118 V V V V V V V V V 0 V 0 0 V V 0 V O V 57.7 307 306 V V V 0 0 0 V O V 37 V 0 V 0 V 0 V O V 78.7 08 V V V 0 V V V 0 V V 39 0 V V 0 V V V V 0 35.0 "),190 120 O V V V V V V V V V V V 0 V V 0 y V V 30.5 ' 311 V V V V V 0 0 0 0 0 40 V V V V 0 V 0 V V 7.0 - 312 V 0 V O 0 0 V o V o 39 0 0 O 0 0 V V V 0 7.3 > BASIN H ,. FOX MEADOWS BASIN ..100 YEAR FULLY DEVELOPED CONDITIONS ... DATED MAY 089 FOR ANTICIPATED CONDITIONS HYDROGRAPHS ARE LISTED FOR THE FOLLOWING D CONVEYANCE ELEMENTS THE UPPER NUMBER IS DISCHARGE IN CFS THE LOWER NUMBER IS ONE OF THE FOLLOWING CASES: ( ) DENOTES DEPTH ABOVE INVERT IN FEET (S) DENOTES STORAGE IN AC -FT FOR DE TENS DAM. DISCHARGE INCLUDES SPILLWAY OUTFLOW. (l) DENOTES BUTTER INFLOW IN CFS FROM SPECIFIED INFLOW HYD8OGRAPH (D) DENOTES DISCHARGE IN CFS DIVERTED FROM THIS GUTTER � <O> DENOTES STORAGE IN AC FT FOR SURCHARSED GUTTER - � HP/MIN) U 112 108 306 l2J 2N 302 211 15 145 310 JU JD O 5. 0. V. V. V. V. V. O. 0. V. V. .NS> .O(S) .NS) .N ) .NS) .NS) .N > .0(S) .1)(8 .N > V. V, V. .0( > .0() .N > 0. V. V. 0. 0. V. 0. V. 0. 0. 0. .O(S) .0(S) ,0(0 .N ) .O(S) ^0(S) `N > .NS) .NS) .N ) V, V` V. .0( 15' V. V. 12. 4. V. 6. O. 2. \. L == .O(S) .NS> .NS) .6( } .0(S) .NS) .0( > .A(S) .NS> .2( ) 1. 4. 4. | ~~ .2( ) 1.0( ) LN ) .O(S) .i(5) .O(S) «{0I 1(5) .0(S) f)( ) O(5) .0(8) .6( ! 4. 6. 6. .0(0) 0. 0. 36. 111 10. 16. 01 15. 14. 29. .I(5) .3(5) .115) .0(0) .3(5) .2(5) ,O( ) .1(S) O(5) !.0l ) B. 6. 6. .0(0) 0. 0, 36. 11, 12. 16. 0. 15. 14. 41. .1(S) 7(S) ,4(S) 2(0) ,6(S) .6(5) A( 1 13(S) .3(5) 1.3( ) S. 6. 6. 1. 0. 36. 111 14, 16. 0. 15. 14. 47. ,3(5) l.B(5) 1._{5) .6(0) 1.5(5) 1,4(S) lot ) 1.1(S) 1.O(5) 114( ) 8. 6. 6. AM .3(0) .3(0) 1. 0. 36, 11. 17. 16. 0. 15. 15, 51. .5(S) 3,4(5) 2.3(S) 1.20 2.9(S) 2,7(5) .0( ) 2.6(5) 2.3(5) 1.4( ) 8. 6. 6. .9(0) .5(0) .5(0) 1. 6. 36. 11. 20. 26. 0. 16. 17. 54. .7(5) 4.9(5) 3,1(S) 1.7(0) 4.4i5) 4.2(5) INI 4.2(5) 3.6(8) 1:5( ) B. 6. 6. 1.3(0) .6(0) .6(0) 2. 13. 36. 1.1. :'. 32. 0. 16. 19. 60. .9(5) 6.0(S) 3.7(S) 2.2(0) 5.6(S) 5.6(S) .0( ) 5.6(3) 4.7(5) 1.6( ) S. 6. 6. 1.7(0) .6(0) .7(0) 2 18. 36. it. 49, 33. 0. 16. 21. 67. 1.1(S) 6.8(S) 4.3(5) 2.6(0) 6.6(5) 6.9(S) .0( ) 6.9(S) 5.5(S) 1.1( ) B. 6. 6. 1.9(0) .710) 7(0) 3. 21, 36. 1L 86. 0. 16. 23, 71. 1,4(5) 7.4(S) 4,8(5) 2.9(0) 7,1(6) 8..4(S) A( ) 7.7(S) 6.2(5) 1..8( ) B. 6, 6. 2.1(0) ,1(0) .7(0) 3. 23. 36. 11. 100, 34. 0. 17, 42, 73. 1.6(5) 7,8(S) 5.4(S) 3.1(0) 7.3(S') 9,9(S) ,0( ) 8,5(S) 6.6(S) 1.0( ) 8. 6. 6. 2.3(0) .7(0) ,7(0) 3. 24. 36. 11. 1�'3. 35, 0. 17. 531. 76. 1.7(5) 8.215) 5.9(S) 3.3(0) 7.3(S) 11.4(S) ,0{ ) 9.2(5) 6.9(S) 1.8( ) B. 6. 6. L.410} ,7(0) MO) 1.9(6) M (S) 6.4(S) '.4( 7,3( 1 i"t„9(5) S. 6. 6. 2.5(0) .7(0) .7(0) 4. 25. 37. 11. 92. 36. 2.1(S) S.7(S) 6.9(S) 3.6(0) 7,2(S) 14.2(3') S. 6. 6. 2.6(0) .7(0) .7(0) 4. 26. 37. ll, 85. 36, 2.3(9) 8.9(S) 7,4(S) 3.7(0) 7.1(5) 15.5(101) 0. 6, 6. 2.6(0) .6(0) .7(0) 5. 26. 37. 11. 77. 37. 2.4(33) 9.0(S) 7.9(9) 3.8(01 7.0(6) 16.6(S) B. 6. 6. 2.7(0) .6(0) .7(0) 5. 26. 30. 111 70. 37. MIS) 9.2(S) S.4(S) 3.8(0) 6.9(30) 17.71,S1 B. 6. 6. 2.7(0) .6(0) .6(0) 5. 27. 36. 11. 64. 37. 2.7(9) 9.3(S) 8.9(S) 3.9(0) 6.8(S) 18.7(S) 8. 6. 6. 2.8(0) 5(0) .6(0) 5. 27. 38. 11. 59. 78. 2.9(S) 9.3(S) 9.4(S) 3.9(0) 6,7(S) 19.7(S) 8, 6. 6. 2.8(0) .5(0) .6(0) 6. 27. 38. 11. w4, 41. 3.0(S) 9.4(S) 9.9(S) 4.0(0) 6.616) 20.5(S) 8. 6. 6. 2.8(0) .5(0) .5(0) 6. 27. 39. 111 51. 46. 3..1(S) 9.4(S) 10.4(S) 4.0(0) 6.6(S) 21.4(S 8. 6. 6. 2.9(0) .5(0) .5(0) 6. 27. 39. 11. 47. 50. 3.2(S) 9.5(S) 10.9(S) 4.00) 6.5(5) 22.2(S S. 6. 6. 2,9(0) AM .5(0) 6. 27. 79. 11. 44. 571. 3.3(9) 9.5(S) 11.3(S) 4.0(0) 6.5(S) 22.9(S 8. 6. 6. 2.910) MO) .4(0) 0. 17. 59. 91. ,0( ) 10,2(S) 7.0(S) 2.0( ) 0, 17. 58. 97. IN ) 10.5(S) 7.O(S) 2.1( ) 0. 17. 55. 101. .Cl( ) 10.9(5) 7.0(S) 2.2( ) 0. 17. 52: 104. IN 11.'2!S) 6 19(S') 2.2( ) 104. i!() 11.4(S) 6.8(5) 2.2( } 0. le. 46. D04. .0( ') 11.6(S) 6.719) 2.2( ) .0O 11.9(S} 42. 103. 6.7(S) 2.2( J 39, 103. 6.6(S) 2.2( 12. iS. 3?, 103. .{!() 12.1(S) 6.5(S1 15. 18. 34. 103. .0( ) 12.2(5) 6.5(5) 2.2( } 3.4(5) Mfg) 1.1,.8(S) 4,1 6 6.4(S) 23.5(5) IN i2,3(5) 6 4l5) 2.2( 1 S. 6. 6. 2.9(0) .3(0) .4(0) 7. 27. 40. Ill 391 60. 22. 18. 29. 1+)5. 3.5(S) 9.5(5) 12.3(6) 4.1(0) 6,4(5) 24.1(S) .0( } 12.4(S) 6.3(5) 2.2( 1 8. 6. 6. 2.9(0) .3(0) .4(0) 7. 27. 40. li. .76. 63, 2 . 15, 26. 105. 3.6(S) 9.4(S) 12.8(9) 4.1(0) 6.4(9) 24.6(8) M ) 12.4(S) 6.3(S) 2.2f ) S. 6. 6. 2..9(0) .3(0) .3(0) 7. 27. 40. U. 33. 65. 27. 1B, 24. 106. 3.7(S) 9.4(S) 13.3(S) 4:1(0) 6.3(S) 2f,1(S) .0( ) 12.4(S) 6.2(S) 2.2( ) B. 6. 6, 2.8(0) .2(0) .3(,0) 7, 27, 40. 11. 30. 68. 30. 18. 23. 106. 3.8(5) 9.4(5) 13.1(5) 4.1(0) 6.3(5) 25.5(S) IN 12.5(5) 6.2(5) 2.3( ) B. 6. 6. 2.8(0) .2(0) 2(0) 7. 27. 40. 111 28. 70. 32. 18. 23. 107. 3.9(S) 9.3(5) 14.2(S) 4.1(0) 6.3(S) 25.9(S) .0() i2.5(S) 6.1(S) 2.3( ? 8. 6. 6. 2,8(0) AM .2Q) 8. 27. 41. ii. 26, 71: i8, 23. 109. 4.0(S) 9.3(S) 14.7(S) 4.1(0) 6.2(S) 26.3(S) .0( ) 12.5('3} 6.0(S) 2.3( ) B. 6. 6, 2.8(0) AM .2(0) B. 27. 41. 11, 25. 73. 35. 18. 22. 110. 4.0(5) 9.2(5) 15.2(S) 4,1(0) 6.2(5) 26,6(5) IN ) 12,5(S) 6.0(S) 2.3( ) 8. A. 6. 200) AM .1(0) 8. 27. 41. 11. 24. 75. 37. 1B. 22. 111. 4.1(5) 9.2(S) 15.6(5) 4.1(0) 6.2(S) 2M (S) .0() 12.5(S) 5.9(S) 2.3( 8. 6. 6. 2.7(0) .0(0) AM S. 26. 41. 11. 24. 76. 38. 18. 22. M. 4.2(5) 9.1(5) 16.1(3) 4,1(0) 6.2(5) 27.2(S) .!}O 12.4(S) 5.8(S) 2.3( } B. 2. 6. 2.7(0) .7( ) .0(0) S. 26. 42. 1.1. 24. 78. 40. 18. 22. 114. 4.2(5) 9.0(S) 16.5(S) 4.1(0) 6,1(5) 27.4(5) ,0( ) HAM 5.7(S) 2,4( ) 8. 0. 6. 2.7(0) .v( ) .0(0) 4.3(S) 9.0(S) 17.:i(S) 4.+?(0? 6.1(S) 27.6(S} O( ! 12.4(S7 5.6(S) 2,4{ ) 8. 0. 0. 2.6(0) ,2( ) ,.i( } S. 26. 42. 11, 24, 80. 42, 1B. 21, 116. 4.3(6) 8,9(S) 17,4(S) 4.0(0) 6.1(5) 27.8(S) ,(>{) 12.3(9) 5.6(S) 2.4{ } B. 0. 0. 2.6(0) ,0l ) .0( ) S. 26. 42. 111 24. N . 43. 1B. 21, ill. 4.4(S) 8.8(S) 17.8(S) 4.0(o) 6,1(S) 28.0(S) N 1213(S) 5.5(5) 2.4( ) B. 0. 0. 2.6(0) .2( ! .2( i 8. 2.5. 42. ll: 24, 82. 44. !B. 21. M . 4.4(S) 8.B(S) 18.2(S) 4:019) 6.0(S) 28.2(S) ,0(? 12.2(S) 5.4(S) 2.4( ) S. 0. 0 2.5(0) .1( ? M ! 8. 25. 43. 11. 24. B2. 44. 18. 21. 119. 4.5(S) M (S) 18.7(S) 4.0(0) 6.0(S) 28.3(S) .0( ? !2.2(S) 5.3(5) 2.41 ) S. 0. 0. 2.5(0) .1( ) .2( ! B. 25. 43. 11. 23, 83. 45. 113. 20. 120. 4.5(S) 8.6(S) 19.1(S) 4.0(0) 5.9(3) 28,4(S) .0( ) 12,l(S) 5,2(S) 2.5( } 2.5(0) .!( 8. 25. 43. 11. 23, 84. 46. 18. 20. 120. 4.5(5) 8.6(S) 19,5(S) 4.0 0! 5.9(3) 28,6(5) .0( ) 12.0(S) 5,1(S) 2.5( ) 8. 0. 0. 2.4(0) .1( ) .l( ! 81 24. 43. H. 23. 64. 46. 18. ). 121. 4.6(S) 8.5(S) 19.9(S) 3.9(0) 5,8(S) 28.71S) .0( ) 12.0(6) 5.0(5) 2.5( ) S. 0. 0 2.4(0) .1( ? A( } 9. 24. 43. 1!, 23. 85. 47. 18. 20. l21, 4.6(S) BA(S) 20,3(S) 3.9(0) 5.8(S) 2B.B(S) .0( ! 11.9(S) 4.9(S) 2.5( ) B. 0. 0, 2.4(0) .1( ) .1( ! 9. 24. 44. 11. 23. 95. 41. IB. 19. 122. 4.6(S) 8.4(5) 20,6fS) 3,9(0) 5.7(S) 28.8(S) .0( ? 11.8(S) 4.8(S) 2.5( ) ,1( ) .11 1 9. 24, 44. 11. 23. 86, 48. 10. 19. !22. 4,7(S) 8.3(S) 21.0(S) 3.9(D} 5.7('S) 23,91S) .0( ) !1:81SJ 4,7(S) 2,5( ) 8. 0. 0, 2.3(0) .1( ! !( 1 9. 24. 44, H , 23. 86. 40. 18. 19. 122. 8. 0. 0. 0 2.2(0) .0( ! .1( ! 9. 23. 44. 11. 43. 89. 51. 18. 19. 123. 4.7(S) 8.1(S) 21.7(S) v.9(0) 5.6(S) .,.i(a") Oi ) 11.6(5) 4.5(9) 2,5{ } 8. 0. 0. 2.2i0) 9, 23. 44. 11. 23. 91. 53. 18. 19, 124. 8.1(S) 22.1(S) 3.S(0) 5.5iS) 29,1(3) .0( ) li.5(S) 4.4(18) 2.5( } 0. 0. 2.1(0) 10( ) O( } 9. 23. 44. i1, 22. 9L. 54. 18 18. 125. 4.8(5) 8.0(9) 22.4(S) 3.8{0) 5,5(S) 29.1(,S) i!(i 11.419l 4 3(Sl 2.5( ) e. +?. 0. 9. 23. 45. 11. 22. 93. 55. 18. 18. 126. 4.8(S) 7.9(S) 22.7(6) 3.8(0) 5,4(S) 29.1(S) .0( ) 11.4(S) 4.2(S) 2.6( ) S. 0. 0. 2.1(0) ,0{ 9. 23. 45. 11. L. 94. 56. 18. 1w, 127. 4.8(5) 7.9(S) 23.1(S) 3.8(0) 5.4(S) 29.2(5) .0(! 11.3(S) 4.1(5) 2.6( ) 9. 22. 45. 111 L2. 94, 56. 1.7. 18. t78.. 4.8(S) 7.8(S) 23.4(S) 3.8(0) 5.3(5) 29.2(S) .0( ) 11.2(S) 4.0(S) 2.6( 1 S. 0. 0.. 9. 22. 45. 11. 24. 94, 56. 17. 17. 128. 4.8(5) 7.7(S) 23.7(9) .3.7(0) 5.3(S) 29.2(S) IN ) il.l(S) 3.9(S) 2.6( ) 8. 0. 0. 9. 22. 45. 11. :L. 94. 56, 17. 17. 128. 4.8(S) 7.7(S) 24.0(S) 3.7(0) 5.2(S) 29.1M) .t)() 1110(S) 3.8(S) 2.6( ! 1.9(0) .0( ) .0( } 9. 22. 45. 11. LL. 94. 56. 17. 17. 128. 4.8(S) 7.6(S) 24.3(S) 3.7(0) 5.2(S) 29.2(S) M 10.9(S) 3.7(S) 2.6( 4. 22. 45. 22. 93. 55. ll. 17. 128. 4.8(S) 7.5(9) 24.6(S) 3.7(.0) 5.1(S) 29,1(S) M } 10.8(S) 3.6(S) 2.6( ) S. 0. 0. iL 93. 55. 17. - 1h. 1'.'R. 0. 9. 21. 46. 1.1. 21, 93. 55. 17. 16. 127. 4.9(8) 7.4(S) 25.1(a) 3.7(0) 5,0(51 29.1(S) .Of ) 10.6(S) 3.4(S) 2.6( l ' 1.7(0) .0( ) .01" 5 5. 9. 21. 46. 11, 21, 92. 54, 1. 16, 121. 4.9(S) 7.3(S) 25.4(S) 3.6(0) 4.9(S) 29,1(S) ON ? 10.5(S? 3.4(S) 2.6( ) B. 0. 0. 1.6(Q) A( ) ,01 ) 10. 9. 21. 46. 11. 21, 92. 54. 17. 16. 126. 4,9(S) 7,2111 25.6(1) 3,6(0) 4,9(1) 29,1(3D ,0(1 10,4(1) 3,3(S) 2.6( ) S. 0. 0. M. 9. 21. 46. 11. 21 92. 54, l'. 15. 126. 4.9(S) 7.2{9) 25.9(S} 4.8(5) 29.1(S) .0O 10.3(a) 3.2(S) 2.6( ) 8. 0. 0. 20. 9. 20. 46. 11, 21: 92, 54. 17. 15. 125. 4,8(S) 7..1(S) 26.1(S) 3.6(0) 4.8(Sl 29.1(S) ,0( ? 10.2(S) 3,1(S) 2.5( ) 8. n 0. 25. 9. 20. 46. il, 21. 91. 53, 17. 15. 125. 4.8(9) 7.1(9) 26,3(S) 3.6(0) 4.7(9) 29.1{S) .0l } NAM 3.O(S) 2.5( ) 8. 0. 0. 5 30. 9. 20. 46. 11. 2.1. 91. 53. 17. 15. 124. 4.0(S) 7.0(9) 26.6(8) M(0) 4.7(S) 29.1(S? i!( ) 10.0(S) 2.9(S) 2.5( ) S. 0. 0. 1,4(D) .0( ) Al } 35. 9. 20. 46, 11. 21. 91. 53. 11 15, 124. 4.8(S) 6.9(S) 26.8(5) 3,5(0) 4.6(S) 29.1(S) C!( ) 9.9(S) 2,8(S) 2.5( ) .0( 40. 9. 19. 47. 11. 20. 90. 52. 17. 15. 4.8(S) 6,9(S) 26.9(S) 3.5(9) 4.6(5) 29,P S) .0( 1 M (S) 2.7(S) M( } 8. 0. 0. t 1.3(a) M ) .0( 1 45. 9. 19. 47. ll, 2i!. 90. 52, 17. 15. 123. 4.8(S) 6.8(9) 27.1{a) 3.`(Q1 4.5(S) 29.1(S) .0( } 9.7(S) 2:6(5) 2.5( ) 8. 0. 0. 1.2(0) .0( ) .0( ) 5 50. 9. 18. 47. 11, 20. 89. 51. 17. _.15._ 122. n. 9. 18. 47. 11. 2n. 89. 5.1. 17. 15, 122, 4,81S) 6.7(S) 27.4(S) 3.4t0`r 4.4(S) 29.1(S1 t'!( ) 9.5(9) 2.5(5) 2.5( S. n. 0. 1.1(0) .n( ) ,n( ) 9. 18. 47. it. 20. 89. 51. 17. 15. 121. 4.8(9) 6.7(S) 27.5(9) 3.4(0) 4.4(5) 29.1(5) .0( ) 9.4(5) 2.4(S) 2.5( ? 8. On 0. 1.1(0) .n( ) .(?( ) 9. 17. 47. 11. 20. 88. 50. 17. 15. 121. 4.8(S) 6.6(S) 27.6(S) 3.4(0) 4,3(5) 29.0(s) ,nt ) 9.3(S) 2.:3(S) 2,5( ! S. n. 0. I.0(0) ,n( ) M } 9. 17. 47. 11. 20. 88. 50. 17. 15. 12n. 4.8(S.) 6.6(S) N.M.) 3.4(0) 4.3(S) 29.0(5) of ) 9.2(9) 2.2(S) 2.5( ) S. n. n. l.n(0) ,0( ) IN } 9. 17. 47. 1.1. 20. 87. 49. 17. 15. 120, 4.8(S) 6.5(S) 27.7(S) 3.4(0) 4,2(6) 29.0(S) nt ! 9.1(5) 2,1(S) 2.5( ) 8. 0. n. .9(0) .n( 9. 16. 47. 11. 10, 87. 49. 17. i5. 119. 4.7(S) 6.5(S) 27.7(5) 3.3(9) 4.2(5) 29.nt5) A( ) 9.0(-.) 2.01(9) 2.5( } 8. n. n. .9(0) .n( ) IN ) 9. 16. 47. 11. 19. 86. 48. 17. 14. 1.19. 4.7(S) 6.4(5) 27.7(S) 3.3(0) 4,1(S) 29.0(S) .0( ) 8.9(5) 1.9(S) 2.4( } 8. 0. .8(0) M ) ,0( 9. 16. 47. 11. 19, 86. 48. 1%. 14. 118. 4.7(S) 6.4(5) 27.6(5) 3.3(0) C H S) 29.0(5) .n( ) 8.8(5) 1.8(5) 2.4( ) .8(0) n( l Of 9. 16. 47. 11. 19. 86. 48. 17. 14. 1.18. 4.7(5) 6.3(5) 27.3(S) 3.3(0) 4,0(S) 29,E}(S) .n( } 8,71S) 1.7(S) 2.4( ) 8. n. 0. .0( ) 9. 15. 47. 11. P . 66. 48. 117. 14. 118. 4.7(S) 6.3(S) 77.1(S) MUM CO(S) 29,n(S) IN ! 8.6(5) 1.6(S) 2.4( ) B. n. n. ,1t0) .n( ) .n( ) 9. 15. 47. 11. 19, 66, 48. 17, 14. 117. S. 0. (1, 9. 15. 46. 11. 19. 86. 48. 17. 14. 117. 4.6(S) 6.2(S) 26.7(S) 3.2(D) 3.9(S) 28.9(6') .0( ) 8,4(S) 1.5(9) 2.4( ) B. 0. 0. .5(0) .0( } .0( l 9. 15. 46. 11. 19. 86. 48. 17. 14, 117. 4.6(S) 6.2(8) 26.5(S) 3.2(0) 3.8(6) 28.9(9) .0( ) 8.3(S) 1.4(S) 2.4( 9. 0. 0. .5(0) .0( ) .0( ? 8. 14. 46. !1. 19. 85. 47, 17. 14. 117. 4.6(S) 6.2(S) 26.3(S) 3.2(0) 3.8(S) 28.9(6) IN ) 8.2(S) 1.3(S) 2.4( ) 0. 0. 0. .4(D) .0( ) .0( ) S. 14. 46, 11. 19. 85. 47. 17. 14, 116. 4.6(S) 6.1(9) 26.1(9) 3.2(0) 3.7(9) 28.9(S) .0( ) 9.1(S) 1.2(S) 2.4( ) 8. 0. 0. A(D) ,01 ) .tit ) B. 14. 46. 11. 19, 85. 47, 17, 14. 116. 4.6(S) 6.1(S) 25.9(S) 3,110) 3.7(9) 28.8(31) .0( ) 8.0(S) 1.1(S) 2.4( ! B. 0. 0. .3(0) M ) .0( ) S. 14. 46. 11. 19. 95. 47. 17. 14. 116. 4.5f81 6.1(5) 25.6(S) 3.1(0) 3.6(S) 28.9(S) .0( ) 7,9(S) 1.0(5) 2.4( ) 9. 0. .3110) ,0( } .0( ) S. 14. 46. 11. 19. 95. 47. 16. 14. 116. 4.5(S) 6.0(S) 25.4(S) 3.1(0) 3.6(S) 29.8(33) .0( ) 7.7(S) M ) 2.4( ) S. 0. 0. .2(0) .0( ) .0( ) S. 13. 46. 11. 18. 85, 47. 16. 14. 146. 4.5(S) 6.0(9) 25.2(9) 3.1(D) 3.(3) 28,7(S) .0( } 7.6(5) .8(9) 2.4( ) 8. 0. 0. .2(0) .0( ) IN ) 8. 13. 46, ii. 18. 84, 46. 16, 14. 115. 4.5(5) 6.0(S) 25,M) 1.1(0) 3.5(3) 28,7(S) .'( ) 7.5(S) .7(S) 2.4( ) B. 0. 0. .1(0) .0( ) .61 ) S. 13. 45. 1.1. l8. 84. 46, 16, 14. 115. 4.4(9) 6.0(S) 24.8(S) 3.0(0) 3.51S) 28.6(S) 7.4(5) .6(5) 2.4( 1 S. 0. 0. AM) M) 0!) 8, 13. 45. 11. lB. 84, 46. 16, 14. 115. 45. B. 13. 45. 11. 18. 84. 46, I6. 14. 115. 4.4(S) 5.9(8) 24.3(5) 3.0(0) 3.4(9) 28.6(S) .0() 7.2(S) .4(S) 2.4( ) 0. 0. 0. 50. S. 1), 45. 11. 18. 83. 45. 16. 14. 114. 4.4(S) 5.9(S) 24.1(5) 2.9(8) 3.3(S) 28.5i5) .0!) 7.1(S) .4(S) 2.4( } 1. 0. .0( 1 7 55. B. 12. 45. 11. I8. 83. 45. 16. 14. 114. 4.3(S) 5,111) 23.9i5) 2,1111 3,3113) 28.5(S) .(.(} 1.0(3) .31S) :.4( ) 0. 0.;• .1() .0() •+7f ) 0. 8. I2. 45. 11. 17. 83. 45. 16. 14. 114. 4.3(9) 5.8(5) 2.3.7(S) 2.8(0) 3.2(S) 28.4(9) Uf ) 6.9(9) .2(S) 2.4( ) 1. 0.. 0. .2(} .a() .0i 1 1 SIia H ... FOX MEADOWS BASIN ..100 _ YEAR FULLY DEVELOPED CONDITIONS ... UPDATED MAY 1 1989 FOR ANTICIPATED CONDITIONS PEAK FLOWS, STAGES AND STORAGES OF BUTTERS AND DETENSION DAMS �ON'JEYANCE PEAK STAGE STORAGE TIME ELEMENT (CFS) (FT) (AC -FT) (HR/MN) 308 77. .8 h 40 120 87. .7 a 40. 309 31. .0 1.2 3 168. 9 a 40.310 8. 1.3 2.9 2 10. 21 118. .9 0 40. 6 21. 1.9 0 50. S 155, 3.0 6 50. 4 386 3.5 0 45. 118 108. 2.3 0 40, 122 176. 3.0 0 40 1.1 9. .0 4.9 5 10. 7 212, .0 22.8 1 (�. . 306 11. 1.5 4.1 2 35. 1) 176, (DIRECT FLOW) a 40. 101 260. 3.1 0 4.0. 10 102. 3.0 12.3 2 45, 307 77. 1.7 a 40. 305 58. (DIRECT FLOW) 0 40. 304 118, (DIRECT FLOW) 0 40. 312 6. 1.6 .7 1 5. 311 6. 1.6 .7 I 5. 112 27, .0 9.5 2 10. lno A 1 77 7 4 15- 125 136. 1.0 200 85. .9 119 114, 2.9 113 79. 3.9 36 169. 1.1 215 7.4. 2.0 9.3 214. 24, 2.0 5.7 213 24. 2.0 5.3 127 38. .6 210 94. .0 29 2 131 H 9. 1.0 54 4. 1.0 .7 47 23, .9 37 2B. .0 4.4 35 95. 2.3 300 94. (DIRECT FLOW) 204 187. 1.0 98 .O 9 48 23. .9 38 2oB, 2.9 301 38. (DIRECT FLOW' 14 227. 1,2 216 11. 1.5 6.8 133 11. 1.5 4.1 49 13. .7 39 107. .0 7.3 124 265. 1.3 302 56. (DIRECT FLOW) 143 38. 2.9 15 59. .0 7.0 50 59. 1.6 4.1 2B0. 113 40 107, 2.5 211 18. .0 1Z,5 1.16 111. 4.8. 44 6. ,9 51 67. 1.8 42 162. .0 14,6 145 128. 2.6 46 40, 1.3 2 27. 1.6 203 209. 3.5 202 128. 2.8 9 61. 2.3 DFROGRAM PROGRAM CALLED i 10. 0 40. 50. 0 40. 50. 0. 40, 4 35. 0 40, 1 25. 0 45. 1 15. 0 55. 4 35, ± 40. 0 45. 0 55, )i 45 1 50. 0 40, t 5. 2 1 (±. 1 25. 15. 40. 4 35. 1 2t�. 0 55.. 0 41) . L 15, 35, 4 40. i 30. 4 40. 0 51. 1 0. 1 40. 4 50. i± 40 .