Loading...
HomeMy WebLinkAboutCOUNTRY CLUB RESERVE - FDP180030 - SUBMITTAL DOCUMENTS - ROUND 2 - STORMWATER MANAGEMENT PLANSTORMWATER MANAGEMENT PLAN (SWMP) COUNTRY CLUB RESERVE Fort Collins, CO March 12, 2019 Prepared for: Crystal Cove Development 8020 S. County Road 5, Unit 200 Fort Collins, CO 80528 Prepared by: 301 North Howes Street, Suite 100 Fort Collins, Colorado 80521 Phone: 970.221.4158 Fax: 970.221.4159 www.northernengineering.com Project Number: 1324-001  This Drainage Report is consciously provided as a PDF. Please consider the environment before printing this document in its entirety. When a hard copy is absolutely necessary, we recommend double-sided printing. March 12, 2019 City of Fort Collins Stormwater Utility 700 Wood Street Fort Collins, Colorado 80521 RE: Stormwater Management Plan COUNTRY CLUB RESERVE To Whom It May Concern: Northern Engineering Services, Inc. is pleased to submit this Stormwater Management Plan for the Country Club Reserve project. This report outlines Best Management Practices (BMPs) to be implemented with the proposed construction in order to minimize potential pollutants in stormwater discharges. We have prepared this report to accompany the Colorado Department of Public Health and Environment General Permit for Stormwater Discharge Associated with Construction Activities (aka, Stormwater Discharge Permit or SDP). The General Permit No. for this SDP is (to be filled-in by permittee) and the Certification No. for this SDP is (to be filled-in by permittee). The Permit Certification is Effective beginning (to be filled-in by permittee), and initial certification expires (to be filled-in by permittee). A copy of the issuance cover letter can be found in the Appendix D of this document (to be provided by permittee). Please note: this Stormwater Management plan (including the Site Maps) is not a static document. It is a dynamic device that should be kept current and logged as construction takes place. As such, this version was prepared to facilitate initial plan approvals and permitting, but does not necessarily reflect the final version, or the transitions throughout the construction process. As the site develops and changes, the Contractor is expected and encouraged to make changes to what is contained herein so that the SWMP works as effectively and efficiently as possible. It shall be the responsibility of the SWMP Administrator and/or the permit holder (or applicant thereof) to ensure the plan is properly maintained and followed. If you should have any questions or comments as you review this report, please feel free to contact us at your convenience. Sincerely, NORTHERN ENGINEERING SERVICES, INC. Laurie Clark, PE Project Engineer ADDRESS: 200 S. College Ave. Suite 10 Fort Collins, CO 80524 PHONE: 970.221.4158 FAX: 970.221.4159 WEBSITE: www.northernengineering.com Country Club Reserve Stormwater Management Plan TABLE OF CONTENTS Vicinity Map 1.0 General Requirements ................................................................................................ 1 1.1 Objectives .................................................................................................................. 1 1.2 SMWP Availability ...................................................................................................... 1 1.3 Definitions.................................................................................................................. 1 1.4 Additional Permitting ................................................................................................... 1 2.0 Narrative Site Description ........................................................................................... 2 2.1 Existing Site Description .............................................................................................. 2 2.2 Nature of Construction Activity ..................................................................................... 2 2.3 Sequence of Major Activities ......................................................................................... 2 2.4 Site Disturbance ......................................................................................................... 2 2.5 Existing Data .............................................................................................................. 2 2.6 Existing Vegetation ...................................................................................................... 2 2.7 Potential Pollution Sources ........................................................................................... 2 2.8 Non-stormwater discharges .......................................................................................... 3 2.9 Receiving Waters ........................................................................................................ 3 3.0 Stormwater Management Controls ............................................................................... 4 3.1 SWMP Administrator ................................................................................................... 4 3.2 Best Management Practices (BMP’s) for Stormwater Pollution Prevention.......................... 4 3.3 Structural Practices for Erosion and Sediment Control ..................................................... 4 3.4 Non-Structural Practices for Erosion and Sediment Control .............................................. 7 3.5 Phased BMP Installation .............................................................................................. 9 3.6 Material Handling and Spill Prevention ........................................................................ 10 3.7 Dedicated Concrete or Asphalt Batch Plant .................................................................. 11 3.8 Vehicle Tracking Control ............................................................................................ 11 3.9 Waste Management and Disposal ............................................................................... 11 3.10 Groundwater and Stormwater Dewatering .................................................................... 11 4.0 Final Stabilization and Long-Term Stormwater Management ........................................ 12 4.1 Final Stabilization ..................................................................................................... 12 4.2 Long-Term Stormwater Management ........................................................................... 12 5.0 Inspection, Maintenance and Record Keeping ............................................................. 12 5.1 BMP Inspection ........................................................................................................ 12 5.2 BMP Maintenance .................................................................................................... 13 5.3 Record Keeping ........................................................................................................ 13 6.0 Additional SWMP and BMP Resources ....................................................................... 15 References ............................................................................................................... 16 ADDRESS: 200 S. College Ave. Suite 10 Fort Collins, CO 80524 PHONE: 970.221.4158 FAX: 970.221.4159 WEBSITE: www.northernengineering.com Country Club Reserve Stormwater Management Plan LIST OF TABLES: Table 1 – Preliminary Permit and Construction Schedule ........................................................ 10 APPENDICES: APPENDIX A – Site Maps APPENDIX B – Erosion Control Details APPENDIX C – Landscape Plan APPENDIX D – Copies of Permits/Applications APPENDIX E – Inspection Logs APPENDIX F – Contractor Inserts (as needed) APPENDIX G – Contractor Inserts (as needed) ADDRESS: 200 S. College Ave. Suite 10 Fort Collins, CO 80524 PHONE: 970.221.4158 FAX: 970.221.4159 WEBSITE: www.northernengineering.com Country Club Reserve Stormwater Management Plan 1 1.0 General Requirements 1.1 Objectives The objective of a Stormwater Management Plan (SWMP) is to identify all potential sources of pollution likely to occur as a result of construction activity associated with the site construction, and to describe the practices that will be used to reduce the pollutants in stormwater discharges from the site. The SWMP must be completed and implemented at the time the project breaks ground, and revised as necessary as construction proceeds to accurately reflect the conditions and practices at the site. This report summarizes the Stormwater Management Plan for the construction activity that will occur with Country Club Reserve in Fort Collins, CO. This plan has been prepared according to regulations of the Colorado Department of Public Health and Environment (CDPHE), Water Quality Control Division. 1.2 SMWP Availability This report is intended to remain on the aforementioned construction site to allow for maintenance and inspection updates, and for review during inspection. 1.3 Definitions BMP – Best Management Practice encompassing a wide range of erosion and sediment control practices, both structural and non-structural in nature, which are intended to reduce or eliminate any possible water quality impacts from stormwater leaving a construction site. Erosion Control BMPs – Practices that PREVENT the erosion of soil, such as minimizing the amount of disturbed area through phasing, temporary stabilization, and preserving existing vegetation. Sediment Control BMP’s – Practices to REMOVE sediment from runoff, such as sediment basins, silt fence, or inlet protection. Non-structural BMP’s – The implementation of methods, practices, and procedures to minimize water quality impacts, such as the preservation of natural vegetation, preventive maintenance and spill response procedures. Structural BMP’s – Physical devices that prevent or minimize water quality impacts, such as sediment basins, inlet protection, or silt fence. 1.4 Additional Permitting As mentioned above, this Stormwater Management Plan is associated with the Colorado Department of Public Health and Environment Stormwater Permit that is issued by the Water Quality Control Division of the CDPHE. Additional Environmental permitting not described in this report may be required as a part of this project. An example is the Construction Dewatering Permit for groundwater. Another example is the Air Pollution Emission Notice (APEN). The CDPHE website contains links to both of these permits, as well as many other potential permits. The Contractor is responsible for ensuring the proper permits are acquired. ADDRESS: 200 S. College Ave. Suite 10 Fort Collins, CO 80524 PHONE: 970.221.4158 FAX: 970.221.4159 WEBSITE: www.northernengineering.com Country Club Reserve Stormwater Management Plan 2 2.0 Narrative Site Description 2.1 Existing Site Description The project site is located just southwest of the intersection of Turnberry Road and East Douglas Road. More specifically, the project site is located in the northeast quarter of Section 30, Township 8 North, Range 68 West of the 6th Principal Meridian, City of Fort Collins, County of Larimer, State of Colorado. 2.2 Nature of Construction Activity The proposed Country Club Reserve project is a single-family residential subdivision that will include internal roadways, improvements to Turnberry Road and East Douglas Road, utility services and drainage facilities. 2.3 Sequence of Major Activities To complete the project, many basic categories of construction activity will take place. The first part will be construction of offsite improvements, followed by construction of onsite utility services and roadways. Next, overlot grading and construction of drainage facilities will begin. Vertical construction of the single-family buildings will commence after the utility and roadway work is complete. The final stages of site construction will be fine grading of the areas around the buildings, and the installation of landscaping throughout the project. The aforementioned sequencing is an initial best guess, and is subject to change at the Contractor’s discretion. 2.4 Site Disturbance The site disturbance will occur across roughly 78 acres. It is recommended that existing site condition photos be taken prior to commencement of construction activities. 2.5 Existing Data In order to complete the associated construction plans, a topographical survey of the site was completed. This survey consisted of field measurements made by Northern Engineering on May 12, 2017. In addition to the field survey, that Natural Resources Conservation Service (NRCS) Soil Survey was used to determine existing soil types found on-site. According to the NRCS Soil Survey, the site primarily consists of Fort Collins Loam, which falls into Hydrologic Soil Group B and C, and Longmont Clay, which falls into Hydrologic Soil Group D. 2.6 Existing Vegetation The existing site vegetation consists of native grasses. 2.6 Potential Pollution Sources As is typical with most construction sites, there are a number of potential pollution sources which could affect water quality. It is not possible for this report to identify all materials that will be used or stored on the construction site. It is the sole responsibility of the Contractor to identify and properly handle all materials that are potential pollution sources. The following are some common examples of potential pollution sources: • Exposed and stored soils ADDRESS: 200 S. College Ave. Suite 10 Fort Collins, CO 80524 PHONE: 970.221.4158 FAX: 970.221.4159 WEBSITE: www.northernengineering.com Country Club Reserve Stormwater Management Plan 3 • Management of contaminated soils • Off-site tracking of soils and sediment • Loading and unloading operations • Outdoor storage of building materials, fertilizers, chemicals, etc. • Vehicle and equipment maintenance and fueling • Significant dust or particulate generating processes • Routine maintenance activities involving fertilizers, pesticides, detergents, fuels, solvents, oils, etc. • On-site waste disposal practices (waste piles, dumpsters, etc.) • Concrete truck/equipment washing • Non-industrial waste sources that may be significant, such as worker trash and portable toilets • Uncovered trash bins • Other areas or procedures where potential spills can occur • Stockpiling of materials that can be transported to receiving waterway(s) Management of Contaminated Soils: We are not aware of on-site contaminated soils. However, the contractor should conduct a thorough, pre-construction environmental site assessment. If contaminated soils are discovered, the contractor will identify appropriate practices and procedures for the specific contaminants discovered on-site. Loading and Unloading Operations: As site development and building construction progresses, space constraints will limit the number of on-site locations for loading and unloading activities to the building from Perennial Lane. The contractor will be responsible for the proper handling and management of pollution sources during loading and unloading operations. Dedicated Asphalt and Concrete Batch Plants: Neither a dedicated asphalt or concrete batch plant will be constructed on-site. 2.7 Non-stormwater discharges The Stormwater Construction Permit only covers discharges composed entirely of stormwater. Emergency firefighting water is the only authorized exception. Concrete Washout water can NOT be discharged to surface waters or to storm sewer systems without separate permit coverage. The discharge of Concrete Washout water to the ground, under specific conditions, may be allowed by the Stormwater Construction Permit when appropriate BMPs are implemented. The discharge of pumped stormwater, ONLY, from excavations, ponds, depressions, etc. to surface waters, or to a municipal storm sewer system is allowed by the Stormwater Construction Permit, as long as the dewatering activity and associated BMPs are identified in the Stormwater Management Plan (SWMP) and are implemented in accordance with the SWMP. Aside from the exceptions noted above, non-stormwater discharges must be addressed in a separate permit issued for that discharge. If groundwater is encountered, and dewatering is required, a Construction Dewatering Permit must be acquired from the Colorado Department of Public Health and Environment. 2.8 Receiving Waters The property historically drains from southwest to northeast, discharging into the No. Eight Ditch. Country Club Reserve is located within the Boxelder/Cooper Slough Master Drainage Basin and is ultimately received by the Cache la Poudre River. ADDRESS: 200 S. College Ave. Suite 10 Fort Collins, CO 80524 PHONE: 970.221.4158 FAX: 970.221.4159 WEBSITE: www.northernengineering.com Country Club Reserve Stormwater Management Plan 4 3.0 Stormwater Management Controls 3.1 SWMP Administrator A SWMP Administrator must be designated in conjunction with the Stormwater Permit. This person shall be responsible for developing, implementing, maintaining, and revising the SWMP. The SWMP Administrator will also be the contact for all SWMP-related issues and will be the person responsible for the accuracy, completeness, and implementation of the SWMP. The Administrator should be a person with authority to adequately manage and direct day-to-day stormwater quality management activities at the site. The SWMP Administrator for this site is: Name: (to be filled-in by permittee) Company: (to be filled-in by permittee) Phone: (to be filled-in by permittee) E-mail: (to be filled-in by permittee) 3.2 Best Management Practices (BMP’s) for Stormwater Pollution Prevention Beginning from mobilization, and throughout the entire construction of the project, erosion control devices shall be installed to ensure minimal pollutant migration. These erosion control devices may be installed in phases, or not at all, depending on actual conditions encountered at the site. It is the responsibility of the Contractor to make the determination as to what practices should be employed and when. In the event that a review agency deems BMPs to be insufficient, it shall be the responsibility of the contractor to implement modifications as directed. Best Management Practices (BMPs) are loosely defined as a method, activity, maintenance procedure, or other management practice for reducing the amount of pollution entering a water body. The term originated from rules and regulations in Section 208 of the Clean Water Act. Details for Structural and Non-Structural BMPs have been included in Appendix B. These details should be used for additional information on installation and maintenance of BMPs specified in this report. It is also intended to serve as a resource for additional BMPs that may be appropriate for the site that have not specifically been mentioned in the report. 3.3 Structural Practices for Erosion and Sediment Control Structural BMPs are physical devices that are implemented to prevent erosion from happening or to limit erosion once it occurs. These devices can be temporary or permanent, and installation of individual components will vary depending on the stage of construction. A table depicting construction sequence and BMP application/removal has been placed on the “Dynamic Site Plan” to help document the implementation of these BMPs. Refer to the Stormwater Management Plan Static Site Plan in the Appendix for the assumed location of all BMPs. Construction Details for Temporary BMPs are located in the Appendix for reference. Again, the final determination for which BMP’s will be installed, where they will be located, and when they will be installed shall be made by the Contractor, along with all documentation throughout the construction process. Silt Fencing (Phase I) ADDRESS: 200 S. College Ave. Suite 10 Fort Collins, CO 80524 PHONE: 970.221.4158 FAX: 970.221.4159 WEBSITE: www.northernengineering.com Country Club Reserve Stormwater Management Plan 5 Silt fencing shall be provided to prevent migration of sediment off-site or into adjacent properties. All silt fencing shall be installed prior to any land disturbing activity (demolition, stockpiling, stripping, grading, etc.). Silt fencing is to be installed prior to site excavation or earthwork activities. Inspections of the silt fence should identify tears or holes in the material, and should check for slumping fence or undercut areas that allow flows to bypass the fencing. Damaged sections of the silt fence should be removed to maintain BMP effectiveness, typically before it reaches a depth of 6 inches. It is suggested that silt fencing be located along north and east property lines, as well as around the perimeter of Rain Garden 3/Pond 3 to protect the existing wetland area. Sediment Control Log – aka “Straw Wattles” (Phase I) A Sediment Control Log is a linear roll made of natural materials, such as straw, coconut fiber, or other fibrous material trenched into the ground and held with a wooden stake. Sediment Control Logs can be used in many instances. Examples include perimeter control for stockpiles, as part of inlet protection designs, as check dams in small drainage ways, on disturbed slopes to shorten flow lengths, or in lieu of silt fencing (where appropriate). Sediment Control Logs should be inspected for excess sediment accumulation. Sediment should be removed prior to reaching half the height of the log. At a minimum, Sediment Control Logs should be used around soil stockpiles (including landscape materials) and along the flowline of swales. Vehicle Tracking Control Pads (Phase I) Vehicle tracking control pads shall be provided to minimize tracking of mud and sediment onto paved surfaces and neighboring roadways. All vehicle tracking control pads shall be installed prior to any land disturbing activity (demolition – as necessary, stockpiling, stripping, grading, etc.). Location of vehicle tracking control pads will be located at any and all existing and future vehicle accesses being used during any of the construction phases. These locations will primarily be dictated by gates or openings in the temporary construction fencing that is expected to be installed. Vehicle tracking control pads are to be installed prior to demolition (as appropriate), site excavation or earthwork activities. Vehicle tracking pads should be inspected for degradation and aggregate material should be replaced as needed. If the area becomes clogged with water, excess sediment should be removed. Aggregate material should remain rough, and at no point should aggregate be allowed to compact in a manner that causes the tracking pad to stop working as intended. Suggested locations for vehicle tracking pads are at the proposed access points from Douglas Road and Turnberry Road. Inlet Protection (Phase I & II) Inlet protection shall be provided for existing inlets to prevent sediment transport from adjacent earthwork disturbance. Installation of these filters shall occur before adjacent earth disturbing activities (Phase I implementation). Wattle type filters are to be implemented for new and existing inlets where asphalt does not exist. For these inlets, if pavement is constructed adjacent to the structure or if the area adjacent to the inlet is changed such that the wattle type filter is no longer effective, it shall be the responsibility of the Contractor to ensure that an appropriate method is used instead. For example, the wattle filter could be reused, or a gravel-block inlet filter may be ADDRESS: 200 S. College Ave. Suite 10 Fort Collins, CO 80524 PHONE: 970.221.4158 FAX: 970.221.4159 WEBSITE: www.northernengineering.com Country Club Reserve Stormwater Management Plan 6 installed. It will be left to the discretion of the Contractor as to whether replacement of any inlet filter is necessary. Inlet protection should be inspected regularly for tears that can result in sediment entering an inlet. Inlet protection should also be inspected for sediment accumulation upstream of the inlet, and sediment should be removed when the less than half of the capacity is available, or per manufacturer specifications. The Contractor shall provide inlet protection for all proposed inlets as they are installed (Phase II implementation). The Contractor shall also provide inlet protection for the nearest existing inlets downstream of the proposed outfalls into Douglas Road, Turnberry Road and the outfall to No. Eight Ditch. Erosion Control Blankets (Phase II) A temporary degradable rolled erosion control product composed of natural flexible fibers shall be used on all seeded slopes 3:1 and greater (excluding mulched shrub bed areas). Erosion control blankets should be utilized to provide erosion control and to facilitate vegetation establishment. During installation, it is important to ensure that no gaps or voids exist under the material and that all corners of the material are secured using stakes and trenching. Stakes should be made of materials that are biodegradable. Continuous contact between the product and the soil is necessary to avoid failure. Erosion Control Blankets should be inspected regularly for signs of erosion, including beneath the mat. If voids are apparent, they should be filled with suitable soil. Inspections should also identify loose or damaged stakes, as well as loose portions of the blanket. If deficiencies are found, they should be repaired or replaced. Concrete Washout Area (Phase II) A concrete washout should be provided on the site. The washout can be lined or unlined excavated pits in the ground, commercially manufactured prefabricated containers, or aboveground holding areas. The concrete washout must be located a minimum of 400 feet from any natural drainage way or body of water, and at least 1000 feet from any wells or drinking water sources. Washout areas should not be located in an area where shallow groundwater may be present. Contractor shall clearly show the desired location and access to the Concrete Washout Area on the Stormwater Management Plan - Dynamic Site Plan. Contractor shall place a Vehicle Tracking Pad if the selected location for the Concrete Washout Area is detached from pavement. Clear signage identifying the concrete washout should also be provided. The Concrete Washout Area should be inspected regularly. Particular attention should be paid to signage to ensure that the area is clearly marked. Confirmation that the washout is being used should also be noted to ensure that other undesignated areas of the site are not being used incorrectly as a concrete washout. It is recommended that the concrete wash out pit be placed next to the vehicle tracking pad along Douglas Road. This location is only a suggestion and can be relocated at the discretion of the Contractor. Permanent/Established Vegetation (Phase IV) Permanent or established vegetation and landscaping is considered a permanent form of sediment and erosion control for common open spaces, steep slopes and areas not exposed to prolonged scour velocities, or acute incipient motion bed shear stresses that will create soil erosion, rill ADDRESS: 200 S. College Ave. Suite 10 Fort Collins, CO 80524 PHONE: 970.221.4158 FAX: 970.221.4159 WEBSITE: www.northernengineering.com Country Club Reserve Stormwater Management Plan 7 formation and subsequent sediment transport. Areas where the previous conditions apply will contain sufficient permanent BMPs, such as riprap or cobble mulch. Permanent vegetation shall conform to the approved Landscape Plan prepared by Ripley Design Inc. Permanent/Established vegetation and hardscape defines Phase IV of development. 3.4 Non-Structural Practices for Erosion and Sediment Control Non-Structural BMPs are practices or activities that are implemented to prevent erosion from happening or to limit erosion once it occurs. These BMPs can be a practice resulting in physical change to the site, such as mulching or slope stabilization. They can also result in behavioral changes on the site, such as changes to construction phasing to minimize exposure to weather elements, or increased employee awareness gained through training. Protection of Existing Vegetation (Phases I-IV) Protection of existing vegetation on a construction site can be accomplished through installation of a construction fence around the area requiring protection. In cases where up-gradient areas are disturbed, it may also be necessary to install perimeter controls to minimize sediment loading to sensitive areas such as wetlands. Trees that are to remain after construction is complete must be protected. Most tree roots grow within the top 12”-18” of soil, and soil compaction is a significant threat to tree health. As such, particular care should be taken to avoid activities within the drip-line of the tree. Direct equipment damage should also be prevented. The most effective way to ensure the health of trees is to establish a protection zone at the drip-line of the tree to prevent unintended activity in the area directly surrounding the tree. Fencing should be inspected and repaired when needed. If damage occurs to a tree, an arborist should be consulted on how to care for the tree. If a tree is damage beyond repair, the City Forester should be consulted on remediation measures. At a minimum, protection to all trees identified for retention on the approved landscape plans. Stockpile Management (Phases I-III) Stockpile management should be utilized to minimize erosion and sediment transport from soil stockpiles. In general, soil stockpiles should be located a minimum of 100 feet from any drainage way and 50 feet from any storm sewer inlets. Where practical, choose a stockpile location that will remain undisturbed for the longest period of time as the phases of construction progress. Sediment control BMPs should be placed around the perimeter of the stockpile, and a designated access point on the upstream side of the stockpile should be identified. BMPs such as surface roughening, temporary seeding, mulching, erosion control blankets, or soil binders should be used to stabilize the stockpile surface. As a part of stockpile management, regular inspections of the perimeter controls should be completed. If BMPs have been utilized to stabilize the surface of the stockpile, they should be inspected and repaired as needed. The location of any temporary stockpiles shall be the responsibility of the SWMP Administrator. Mulching (Phase I-III) Mulching helps reduce erosion by protecting bare soil from rainfall impact, increasing infiltration, and reducing runoff. Although often applied in conjunction with temporary or permanent seeding, it can also be used for temporary stabilization of areas that cannot be reseeded due to seasonal ADDRESS: 200 S. College Ave. Suite 10 Fort Collins, CO 80524 PHONE: 970.221.4158 FAX: 970.221.4159 WEBSITE: www.northernengineering.com Country Club Reserve Stormwater Management Plan 8 constraints. The most common type of mulch used is hay or grass that is crimped into the soil to keep it secure. However, crimping may not be practical on slopes steeper than three to one (3H:1V). The Contractor shall mulch all planted areas within twenty-four (24) hours after planting. Only weed-free and seed-free straw mulch may be used. Straw mulch should be applied at two (2) tons per acre, and shall be adequately secured by crimping, tackifier, netting or blankets. Hydraulic mulching may also be used on steep slopes or where access is limited. In the case that hydraulic mulching is utilized, the Contractor shall use wood cellulose fibers mixed with water at two thousands to two thousand five hundred (2,000-2,500) pounds per acre and organic tackifier at one hundred to four hundred (100-400) pounds per acre. The Contractor is responsible for applying wood chip mulch to all planted trees and shrubs as shown on the approved Landscape Plans. Wind Erosion/Dust Control (Phase I-IV) Wind Erosion and Dust Control BMP’s help to keep soil particles from entering the air as a result of land disturbing construction activities. Attached at the end of the Appendix B is the Fort Collins Dust Prevention and Control Manual. The purpose of this manual is to establish minimum requirements consistent with nationally recognize BMP’s for controlling fugitive dust emissions and to describe applicable best management practices to prevent, minimize, and mitigate off-property transport or off-vehicle transport of fugitive dust emissions pursuant to Chapter 12, Article X of the Fort Collins City Code (§12-150 et. seq) for specific dust generating activities and sources. Examples include use of a water truck or irrigation/sprinkler system to wet the top layer of disturbed soil, seeding and mulching, soil binders, or wind fences. Please refer to the last three pages of Appendix B for the Dust Control Plan. A Dust Control Plan is required for all development projects or construction sites with greater than five (5) acres in size. Street Sweeping (Phases I -IV) Street sweeping should be used to remove sediment that has been tracked onto adjacent roadways. Roadways should be inspected at least once a day, and sediment should be removed as needed. A check of the area inlet protection should be completed after sweeping to ensure nothing was displaced during sweeping operations. Street sweeping can reduce the sediment washed into the existing storm drain system. Street sweeping may be necessary on the existing hardscape areas which receive runoff from the disturbed areas. Saw Cutting Pollution Prevention (Phase I) The following protocol is recommended to prevent dust and slurry from asphalt and concrete saw cutting activities from migrating into the existing storm drain system. • Slurry and cuttings shall be vacuumed during cutting and surfacing operations • Slurry and cuttings shall not remain on permanent concrete or asphalt pavement overnight • Slurry and cuttings shall not drain to any natural or constructed drainage conveyance • Collected slurry and cuttings shall be disposed of in a manner that does not violate groundwater or surface water standards Good Housekeeping Practices (All phases) ADDRESS: 200 S. College Ave. Suite 10 Fort Collins, CO 80524 PHONE: 970.221.4158 FAX: 970.221.4159 WEBSITE: www.northernengineering.com Country Club Reserve Stormwater Management Plan 9 Good housekeeping practices that will prevent pollution associated with solid, liquid, and hazardous construction-related materials and wastes should be implemented throughout the project. Examples of good housekeeping include providing an appropriate location for waste management containers, establishing proper building material staging areas, designating paint and concrete washout areas, establishing proper equipment/vehicle fueling and maintenance practices. Development of a spill prevention and response plan is another example of Good Housekeeping practices that should be used on the project. The following items are detailed examples of some of the good housekeeping practices that should be utilized throughout the project. It should be noted that a complete list of practices and detailed discussion regarding good housekeeping has been included with Appendix B. Street Sweeping and Vacuuming – Street sweeping and vacuuming should be used to remove sediment that has been tracked onto adjacent roadways. Roadways should be inspected at least once a day, and sediment should be removed as needed. A check of inlet protection should be completed after sweeping to ensure nothing was displaced during sweeping operations. Waste Management – Designate trash and bulk waste collection areas on-site. When possible, materials should be recycled. Hazardous material waste should be segregated from other solid waste. Waste collection areas should be located away from streets, gutters, watercourses, and storm drains. Dumpsters should be located near site entrances to minimize traffic on disturbed soils, and they should be placed on a level soil surface. Establish Proper Building Material Handling and Staging areas – Clearly designate site areas for staging and storage of building materials. Provide appropriate BMPs to ensure that spills or leaks are contained. Establish Proper Equipment/Vehicle Fueling and Maintenance Practices – If needed, create a clearly designated on-site fueling and maintenance area that is clean and dry. Provide appropriate BMPs to ensure that spills or leaks are contained. 3.5 Phased BMP Installation It is important to recognize the four (4) major Development Phases as defined by the State of Colorado’s Stormwater Discharge Permit (SDP). These four development phases (referred to as Sequencing by the City of Fort Collins) have been distinguished to aid in the appropriate timing of installation/implementation of BMPs at different stages of the construction process. These phases are described as follows: Phase I – Grading Stage; BMPs for initial installation of perimeter controls Phase II – Infrastructure Stage; BMPs for utility, paving and curb installation Phase III – Vertical Construction Stage; BMPs for individual building construction. Phase IV – Permanent BMPs and final site stabilization. The following is a rough estimate of the anticipated construction sequence for site improvements. The schedule outlined below is subject to change as the project progresses and as determined by the General Contractor. ADDRESS: 200 S. College Ave. Suite 10 Fort Collins, CO 80524 PHONE: 970.221.4158 FAX: 970.221.4159 WEBSITE: www.northernengineering.com Country Club Reserve Stormwater Management Plan 10 Table 1 – Preliminary Permit and Construction Schedule TASK BEGINNING DATE ENDING DATE "BMP-PHASE OF DEVELOPMENT" Development Construction Permit Issued by City of Fort Collins March 2019 March 2019 I Overlot Grading (Demolition) March 2019 March 2019 I Utility Installation March 2019 April 2019 II Building Construction April 2019 December 2019 III Final Stabilization November 2019 December 2019 IV Included in the back map pockets are five Site Plans: a “Static” Site Plan and four “Dynamic” Site Plans. The “Static” plan serves to display the overall management plan all at once. However, proper implementation of BMPs does not occur at once, and certain BMPs may move location in the construction process; therefore, the “Dynamic” Site Plans are intended for the Contractor to write in the BMP symbols to document the location and time the BMPs are installed and maintained throughout the entire construction process. 3.6 Material Handling and Spill Prevention Potential pollution sources, as discussed in earlier sections, are to be to be identified by the Contractor. Spill prevention procedures are to be determined and put in place prior to construction by the Contractor. A spill and flooding response procedure must also be determined and put in place prior to construction by the Contractor. Additionally, steps should be taken to reduce the potential for leaks and spills to come in contact with stormwater runoff, such as storing and handling toxic materials in covered areas or by storing chemicals within berms or other secondary containment devices. A notification procedure must be put in place by the Contractor, by which workers would first notify the site construction superintendent, who would then notify the SWMP Administrator. Depending on the severity of the spill, the site construction superintendent and SWMP Administrator would possibly notify the Colorado Department of Public Health and Environment - Water Quality Control Division, downstream water users, or other appropriate agencies. The release of any chemical, oil, petroleum product, sewage, etc., which enter waters of the State of Colorado (which include surface water, ground water, and dry gullies or storm sewers leading to surface water) must be reported immediately to the Division’s emergency spill reporting line at (877) 518-5608. All spills that will require cleanup, even if the spill is minor and does not need to be reported to the state, should still be reported to the City of Fort Collins Utilities office at 970-221-6700. While not expected with this project, it will be the responsibility of the Contractor to designate a fueling area and take the necessary precautions to ensure that no stormwater pollution occurs in the event that a fueling area is needed. Fueling areas shall be located a minimum 100 feet from all drainage courses. A 12-inch high compacted earthen ridge capable of retaining potential spills shall enclose fueling areas. Other secondary containment devices can be used instead of the earthen ridge. The area shall be covered with a non-porous lining to prevent soil contamination. Printed instructions for cleanup procedures shall be posted in the fueling area and appropriate fuel absorbents shall be available along with containers for used absorbents within the fueling area. ADDRESS: 200 S. College Ave. Suite 10 Fort Collins, CO 80524 PHONE: 970.221.4158 FAX: 970.221.4159 WEBSITE: www.northernengineering.com Country Club Reserve Stormwater Management Plan 11 3.7 Dedicated Concrete or Asphalt Batch Plant There are not any dedicated concrete or asphalt batch plants anticipated with this project. In the event that a plant is needed, the Contractor should be aware that additional permitting will be required. In particular, an Air Pollutant Emission Notice (APEN) will need to be obtained from the CDPHE. 3.8 Vehicle Tracking Control In addition to the vehicle tracking pads discussed previously, additional measures can be taken to minimize and control sediment discharges from the site due to vehicle tracking. These measures can include fencing around the site to control access points. Regular street sweeping can also be used to minimize the transmission of sediment from the site due to vehicles leaving the site. The use of gravel parking areas and wash racks can also be implemented to ensure minimal vehicle tracking from the site. 3.9 Waste Management and Disposal It will be the responsibility of the Contractor to designate a concrete truck chute washout area and to clearly identify that area. Detailed information about the design and maintenance of the Concrete Washout can be found under the Structural Practices section of this report. At no time should untreated wash water be allowed to discharge from the site or to enter a storm drain system or stream. Upon completion of construction activities the concrete washout material shall be removed and properly disposed of prior to the area being restored. Any waste material that currently exists on the site or that is generated by construction will be disposed of in such a manner as to not cause pollutants in stormwater discharges. If waste is to be stored on-site, it shall be in an area located a minimum of 100 feet from all drainage courses. Whenever waste is not stored in a non-porous container, it shall be in an area enclosed by a 12- inch high compacted earthen ridge or some other approved secondary containment device. The area shall be covered with a non-porous lining to prevent soil contamination. Whenever precipitation is predicted, the waste shall be covered with a non-porous cover, anchored on all sides to prevent its removal by wind, in order to prevent precipitation from leaching out potential pollutants from the waste. On-site waste disposal practices, such as dumpsters, should be covered or otherwise contained as to prevent dispersion of waste materials from wind. It shall also be the responsibility of the Contractor to maintain a clean jobsite as to prevent dispersion of waste material and potential pollutants into adjacent properties or waterways. The location of, and protective measures for, temporary restroom facilities shall be the responsibility of the SWMP Administrator. 3.10 Groundwater and Stormwater Dewatering The BMPs selected for construction dewatering vary depending on the site-specific features, such as soils, topography, discharge quantities, and discharge location. Typically, dewatering involves pumping water from an inundated area to a BMP, prior to the water being released downstream into a receiving waterway, sediment basin, or well-vegetated area. Acceptable BMPs included discharging water into a sediment trap or basin, using a dewatering filter bag, or using a series of sediment logs. A settlement tank or an active treatment system can also be utilized. Another commonly used method to handle the pumped water is the “sprinkler method,” which involves applying the water to vegetated areas through a perforated discharge hose. Dispersal from a water truck for dust control can also be used to disperse the pumped water. ADDRESS: 200 S. College Ave. Suite 10 Fort Collins, CO 80524 PHONE: 970.221.4158 FAX: 970.221.4159 WEBSITE: www.northernengineering.com Country Club Reserve Stormwater Management Plan 12 4.0 Final Stabilization and Long-Term Stormwater Management 4.1 Final Stabilization All disturbed areas will be seeded, crimped and mulched. Soil amendments such as compost, peat, aged manure, or other similar materials, shall also be utilized. Soil amendments shall be tilled into the soil to a minimum depth of 6”, and should comply with the requirements found in City Code Section 12-132 (refer also to Land Use Code 3.8.21). As defined by the Colorado Department of Public Health and Environment (CDPHE) in the General Permit Application for Stormwater Discharges, “Final stabilization is reached when all soil disturbing activities at the site have been completed, and uniform vegetative cover has been established with a density of at least 70 percent of pre-disturbance levels or equivalent permanent, physical erosion reduction methods have been employed.” Table 2 - Native Grass Seed Mix Preferred Varieties Seeded Rate (lbs. per acre, drilled) PLS Seeded/acre Leymus Cinereus Great Basin Wilrye Mangar 3 285,000 Nassella Viridula Green Needlegrass Lodorm 2 362,000 Chnatherum Hymenoides Indian Ricegrass Paloma, Nezpar 1 188,000 Elymus Trachycaulus Slender Wheatgrass Primar, Revenue 2 320,000 Elymus Lanceolatus Thickspike Wheatgrass Critana 3 580,500 Pascopyrum Smithii Western Wheatgrass Arriba, Barton 4 504,000 Totals 15 2,239,500 Species 4.2 Long-Term Stormwater Management Long-term stormwater management will include permanent erosion control facilities at the outfall to the No. Eight Ditch. All disturbed areas will receive permanent paving or will be vegetated per the Landscape Plan. 5.0 Inspection, Maintenance and Record Keeping 5.1 BMP Inspection All temporary erosion control facilities shall be inspected at a minimum of once every two (2) weeks and after each significant storm event or snowmelt. Repairs or reconstruction of BMPs, as necessary, shall occur as soon as possible in order to ensure the continued performance of their intended function. It is the responsibility of the SWMP Administrator to conduct bi-weekly inspections, maintain BMPs if needed, to keep records of site conditions and inspections, and to update the SWMP as necessary. The construction site perimeter, disturbed areas, all applicable/installed erosion and sediment control measures, and areas used for material storage that are exposed to precipitation shall be inspected for evidence of, or the potential for, pollutants entering the drainage system. Erosion and sediment control measures identified in the SWMP shall be observed to ensure that they are operating correctly. Attention should be paid to areas that have a significant potential for stormwater pollution, such as demolition areas, concrete washout locations, and vehicle entries to the site. The inspection must be documented to ensure compliance with the permit requirements. ADDRESS: 200 S. College Ave. Suite 10 Fort Collins, CO 80524 PHONE: 970.221.4158 FAX: 970.221.4159 WEBSITE: www.northernengineering.com Country Club Reserve Stormwater Management Plan 13 5.2 BMP Maintenance Any BMP’s not operating in accordance with the SWMP must be addressed as soon as possible, immediately in most cases, to prevent the discharge of pollutants. If modifications are necessary, such modifications shall be documented so that the SWMP accurately reflects on-site conditions. The SWMP needs to accurately represent field conditions at all times. Uncontrolled releases of mud, muddy water, or measurable amounts of sediment found off-site will be recorded with a brief explanation of the measures taken to clean-up the sediment that has left the site, as well as the measures taken to prevent future releases. This record shall be made available to the appropriate public agencies (Colorado Department of Public Health and Environment, Water Quality Control Division; Environmental Protection Agency; City of Fort Collins; etc.) upon request. Preventative maintenance of all temporary and permanent erosion control BMPs shall be provided in order to ensure the continued performance of their intended function. Temporary erosion control measures are to be removed after the site has been sufficiently stabilized as determined by the City of Fort Collins. Maintenance activities and actions to correct problems shall be noted and recorded during inspections. Inspection and maintenance procedures specific to each BMP identified with this SWMP are discussed in Section 3. Details have also been included with Appendix B. 5.3 Record Keeping Documentation of site inspections must be maintained. The following items are to be recorded and kept with the SWMP: • Date of Inspection • Name(s) and title(s) of personnel making the inspection • Location(s) of sediment discharges or other pollutants from the site • Location(s) of BMP’s that need to be maintained • Location(s) of BMP’s that failed to operate as designed or proved inadequate • Locations(s) where additional BMP’s are needed that were not in place at the time of inspection • Deviations from the minimum inspection schedule • Descriptions of corrective action taken to remedy deficiencies that have been identified • The report shall contain a signed statement indicating the site is in compliance with the permit to the best of the signer’s knowledge and belief after corrective actions have been taken. Provided within Appendix E of this SWMP is an Example Inspection Log to aid in the record keeping of BMP inspections and maintenance. Photographs, field notebooks, drawings and maps should be included by the SWMP Administrator when appropriate. In addition to the Inspection Log, records should be kept documenting: • BMP maintenance and operation • Stormwater contamination • Contacts with suppliers • Notes on the need for and performance of preventive maintenance and other repairs • Implementation of specific items in the SWMP • Training events (given or attended) • Events involving materials handling and storage • Contacts with regulatory agencies and personnel • Notes of employee activities, contact, notifications, etc. ADDRESS: 200 S. College Ave. Suite 10 Fort Collins, CO 80524 PHONE: 970.221.4158 FAX: 970.221.4159 WEBSITE: www.northernengineering.com Country Club Reserve Stormwater Management Plan 14 Records of spills, leaks, or overflows that result in the discharge of pollutants must be documented and maintained. A record of other spills that are responded to, even if they do not result in a discharge of pollutants, should be made. Information that should be recorded for all occurrences includes the time and date, weather conditions, reasons for the spill, etc. Some spills may need to be reported to authorities immediately. Specifically, a release of any chemical, oil, petroleum product, sewage, etc., which may enter waters of the State of Colorado (which include surface water, ground water and dry gullies or storm sewers leading to surface water) must be reported to the CDPHE. Additionally, the “Dynamic Site Plan” is intended to be a “living” document where the SWMP Administrator can hand write the location of BMPs as they are installed to appropriately reflect the current site conditions. Also on the “Dynamic Site Plan” is a “Table of Construction Sequence and BMP Application/Removal” that the SWMP Administrator can use to document when BMPs were installed or removed in conjunction with construction activities. These items have been included as an aid to the SWMP Administrator, and other methods of record keeping are at his or her discretion. This Stormwater Management Plan (both the text and map) is not a static document. It is a dynamic device intended to be kept current and logged as construction takes place. It shall be the responsibility of the SWMP Administrator and/or the permit holder (or applicant thereof) to ensure the plan is properly maintained and followed. Diligent administration is critical, including processing the Notice to Proceed and noting on the Stormwater Management Plan the dates that various construction activities occur and respective BMPs are installed and/or removed. ADDRESS: 200 S. College Ave. Suite 10 Fort Collins, CO 80524 PHONE: 970.221.4158 FAX: 970.221.4159 WEBSITE: www.northernengineering.com Country Club Reserve Stormwater Management Plan 15 6.0 Additional SWMP and BMP Resources Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual - Volume 3 “Best Management Practices” Colorado Department of Transportation Erosion Control and Stormwater Quality Guide BMP Field Academy EPA Menu of BMP’s Construction Site Storm Water Runoff Control International Stormwater Best Management (BMP) Database Rocky Mountain Education Center Rocky Mountain Education Center Red Rocks Community College, Lakewood Keep It Clean Partnership Boulder ADDRESS: 200 S. College Ave. Suite 10 Fort Collins, CO 80524 PHONE: 970.221.4158 FAX: 970.221.4159 WEBSITE: www.northernengineering.com Country Club Reserve Stormwater Management Plan 16 References 1. Final Drainage Report for Country Club Reserve, Northern Engineering Services, November 21, 2018 (NE Project No. 1324-001) 2. Soil Resource Report for Larimer County Area, Colorado, Natural Resources Conservation Service, United States Department of Agriculture. 3. Preliminary Geotechnical Exploration Report, Earth Engineering Consultants, INC., February 22, 2006 (Project No. 1062013) 4. Urban Storm Drainage Criteria Manual, Volumes 1-3, Urban Drainage and Flood Control District, Water Resources Publications, LLC., Denver, Colorado, updated August 2018. APPENDIX A SITE MAPS SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF V .P. V.P. A.R.V. GAS GAS V.P. V.P. X X X X X X G G G G G G G G G G G G G G G G G G G G 4" W 4" W 4" W 4" W 4" W 4" W 4" W 4" W 4" W 4" W 4" W 4" W 4" W 4" W 4" W 4" W 4" W 4" W 4" W 4" W V .P. V.P. A.R.V. GAS X X X X X X G G G G G G G G E E E E E E E E E E E E E E E E E E E E E E E E E WV H Y D WV WV X X X X X X X X X X X M X X X X X X X X X X F E S 4" W 4" W 4" W 4" W 4" W 4" W 4" W 4" W 4" W 4" W 4" W 4" W 4" W 4" W 4" W 4" W 4" W V .P. WV WV WV WV WV WV X X F E S M F E S X X X X X X X X X W S O X V.P. V AULT CABLE BOX CABLE H2O X OHE OHE OHE OHE OHE OHE ST B B 10"W 1976 (AC) 4" (AC) 10"W 1976 (AC) 4" (AC) W W W W W W W W W W 14"W 1976 (AC) 14"W 1976 (AC) LOD LOD LOD LOD LOD LOD GAS X X V.P. V.P. X X X X G G G G G G G G G G G G G G G G G G G G G G G G G G G G G E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E X X X X X X X X X X V.P. X X X X X G G G G G G G G G G G G G G G G G G E E E E E E E E E E E E E E E E E X X X X X X X X X X X X V .P. X M GAS X X X OHE OHE OHE OHE OHE OHE B B ST ST W W W W W W W W W W W W W W 14"W 1976 (AC) LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD APPENDIX B EROSION CONTROL DETAILS EC2 EROSION CONTROL DETAILS 14 Sheet of 68 COUNTRY CLUB RESERVE These drawings are instruments of service provided by Northern Engineering Services, Inc. and are not to be used for any type of construction unless signed and sealed by a Professional Engineer in the employ of Northern Engineering Services, Inc. NOT FOR CONSTRUCTION REVIEW SET 301 North Howes Street, Suite 100 Fort Collins, Colorado 80521 E NGINEER ING N O R T H E RN PHONE: 970.221.4158 www.northernengineering.com CALL 2 BUSINESS DAYS IN ADVANCE BEFORE YOU DIG, GRADE, OR EXCAVATE FOR THE MARKING OF UNDERGROUND MEMBER UTILITIES. CALL UTILITY NOTIFICATION CENTER OF COLORADO Know what'sbelow. Call before you dig. R 3'-4' ADJACENT ROLLS SHALL TIGHTLY ABUT W1 NOTES: INSTALLATION: WHEN INSTALLING RUNNING LENGTHS OF WATTLES, BUTT THE SECOND WATTLE TIGHTLY AGAINST THE FIRST, DO NOT OVERLAP THE ENDS. STAKE THE WATTLES AT EACH END AND FOUR FOOT ON CENTER. FOR EXAMPLE: A 25 FOOT WATTLE USES 6 STAKES A 20 FOOT WATTLE USES 5 STAKES A 12 FOOT WATTLE USES 4 STAKES STAKES SHOULD BE DRIVEN THROUGH THE MIDDLE OF THE WATTLE. LEAVING 2 - 3 INCHES OF THE STAKE PROTRUDING ABOVE THE WATTLE. A HEAVY SEDIMENT LOAD WILL TEND TO PICK THE WATTLE UP AND COULD PULL IT OFF THE STAKES IF THEY ARE DRIVEN DOWN TOO LOW. IT MAY BE NECESSARY TO MAKE A HOLE IN THE WATTLE WITH A PICK END OF YOUR MADDOX IN ORDER TO GET THE STAKE THROUGH THE STRAW. WHEN STRAW WATTLES ARE USED FOR FLAT GROUND APPLICATIONS, DRIVE THE STAKES STRAIGHT DOWN; WHEN INSTALLING WATTLES ON SLOPES, DRIVE THE STAKES PERPENDICULAR TO THE SLOPE. DRIVE THE FIRST END STAKE OF THE SECOND WATTLE AT AN ANGLE TOWARD THE FIRST WATTLE IN ORDER TO HELP ABUT THEM TIGHTLY TOGETHER. IF YOU HAVE DIFFICULTY DRIVING THE STAKE INTO EXTREMELY HARD OR ROCKY SLOPES, A PILOT BAR MAY BE NEEDED TO BEGIN THE STAKE HOLE. 1"x 1" WOOD STAKES 18"-24" BAILING WIRE OR NYLON ROPE Silt Fence (SF) SC-1 November 2010 Urban Drainage and Flood Control District SF-1 Urban Storm Drainage Criteria Manual Volume 3 Photograph SF-1. Silt fence creates a sediment barrier, forcing sheet flow runoff to evaporate or infiltrate. Description A silt fence is a woven geotextile fabric attached to wooden posts and trenched into the ground. It is designed as a sediment barrier to intercept sheet flow runoff from disturbed areas. Appropriate Uses A silt fence can be used where runoff is conveyed from a disturbed area as sheet flow. Silt fence is not designed to receive concentrated flow or to be used as a filter fabric. Typical uses include: Down slope of a disturbed area to accept sheet flow. Along the perimeter of a receiving water such as a stream, pond or wetland. At the perimeter of a construction site. Design and Installation Silt fence should be installed along the contour of slopes so that it intercepts sheet flow. The maximum recommended tributary drainage area per 100 lineal feet of silt fence, installed along the contour, is approximately 0.25 acres with a disturbed slope length of up to 150 feet and a tributary slope gradient no steeper than 3:1. Longer and steeper slopes require additional measures. This recommendation only applies to silt fence installed along the contour. Silt fence installed for other uses, such as perimeter control, should be installed in a way that will not produce concentrated flows. For example, a "J-hook" installation may be appropriate to force runoff to pond and evaporate or infiltrate in multiple areas rather than concentrate and cause erosive conditions parallel to the silt fence. See Detail SF-1 for proper silt fence installation, which involves proper trenching, staking, securing the fabric to the stakes, and backfilling the silt fence. Properly installed silt fence should not be easily pulled out by hand and there should be no gaps between the ground and the fabric. Silt fence must meet the minimum allowable strength requirements, depth of installation requirement, and other specifications in the design details. Improper installation of silt fence is a common reason for silt fence failure; however, when properly installed and used for the appropriate purposes, it can be highly effective. Silt Fence Functions Erosion Control No Sediment Control Yes Site/Material Management No SC-1 Silt Fence (SF) SF-2 Urban Drainage and Flood Control District November 2010 Urban Storm Drainage Criteria Manual Volume 3 Photograph SF-2. When silt fence is not installed along the contour, a "J-hook" installation may be appropriate to ensure that the BMP does not create concentrated flow parallel to the silt fence. Photo courtesy of Tom Gore. Maintenance and Removal Inspection of silt fence includes observing the material for tears or holes and checking for slumping fence and undercut areas bypassing flows. Repair of silt fence typically involves replacing the damaged section with a new section. Sediment accumulated behind silt fence should be removed, as needed to maintain BMP effectiveness, typically before it reaches a depth of 6 inches. Silt fence may be removed when the upstream area has reached final stabilization. Silt Fence (SF) SC-1 November 2010 Urban Drainage and Flood Control District SF-3 Urban Storm Drainage Criteria Manual Volume 3 SC-1 Silt Fence (SF) SF-4 Urban Drainage and Flood Control District November 2010 Urban Storm Drainage Criteria Manual Volume 3 Sediment Control Log (SCL) SC-2 November 2015 Urban Drainage and Flood Control District SCL-1 Urban Storm Drainage Criteria Manual Volume 3 Photographs SCL-1 and SCL-2. Sediment control logs used as 1) a perimeter control around a soil stockpile; and, 2) as a "J-hook" perimeter control at the corner of a construction site. Description A sediment control log is a linear roll made of natural materials such as straw, coconut fiber, or compost. The most common type of sediment control log has straw filling and is often referred to as a "straw wattle." All sediment control logs are used as a sediment barrier to intercept sheet flow runoff from disturbed areas. Appropriate Uses Sediment control logs can be used in the following applications to trap sediment: As perimeter control for stockpiles and the site. As part of inlet protection designs. As check dams in small drainage ditches. (Sediment control logs are not intended for use in channels with high flow velocities.) On disturbed slopes to shorten flow lengths (as an erosion control). As part of multi-layered perimeter control along a receiving water such as a stream, pond or wetland. Sediment control logs work well in combination with other layers of erosion and sediment controls. Design and Installation Sediment control logs should be installed along the contour to avoid concentrating flows. The maximum allowable tributary drainage area per 100 lineal feet of sediment control log, installed along the contour, is approximately 0.25 acres with a disturbed slope length of up to 150 feet and a tributary slope gradient no steeper than 3:1. Longer and steeper slopes require additional measures. This recommendation only applies to sediment control logs installed along the contour. When installed for other uses, such as perimeter control, it should be installed in a way that will not produce concentrated flows. For example, a "J-hook" installation may be appropriate to force runoff to pond and evaporate or infiltrate in multiple areas rather than concentrate and cause erosive conditions parallel to the BMP. Sediment Control Log Functions Erosion Control Moderate Sediment Control Yes Site/Material Management No SC-2 Sediment Control Log (SCL) SCL-2 Urban Drainage and Flood Control District November 2015 Urban Storm Drainage Criteria Manual Volume 3 Although sediment control logs initially allow runoff to flow through the BMP, they can quickly become a barrier and should be installed as if they are impermeable. Design details and notes for sediment control logs are provided in the following details. Sediment logs must be properly installed per the detail to prevent undercutting, bypassing and displacement. When installed on slopes, sediment control logs should be installed along the contours (i.e., perpendicular to flow). Improper installation can lead to poor performance. Be sure that sediment control logs are properly trenched (if lighter than 8 lb/foot), anchored and tightly jointed. Maintenance and Removal Be aware that sediment control logs will eventually degrade. Remove accumulated sediment before the depth is one-half the height of the sediment log and repair damage to the sediment log, typically by replacing the damaged section. Once the upstream area is stabilized, remove and properly dispose of the logs. Areas disturbed beneath the logs may need to be seeded and mulched. Sediment control logs that are biodegradable may occasionally be left in place (e.g., when logs are used in conjunction with erosion control blankets as permanent slope breaks). However, removal of sediment control logs after final stabilization is typically appropriate when used in perimeter control, inlet protection and check dam applications. Compost from compost sediment control logs may be spread over the area and seeded as long as this does not cover newly established vegetation. Sediment Control Log (SCL) SC-2 November 2015 Urban Drainage and Flood Control District SCL-3 Urban Storm Drainage Criteria Manual Volume 3 SC-2 Sediment Control Log (SCL) SCL-4 Urban Drainage and Flood Control District November 2015 Urban Storm Drainage Criteria Manual Volume 3 Sediment Control Log (SCL) SC-2 November 2015 Urban Drainage and Flood Control District SCL-5 Urban Storm Drainage Criteria Manual Volume 3 SC-2 Sediment Control Log (SCL) SCL-6 Urban Drainage and Flood Control District November 2015 Urban Storm Drainage Criteria Manual Volume 3 Vehicle Tracking Control (VTC) SM-4 November 2010 Urban Drainage and Flood Control District VTC-1 Urban Storm Drainage Criteria Manual Volume 3 Photograph VTC-1. A vehicle tracking control pad constructed with properly sized rock reduces off-site sediment tracking. Descr iption Vehicle tracking controls provide stabilized construction site access where vehicles exit the site onto paved public roads. An effective vehicle tracking control helps remove sediment (mud or dirt) from vehicles, reducing tracking onto the paved surface. Appropriate Uses Implement a stabilized construction entrance or vehicle tracking control where frequent heavy vehicle traffic exits the construction site onto a paved roadway. An effective vehicle tracking control is particularly important during the following conditions: Wet weather periods when mud is easily tracked off site. During dry weather periods where dust is a concern. When poorly drained, clayey soils are present on site. Although wheel washes are not required in designs of vehicle tracking controls, they may be needed at particularly muddy sites. Design and Installation Construct the vehicle tracking control on a level surface. Where feasible, grade the tracking control towards the construction site to reduce off-site runoff. Place signage, as needed, to direct construction vehicles to the designated exit through the vehicle tracking control. There are several different types of stabilized construction entrances including: VTC-1. Aggregate Vehicle Tracking Control. This is a coarse-aggregate surfaced pad underlain by a geotextile. This is the most common vehicle tracking control, and when properly maintained can be effective at removing sediment from vehicle tires. VTC-2. Vehicle Tracking Control with Construction Mat or Turf Reinforcement Mat. This type of control may be appropriate for site access at very small construction sites with low traffic volume over vegetated areas. Although this application does not typically remove sediment from vehicles, it helps protect existing vegetation and provides a stabilized entrance. Vehicle Tracking Control Functions Erosion Control Moderate Sediment Control Yes Site/Material Management Yes SM-4 Vehicle Tracking Control (VTC) VTC-2 Urban Drainage and Flood Control District November 2010 Urban Storm Drainage Criteria Manual Volume 3 Photograph VTC-2. A vehicle tracking control pad with wheel wash facility. Photo courtesy of Tom Gore. VTC-3. Stabilized Construction Entrance/Exit with Wheel Wash. This is an aggregate pad, similar to VTC-1, but includes equipment for tire washing. The wheel wash equipment may be as simple as hand-held power washing equipment to more advance proprietary systems. When a wheel wash is provided, it is important to direct wash water to a sediment trap prior to discharge from the site. Vehicle tracking controls are sometimes installed in combination with a sediment trap to treat runoff. Maintenance and Removal Inspect the area for degradation and replace aggregate or material used for a stabilized entrance/exit as needed. If the area becomes clogged and ponds water, remove and dispose of excess sediment or replace material with a fresh layer of aggregate as necessary. With aggregate vehicle tracking controls, ensure rock and debris from this area do not enter the public right-of-way. Remove sediment that is tracked onto the public right of way daily or more frequently as needed. Excess sediment in the roadway indicates that the stabilized construction entrance needs maintenance. Ensure that drainage ditches at the entrance/exit area remain clear. A stabilized entrance should be removed only when there is no longer the potential for vehicle tracking to occur. This is typically after the site has been stabilized. When wheel wash equipment is used, be sure that the wash water is discharged to a sediment trap prior to discharge. Also inspect channels conveying the water from the wash area to the sediment trap and stabilize areas that may be eroding. When a construction entrance/exit is removed, excess sediment from the aggregate should be removed and disposed of appropriately. The entrance should be promptly stabilized with a permanent surface following removal, typically by paving. Vehicle Tracking Control (VTC) SM-4 November 2010 Urban Drainage and Flood Control District VTC-3 Urban Storm Drainage Criteria Manual Volume 3 SM-4 Vehicle Tracking Control (VTC) VTC-4 Urban Drainage and Flood Control District November 2010 Urban Storm Drainage Criteria Manual Volume 3 Vehicle Tracking Control (VTC) SM-4 November 2010 Urban Drainage and Flood Control District VTC-5 Urban Storm Drainage Criteria Manual Volume 3 SM-4 Vehicle Tracking Control (VTC) VTC-6 Urban Drainage and Flood Control District November 2010 Urban Storm Drainage Criteria Manual Volume 3 Inlet Protection (IP) SC-6 August 2013 Urban Drainage and Flood Control District IP-1 Urban Storm Drainage Criteria Manual Volume 3 Photograph IP-1. Inlet protection for a curb opening inlet. Description Inlet protection consists of permeable barriers installed around an inlet to filter runoff and remove sediment prior to entering a storm drain inlet. Inlet protection can be constructed from rock socks, sediment control logs, silt fence, block and rock socks, or other materials approved by the local jurisdiction. Area inlets can also be protected by over-excavating around the inlet to form a sediment trap. Appropriate Uses Install protection at storm sewer inlets that are operable during construction. Consider the potential for tracked-out sediment or temporary stockpile areas to contribute sediment to inlets when determining which inlets must be protected. This may include inlets in the general proximity of the construction area, not limited to downgradient inlets. Inlet protection is not a stand-alone BMP and should be used in conjunction with other upgradient BMPs. Design and Installation To function effectively, inlet protection measures must be installed to ensure that flows do not bypass the inlet protection and enter the storm drain without treatment. However, designs must also enable the inlet to function without completely blocking flows into the inlet in a manner that causes localized flooding. When selecting the type of inlet protection, consider factors such as type of inlet (e.g., curb or area, sump or on-grade conditions), traffic, anticipated flows, ability to secure the BMP properly, safety and other site-specific conditions. For example, block and rock socks will be better suited to a curb and gutter along a roadway, as opposed to silt fence or sediment control logs, which cannot be properly secured in a curb and gutter setting, but are effective area inlet protection measures. Several inlet protection designs are provided in the Design Details. Additionally, a variety of proprietary products are available for inlet protection that may be approved for use by local governments. If proprietary products are used, design details and installation procedures from the manufacturer must be followed. Regardless of the type of inlet protection selected, inlet protection is most effective when combined with other BMPs such as curb socks and check dams. Inlet protection is often the last barrier before runoff enters the storm sewer or receiving water. Design details with notes are provided for these forms of inlet protection: IP-1. Block and Rock Sock Inlet Protection for Sump or On-grade Inlets IP-2. Curb (Rock) Socks Upstream of Inlet Protection, On-grade Inlets Inlet Protection (various forms) Functions Erosion Control No Sediment Control Yes Site/Material Management No SC-6 Inlet Protection (IP) IP-2 Urban Drainage and Flood Control District August 2013 Urban Storm Drainage Criteria Manual Volume 3 IP-3. Rock Sock Inlet Protection for Sump/Area Inlet IP-4. Silt Fence Inlet Protection for Sump/Area Inlet IP-5. Over-excavation Inlet Protection IP-6. Straw Bale Inlet Protection for Sump/Area Inlet CIP-1. Culvert Inlet Protection Propriety inlet protection devices should be installed in accordance with manufacturer specifications. More information is provided below on selecting inlet protection for sump and on-grade locations. Inlets Located in a Sump When applying inlet protection in sump conditions, it is important that the inlet continue to function during larger runoff events. For curb inlets, the maximum height of the protective barrier should be lower than the top of the curb opening to allow overflow into the inlet during larger storms without excessive localized flooding. If the inlet protection height is greater than the curb elevation, particularly if the filter becomes clogged with sediment, runoff will not enter the inlet and may bypass it, possibly causing localized flooding, public safety issues, and downstream erosion and damage from bypassed flows. Area inlets located in a sump setting can be protected through the use of silt fence, concrete block and rock socks (on paved surfaces), sediment control logs/straw wattles embedded in the adjacent soil and stacked around the area inlet (on pervious surfaces), over-excavation around the inlet, and proprietary products providing equivalent functions. Inlets Located on a Slope For curb and gutter inlets on paved sloping streets, block and rock sock inlet protection is recommended in conjunction with curb socks in the gutter leading to the inlet. For inlets located along unpaved roads, also see the Check Dam Fact Sheet. Maintenance and Removal Inspect inlet protection frequently. Inspection and maintenance guidance includes: Inspect for tears that can result in sediment directly entering the inlet, as well as result in the contents of the BMP (e.g., gravel) washing into the inlet. Check for improper installation resulting in untreated flows bypassing the BMP and directly entering the inlet or bypassing to an unprotected downstream inlet. For example, silt fence that has not been properly trenched around the inlet can result in flows under the silt fence and directly into the inlet. Look for displaced BMPs that are no longer protecting the inlet. Displacement may occur following larger storm events that wash away or reposition the inlet protection. Traffic or equipment may also crush or displace the BMP. Monitor sediment accumulation upgradient of the inlet protection. Inlet Protection (IP) SC-6 August 2013 Urban Drainage and Flood Control District IP-3 Urban Storm Drainage Criteria Manual Volume 3 Remove sediment accumulation from the area upstream of the inlet protection, as needed to maintain BMP effectiveness, typically when it reaches no more than half the storage capacity of the inlet protection. For silt fence, remove sediment when it accumulates to a depth of no more than 6 inches. Remove sediment accumulation from the area upstream of the inlet protection as needed to maintain the functionality of the BMP. Propriety inlet protection devices should be inspected and maintained in accordance with manufacturer specifications. If proprietary inlet insert devices are used, sediment should be removed in a timely manner to prevent devices from breaking and spilling sediment into the storm drain. Inlet protection must be removed and properly disposed of when the drainage area for the inlet has reached final stabilization. SC-6 Inlet Protection (IP) IP-4 Urban Drainage and Flood Control District August 2013 Urban Storm Drainage Criteria Manual Volume 3 Inlet Protection (IP) SC-6 August 2013 Urban Drainage and Flood Control District IP-5 Urban Storm Drainage Criteria Manual Volume 3 SC-6 Inlet Protection (IP) IP-6 Urban Drainage and Flood Control District August 2013 Urban Storm Drainage Criteria Manual Volume 3 Inlet Protection (IP) SC-6 August 2013 Urban Drainage and Flood Control District IP-7 Urban Storm Drainage Criteria Manual Volume 3 SC-6 Inlet Protection (IP) IP-8 Urban Drainage and Flood Control District August 2013 Urban Storm Drainage Criteria Manual Volume 3 Rolled Erosion Control Products (RECP) EC-6 November 2010 Urban Drainage and Flood Control District RECP-1 Urban Storm Drainage Criteria Manual Volume 3 Photograph RECP-1. Erosion control blanket protecting the slope from erosion and providing favorable conditions for revegetation. Description Rolled Erosion Control Products (RECPs) include a variety of temporary or permanently installed manufactured products designed to control erosion and enhance vegetation establishment and survivability, particularly on slopes and in channels. For applications where natural vegetation alone will provide sufficient permanent erosion protection, temporary products such as netting, open weave textiles and a variety of erosion control blankets (ECBs) made of biodegradable natural materials (e.g., straw, coconut fiber) can be used. For applications where natural vegetation alone will not be sustainable under expected flow conditions, permanent rolled erosion control products such as turf reinforcement mats (TRMs) can be used. In particular, turf reinforcement mats are designed for discharges that exert velocities and sheer stresses that exceed the typical limits of mature natural vegetation. Appropriate Uses RECPs can be used to control erosion in conjunction with revegetation efforts, providing seedbed protection from wind and water erosion. These products are often used on disturbed areas on steep slopes, in areas with highly erosive soils, or as part of drainageway stabilization. In order to select the appropriate RECP for site conditions, it is important to have a general understanding of the general types of these products, their expected longevity, and general characteristics. The Erosion Control Technology Council (ECTC 2005) characterizes rolled erosion control products according to these categories: Mulch control netting: A planar woven natural fiber or extruded geosynthetic mesh used as a temporary degradable rolled erosion control product to anchor loose fiber mulches. Open weave textile: A temporary degradable rolled erosion control product composed of processed natural or polymer yarns woven into a matrix, used to provide erosion control and facilitate vegetation establishment. Erosion control blanket (ECB): A temporary degradable rolled erosion control product composed of processed natural or polymer fibers which are mechanically, structurally or chemically bound together to form a continuous matrix to provide erosion control and facilitate vegetation establishment. ECBs can be further differentiated into rapidly degrading single-net and double-net types or slowly degrading types. Rolled Erosion Control Products Functions Erosion Control Yes Sediment Control No Site/Material Management No EC-6 Rolled Erosion Control Products (RECP) RECP-2 Urban Drainage and Flood Control District November 2010 Urban Storm Drainage Criteria Manual Volume 3 Turf Reinforcement Mat (TRM): A rolled erosion control product composed of non-degradable synthetic fibers, filaments, nets, wire mesh, and/or other elements, processed into a permanent, three- dimensional matrix of sufficient thickness. TRMs, which may be supplemented with degradable components, are designed to impart immediate erosion protection, enhance vegetation establishment and provide long-term functionality by permanently reinforcing vegetation during and after maturation. Note: TRMs are typically used in hydraulic applications, such as high flow ditches and channels, steep slopes, stream banks, and shorelines, where erosive forces may exceed the limits of natural, unreinforced vegetation or in areas where limited vegetation establishment is anticipated. Tables RECP-1 and RECP-2 provide guidelines for selecting rolled erosion control products appropriate to site conditions and desired longevity. Table RECP-1 is for conditions where natural vegetation alone will provide permanent erosion control, whereas Table RECP-2 is for conditions where vegetation alone will not be adequately stable to provide long-term erosion protection due to flow or other conditions. Rolled Erosion Control Products (RECP) EC-6 November 2010 Urban Drainage and Flood Control District RECP-3 Urban Storm Drainage Criteria Manual Volume 3 Table RECP-1. ECTC Standard Specification for Temporary Rolled Erosion Control Products (Adapted from Erosion Control Technology Council 2005) Product Description Slope Applications* Channel Applications* Minimum Tensile Strength1 Expected Longevity Maximum Gradient C Factor2,5 Max. Shear Stress3,4,6 Mulch Control Nets 5:1 (H:V) ≤0.10 @ 5:1 0.25 lbs/ft2 (12 Pa) 5 lbs/ft (0.073 kN/m) Up to 12 months Netless Rolled Erosion Control Blankets 4:1 (H:V) ≤0.10 @ 4:1 0.5 lbs/ft2 (24 Pa) 5 lbs/ft (0.073 kN/m) Single-net Erosion Control Blankets & Open Weave Textiles 3:1 (H:V) ≤0.15 @ 3:1 1.5 lbs/ft2 (72 Pa) 50 lbs/ft (0.73 kN/m) Double-net Erosion Control Blankets 2:1 (H:V) ≤0.20 @ 2:1 1.75 lbs/ft2 (84 Pa) 75 lbs/ft (1.09 kN/m) Mulch Control Nets 5:1 (H:V) ≤0.10 @ EC-6 Rolled Erosion Control Products (RECP) RECP-4 Urban Drainage and Flood Control District November 2010 Urban Storm Drainage Criteria Manual Volume 3 Table RECP-2. ECTC Standard Specification for Permanent1 Rolled Erosion Control Products (Adapted from: Erosion Control Technology Council 2005) Product Type Slope Applications Channel Applications TRMs with a minimum thickness of 0.25 inches (6.35 mm) per ASTM D 6525 and UV stability of 80% per ASTM D 4355 (500 hours exposure). Maximum Gradient Maximum Shear Stress4,5 Minimum Tensile Strength2,3 0.5:1 (H:V) 6.0 lbs/ft2 (288 Pa) 125 lbs/ft (1.82 kN/m) 0.5:1 (H:V) 8.0 lbs/ft2 (384 Pa) 150 lbs/ft (2.19 kN/m) 0.5:1 (H:V) 10.0 lbs/ft2 (480 Pa) 175 lbs/ft (2.55 kN/m) 1 For TRMs containing degradable components, all property values must be obtained on the non- degradable portion of the matting alone. 2 Minimum Average Roll Values, machine direction only for tensile strength determination using ASTM D 6818 (Supersedes Mod. ASTM D 5035 for RECPs) 3 Field conditions with high loading and/or high survivability requirements may warrant the use of a TRM with a tensile strength of 44 kN/m (3,000 lb/ft) or greater. 4 Required minimum shear stress TRM (fully vegetated) can sustain without physical damage or excess erosion (> 12.7 mm (0.5 in.) soil loss) during a 30-minute flow event in large scale testing. 5 Acceptable large-scale testing protocols may include ASTM D 6460, or other independent testing deemed acceptable by the engineer. Design and Installation RECPs should be installed according to manufacturer’s specifications and guidelines. Regardless of the type of product used, it is important to ensure no gaps or voids exist under the material and that all corners of the material are secured using stakes and trenching. Continuous contact between the product and the soil is necessary to avoid failure. Never use metal stakes to secure temporary erosion control products. Often wooden stakes are used to anchor RECPs; however, wood stakes may present installation and maintenance challenges and generally take a long time to biodegrade. Some local jurisdictions have had favorable experiences using biodegradable stakes. This BMP Fact Sheet provides design details for several commonly used ECB applications, including: ECB-1 Pipe Outlet to Drainageway ECB-2 Small Ditch or Drainageway ECB-3 Outside of Drainageway Rolled Erosion Control Products (RECP) EC-6 November 2010 Urban Drainage and Flood Control District RECP-5 Urban Storm Drainage Criteria Manual Volume 3 Staking patterns are also provided in the design details according to these factors: ECB type Slope or channel type For other types of RECPs including TRMs, these design details are intended to serve as general guidelines for design and installation; however, engineers should adhere to manufacturer’s installation recommendations. Maintenance and Removal Inspection of erosion control blankets and other RECPs includes: Check for general signs of erosion, including voids beneath the mat. If voids are apparent, fill the void with suitable soil and replace the erosion control blanket, following the appropriate staking pattern. Check for damaged or loose stakes and secure loose portions of the blanket. Erosion control blankets and other RECPs that are biodegradable typically do not need to be removed after construction. If they must be removed, then an alternate soil stabilization method should be installed promptly following removal. Turf reinforcement mats, although generally resistant to biodegradation, are typically left in place as a dense vegetated cover grows in through the mat matrix. The turf reinforcement mat provides long-term stability and helps the established vegetation resist erosive forces. EC-6 Rolled Erosion Control Products (RECP) RECP-6 Urban Drainage and Flood Control District November 2010 Urban Storm Drainage Criteria Manual Volume 3 Rolled Erosion Control Products (RECP) EC-6 November 2010 Urban Drainage and Flood Control District RECP-7 Urban Storm Drainage Criteria Manual Volume 3 EC-6 Rolled Erosion Control Products (RECP) RECP-8 Urban Drainage and Flood Control District November 2010 Urban Storm Drainage Criteria Manual Volume 3 Rolled Erosion Control Products (RECP) EC-6 November 2010 Urban Drainage and Flood Control District RECP-9 Urban Storm Drainage Criteria Manual Volume 3 Concrete Washout Area (CWA) MM-1 November 2010 Urban Drainage and Flood Control District CWA-1 Urban Storm Drainage Criteria Manual Volume 3 Photograph CWA-1. Example of concrete washout area. Note gravel tracking pad for access and sign. Description Concrete waste management involves designating and properly managing a specific area of the construction site as a concrete washout area. A concrete washout area can be created using one of several approaches designed to receive wash water from washing of tools and concrete mixer chutes, liquid concrete waste from dump trucks, mobile batch mixers, or pump trucks. Three basic approaches are available: excavation of a pit in the ground, use of an above ground storage area, or use of prefabricated haul- away concrete washout containers. Surface discharges of concrete washout water from construction sites are prohibited. Appropriate Uses Concrete washout areas must be designated on all sites that will generate concrete wash water or liquid concrete waste from onsite concrete mixing or concrete delivery. Because pH is a pollutant of concern for washout activities, when unlined pits are used for concrete washout, the soil must have adequate buffering capacity to result in protection of state groundwater standards; otherwise, a liner/containment must be used. The following management practices are recommended to prevent an impact from unlined pits to groundwater: The use of the washout site should be temporary (less than 1 year), and The washout site should be not be located in an area where shallow groundwater may be present, such as near natural drainages, springs, or wetlands. Design and Installation Concrete washout activities must be conducted in a manner that does not contribute pollutants to surface waters or stormwater runoff. Concrete washout areas may be lined or unlined excavated pits in the ground, commercially manufactured prefabricated washout containers, or aboveground holding areas constructed of berms, sandbags or straw bales with a plastic liner. Although unlined washout areas may be used, lined pits may be required to protect groundwater under certain conditions. Do not locate an unlined washout area within 400 feet of any natural drainage pathway or waterbody or within 1,000 feet of any wells or drinking water sources. Even for lined concrete washouts, it is advisable to locate the facility away from waterbodies and drainage paths. If site constraints make these Concrete Washout Area Functions Erosion Control No Sediment Control No Site/Material Management Yes MM-1 Concrete Washout Area (CWA) CWA-2 Urban Drainage and Flood Control District November 2010 Urban Storm Drainage Criteria Manual Volume 3 setbacks infeasible or if highly permeable soils exist in the area, then the pit must be installed with an impermeable liner (16 mil minimum thickness) or surface storage alternatives using prefabricated concrete washout devices or a lined aboveground storage area should be used. Design details with notes are provided in Detail CWA-1 for pits and CWA-2 for aboveground storage areas. Pre-fabricated concrete washout container information can be obtained from vendors. Maintenance and Removal A key consideration for concrete washout areas is to ensure that adequate signage is in place identifying the location of the washout area. Part of inspecting and maintaining washout areas is ensuring that adequate signage is provided and in good repair and that the washout area is being used, as opposed to washout in non-designated areas of the site. Remove concrete waste in the washout area, as needed to maintain BMP function (typically when filled to about two-thirds of its capacity). Collect concrete waste and deliver offsite to a designated disposal location. Upon termination of use of the washout site, accumulated solid waste, including concrete waste and any contaminated soils, must be removed from the site to prevent on-site disposal of solid waste. If the wash water is allowed to evaporate and the concrete hardens, it may be recycled. Photograph CWA-3. Earthen concrete washout. Photo courtesy of CDOT. Photograph CWA-2. Prefabricated concrete washout. Photo courtesy of CDOT. Concrete Washout Area (CWA) MM-1 November 2010 Urban Drainage and Flood Control District CWA-3 Urban Storm Drainage Criteria Manual Volume 3 MM-1 Concrete Washout Area (CWA) CWA-4 Urban Drainage and Flood Control District November 2010 Urban Storm Drainage Criteria Manual Volume 3 Temporary and Permanent Seeding (TS/PS) EC-2 June 2012 Urban Drainage and Flood Control District TS/PS-1 Urban Storm Drainage Criteria Manual Volume 3 Photograph TS/PS -1. Equipment used to drill seed. Photo courtesy of Douglas County. Description Temporary seeding can be used to stabilize disturbed areas that will be inactive for an extended period. Permanent seeding should be used to stabilize areas at final grade that will not be otherwise stabilized. Effective seeding includes preparation of a seedbed, selection of an appropriate seed mixture, proper planting techniques, and protection of the seeded area with mulch, geotextiles, or other appropriate measures. Appropriate Uses When the soil surface is disturbed and will remain inactive for an extended period (typically 30 days or longer), proactive stabilization measures should be implemented. If the inactive period is short-lived (on the order of two weeks), techniques such as surface roughening may be appropriate. For longer periods of inactivity, temporary seeding and mulching can provide effective erosion control. Permanent seeding should be used on finished areas that have not been otherwise stabilized. Typically, local governments have their own seed mixes and timelines for seeding. Check jurisdictional requirements for seeding and temporary stabilization. Design and Installation Effective seeding requires proper seedbed preparation, selection of an appropriate seed mixture, use of appropriate seeding equipment to ensure proper coverage and density, and protection with mulch or fabric until plants are established. The USDCM Volume 2 Revegetation Chapter contains detailed seed mix, soil preparations, and seeding and mulching recommendations that may be referenced to supplement this Fact Sheet. Drill seeding is the preferred seeding method. Hydroseeding is not recommended except in areas where steep slopes prevent use of drill seeding equipment, and even in these instances it is preferable to hand seed and mulch. Some jurisdictions do not allow hydroseeding or hydromulching. Seedbed Preparation Prior to seeding, ensure that areas to be revegetated have soil conditions capable of supporting vegetation. Overlot grading can result in loss of topsoil, resulting in poor quality subsoils at the ground surface that have low nutrient value, little organic matter content, few soil microorganisms, rooting restrictions, and conditions less conducive to infiltration of precipitation. As a result, it is typically necessary to provide stockpiled topsoil, compost, or other Temporary and Permanent Seeding Functions Erosion Control Yes Sediment Control No Site/Material Management No EC-2 Temporary and Permanent Seeding (TS/PS) TS/PS-2 Urban Drainage and Flood Control District June 2012 Urban Storm Drainage Criteria Manual Volume 3 soil amendments and rototill them into the soil to a depth of 6 inches or more. Topsoil should be salvaged during grading operations for use and spread on areas to be revegetated later. Topsoil should be viewed as an important resource to be utilized for vegetation establishment, due to its water-holding capacity, structure, texture, organic matter content, biological activity, and nutrient content. The rooting depth of most native grasses in the semi-arid Denver metropolitan area is 6 to 18 inches. At a minimum, the upper 6 inches of topsoil should be stripped, stockpiled, and ultimately respread across areas that will be revegetated. Where topsoil is not available, subsoils should be amended to provide an appropriate plant-growth medium. Organic matter, such as well digested compost, can be added to improve soil characteristics conducive to plant growth. Other treatments can be used to adjust soil pH conditions when needed. Soil testing, which is typically inexpensive, should be completed to determine and optimize the types and amounts of amendments that are required. If the disturbed ground surface is compacted, rip or rototill the surface prior to placing topsoil. If adding compost to the existing soil surface, rototilling is necessary. Surface roughening will assist in placement of a stable topsoil layer on steeper slopes, and allow infiltration and root penetration to greater depth. Prior to seeding, the soil surface should be rough and the seedbed should be firm, but neither too loose nor compacted. The upper layer of soil should be in a condition suitable for seeding at the proper depth and conducive to plant growth. Seed-to-soil contact is the key to good germination. Seed Mix for Temporary Vegetation To provide temporary vegetative cover on disturbed areas which will not be paved, built upon, or fully landscaped or worked for an extended period (typically 30 days or more), plant an annual grass appropriate for the time of planting and mulch the planted areas. Annual grasses suitable for the Denver metropolitan area are listed in Table TS/PS-1. These are to be considered only as general recommendations when specific design guidance for a particular site is not available. Local governments typically specify seed mixes appropriate for their jurisdiction. Seed Mix for Permanent Revegetation To provide vegetative cover on disturbed areas that have reached final grade, a perennial grass mix should be established. Permanent seeding should be performed promptly (typically within 14 days) after reaching final grade. Each site will have different characteristics and a landscape professional or the local jurisdiction should be contacted to determine the most suitable seed mix for a specific site. In lieu of a specific recommendation, one of the perennial grass mixes appropriate for site conditions and growth season listed in Table TS/PS-2 can be used. The pure live seed (PLS) rates of application recommended in these tables are considered to be absolute minimum rates for seed applied using proper drill-seeding equipment. If desired for wildlife habitat or landscape diversity, shrubs such as rubber rabbitbrush (Chrysothamnus nauseosus), fourwing saltbush (Atriplex canescens) and skunkbrush sumac (Rhus trilobata) could be added to the upland seedmixes at 0.25, 0.5 and 1 pound PLS/acre, respectively. In riparian zones, planting root stock of such species as American plum (Prunus americana), woods rose (Rosa woodsii), plains cottonwood (Populus sargentii), and willow (Populus spp.) may be considered. On non-topsoiled upland sites, a legume such as Ladak alfalfa at 1 pound PLS/acre can be included as a source of nitrogen for perennial grasses. Temporary and Permanent Seeding (TS/PS) EC-2 June 2012 Urban Drainage and Flood Control District TS/PS-3 Urban Storm Drainage Criteria Manual Volume 3 Seeding dates for the highest success probability of perennial species along the Front Range are generally in the spring from April through early May and in the fall after the first of September until the ground freezes. If the area is irrigated, seeding may occur in summer months, as well. See Table TS/PS-3 for appropriate seeding dates. Table TS/PS-1. Minimum Drill Seeding Rates for Various Temporary Annual Grasses Speciesa (Common name) Growth Season b Pounds of Pure Live Seed (PLS)/acre c Planting Depth (inches) 1. Oats Cool 35 - 50 1 - 2 2. Spring wheat Cool 25 - 35 1 - 2 3. Spring barley Cool 25 - 35 1 - 2 4. Annual ryegrass Cool 10 - 15 ½ 5. Millet Warm 3 - 15 ½ - ¾ 6. Sudangrass Warm 5–10 ½ - ¾ 7. Sorghum Warm 5–10 ½ - ¾ 8. Winter wheat Cool 20–35 1 - 2 9. Winter barley Cool 20–35 1 - 2 10. Winter rye Cool 20–35 1 - 2 11. Triticale Cool 25–40 1 - 2 a Successful seeding of annual grass resulting in adequate plant growth will usually produce enough dead-plant residue to provide protection from wind and water erosion for an additional year. This assumes that the cover is not disturbed or mowed closer than 8 inches. Hydraulic seeding may be substituted for drilling only where slopes are steeper than 3:1 or where access limitations exist. When hydraulic seeding is used, hydraulic mulching should be applied as a separate operation, when practical, to prevent the seeds from being encapsulated in the mulch. b See Table TS/PS-3 for seeding dates. Irrigation, if consistently applied, may extend the use of cool season species during the summer months. c Seeding rates should be doubled if seed is broadcast, or increased by 50 percent if done using a Brillion Drill or by hydraulic seeding. EC-2 Temporary and Permanent Seeding (TS/PS) TS/PS-4 Urban Drainage and Flood Control District June 2012 Urban Storm Drainage Criteria Manual Volume 3 Table TS/PS-2. Minimum Drill Seeding Rates for Perennial Grasses Common a Name Botanical Name Growth Seasonb Growth Form Seeds/ Pound Pounds of PLS/acre Alakali Soil Seed Mix Alkali sacaton Sporobolus airoides Cool Bunch 1,750,000 0.25 Basin wildrye Elymus cinereus Cool Bunch 165,000 2.5 Sodar streambank wheatgrass Agropyron riparium 'Sodar' Cool Sod 170,000 2.5 Jose tall wheatgrass Agropyron elongatum 'Jose' Cool Bunch 79,000 7.0 Arriba western wheatgrass Agropyron smithii 'Arriba' Cool Sod 110,000 5.5 Total 17.75 Fertile Loamy Soil Seed Mix Ephriam crested wheatgrass Agropyron cristatum 'Ephriam' Cool Sod 175,000 2.0 Dural hard fescue Festuca ovina 'duriuscula' Cool Bunch 565,000 1.0 Lincoln smooth brome Bromus inermis leyss 'Lincoln' Cool Sod 130,000 3.0 Sodar streambank wheatgrass Agropyron riparium 'Sodar' Cool Sod 170,000 2.5 Arriba western wheatgrass Agropyron smithii 'Arriba' Cool Sod 110,000 7.0 Total 15.5 High Water Table Soil Seed Mix Meadow foxtail Alopecurus pratensis Cool Sod 900,000 0.5 Redtop Agrostis alba Warm Open sod 5,000,000 0.25 Reed canarygrass Phalaris arundinacea Cool Sod 68,000 0.5 Lincoln smooth brome Bromus inermis leyss 'Lincoln' Cool Sod 130,000 3.0 Pathfinder switchgrass Panicum virgatum 'Pathfinder' Warm Sod 389,000 1.0 Alkar tall wheatgrass Agropyron elongatum 'Alkar' Cool Bunch 79,000 5.5 Total 10.75 Transition Turf Seed Mixc Ruebens Canadian bluegrass Poa compressa 'Ruebens' Cool Sod 2,500,000 0.5 Dural hard fescue Festuca ovina 'duriuscula' Cool Bunch 565,000 1.0 Citation perennial ryegrass Lolium perenne 'Citation' Cool Sod 247,000 3.0 Lincoln smooth brome Bromus inermis leyss Temporary and Permanent Seeding (TS/PS) EC-2 June 2012 Urban Drainage and Flood Control District TS/PS-5 Urban Storm Drainage Criteria Manual Volume 3 Table TS/PS-2. Minimum Drill Seeding Rates for Perennial Grasses (cont.) Common Name Botanical Name Growth Seasonb Growth Form Seeds/ Pound Pounds of PLS/acre Sandy Soil Seed Mix Blue grama Bouteloua gracilis Warm Sod-forming bunchgrass 825,000 0.5 Camper little bluestem Schizachyrium scoparium 'Camper' Warm Bunch 240,000 1.0 Prairie sandreed Calamovilfa longifolia Warm Open sod 274,000 1.0 Sand dropseed Sporobolus cryptandrus Cool Bunch 5,298,000 0.25 Vaughn sideoats grama Bouteloua curtipendula 'Vaughn' Warm Sod 191,000 2.0 Arriba western wheatgrass Agropyron smithii 'Arriba' Cool Sod 110,000 5.5 Total 10.25 Heavy Clay, Rocky Foothill Seed Mix Ephriam crested wheatgrassd Agropyron cristatum 'Ephriam' Cool Sod 175,000 1.5 Oahe Intermediate wheatgrass Agropyron intermedium 'Oahe' Cool Sod 115,000 5.5 Vaughn sideoats gramae Bouteloua curtipendula 'Vaughn' Warm Sod 191,000 2.0 Lincoln smooth brome Bromus inermis leyss 'Lincoln' Cool Sod 130,000 3.0 Arriba western wheatgrass Agropyron smithii 'Arriba' Cool Sod 110,000 5.5 Total 17.5 a All of the above seeding mixes and rates are based on drill seeding followed by crimped straw mulch. These rates should be doubled if seed is broadcast and should be increased by 50 percent if the seeding is done using a Brillion Drill or is applied through hydraulic seeding. Hydraulic seeding may be substituted for drilling only where slopes are steeper than 3:1. If hydraulic seeding is used, hydraulic mulching should be done as a separate operation. b See Table TS/PS-3 for seeding dates. c If site is to be irrigated, the transition turf seed rates should be doubled. EC-2 Temporary and Permanent Seeding (TS/PS) TS/PS-6 Urban Drainage and Flood Control District June 2012 Urban Storm Drainage Criteria Manual Volume 3 Table TS/PS-3. Seeding Dates for Annual and Perennial Grasses Annual Grasses (Numbers in table reference species in Table TS/PS-1) Perennial Grasses Seeding Dates Warm Cool Warm Cool January 1–March 15 March 16–April 30 4 1,2,3 May 1–May 15 4 May 16–June 30 4,5,6,7 July 1–July 15 5,6,7 July 16–August 31 September 1–September 30 8,9,10,11 October 1–December 31 Mulch Cover seeded areas with mulch or an appropriate rolled erosion control product to promote establishment of vegetation. Anchor mulch by crimping, netting or use of a non-toxic tackifier. See the Mulching BMP Fact Sheet for additional guidance. Maintenance and Removal Monitor and observe seeded areas to identify areas of poor growth or areas that fail to germinate. Reseed and mulch these areas, as needed. An area that has been permanently seeded should have a good stand of vegetation within one growing season if irrigated and within three growing seasons without irrigation in Colorado. Reseed portions of the site that fail to germinate or remain bare after the first growing season. Seeded areas may require irrigation, particularly during extended dry periods. Targeted weed control may also be necessary. Protect seeded areas from construction equipment and vehicle access. Protection of Existing Vegetation (PV) SM-2 November 2010 Urban Drainage and Flood Control District PV-1 Urban Storm Drainage Criteria Manual Volume 3 Photograph PV-1. Protection of existing vegetation and a sensitive area. Photo courtesy of CDOT. Description Protection of existing vegetation on a construction site can be accomplished through installation of a construction fence around the area requiring protection. In cases where upgradient areas are disturbed, it may also be necessary to install perimeter controls to minimize sediment loading to sensitive areas such as wetlands. Existing vegetation may be designated for protection to maintain a stable surface cover as part of construction phasing, or vegetation may be protected in areas designated to remain in natural condition under post-development conditions (e.g., wetlands, mature trees, riparian areas, open space). Appropriate Uses Existing vegetation should be preserved for the maximum practical duration on a construction site through the use of effective construction phasing. Preserving vegetation helps to minimize erosion and can reduce revegetation costs following construction. Protection of wetland areas is required under the Clean Water Act, unless a permit has been obtained from the U.S. Army Corps of Engineers (USACE) allowing impacts in limited areas. If trees are to be protected as part of post-development landscaping, care must be taken to avoid several types of damage, some of which may not be apparent at the time of injury. Potential sources of injury include soil compaction during grading or due to construction traffic, direct equipment-related injury such as bark removal, branch breakage, surface grading and trenching, and soil cut and fill. In order to minimize injuries that may lead to immediate or later death of the tree, tree protection zones should be developed during site design, implemented at the beginning of a construction project, as well as continued during active construction. Design and Installation General Once an area has been designated as a preservation area, there should be no construction activity allowed within a set distance of the area. Clearly mark the area with construction fencing. Do not allow stockpiles, equipment, trailers or parking within the protected area. Guidelines to protect various types of existing vegetation follow. Protection of Existing Vegetation Functions Erosion Control Yes Sediment Control Moderate Site/Material Management Yes SM-2 Protection of Existing Vegetation (PV) PV-2 Urban Drainage and Flood Control District November 2010 Urban Storm Drainage Criteria Manual Volume 3 Surface Cover During Phased Construction Install construction fencing or other perimeter controls around areas to be protected from clearing and grading as part of construction phasing. Maintaining surface cover on steep slopes for the maximum practical duration during construction is recommended. Open Space Preservation Where natural open space areas will be preserved as part of a development, it is important to install construction fencing around these areas to protect them from compaction. This is particularly important when areas with soils with high infiltration rates are preserved as part of LID designs. Preserved open space areas should not be used for staging and equipment storage. Wetlands and Riparian Areas Install a construction fence around the perimeter of the wetland or riparian (streamside vegetation) area to prevent access by equipment. In areas downgradient of disturbed areas, install a perimeter control such as silt fence, sediment control logs, or similar measure to minimize sediment loading to the wetland. Tree Protection 1 Before beginning construction operations, establish a tree protection zone around trees to be preserved by installing construction fences. Allow enough space from the trunk to protect the root zone from soil compaction and mechanical damage, and the branches from mechanical damage (see Table PV-1). If low branches will be kept, place the fence outside of the drip line. Where this is not possible, place fencing as far away from the trunk as possible. In order to maintain a healthy tree, be aware that about 60 percent of the tree's root zone extends beyond the drip line. Table PV-1 Guidelines for Determining the Tree Protection Zone (Source: Matheny and Clark, 1998; as cited in GreenCO and WWE 2008) Distance from Trunk (ft) per inch of DBH Species Tolerance to Damage Young Mature Over mature Good 0.5' 0.75' 1.0' Moderate 0.75' 1.0' 1.25' Poor 1.0' 1.25' 1.5' Notes: DBH = diameter at breast height (4.5 ft above grade); Young = <20% of life expectancy; Mature = 20%-80% of life expectancy; Over mature =>80% of life expectancy Most tree roots grow within the top 12 to 18 inches of soil. Grade changes within the tree protection zone should be avoided where possible because seemingly minor grade changes can either smother 1 Tree Protection guidelines adapted from GreenCO and WWE (2008). Green Industry Best Management Practices (BMPs) for the Conservation and Protection of Water Resources in Colorado: Moving Toward Sustainability, Third Release. See www.greenco.org for more detailed guidance on tree preservation. Protection of Existing Vegetation (PV) SM-2 November 2010 Urban Drainage and Flood Control District PV-3 Urban Storm Drainage Criteria Manual Volume 3 roots (in fill situations) or damage roots (in cut situations). Consider small walls where needed to avoid grade changes in the tree protection zone. Place and maintain a layer of mulch 4 to 6-inch thick from the tree trunk to the fencing, keeping a 6-inch space between the mulch and the trunk. Mulch helps to preserve moisture and decrease soil compaction if construction traffic is unavoidable. When planting operations are completed, the mulch may be reused throughout planting areas. Limit access, if needed at all, and appoint one route as the main entrance and exit to the tree protection zone. Within the tree protection zone, do not allow any equipment to be stored, chemicals to be dumped, or construction activities to take place except fine grading, irrigation system installation, and planting operations. These activities should be conducted in consultation with a landscaping professional, following Green Industry BMPs. Be aware that soil compaction can cause extreme damage to tree health that may appear gradually over a period of years. Soil compaction is easier to prevent than repair. Maintenance and Removal Repair or replace damaged or displaced fencing or other protective barriers around the vegetated area. If damage occurs to a tree, consult an arborist for guidance on how to care for the tree. If a tree in a designated preservation area is damaged beyond repair, remove and replace with a 2-inch diameter tree of the same or similar species. Construction equipment must not enter a wetland area, except as permitted by the U.S. Army Corps of Engineers (USACE). Inadvertent placement of fill in a wetland is a 404 permit violation and will require notification of the USACE. If damage to vegetation occurs in a protected area, reseed the area with the same or similar species, following the recommendations in the USDCM Revegetation chapter. Stockpile Management (SP) MM-2 November 2010 Urban Drainage and Flood Control District SP-1 Urban Storm Drainage Criteria Manual Volume 3 Photograph SP-1. A topsoil stockpile that has been partially revegetated and is protected by silt fence perimeter control. Description Stockpile management includes measures to minimize erosion and sediment transport from soil stockpiles. Appropriate Uses Stockpile management should be used when soils or other erodible materials are stored at the construction site. Special attention should be given to stockpiles in close proximity to natural or manmade storm systems. Design and Installation Locate stockpiles away from all drainage system components including storm sewer inlets. Where practical, choose stockpile locations that that will remain undisturbed for the longest period of time as the phases of construction progress. Place sediment control BMPs around the perimeter of the stockpile, such as sediment control logs, rock socks, silt fence, straw bales and sand bags. See Detail SP-1 for guidance on proper establishment of perimeter controls around a stockpile. For stockpiles in active use, provide a stabilized designated access point on the upgradient side of the stockpile. Stabilize the stockpile surface with surface roughening, temporary seeding and mulching, erosion control blankets, or soil binders. Soils stockpiled for an extended period (typically for more than 60 days) should be seeded and mulched with a temporary grass cover once the stockpile is placed (typically within 14 days). Use of mulch only or a soil binder is acceptable if the stockpile will be in place for a more limited time period (typically 30-60 days). Timeframes for stabilization of stockpiles noted in this fact sheet are "typical" guidelines. Check permit requirements for specific federal, state, and/or local requirements that may be more prescriptive. Stockpiles should not be placed in streets or paved areas unless no other practical alternative exists. See the Stabilized Staging Area Fact Sheet for guidance when staging in roadways is unavoidable due to space or right-of-way constraints. For paved areas, rock socks must be used for perimeter control and all inlets with the potential to receive sediment from the stockpile (even from vehicle tracking) must be protected. Maintenance and Removal Inspect perimeter controls and inlet protection in accordance with their respective BMP Fact Sheets. Where seeding, mulch and/or soil binders are used, reseeding or reapplication of soil binder may be necessary. When temporary removal of a perimeter BMP is necessary to access a stockpile, ensure BMPs are reinstalled in accordance with their respective design detail section. Stockpile Management Functions Erosion Control Yes Sediment Control Yes Site/Material Management Yes MM-2 Stockpile Management (SM) SP-2 Urban Drainage and Flood Control District November 2010 Urban Storm Drainage Criteria Manual Volume 3 When the stockpile is no longer needed, properly dispose of excess materials and revegetate or otherwise stabilize the ground surface where the stockpile was located. Stockpile Management (SP) MM-2 November 2010 Urban Drainage and Flood Control District SP-3 Urban Storm Drainage Criteria Manual Volume 3 MM-2 Stockpile Management (SM) SP-4 Urban Drainage and Flood Control District November 2010 Urban Storm Drainage Criteria Manual Volume 3 Stockpile Management (SP) MM-2 November 2010 Urban Drainage and Flood Control District SP-5 Urban Storm Drainage Criteria Manual Volume 3 MM-2 Stockpile Management (SM) SP-6 Urban Drainage and Flood Control District November 2010 Urban Storm Drainage Criteria Manual Volume 3 Mulching (MU) EC-4 June 2012 Urban Drainage and Flood Control District MU-1 Urban Storm Drainage Criteria Manual Volume 3 Photograph MU-1. An area that was recently seeded, mulched, and crimped. Description Mulching consists of evenly applying straw, hay, shredded wood mulch, rock, bark or compost to disturbed soils and securing the mulch by crimping, tackifiers, netting or other measures. Mulching helps reduce erosion by protecting bare soil from rainfall impact, increasing infiltration, and reducing runoff. Although often applied in conjunction with temporary or permanent seeding, it can also be used for temporary stabilization of areas that cannot be reseeded due to seasonal constraints. Mulch can be applied either using standard mechanical dry application methods or using hydromulching equipment that hydraulically applies a slurry of water, wood fiber mulch, and often a tackifier. Appropriate Uses Use mulch in conjunction with seeding to help protect the seedbed and stabilize the soil. Mulch can also be used as a temporary cover on low to mild slopes to help temporarily stabilize disturbed areas where growing season constraints prevent effective reseeding. Disturbed areas should be properly mulched and tacked, or seeded, mulched and tacked promptly after final grade is reached (typically within no longer than 14 days) on portions of the site not otherwise permanently stabilized. Standard dry mulching is encouraged in most jurisdictions; however, hydromulching may not be allowed in certain jurisdictions or may not be allowed near waterways. Do not apply mulch during windy conditions. Design and Installation Prior to mulching, surface-roughen areas by rolling with a crimping or punching type roller or by track walking. Track walking should only be used where other methods are impractical because track walking with heavy equipment typically compacts the soil. A variety of mulches can be used effectively at construction sites. Consider the following: Mulch Functions Erosion Control Yes Sediment Control Moderate Site/Material Management No EC-4 Mulching (MU) MU-2 Urban Drainage and Flood Control District June 2012 Urban Storm Drainage Criteria Manual Volume 3 Clean, weed-free and seed-free cereal grain straw should be applied evenly at a rate of 2 tons per acre and must be tacked or fastened by a method suitable for the condition of the site. Straw mulch must be anchored (and not merely placed) on the surface. This can be accomplished mechanically by crimping or with the aid of tackifiers or nets. Anchoring with a crimping implement is preferred, and is the recommended method for areas flatter than 3:1. Mechanical crimpers must be capable of tucking the long mulch fibers into the soil to a depth of 3 inches without cutting them. An agricultural disk, while not an ideal substitute, may work if the disk blades are dull or blunted and set vertically; however, the frame may have to be weighted to afford proper soil penetration. Grass hay may be used in place of straw; however, because hay is comprised of the entire plant including seed, mulching with hay may seed the site with non-native grass species which might in turn out-compete the native seed. Alternatively, native species of grass hay may be purchased, but can be difficult to find and are more expensive than straw. Purchasing and utilizing a certified weed-free straw is an easier and less costly mulching method. When using grass hay, follow the same guidelines as for straw (provided above). On small areas sheltered from the wind and heavy runoff, spraying a tackifier on the mulch is satisfactory for holding it in place. For steep slopes and special situations where greater control is needed, erosion control blankets anchored with stakes should be used instead of mulch. Hydraulic mulching consists of wood cellulose fibers mixed with water and a tackifying agent and should be applied at a rate of no less than 1,500 pounds per acre (1,425 lbs of fibers mixed with at least 75 lbs of tackifier) with a hydraulic mulcher. For steeper slopes, up to 2000 pounds per acre may be required for effective hydroseeding. Hydromulch typically requires up to 24 hours to dry; therefore, it should not be applied immediately prior to inclement weather. Application to roads, waterways and existing vegetation should be avoided. Erosion control mats, blankets, or nets are recommended to help stabilize steep slopes (generally 3:1 and steeper) and waterways. Depending on the product, these may be used alone or in conjunction with grass or straw mulch. Normally, use of these products will be restricted to relatively small areas. Biodegradable mats made of straw and jute, straw-coconut, coconut fiber, or excelsior can be used instead of mulch. (See the ECM/TRM BMP for more information.) Some tackifiers or binders may be used to anchor mulch. Check with the local jurisdiction for allowed tackifiers. Manufacturer's recommendations should be followed at all times. (See the Soil Binder BMP for more information on general types of tackifiers.) Rock can also be used as mulch. It provides protection of exposed soils to wind and water erosion and allows infiltration of precipitation. An aggregate base course can be spread on disturbed areas for temporary or permanent stabilization. The rock mulch layer should be thick enough to provide full coverage of exposed soil on the area it is applied. Maintenance and Removal After mulching, the bare ground surface should not be more than 10 percent exposed. Reapply mulch, as needed, to cover bare areas. Wind Erosion/Dust Control (DC) EC-14 November 2010 Urban Drainage and Flood Control District DC-1 Urban Storm Drainage Criteria Manual Volume 3 Photograph DC-1. Water truck used for dust suppression. Photo courtesy of Douglas County. Description Wind erosion and dust control BMPs help to keep soil particles from entering the air as a result of land disturbing construction activities. These BMPs include a variety of practices generally focused on either graded disturbed areas or construction roadways. For graded areas, practices such as seeding and mulching, use of soil binders, site watering, or other practices that provide prompt surface cover should be used. For construction roadways, road watering and stabilized surfaces should be considered. Appropriate Uses Dust control measures should be used on any site where dust poses a problem to air quality. Dust control is important to control for the health of construction workers and surrounding waterbodies. Design and Installation The following construction BMPs can be used for dust control: An irrigation/sprinkler system can be used to wet the top layer of disturbed soil to help keep dry soil particles from becoming airborne. Seeding and mulching can be used to stabilize disturbed surfaces and reduce dust emissions. Protecting existing vegetation can help to slow wind velocities across the ground surface, thereby limiting the likelihood of soil particles to become airborne. Spray-on soil binders form a bond between soil particles keeping them grounded. Chemical treatments may require additional permitting requirements. Potential impacts to surrounding waterways and habitat must be considered prior to use. Placing rock on construction roadways and entrances will help keep dust to a minimum across the construction site. Wind fences can be installed on site to reduce wind speeds. Install fences perpendicular to the prevailing wind direction for maximum effectiveness. Maintenance and Removal When using an irrigation/sprinkler control system to aid in dust control, be careful not to overwater. Overwatering will cause construction vehicles to track mud off-site. Wind Erosion Control/ Dust Control Functions Erosion Control Yes Sediment Control No Site/Material Management Moderate Street Sweeping and Vacuuming (SS) SM-7 November 2010 Urban Drainage and Flood Control District SS-1 Urban Storm Drainage Criteria Manual Volume 3 Photograph SS-1. A street sweeper removes sediment and potential pollutants along the curb line at a construction site. Photo courtesy of Tom Gore. Description Street sweeping and vacuuming remove sediment that has been tracked onto roadways to reduce sediment transport into storm drain systems or a surface waterway. Appropriate Uses Use this practice at construction sites where vehicles may track sediment offsite onto paved roadways. Design and Installation Street sweeping or vacuuming should be conducted when there is noticeable sediment accumulation on roadways adjacent to the construction site. Typically, this will be concentrated at the entrance/exit to the construction site. Well-maintained stabilized construction entrances, vehicle tracking controls and tire wash facilities can help reduce the necessary frequency of street sweeping and vacuuming. On smaller construction sites, street sweeping can be conducted manually using a shovel and broom. Never wash accumulated sediment on roadways into storm drains. Maintenance and Removal Inspect paved roads around the perimeter of the construction site on a daily basis and more frequently, as needed. Remove accumulated sediment, as needed. Following street sweeping, check inlet protection that may have been displaced during street sweeping. Inspect area to be swept for materials that may be hazardous prior to beginning sweeping operations. Street Sweeping/ Vacuuming Functions Erosion Control No Sediment Control Yes Site/Material Management Yes Paving and Grinding Operations (PGO) SM-12 November 2010 Urban Drainage and Flood Control District PGO-1 Urban Storm Drainage Criteria Manual Volume 3 Photograph PGO-1. Paving operations on a Colorado highway. Photo courtesy of CDOT. Description Manage runoff from paving and grinding operations to reduce pollutants entering storm drainage systems and natural drainageways. Appropriate Uses Use runoff management practices during all paving and grinding operations such as surfacing, resurfacing, and saw cutting. Design and Installation There are a variety of management strategies that can be used to manage runoff from paving and grinding operations: Establish inlet protection for all inlets that could potentially receive runoff. Schedule paving operations when dry weather is forecasted. Keep spill kits onsite for equipment spills and keep drip pans onsite for stored equipment. Install perimeter controls when asphalt material is used on embankments or shoulders near waterways, drainages, or inlets. Do not wash any paved surface into receiving storm drain inlets or natural drainageways. Instead, loose material should be swept or vacuumed following paving and grinding operations. Store materials away from drainages or waterways. Recycle asphalt and pavement material when feasible. Material that cannot be recycled must be disposed of in accordance with applicable regulations. See BMP Fact Sheets for Inlet Protection, Silt Fence and other perimeter controls selected for use during paving and grinding operations. Maintenance and Removal Perform maintenance and removal of inlet protection and perimeter controls in accordance with their respective fact sheets. Promptly respond to spills in accordance with the spill prevention and control plan. Paving and Grinding Operations Functions Erosion Control No Sediment Control No Site/Material Management Yes Good Housekeeping Practices (GH) MM-3 November 2010 Urban Drainage and Flood Control District GH-1 Urban Storm Drainage Criteria Manual Volume 3 Photographs GH-1 and GH-2. Proper materials storage and secondary containment for fuel tanks are important good housekeeping practices. Photos courtesy of CDOT and City of Aurora. Description Implement construction site good housekeeping practices to prevent pollution associated with solid, liquid and hazardous construction-related materials and wastes. Stormwater Management Plans (SWMPs) should clearly specify BMPs including these good housekeeping practices: Provide for waste management. Establish proper building material staging areas. Designate paint and concrete washout areas. Establish proper equipment/vehicle fueling and maintenance practices. Control equipment/vehicle washing and allowable non- stormwater discharges. Develop a spill prevention and response plan. Acknowledgement: This Fact Sheet is based directly on EPA guidance provided in Developing Your Stormwater Pollution Prevent Plan (EPA 2007). Appropriate Uses Good housekeeping practices are necessary at all construction sites. Design and Installation The following principles and actions should be addressed in SWMPs: Provide for Waste Management. Implement management procedures and practices to prevent or reduce the exposure and transport of pollutants in stormwater from solid, liquid and sanitary wastes that will be generated at the site. Practices such as trash disposal, recycling, proper material handling, and cleanup measures can reduce the potential for stormwater runoff to pick up construction site wastes and discharge them to surface waters. Implement a comprehensive set of waste-management practices for hazardous or toxic materials, such as paints, solvents, petroleum products, pesticides, wood preservatives, acids, roofing tar, and other materials. Practices should include storage, handling, inventory, and cleanup procedures, in case of spills. Specific practices that should be considered include: Solid or Construction Waste o Designate trash and bulk waste-collection areas on- site. Good Housekeeping Functions Erosion Control No Sediment Control No Site/Material Management Yes MM-3 Good Housekeeping Practices (GH) GH-2 Urban Drainage and Flood Control District November 2010 Urban Storm Drainage Criteria Manual Volume 3 Photograph GH-3. Locate portable toilet facilities on level surfaces away from waterways and storm drains. Photo courtesy of WWE. o Recycle materials whenever possible (e.g., paper, wood, concrete, oil). o Segregate and provide proper disposal options for hazardous material wastes. o Clean up litter and debris from the construction site daily. o Locate waste-collection areas away from streets, gutters, watercourses, and storm drains. Waste- collection areas (dumpsters, and such) are often best located near construction site entrances to minimize traffic on disturbed soils. Consider secondary containment around waste collection areas to minimize the likelihood of contaminated discharges. o Empty waste containers before they are full and overflowing. Sanitary and Septic Waste o Provide convenient, well-maintained, and properly located toilet facilities on-site. o Locate toilet facilities away from storm drain inlets and waterways to prevent accidental spills and contamination of stormwater. o Maintain clean restroom facilities and empty portable toilets regularly. o Where possible, provide secondary containment pans under portable toilets. o Provide tie-downs or stake-downs for portable toilets. o Educate employees, subcontractors, and suppliers on locations of facilities. o Treat or dispose of sanitary and septic waste in accordance with state or local regulations. Do not discharge or bury wastewater at the construction site. o Inspect facilities for leaks. If found, repair or replace immediately. o Special care is necessary during maintenance (pump out) to ensure that waste and/or biocide are not spilled on the ground. Hazardous Materials and Wastes o Develop and implement employee and subcontractor education, as needed, on hazardous and toxic waste handling, storage, disposal, and cleanup. o Designate hazardous waste-collection areas on-site. o Place all hazardous and toxic material wastes in secondary containment. Good Housekeeping Practices (GH) MM-3 November 2010 Urban Drainage and Flood Control District GH-3 Urban Storm Drainage Criteria Manual Volume 3 o Hazardous waste containers should be inspected to ensure that all containers are labeled properly and that no leaks are present. Establish Proper Building Material Handling and Staging Areas. The SWMP should include comprehensive handling and management procedures for building materials, especially those that are hazardous or toxic. Paints, solvents, pesticides, fuels and oils, other hazardous materials or building materials that have the potential to contaminate stormwater should be stored indoors or under cover whenever possible or in areas with secondary containment. Secondary containment measures prevent a spill from spreading across the site and may include dikes, berms, curbing, or other containment methods. Secondary containment techniques should also ensure the protection of groundwater. Designate staging areas for activities such as fueling vehicles, mixing paints, plaster, mortar, and other potential pollutants. Designated staging areas enable easier monitoring of the use of materials and clean up of spills. Training employees and subcontractors is essential to the success of this pollution prevention principle. Consider the following specific materials handling and staging practices: o Train employees and subcontractors in proper handling and storage practices. o Clearly designate site areas for staging and storage with signs and on construction drawings. Staging areas should be located in areas central to the construction site. Segment the staging area into sub-areas designated for vehicles, equipment, or stockpiles. Construction entrances and exits should be clearly marked so that delivery vehicles enter/exit through stabilized areas with vehicle tracking controls (See Vehicle Tracking Control Fact Sheet). o Provide storage in accordance with Spill Protection, Control and Countermeasures (SPCC) requirements and plans and provide cover and impermeable perimeter control, as necessary, for hazardous materials and contaminated soils that must be stored on site. o Ensure that storage containers are regularly inspected for leaks, corrosion, support or foundation failure, or other signs of deterioration and tested for soundness. o Reuse and recycle construction materials when possible. Designate Concrete Washout Areas. Concrete contractors should be encouraged to use the washout facilities at their own plants or dispatch facilities when feasible; however, concrete washout commonly occurs on construction sites. If it is necessary to provide for concrete washout areas on- site, designate specific washout areas and design facilities to handle anticipated washout water. Washout areas should also be provided for paint and stucco operations. Because washout areas can be a source of pollutants from leaks or spills, care must be taken with regard to their placement and proper use. See the Concrete Washout Area Fact Sheet for detailed guidance. Both self-constructed and prefabricated washout containers can fill up quickly when concrete, paint, and stucco work are occurring on large portions of the site. Be sure to check for evidence that contractors are using the washout areas and not dumping materials onto the ground or into drainage facilities. If the washout areas are not being used regularly, consider posting additional signage, relocating the facilities to more convenient locations, or providing training to workers and contractors. When concrete, paint, or stucco is part of the construction process, consider these practices which will help prevent contamination of stormwater. Include the locations of these areas and the maintenance and inspection procedures in the SWMP. MM-3 Good Housekeeping Practices (GH) GH-4 Urban Drainage and Flood Control District November 2010 Urban Storm Drainage Criteria Manual Volume 3 o Do not washout concrete trucks or equipment into storm drains, streets, gutters, uncontained areas, or streams. Only use designated washout areas. o Establish washout areas and advertise their locations with signs. Ensure that signage remains in good repair. o Provide adequate containment for the amount of wash water that will be used. o Inspect washout structures daily to detect leaks or tears and to identify when materials need to be removed. o Dispose of materials properly. The preferred method is to allow the water to evaporate and to recycle the hardened concrete. Full service companies may provide dewatering services and should dispose of wastewater properly. Concrete wash water can be highly polluted. It should not be discharged to any surface water, storm sewer system, or allowed to infiltrate into the ground in the vicinity of waterbodies. Washwater should not be discharged to a sanitary sewer system without first receiving written permission from the system operator. Establish Proper Equipment/Vehicle Fueling and Maintenance Practices. Create a clearly designated on-site fueling and maintenance area that is clean and dry. The on-site fueling area should have a spill kit, and staff should know how to use it. If possible, conduct vehicle fueling and maintenance activities in a covered area. Consider the following practices to help prevent the discharge of pollutants to stormwater from equipment/vehicle fueling and maintenance. Include the locations of designated fueling and maintenance areas and inspection and maintenance procedures in the SWMP. o Train employees and subcontractors in proper fueling procedures (stay with vehicles during fueling, proper use of pumps, emergency shutoff valves, etc.). o Inspect on-site vehicles and equipment regularly for leaks, equipment damage, and other service problems. o Clearly designate vehicle/equipment service areas away from drainage facilities and watercourses to prevent stormwater run-on and runoff. o Use drip pans, drip cloths, or absorbent pads when replacing spent fluids. o Collect all spent fluids, store in appropriate labeled containers in the proper storage areas, and recycle fluids whenever possible. Control Equipment/Vehicle Washing and Allowable Non-Stormwater Discharges. Implement practices to prevent contamination of surface and groundwater from equipment and vehicle wash water. Representative practices include: o Educate employees and subcontractors on proper washing procedures. o Use off-site washing facilities, when available. o Clearly mark the washing areas and inform workers that all washing must occur in this area. o Contain wash water and treat it using BMPs. Infiltrate washwater when possible, but maintain separation from drainage paths and waterbodies. Good Housekeeping Practices (GH) MM-3 November 2010 Urban Drainage and Flood Control District GH-5 Urban Storm Drainage Criteria Manual Volume 3 o Use high-pressure water spray at vehicle washing facilities without detergents. Water alone can remove most dirt adequately. o Do not conduct other activities, such as vehicle repairs, in the wash area. o Include the location of the washing facilities and the inspection and maintenance procedures in the SWMP. Develop a Spill Prevention and Response Plan. Spill prevention and response procedures must be identified in the SWMP. Representative procedures include identifying ways to reduce the chance of spills, stop the source of spills, contain and clean up spills, dispose of materials contaminated by spills, and train personnel responsible for spill prevention and response. The plan should also specify material handling procedures and storage requirements and ensure that clear and concise spill cleanup procedures are provided and posted for areas in which spills may potentially occur. When developing a spill prevention plan, include the following: o Note the locations of chemical storage areas, storm drains, tributary drainage areas, surface waterbodies on or near the site, and measures to stop spills from leaving the site. o Provide proper handling and safety procedures for each type of waste. Keep Material Safety Data Sheets (MSDSs) for chemical used on site with the SWMP. o Establish an education program for employees and subcontractors on the potential hazards to humans and the environment from spills and leaks. o Specify how to notify appropriate authorities, such as police and fire departments, hospitals, or municipal sewage treatment facilities to request assistance. Emergency procedures and contact numbers should be provided in the SWMP and posted at storage locations. o Describe the procedures, equipment and materials for immediate cleanup of spills and proper disposal. o Identify personnel responsible for implementing the plan in the event of a spill. Update the spill prevention plan and clean up materials as changes occur to the types of chemicals stored and used at the facility. MM-3 Good Housekeeping Practices (GH) GH-6 Urban Drainage and Flood Control District November 2010 Urban Storm Drainage Criteria Manual Volume 3 Maintenance and Removal Effective implementation of good housekeeping practices is dependent on clear designation of personnel responsible for supervising and implementing good housekeeping programs, such as site cleanup and disposal of trash and debris, hazardous material management and disposal, vehicle and equipment maintenance, and other practices. Emergency response "drills" may aid in emergency preparedness. Checklists may be helpful in good housekeeping efforts. Staging and storage areas require permanent stabilization when the areas are no longer being used for construction-related activities. Construction-related materials, debris and waste must be removed from the construction site once construction is complete. Design Details See the following Fact Sheets for related Design Details: MM-1 Concrete Washout Area MM-2 Stockpile Management SM-4 Vehicle Tracking Control Design details are not necessary for other good housekeeping practices; however, be sure to designate where specific practices will occur on the appropriate construction drawings. APPENDIX C LANDSCAPE PLAN APPENDIX D COPIES OF PERMITS/APPLICATIONS APPENDIX E INSPECTION LOGS APPENDIX F CONTRACTOR INSERTS APPENDIX G CONTRACTOR INSERTS d Crested wheatgrass should not be used on slopes steeper than 6H to 1V. e Can substitute 0.5 lbs PLS of blue grama for the 2.0 lbs PLS of Vaughn sideoats grama. 'Lincoln' Cool Sod 130,000 3.0 Total 7.5 5:1 0.25 lbs/ft2 (12 Pa) 25 lbs/ft (0.36 kN/m) 24 months Erosion Control Blankets & Open Weave Textiles (slowly degrading) 1.5:1 (H:V) ≤0.25 @ 1.5:1 2.00 lbs/ft2 (96 Pa) 100 lbs/ft (1.45 kN/m) 24 months Erosion Control Blankets & Open Weave Textiles 1:1 (H:V) ≤0.25 @ 1:1 2.25 lbs/ft2 (108 Pa) 125 lbs/ft (1.82 kN/m) 36 months * C Factor and shear stress for mulch control nettings must be obtained with netting used in conjunction with pre-applied mulch material. (See Section 5.3 of Chapter 7 Construction BMPs for more information on the C Factor.) 1 Minimum Average Roll Values, Machine direction using ECTC Mod. ASTM D 5035. 2 C Factor calculated as ratio of soil loss from RECP protected slope (tested at specified or greater gradient, H:V) to ratio of soil loss from unprotected (control) plot in large-scale testing. 3 Required minimum shear stress RECP (unvegetated) can sustain without physical damage or excess erosion (> 12.7 mm (0.5 in) soil loss) during a 30-minute flow event in large-scale testing. 4 The permissible shear stress levels established for each performance category are based on historical experience with products characterized by Manning's roughness coefficients in the range of 0.01 - 0.05. 5 Acceptable large-scale test methods may include ASTM D 6459, or other independent testing deemed acceptable by the engineer. 6 Per the engineer’s discretion. Recommended acceptable large-scale testing protocol may include ASTM D 6460, or other independent testing deemed acceptable by the engineer. WATTLE "A" WATTLE "B" 1' 2' TYP. 1' 1' W2 NOTES: INSTALLATION: STAKES SHOULD BE DRIVEN ACROSS FROM EACH OTHER AND ON EACH SIDE OF THE WATTLE. LEAVING 4"-6" OF STAKE PROTRUDING ABOVE THE WATTLE. BAILING WIRE OR NYLON ROPE SHOULD BE TIED TO THE STAKES ACROSS THE WATTLE. STAKES SHOULD THEN BE DRIVEN UNTIL THE BAILING WIRE OR NYLON ROPE IS SUFFICIENTLY SNUG TO THE WATTLE. WHEN INSTALLING RUNNING LENGTHS OF WATTLES, TO PREVENT SHIFTING, BUTT THE SECOND WATTLE TIGHTLY AGAINST THE FIRST. DO NOT OVERLAP THE ENDS. STAKES SHOULD BE DRIVEN 1 FT. FROM END, ACROSS FROM AND ON EACH SIDE OF WATTLE LEAVING 4"-6" OF STAKE PROTRUDING ABOVE THE WATTLE. BAILING WIRE OR NYLON ROPE SHOULD BE TIED TO STAKES IN AN HOUR GLASS FORMATION (FRONT TO BACK OF WATTLE "A", ACROSS TO FRONT OF WATTLE "B", ACROSS TO BACK AND BACK TO FRONT OF WATTLE "A"). STAKES SHOULD THEN BE DRIVEN IN UNTIL BAILING WIRE OR NYLON ROPE IS SUFFICIENTLY SNUG TO THE WATTLE. W1 & W2 INSTALLATION NOTES: 1. THE LOCATION AND LENGTH OF WATTLE IS DEPENDENT ON THE CONDITIONS OF EACH SITE. 2. WATTLES SHALL BE INSTALLED PRIOR TO ANY LAND-DISTURBING ACTIVITIES. 3. WATTLES SHALL CONSIST OF STRAW, COMPOST, EXCELSIOR, OR COCONUT FIBER. 4. NOT FOR USE IN CONCENTRATED FLOW AREAS. 5. THE WATTLES SHALL BE TRENCHED INTO THE GROUND A MINIMUM OF TWO (2) INCHES. 6. WATTLES SHALL BE INSTALLED PER MANUFACTURERS SPECIFICATIONS. 7. ON SLOPES, WATTLES SHOULD BE INSTALLED ON CONTOUR WITH A SLIGHT DOWNWARD ANGLE AT THE END OF THE ROW IN ORDER TO PREVENT PONDING AT THE MID SECTION. 8. RUNNING LENGTHS OF WATTLES SHOULD BE ABUTTED FIRMLY TO ENSURE NO LEAKAGE AT THE ABUTMENTS. 9. SPACING - DOWNSLOPE: 10. VERTICAL SPACING FOR SLOPE INSTALLATIONS SHOULD BE DETERMINED BY SITE CONDITIONS. SLOPE GRADIENT AND SOIL TYPE ARE THE MAIN FACTORS. A GOOD RULE OF THUMB IS: 1:1 SLOPES = 10 FEET APART 2:1 SLOPES = 20 FEET APART 3:1 SLOPES = 30 FEET APART 4:1 SLOPES = 40 FEET APART, ETC. 11. HOWEVER, ADJUSTMENTS MAY HAVE TO BE MADE FOR THE SOIL TYPE: FOR SOFT, LOAMY SOILS - ADJUST THE ROWS CLOSER TOGETHER; FOR HARD, ROCKY SOILS - ADJUST THE ROWS FURTHER APART. A SECONDARY WATTLE PLACED BEHIND THE ABUTMENT OF TWO WATTLES IS ENCOURAGED ON STEEP SLOPES OR WHERE JOINTS HAVE FAILED IN THE PAST. 12. STAKING: THE CITY RECOMMENDS USING WOOD STAKES TO SECURE THE WATTLES. 1/2" TO 5/8" REBAR IS ALSO ACCEPTABLE. BE SURE TO USE A STAKE THAT IS LONG ENOUGH TO PROTRUDE SEVERAL INCHES ABOVE THE WATTLE: 18" IS A GOOD LENGTH FOR HARD, ROCKY SOIL. FOR SOFT LOAMY SOIL USE A 24" STAKE. 1"x 1" WOOD STAKES 18"-24" ENDS OF ADJACENT WATTLES SHALL BE TIGHTLY ABUTTED TO PREVENT SEDIMENT BYPASS W2 NOTE: ONLY WATTLES MADE WITH COCONUT FIBERS SHALL BE USED WHEN INSTALLATION COMES IN CONTACT WITH A WATER BODY. WP CONCRETE WASHOUT AREA CWA 2 3 ROCK SOCK DETAIL ROCK SOCK SECTION ROCK SOCK PLAN ROCK SOCK JOINTING GRADATION TABLE SIEVE SIZE MASS PERCENT PASSING SQUARE MESH SIEVES NO. 4 2" 100 1-1/2" 90-100 1" 20-55 3/4" 0-15 3/8" 0-5 MATCHES SPECIFICATIONS FOR NO. 4 COARSE AGGREGATE FOR CONCRETE PER AASHTO M43. ALL ROCK SHALL BE FRACTURED FACE, ALL SIDES RS VEHICLE CONTROL TRACKING PAD VTC 4 AT PIPE OUTLET AREAS OF STREAMS AND DRAINAGE CHANNELS - DETAIL A IN DIVERSION DITCH OR SMALL DITCH DRAINAGE WAY - DETAIL B OUTSIDE OF STREAMS AND DRAINAGE CHANNELS - DETAIL C ANCHOR DETAILS PERIMETER ANCHOR TRENCH JOINT ANCHOR TRENCH INTERMEDIATE ANCHOR TRENCH OVERLAPPING JOINT WOOD STAKE DETAIL MINIMUM THICKNESS 1" USE 2x4 MATERIAL FOR STAKES JOINT ANCHOR TRENCH, TYP. PERIMETER ANCHOR TRENCH, TYP. TOP OF CHANNEL BANK TYPE OF BLANKET AS INDICATED IN PLAN VIEW, IN ALL DISTURBED AREAS OF STREAMS AND DRAINAGE CHANNELS TO DEPTH "D" ABOVE CHANNEL INVERT. BLANKET SHALL GENERALLY BE ORIENTED PARALLEL TO FLOW DIRECTION. STAKING PATTERN SHALL MATCH BLANKET TYPE. UNDISTURBED SOIL TYPE OF BLANKET, PER MANUFACTURER SPEC. OR TYPE 2 OR 3 STAKING INDICATED IN PLAN VIEW (MATCH SPECIFIED BLANKET TYPE) SEE THE STAKING PATTERNS DETAIL ON NEXT SHEET PERIMETER ANCHOR TRENCH, TYP. JOINT ANCHOR TRENCH, TYP. COMPACTED SUBGRADE 1 >3 THE BLANKET SHALL BE EXTENDED TO THE TOP OF CHANNEL "D" 6" TOPSOIL "M" OVERLAPPING JOINT, SEE DETAIL ON THIS SHEET STAGGER OVERLAPS PERIMETER ANCHOR TRENCH SEE DETAIL ON THIS SHEET PER MANUFACTURER SPEC. OR TYPE 1 STAKING SEE THE STAKING PATTERN DETAIL ON NEXT SHEET BLANKET SHALL BE 100% STRAW MIN. DIVERSION DITCH TYPICALLY AT TOP OF SLOPE 6" TOPSOIL 6" MIN. (TYP.) 3" MIN. (TYP.) SINGLE EDGE EROSION CONTROL BLANKET (TYP.) COMPACTED BACKFILL (TYP.) STAKE (TYP.) TWO EDGES OF TWO ADJACENT ROLLS LOOP FROM MIDDLE OF ROLL FLOW 6" 3" MIN. 12" MIN. STAKING PATTERNS SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATION. IF NO MANUFACTURER'S SPECIFICATION IS AVAILABLE USE THE ACCEPTABLE STAKING PATTERN (AS SHOWN ABOVE) PERIMETER ANCHOR TRENCH OR JOINT ANCHOR TRENCH, TYP. STRAW-COCONUT COCONUT OR EXCELSIOR STRAW ROLL WIDTH "W" (TYP.) 6' 3' 1/2 "W" 1/2 "W" 1/2 "W" 1/2 "W" 1/2 "W" 4' 3' 2' ECB EROSION CONTROL BLANKET TYPE TYPE STRAW* STRAW-COCONUT EXCELSIOR COCONUT CONTENT - 30% MIN. - STRAW CONTENT 100% - NETTING MIN. DOUBLE/NATURAL 100% - - EXCELSIOR CONTENT COCONUT 100% - - * FOR OUTSIDE OF STREAMS AND DRAINAGE CHANNELS DOUBLE/NATURAL DOUBLE/NATURAL DOUBLE/NATURAL 70% MAX. 10 RIP-RAP 1 WATTLE INSTALLATION A A PLAN VIEW SECTION A-A 2:1 OP WQCV 8 OUTFALL PROTECTION 5 SILT FENCE 9 INLET PROTECTION ILP IP1 6 INDIVIDUAL LOT PROTECTION 3. BY VOLUME PRIOR TO PLACEMENT. VOLUME WITH 35% OF APPROVED SOIL MIX UNIFORM ALLY 65% RIPRAP BY ABOVE DESIGN RIPRAP TOP GRADE. VOIDS AND ROCKS PROJECTING COMPACT AND LEVEL TO ELIMINATE ALL DESIGN THICKNESS AND GRADE. SECURELY INTERLOCKED ROCK AT THE PLACE STONE-SOIL MIX TO RESULT IN 2. ACTUAL LOCATION AND LIMITS. SLOPED AREAS. REFER TO THE SITE PLAN 1. SOIL RIPRAP DETAILS ARE APPLICABLE TO NOTES: 12" min 3" min ONE-INCH THICK WOOD STAKE DETAIL Use 2x4 material for stakes 4. CRIMP OR TACKIFY MULCH OR USE APPROVED HYDROMULCH AS CALLED FOR IN THE PLANS AND SPECIFICATIONS. SOIL RIPRAP. MIX SOIL AND RIPRAP COMPLETELY (SEE NOTES) SOIL RIPRAP. MIX SOIL AND RIPRAP COMPLETELY (SEE NOTES) 10" MIN. TOPSOIL LAYER AND SEED AND MULCH AS REQUIRED BY PLANS AND SPECIFICATIONS TOPSOIL LAYER AND SEED AND MULCH AS REQUIRED BY PLANS AND SPECIFICATIONS FINISHED GRAD DESIGN RIPRAP GRADE FINISHED GRAD DESIGN RIPRAP GRADE 2*D50 4" - 6" (TYP.) 2*D50 SLOPE VARIES (SEE PLANS) PREPARE COMPACTED SUBGRADE PER SPECIFICATIONS OR PLACE ON UNDISTURBED SUGRADE SLOPE VARIES (SEE PLANS) PREPARE COMPACTED SUBGRADE PER SPECIFICATIONS TYPICAL SECTION - OR PLACE ON UNDISTURBED SUGRADE SOIL RIPRAP WITH MUCLH TYPICAL SECTION - SOIL RIPRAP WITH EROSION CONTROL FABRIC STAKE BLANKET TO GROUND BETWEEN STONES EROSION CONTROL BLANAKET AS SPECIFIED OR CALLED FOR ON THE PLANS 4" - 6" (TYP.) 7 EROSION CONTROL BLANKET RIPRAP SCHEDULE Storm Line Pipe Diameter (ft) Ordinary Riprap Type Length of Riprap (ft) Width of Riprap (ft) 2*d50, Depth of Riprap (ft) Storm Line A 2.00 Type L 7.00 9.00 1.5 Storm Line B 2.00 Type L 8.00 9.00 1.5 Storm Line D 1.25 Type L 5.00 7.00 1.5 LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD 15" SS 15" SS 15" SS 15" SS 15" SS 15" SS 15" SS 15" SS 15" SS 15" SS 15" SS UD UD 2' CONCRETE PAN OUTFALL ROYAL TROON AVE. ARNOUSTIE DR. POND 2 RAIN GARDEN 2 LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD PROPOSED FES CONCRETE CULVERT FES POND 1 SITE OUTFALL SF SF SF SF SF SF SF SF SF SF SIDEWALK AND CONCRETE CHASE EXISTING 24" CMP TURNBERRY ROAD PROPOSED OUTFALL FES EC6 DYNAMIC EROSION CONTROL PLAN 4 ## Sheet of 65 COUNTRY CLUB RESERVE These drawings are instruments of service provided by Northern Engineering Services, Inc. and are not to be used for any type of construction unless signed and sealed by a Professional Engineer in the employ of Northern Engineering Services, Inc. NOT FOR CONSTRUCTION REVIEW SET 301 North Howes Street, Suite 100 Fort Collins, Colorado 80521 E NGINEER ING N O R T H E RN PHONE: 970.221.4158 www.northernengineering.com CALL 2 BUSINESS DAYS IN ADVANCE BEFORE YOU DIG, GRADE, OR EXCAVATE FOR THE MARKING OF UNDERGROUND MEMBER UTILITIES. CALL UTILITY NOTIFICATION CENTER OF COLORADO Know what'sbelow. Call before you dig. R ( IN FEET ) 0 1 INCH = 30 FEET 30 30 60 90 BENCHMARK/BASIS OF BEARING PROPOSED CONTOUR EXISTING STORM SEWER PROPOSED SWALE EXISTING CONTOUR SILT FENCE SF WATTLE PROTECTION W VEHICLE TRACKING PAD VTC SF ILP INDIVIDUAL LOT PROTECTION 1. CONTRACTOR SHALL IMMEDIATELY STABILIZE ALL DISTURBED SLOPES BY CRIMP MULCHING OR SIMILAR METHODS (AS APPLICABLE). 2. TOTAL DISTURBED AREA = 2.69 ACRES 3. SWMP ADMINISTRATOR: Contact ________________________________ Company ________________________________ Address ________________________________ Phone________________________________ 4. CONTRACTOR TO PROVIDE VEHICLE TRACKING CONTROL FOR CONCRETE WASHOUT AREA IF ACCESS IS OFF PAVEMENT. 5. REFER TO THE SEE FINAL STORM WATER MANAGMENT PLAN BY NORTHERN ENGINEERING SERVICES, DATED NOVEMBER 13, 2017 FOR ADDITIONAL INFORMATION. GENERAL NOTES: PROJECT DATUM: NAVD88 BENCHMARK #1: CITY OF FORT COLLINS BENCHMARK 34-92: WEST SIDE OF TAFT HILL RD. NORTH OF STUART ST. ON A STORM WATER DIVERSION STRUCTURE. ELEVATION: 5088.78 BENCHMARK #2: CITY OF FORT COLLINS BENCHMARK 12-97: ON WEST STUART ST. BETWEEN ZENITH COURT AND RYELAND LANE, ON THE SOUTH END OF THE EAST HEADWALL OF THE CANAL BRIDGE. ELEVATION: 5116.62 PLEASE NOTE: THIS PLAN SET IS USING NAVD88 FOR A VERTICAL DATUM. SURROUNDING DEVELOPMENTS HAVE USED NGVD29 UNADJUSTED FOR THEIR VERTICAL DATUMS. IF NGVD29 UNADJUSTED DATUM IS REQUIRED FOR ANY PURPOSE, THE FOLLOWING EQUATION SHOULD BE USED: NGVD29 UNADJUSTED = NAVD88 - 3.18. BASIS OF BEARINGS THE BASIS OF BEARINGS IS THE WEST LINE OF THE SOUTHWEST QUARTER OF SECTION 22-T7N-R69W AS BEARING SOUTH 00°06'35" WEST LEGEND: ROCK SOCK WITH MARKER RS EROSION CONTROL BLANKET ECB CONCRETE WASHOUT AREA CWA OP OUTFALL PROTECTION 1. IT SHOULD BE NOTED THAT ANY EROSION CONTROL PLAN SERVES ONLY AS A GUIDELINE TO THE CONTRACTOR. STAGING AND/OR PHASING OF BEST MANAGEMENT PRACTICES (BMPs) IS EXPECTED. ADDITIONAL AND/OR DIFFERENT BMPs FROM THOSE ORIGINALLY DEPICTED MAY BE NECESSARY DURING CONSTRUCTION DUE TO CHANGING SITE CONDITIONS OR AS REQUIRED BY LOCAL AUTHORITIES. 2. THIS EROSION CONTROL PLAN IS SCHEMATIC IN NATURE. AS SUCH, GRAPHICAL SYMBOLS MAY NOT BE TO SCALE, NOR ARE THEY NECESSARILY SHOWN IN THEIR EXACT LOCATION. 3. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL PERMITTING (CITY, STATE DISCHARGE PERMIT, ETC.) AND COMPLIANCE WITH GOVERNING AUTHORITIES. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR (OR PERMIT HOLDER) TO ENSURE EROSION CONTROL MEASURES ARE PROPERLY MAINTAINED AND FOLLOWED. 4. CONTRACTOR SHALL IMPLEMENT THE APPROPRIATE EROSION CONTROL MEASURES ACCORDING THE THE CONSTRUCTION SEQUENCING AND LEVEL OF SITE STABILIZATION. 5. CONTRACTOR SHALL IMPLEMENT APPROPRIATE INLET PROTECTION FOR ALL STORMWATER FACILITIES UNTIL SITE IS FULLY STABILIZED. 6. CONTRACTOR SHALL IMPLEMENT APPROPRIATE INLET PROTECTION FOR DOWNSPOUT CONNECTIONS, TO THE STORM DRAIN SYSTEM, UNTIL CONNECTION IS ESTABLISHED WITH DOWNSPOUT. 7. INLET PROTECTION SHALL BE ADAPTED, AS NECESSARY, TO THE SURROUNDING SURFACE TYPE AND CONDITION (i.e., STAKE-DRIVEN WATTLES FOR BARE SOIL, GRAVEL SOCKS FOR PAVEMENT, ETC.) 8. CONTRACTOR IS RESPONSIBLE FOR STABILIZING ALL SLOPES, PARTICULARLY THOSE STEEPER THAN 6:1. CRIMP MULCHING, HYDRO MULCHING, EROSION MATS, TEMPORARY IRRIGATION, AND ADDITIONAL WATTLES OR SILT FENCING MAY BE NECESSARY TO ESTABLISH VEGETATIVE COVER AND STABILIZE THE SLOPE. 9. ADDITIONAL WATTLES, SILT FENCE, OR OTHER MEASURES, MAY BE NECESSARY TO INSURE THAT EACH BUILDING PAD IS STABILIZED THROUGHOUT CONSTRUCTION. AT NO TIME SHALL SEDIMENT BE ALLOWED TO CROSS THE PUBLIC SIDEWALKS. 10. CONTRACTOR SHALL IMPLEMENT APPROPRIATE PERIMETER PROTECTION FOR AREAS DIRECTING DRAINAGE OFFSITE. PERIMETER PROTECTION SHALL BE ADAPTED, AS NECESSARY, TO THE SURROUNDING SURFACE TYPE AND CONDITION (i.e., STAKE-DRIVEN SEDIMENT CONTROL LOGS OR SILT FENCE FOR BARE SOIL, SAND BAGS OR GRAVEL SOCKS FOR PAVEMENT, ETC.) 11. FUELING FACILITIES SHALL BE LOCATED AT LEAST ONE HUNDRED (100) FEET FROM NATURAL BODY OF WATER, WETLAND, NATURAL DRAINAGE WAY OR MANMADE DRAINAGE WAY. THE FUEL TANKS AND FUELING AREA MUST BE SET IN A CONTAINMENT AREA THAT WILL NOT ALLOW A FUEL SPILL TO DIRECTLY FLOW, SEEP, RUN OFF, OR BE WASHED INTO A BODY OF WATER, WETLAND OR DRAINAGE WAY. 12. CONSTRUCTION WASTE STORAGE (DUMPSTERS) AND PORTABLE SANITATION UNITS (CONSTRUCTION TOILETS) SHALL BE LOCATED AT LEAST FIFTY (50) FEET FROM ANY STORMWATER INLET, WETLAND, OR DRAINAGE WAY. SAID FACILITIES MUST BE SET IN A CONTAINMENT AREA THAT WILL NOT ALLOW POLLUTANTS TO DIRECTLY FLOW, SEEP, RUN OFF, OR BE WASHED INTO A BODY OF WATER, WETLAND OR DRAINAGE WAY. DUMPSTERS SHALL BE LOCATED ON FLAT, STABLE GROUND, AND CONSTRUCTION TOILETS SHALL BE STAKED DOWN. 13. THE CONTRACTOR AND ALL SUBCONTRACTORS WILL COOPERATE WITH THE CITY'S CONSTRUCTION INSPECTORS BY CEASING OPERATIONS WHEN WINDS ARE OF SUFFICIENT VELOCITY TO CREATE BLOWING DUST WHICH, IN THE INSPECTOR'S OPINION, IS HAZARDOUS TO THE PUBLIC HEALTH AND WELFARE. 14. WHERE SEASONAL CONSTRAINTS (E.G., DURING SUMMER AND WINTER MONTHS) INHIBIT PERMANENT SEEDING OPERATIONS, DISTURBED AREAS WILL BE TREATED WITH MULCH AND MULCH TACKIFIER OR OTHER MATERIALS APPROVED BY EROSION CONTROL STAFF TO PREVENT EROSION. 15. SEE LANDSCAPE PLANS FOR ADDITIONAL INFORMATION ON PLANTING, REVEGETATION, HARDSCAPE AND OTHER PERMANENT SITE STABILIZATION METHODS. EROSION CONTROL NOTES: TABLE OF CONSTRUCTION SEQUENCE AND BMP APPLICATION/REMOVAL Project: BRICK STONE APARTMENTS ON HARMONY Date: 11.30.17 Contractor to utilize this table to indicate when construction activities occur and when each associated BMP is installed or removed. CONSTRUCTION PHASE (Monthly) 1 2 3 4 5 6 7 8 9 10 11 12 Comments Grading Overlot Swales, Drainageways Pipeline Installation Stormwater Concrete Installation Building Structure Miscellaneous Hardscape Amenities BEST MANAGEMENT PRACTICES Temporary Contour Furrows and Diversion Dikes (Ripping/Disking) Inlet Protection (IP) Vehicle Tracking Control (VTC) Flow Barriers (Bales, Wattles, Etc) (WD) Concrete Washout Area (CWA) Preventative Maintenance Activities/Meetings/ etc. Permanent Mulching/Sealant Permanent Seed Planting Water Service Sanitary Sewer Service Curb and Gutter Concrete Parking and Drive Aisle Bio-Swale Permeable Pavers KEYMAP DOUGLAS RD TURNBERRY RD DEC1 DEC2 DEC3 DEC4 X X X X X X X X X X X X X X X X X B B A.V. LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD CARNOUSTIE DR. BALTUSROL DR. BALTUSROL CT. LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD EC5 DYNAMIC EROSION CONTROL PLAN 3 ## Sheet of 65 COUNTRY CLUB RESERVE These drawings are instruments of service provided by Northern Engineering Services, Inc. and are not to be used for any type of construction unless signed and sealed by a Professional Engineer in the employ of Northern Engineering Services, Inc. NOT FOR CONSTRUCTION REVIEW SET 301 North Howes Street, Suite 100 Fort Collins, Colorado 80521 E NGINEER ING N O R T H E RN PHONE: 970.221.4158 www.northernengineering.com CALL 2 BUSINESS DAYS IN ADVANCE BEFORE YOU DIG, GRADE, OR EXCAVATE FOR THE MARKING OF UNDERGROUND MEMBER UTILITIES. CALL UTILITY NOTIFICATION CENTER OF COLORADO Know what'sbelow. Call before you dig. R ( IN FEET ) 0 1 INCH = 30 FEET 30 30 60 90 BENCHMARK/BASIS OF BEARING PROPOSED CONTOUR EXISTING STORM SEWER PROPOSED SWALE EXISTING CONTOUR SILT FENCE SF WATTLE PROTECTION W VEHICLE TRACKING PAD VTC SF ILP INDIVIDUAL LOT PROTECTION 1. CONTRACTOR SHALL IMMEDIATELY STABILIZE ALL DISTURBED SLOPES BY CRIMP MULCHING OR SIMILAR METHODS (AS APPLICABLE). 2. TOTAL DISTURBED AREA = 2.69 ACRES 3. SWMP ADMINISTRATOR: Contact ________________________________ Company ________________________________ Address ________________________________ Phone________________________________ 4. CONTRACTOR TO PROVIDE VEHICLE TRACKING CONTROL FOR CONCRETE WASHOUT AREA IF ACCESS IS OFF PAVEMENT. 5. REFER TO THE SEE FINAL STORM WATER MANAGMENT PLAN BY NORTHERN ENGINEERING SERVICES, DATED NOVEMBER 13, 2017 FOR ADDITIONAL INFORMATION. GENERAL NOTES: PROJECT DATUM: NAVD88 BENCHMARK #1: CITY OF FORT COLLINS BENCHMARK 34-92: WEST SIDE OF TAFT HILL RD. NORTH OF STUART ST. ON A STORM WATER DIVERSION STRUCTURE. ELEVATION: 5088.78 BENCHMARK #2: CITY OF FORT COLLINS BENCHMARK 12-97: ON WEST STUART ST. BETWEEN ZENITH COURT AND RYELAND LANE, ON THE SOUTH END OF THE EAST HEADWALL OF THE CANAL BRIDGE. ELEVATION: 5116.62 PLEASE NOTE: THIS PLAN SET IS USING NAVD88 FOR A VERTICAL DATUM. SURROUNDING DEVELOPMENTS HAVE USED NGVD29 UNADJUSTED FOR THEIR VERTICAL DATUMS. IF NGVD29 UNADJUSTED DATUM IS REQUIRED FOR ANY PURPOSE, THE FOLLOWING EQUATION SHOULD BE USED: NGVD29 UNADJUSTED = NAVD88 - 3.18. BASIS OF BEARINGS THE BASIS OF BEARINGS IS THE WEST LINE OF THE SOUTHWEST QUARTER OF SECTION 22-T7N-R69W AS BEARING SOUTH 00°06'35" WEST LEGEND: ROCK SOCK WITH MARKER RS EROSION CONTROL BLANKET ECB CONCRETE WASHOUT AREA CWA OP OUTFALL PROTECTION 1. IT SHOULD BE NOTED THAT ANY EROSION CONTROL PLAN SERVES ONLY AS A GUIDELINE TO THE CONTRACTOR. STAGING AND/OR PHASING OF BEST MANAGEMENT PRACTICES (BMPs) IS EXPECTED. ADDITIONAL AND/OR DIFFERENT BMPs FROM THOSE ORIGINALLY DEPICTED MAY BE NECESSARY DURING CONSTRUCTION DUE TO CHANGING SITE CONDITIONS OR AS REQUIRED BY LOCAL AUTHORITIES. 2. THIS EROSION CONTROL PLAN IS SCHEMATIC IN NATURE. AS SUCH, GRAPHICAL SYMBOLS MAY NOT BE TO SCALE, NOR ARE THEY NECESSARILY SHOWN IN THEIR EXACT LOCATION. 3. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL PERMITTING (CITY, STATE DISCHARGE PERMIT, ETC.) AND COMPLIANCE WITH GOVERNING AUTHORITIES. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR (OR PERMIT HOLDER) TO ENSURE EROSION CONTROL MEASURES ARE PROPERLY MAINTAINED AND FOLLOWED. 4. CONTRACTOR SHALL IMPLEMENT THE APPROPRIATE EROSION CONTROL MEASURES ACCORDING THE THE CONSTRUCTION SEQUENCING AND LEVEL OF SITE STABILIZATION. 5. CONTRACTOR SHALL IMPLEMENT APPROPRIATE INLET PROTECTION FOR ALL STORMWATER FACILITIES UNTIL SITE IS FULLY STABILIZED. 6. CONTRACTOR SHALL IMPLEMENT APPROPRIATE INLET PROTECTION FOR DOWNSPOUT CONNECTIONS, TO THE STORM DRAIN SYSTEM, UNTIL CONNECTION IS ESTABLISHED WITH DOWNSPOUT. 7. INLET PROTECTION SHALL BE ADAPTED, AS NECESSARY, TO THE SURROUNDING SURFACE TYPE AND CONDITION (i.e., STAKE-DRIVEN WATTLES FOR BARE SOIL, GRAVEL SOCKS FOR PAVEMENT, ETC.) 8. CONTRACTOR IS RESPONSIBLE FOR STABILIZING ALL SLOPES, PARTICULARLY THOSE STEEPER THAN 6:1. CRIMP MULCHING, HYDRO MULCHING, EROSION MATS, TEMPORARY IRRIGATION, AND ADDITIONAL WATTLES OR SILT FENCING MAY BE NECESSARY TO ESTABLISH VEGETATIVE COVER AND STABILIZE THE SLOPE. 9. ADDITIONAL WATTLES, SILT FENCE, OR OTHER MEASURES, MAY BE NECESSARY TO INSURE THAT EACH BUILDING PAD IS STABILIZED THROUGHOUT CONSTRUCTION. AT NO TIME SHALL SEDIMENT BE ALLOWED TO CROSS THE PUBLIC SIDEWALKS. 10. CONTRACTOR SHALL IMPLEMENT APPROPRIATE PERIMETER PROTECTION FOR AREAS DIRECTING DRAINAGE OFFSITE. PERIMETER PROTECTION SHALL BE ADAPTED, AS NECESSARY, TO THE SURROUNDING SURFACE TYPE AND CONDITION (i.e., STAKE-DRIVEN SEDIMENT CONTROL LOGS OR SILT FENCE FOR BARE SOIL, SAND BAGS OR GRAVEL SOCKS FOR PAVEMENT, ETC.) 11. FUELING FACILITIES SHALL BE LOCATED AT LEAST ONE HUNDRED (100) FEET FROM NATURAL BODY OF WATER, WETLAND, NATURAL DRAINAGE WAY OR MANMADE DRAINAGE WAY. THE FUEL TANKS AND FUELING AREA MUST BE SET IN A CONTAINMENT AREA THAT WILL NOT ALLOW A FUEL SPILL TO DIRECTLY FLOW, SEEP, RUN OFF, OR BE WASHED INTO A BODY OF WATER, WETLAND OR DRAINAGE WAY. 12. CONSTRUCTION WASTE STORAGE (DUMPSTERS) AND PORTABLE SANITATION UNITS (CONSTRUCTION TOILETS) SHALL BE LOCATED AT LEAST FIFTY (50) FEET FROM ANY STORMWATER INLET, WETLAND, OR DRAINAGE WAY. SAID FACILITIES MUST BE SET IN A CONTAINMENT AREA THAT WILL NOT ALLOW POLLUTANTS TO DIRECTLY FLOW, SEEP, RUN OFF, OR BE WASHED INTO A BODY OF WATER, WETLAND OR DRAINAGE WAY. DUMPSTERS SHALL BE LOCATED ON FLAT, STABLE GROUND, AND CONSTRUCTION TOILETS SHALL BE STAKED DOWN. 13. THE CONTRACTOR AND ALL SUBCONTRACTORS WILL COOPERATE WITH THE CITY'S CONSTRUCTION INSPECTORS BY CEASING OPERATIONS WHEN WINDS ARE OF SUFFICIENT VELOCITY TO CREATE BLOWING DUST WHICH, IN THE INSPECTOR'S OPINION, IS HAZARDOUS TO THE PUBLIC HEALTH AND WELFARE. 14. WHERE SEASONAL CONSTRAINTS (E.G., DURING SUMMER AND WINTER MONTHS) INHIBIT PERMANENT SEEDING OPERATIONS, DISTURBED AREAS WILL BE TREATED WITH MULCH AND MULCH TACKIFIER OR OTHER MATERIALS APPROVED BY EROSION CONTROL STAFF TO PREVENT EROSION. 15. SEE LANDSCAPE PLANS FOR ADDITIONAL INFORMATION ON PLANTING, REVEGETATION, HARDSCAPE AND OTHER PERMANENT SITE STABILIZATION METHODS. EROSION CONTROL NOTES: TABLE OF CONSTRUCTION SEQUENCE AND BMP APPLICATION/REMOVAL Project: BRICK STONE APARTMENTS ON HARMONY Date: 11.30.17 Contractor to utilize this table to indicate when construction activities occur and when each associated BMP is installed or removed. CONSTRUCTION PHASE (Monthly) 1 2 3 4 5 6 7 8 9 10 11 12 Comments Grading Overlot Swales, Drainageways Pipeline Installation Stormwater Concrete Installation Building Structure Miscellaneous Hardscape Amenities BEST MANAGEMENT PRACTICES Temporary Contour Furrows and Diversion Dikes (Ripping/Disking) Inlet Protection (IP) Vehicle Tracking Control (VTC) Flow Barriers (Bales, Wattles, Etc) (WD) Concrete Washout Area (CWA) Preventative Maintenance Activities/Meetings/ etc. Permanent Mulching/Sealant Permanent Seed Planting Water Service Sanitary Sewer Service Curb and Gutter Concrete Parking and Drive Aisle Bio-Swale Permeable Pavers KEYMAP DOUGLAS RD TURNBERRY RD DEC1 DEC2 DEC3 DEC4 15" SS 15" SS 15" SS UD UD ED FOOT DR. KIAWAH DR. SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD PROPOSED FES SITE OUTFALL SF SF NATURAL HABITAT BUFFER ZONE PROPOSED FES INLET (2) SF SF SF SF SF SF SF SF SF SF INLET OUTFALL INLET RAIN GARDEN 1 PROPOSED OUTFALL FES EC4 DYNAMIC EROSION CONTROL PLAN 2 ## Sheet of 65 COUNTRY CLUB RESERVE These drawings are instruments of service provided by Northern Engineering Services, Inc. and are not to be used for any type of construction unless signed and sealed by a Professional Engineer in the employ of Northern Engineering Services, Inc. NOT FOR CONSTRUCTION REVIEW SET 301 North Howes Street, Suite 100 Fort Collins, Colorado 80521 E NGINEER ING N O R T H E RN PHONE: 970.221.4158 www.northernengineering.com CALL 2 BUSINESS DAYS IN ADVANCE BEFORE YOU DIG, GRADE, OR EXCAVATE FOR THE MARKING OF UNDERGROUND MEMBER UTILITIES. CALL UTILITY NOTIFICATION CENTER OF COLORADO Know what'sbelow. Call before you dig. R ( IN FEET ) 0 1 INCH = 60 FEET 60 60 120 180 BENCHMARK/BASIS OF BEARING PROPOSED CONTOUR EXISTING STORM SEWER PROPOSED SWALE EXISTING CONTOUR SILT FENCE SF WATTLE PROTECTION W VEHICLE TRACKING PAD VTC SF ILP INDIVIDUAL LOT PROTECTION 1. CONTRACTOR SHALL IMMEDIATELY STABILIZE ALL DISTURBED SLOPES BY CRIMP MULCHING OR SIMILAR METHODS (AS APPLICABLE). 2. TOTAL DISTURBED AREA = 2.69 ACRES 3. SWMP ADMINISTRATOR: Contact ________________________________ Company ________________________________ Address ________________________________ Phone________________________________ 4. CONTRACTOR TO PROVIDE VEHICLE TRACKING CONTROL FOR CONCRETE WASHOUT AREA IF ACCESS IS OFF PAVEMENT. 5. REFER TO THE SEE FINAL STORM WATER MANAGMENT PLAN BY NORTHERN ENGINEERING SERVICES, DATED NOVEMBER 13, 2017 FOR ADDITIONAL INFORMATION. GENERAL NOTES: PROJECT DATUM: NAVD88 BENCHMARK #1: CITY OF FORT COLLINS BENCHMARK 34-92: WEST SIDE OF TAFT HILL RD. NORTH OF STUART ST. ON A STORM WATER DIVERSION STRUCTURE. ELEVATION: 5088.78 BENCHMARK #2: CITY OF FORT COLLINS BENCHMARK 12-97: ON WEST STUART ST. BETWEEN ZENITH COURT AND RYELAND LANE, ON THE SOUTH END OF THE EAST HEADWALL OF THE CANAL BRIDGE. ELEVATION: 5116.62 PLEASE NOTE: THIS PLAN SET IS USING NAVD88 FOR A VERTICAL DATUM. SURROUNDING DEVELOPMENTS HAVE USED NGVD29 UNADJUSTED FOR THEIR VERTICAL DATUMS. IF NGVD29 UNADJUSTED DATUM IS REQUIRED FOR ANY PURPOSE, THE FOLLOWING EQUATION SHOULD BE USED: NGVD29 UNADJUSTED = NAVD88 - 3.18. BASIS OF BEARINGS THE BASIS OF BEARINGS IS THE WEST LINE OF THE SOUTHWEST QUARTER OF SECTION 22-T7N-R69W AS BEARING SOUTH 00°06'35" WEST LEGEND: ROCK SOCK WITH MARKER RS EROSION CONTROL BLANKET ECB CONCRETE WASHOUT AREA CWA OP OUTFALL PROTECTION 1. IT SHOULD BE NOTED THAT ANY EROSION CONTROL PLAN SERVES ONLY AS A GUIDELINE TO THE CONTRACTOR. STAGING AND/OR PHASING OF BEST MANAGEMENT PRACTICES (BMPs) IS EXPECTED. ADDITIONAL AND/OR DIFFERENT BMPs FROM THOSE ORIGINALLY DEPICTED MAY BE NECESSARY DURING CONSTRUCTION DUE TO CHANGING SITE CONDITIONS OR AS REQUIRED BY LOCAL AUTHORITIES. 2. THIS EROSION CONTROL PLAN IS SCHEMATIC IN NATURE. AS SUCH, GRAPHICAL SYMBOLS MAY NOT BE TO SCALE, NOR ARE THEY NECESSARILY SHOWN IN THEIR EXACT LOCATION. 3. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL PERMITTING (CITY, STATE DISCHARGE PERMIT, ETC.) AND COMPLIANCE WITH GOVERNING AUTHORITIES. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR (OR PERMIT HOLDER) TO ENSURE EROSION CONTROL MEASURES ARE PROPERLY MAINTAINED AND FOLLOWED. 4. CONTRACTOR SHALL IMPLEMENT THE APPROPRIATE EROSION CONTROL MEASURES ACCORDING THE THE CONSTRUCTION SEQUENCING AND LEVEL OF SITE STABILIZATION. 5. CONTRACTOR SHALL IMPLEMENT APPROPRIATE INLET PROTECTION FOR ALL STORMWATER FACILITIES UNTIL SITE IS FULLY STABILIZED. 6. CONTRACTOR SHALL IMPLEMENT APPROPRIATE INLET PROTECTION FOR DOWNSPOUT CONNECTIONS, TO THE STORM DRAIN SYSTEM, UNTIL CONNECTION IS ESTABLISHED WITH DOWNSPOUT. 7. INLET PROTECTION SHALL BE ADAPTED, AS NECESSARY, TO THE SURROUNDING SURFACE TYPE AND CONDITION (i.e., STAKE-DRIVEN WATTLES FOR BARE SOIL, GRAVEL SOCKS FOR PAVEMENT, ETC.) 8. CONTRACTOR IS RESPONSIBLE FOR STABILIZING ALL SLOPES, PARTICULARLY THOSE STEEPER THAN 6:1. CRIMP MULCHING, HYDRO MULCHING, EROSION MATS, TEMPORARY IRRIGATION, AND ADDITIONAL WATTLES OR SILT FENCING MAY BE NECESSARY TO ESTABLISH VEGETATIVE COVER AND STABILIZE THE SLOPE. 9. ADDITIONAL WATTLES, SILT FENCE, OR OTHER MEASURES, MAY BE NECESSARY TO INSURE THAT EACH BUILDING PAD IS STABILIZED THROUGHOUT CONSTRUCTION. AT NO TIME SHALL SEDIMENT BE ALLOWED TO CROSS THE PUBLIC SIDEWALKS. 10. CONTRACTOR SHALL IMPLEMENT APPROPRIATE PERIMETER PROTECTION FOR AREAS DIRECTING DRAINAGE OFFSITE. PERIMETER PROTECTION SHALL BE ADAPTED, AS NECESSARY, TO THE SURROUNDING SURFACE TYPE AND CONDITION (i.e., STAKE-DRIVEN SEDIMENT CONTROL LOGS OR SILT FENCE FOR BARE SOIL, SAND BAGS OR GRAVEL SOCKS FOR PAVEMENT, ETC.) 11. FUELING FACILITIES SHALL BE LOCATED AT LEAST ONE HUNDRED (100) FEET FROM NATURAL BODY OF WATER, WETLAND, NATURAL DRAINAGE WAY OR MANMADE DRAINAGE WAY. THE FUEL TANKS AND FUELING AREA MUST BE SET IN A CONTAINMENT AREA THAT WILL NOT ALLOW A FUEL SPILL TO DIRECTLY FLOW, SEEP, RUN OFF, OR BE WASHED INTO A BODY OF WATER, WETLAND OR DRAINAGE WAY. 12. CONSTRUCTION WASTE STORAGE (DUMPSTERS) AND PORTABLE SANITATION UNITS (CONSTRUCTION TOILETS) SHALL BE LOCATED AT LEAST FIFTY (50) FEET FROM ANY STORMWATER INLET, WETLAND, OR DRAINAGE WAY. SAID FACILITIES MUST BE SET IN A CONTAINMENT AREA THAT WILL NOT ALLOW POLLUTANTS TO DIRECTLY FLOW, SEEP, RUN OFF, OR BE WASHED INTO A BODY OF WATER, WETLAND OR DRAINAGE WAY. DUMPSTERS SHALL BE LOCATED ON FLAT, STABLE GROUND, AND CONSTRUCTION TOILETS SHALL BE STAKED DOWN. 13. THE CONTRACTOR AND ALL SUBCONTRACTORS WILL COOPERATE WITH THE CITY'S CONSTRUCTION INSPECTORS BY CEASING OPERATIONS WHEN WINDS ARE OF SUFFICIENT VELOCITY TO CREATE BLOWING DUST WHICH, IN THE INSPECTOR'S OPINION, IS HAZARDOUS TO THE PUBLIC HEALTH AND WELFARE. 14. WHERE SEASONAL CONSTRAINTS (E.G., DURING SUMMER AND WINTER MONTHS) INHIBIT PERMANENT SEEDING OPERATIONS, DISTURBED AREAS WILL BE TREATED WITH MULCH AND MULCH TACKIFIER OR OTHER MATERIALS APPROVED BY EROSION CONTROL STAFF TO PREVENT EROSION. 15. SEE LANDSCAPE PLANS FOR ADDITIONAL INFORMATION ON PLANTING, REVEGETATION, HARDSCAPE AND OTHER PERMANENT SITE STABILIZATION METHODS. EROSION CONTROL NOTES: TABLE OF CONSTRUCTION SEQUENCE AND BMP APPLICATION/REMOVAL Project: BRICK STONE APARTMENTS ON HARMONY Date: 11.30.17 Contractor to utilize this table to indicate when construction activities occur and when each associated BMP is installed or removed. CONSTRUCTION PHASE (Monthly) 1 2 3 4 5 6 7 8 9 10 11 12 Comments Grading Overlot Swales, Drainageways Pipeline Installation Stormwater Concrete Installation Building Structure Miscellaneous Hardscape Amenities BEST MANAGEMENT PRACTICES Temporary Contour Furrows and Diversion Dikes (Ripping/Disking) Inlet Protection (IP) Vehicle Tracking Control (VTC) Flow Barriers (Bales, Wattles, Etc) (WD) Concrete Washout Area (CWA) Preventative Maintenance Activities/Meetings/ etc. Permanent Mulching/Sealant Permanent Seed Planting Water Service Sanitary Sewer Service Curb and Gutter Concrete Parking and Drive Aisle Bio-Swale Permeable Pavers KEYMAP DOUGLAS RD TURNBERRY RD DEC1 DEC2 DEC3 DEC4 M M F E S X X T ELE F.O. TELE X X X X F E S M F E S TELE B B AW 10"W 1976 (AC) 000 10"W 1976 (AC) 4" (AC) 4" (AC) W LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD UD UD UD UD WINGED FOOT DR. CARNOUSTIE DR. BETHPAGE DR. SF SF SF SF SF SF SF SF SF LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD SIDEWALK CHASE POND 3 RAIN GARDEN 3 SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF INLET E. DOUGLAS ROAD EC3 DYNAMIC EROSION CONTROL PLAN 1 ## Sheet of 65 COUNTRY CLUB RESERVE These drawings are instruments of service provided by Northern Engineering Services, Inc. and are not to be used for any type of construction unless signed and sealed by a Professional Engineer in the employ of Northern Engineering Services, Inc. NOT FOR CONSTRUCTION REVIEW SET 301 North Howes Street, Suite 100 Fort Collins, Colorado 80521 E NGINEER ING N O R T H E RN PHONE: 970.221.4158 www.northernengineering.com CALL 2 BUSINESS DAYS IN ADVANCE BEFORE YOU DIG, GRADE, OR EXCAVATE FOR THE MARKING OF UNDERGROUND MEMBER UTILITIES. CALL UTILITY NOTIFICATION CENTER OF COLORADO Know what'sbelow. Call before you dig. R ( IN FEET ) 0 1 INCH = 60 FEET 60 60 120 180 BENCHMARK/BASIS OF BEARING PROPOSED CONTOUR EXISTING STORM SEWER PROPOSED SWALE EXISTING CONTOUR SILT FENCE SF WATTLE PROTECTION W VEHICLE TRACKING PAD VTC SF ILP INDIVIDUAL LOT PROTECTION 1. CONTRACTOR SHALL IMMEDIATELY STABILIZE ALL DISTURBED SLOPES BY CRIMP MULCHING OR SIMILAR METHODS (AS APPLICABLE). 2. TOTAL DISTURBED AREA = 2.69 ACRES 3. SWMP ADMINISTRATOR: Contact ________________________________ Company ________________________________ Address ________________________________ Phone________________________________ 4. CONTRACTOR TO PROVIDE VEHICLE TRACKING CONTROL FOR CONCRETE WASHOUT AREA IF ACCESS IS OFF PAVEMENT. 5. REFER TO THE SEE FINAL STORM WATER MANAGMENT PLAN BY NORTHERN ENGINEERING SERVICES, DATED NOVEMBER 13, 2017 FOR ADDITIONAL INFORMATION. GENERAL NOTES: PROJECT DATUM: NAVD88 BENCHMARK #1: CITY OF FORT COLLINS BENCHMARK 34-92: WEST SIDE OF TAFT HILL RD. NORTH OF STUART ST. ON A STORM WATER DIVERSION STRUCTURE. ELEVATION: 5088.78 BENCHMARK #2: CITY OF FORT COLLINS BENCHMARK 12-97: ON WEST STUART ST. BETWEEN ZENITH COURT AND RYELAND LANE, ON THE SOUTH END OF THE EAST HEADWALL OF THE CANAL BRIDGE. ELEVATION: 5116.62 PLEASE NOTE: THIS PLAN SET IS USING NAVD88 FOR A VERTICAL DATUM. SURROUNDING DEVELOPMENTS HAVE USED NGVD29 UNADJUSTED FOR THEIR VERTICAL DATUMS. IF NGVD29 UNADJUSTED DATUM IS REQUIRED FOR ANY PURPOSE, THE FOLLOWING EQUATION SHOULD BE USED: NGVD29 UNADJUSTED = NAVD88 - 3.18. BASIS OF BEARINGS THE BASIS OF BEARINGS IS THE WEST LINE OF THE SOUTHWEST QUARTER OF SECTION 22-T7N-R69W AS BEARING SOUTH 00°06'35" WEST LEGEND: ROCK SOCK WITH MARKER RS EROSION CONTROL BLANKET ECB CONCRETE WASHOUT AREA CWA OP OUTFALL PROTECTION 1. IT SHOULD BE NOTED THAT ANY EROSION CONTROL PLAN SERVES ONLY AS A GUIDELINE TO THE CONTRACTOR. STAGING AND/OR PHASING OF BEST MANAGEMENT PRACTICES (BMPs) IS EXPECTED. ADDITIONAL AND/OR DIFFERENT BMPs FROM THOSE ORIGINALLY DEPICTED MAY BE NECESSARY DURING CONSTRUCTION DUE TO CHANGING SITE CONDITIONS OR AS REQUIRED BY LOCAL AUTHORITIES. 2. THIS EROSION CONTROL PLAN IS SCHEMATIC IN NATURE. AS SUCH, GRAPHICAL SYMBOLS MAY NOT BE TO SCALE, NOR ARE THEY NECESSARILY SHOWN IN THEIR EXACT LOCATION. 3. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL PERMITTING (CITY, STATE DISCHARGE PERMIT, ETC.) AND COMPLIANCE WITH GOVERNING AUTHORITIES. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR (OR PERMIT HOLDER) TO ENSURE EROSION CONTROL MEASURES ARE PROPERLY MAINTAINED AND FOLLOWED. 4. CONTRACTOR SHALL IMPLEMENT THE APPROPRIATE EROSION CONTROL MEASURES ACCORDING THE THE CONSTRUCTION SEQUENCING AND LEVEL OF SITE STABILIZATION. 5. CONTRACTOR SHALL IMPLEMENT APPROPRIATE INLET PROTECTION FOR ALL STORMWATER FACILITIES UNTIL SITE IS FULLY STABILIZED. 6. CONTRACTOR SHALL IMPLEMENT APPROPRIATE INLET PROTECTION FOR DOWNSPOUT CONNECTIONS, TO THE STORM DRAIN SYSTEM, UNTIL CONNECTION IS ESTABLISHED WITH DOWNSPOUT. 7. INLET PROTECTION SHALL BE ADAPTED, AS NECESSARY, TO THE SURROUNDING SURFACE TYPE AND CONDITION (i.e., STAKE-DRIVEN WATTLES FOR BARE SOIL, GRAVEL SOCKS FOR PAVEMENT, ETC.) 8. CONTRACTOR IS RESPONSIBLE FOR STABILIZING ALL SLOPES, PARTICULARLY THOSE STEEPER THAN 6:1. CRIMP MULCHING, HYDRO MULCHING, EROSION MATS, TEMPORARY IRRIGATION, AND ADDITIONAL WATTLES OR SILT FENCING MAY BE NECESSARY TO ESTABLISH VEGETATIVE COVER AND STABILIZE THE SLOPE. 9. ADDITIONAL WATTLES, SILT FENCE, OR OTHER MEASURES, MAY BE NECESSARY TO INSURE THAT EACH BUILDING PAD IS STABILIZED THROUGHOUT CONSTRUCTION. AT NO TIME SHALL SEDIMENT BE ALLOWED TO CROSS THE PUBLIC SIDEWALKS. 10. CONTRACTOR SHALL IMPLEMENT APPROPRIATE PERIMETER PROTECTION FOR AREAS DIRECTING DRAINAGE OFFSITE. PERIMETER PROTECTION SHALL BE ADAPTED, AS NECESSARY, TO THE SURROUNDING SURFACE TYPE AND CONDITION (i.e., STAKE-DRIVEN SEDIMENT CONTROL LOGS OR SILT FENCE FOR BARE SOIL, SAND BAGS OR GRAVEL SOCKS FOR PAVEMENT, ETC.) 11. FUELING FACILITIES SHALL BE LOCATED AT LEAST ONE HUNDRED (100) FEET FROM NATURAL BODY OF WATER, WETLAND, NATURAL DRAINAGE WAY OR MANMADE DRAINAGE WAY. THE FUEL TANKS AND FUELING AREA MUST BE SET IN A CONTAINMENT AREA THAT WILL NOT ALLOW A FUEL SPILL TO DIRECTLY FLOW, SEEP, RUN OFF, OR BE WASHED INTO A BODY OF WATER, WETLAND OR DRAINAGE WAY. 12. CONSTRUCTION WASTE STORAGE (DUMPSTERS) AND PORTABLE SANITATION UNITS (CONSTRUCTION TOILETS) SHALL BE LOCATED AT LEAST FIFTY (50) FEET FROM ANY STORMWATER INLET, WETLAND, OR DRAINAGE WAY. SAID FACILITIES MUST BE SET IN A CONTAINMENT AREA THAT WILL NOT ALLOW POLLUTANTS TO DIRECTLY FLOW, SEEP, RUN OFF, OR BE WASHED INTO A BODY OF WATER, WETLAND OR DRAINAGE WAY. DUMPSTERS SHALL BE LOCATED ON FLAT, STABLE GROUND, AND CONSTRUCTION TOILETS SHALL BE STAKED DOWN. 13. THE CONTRACTOR AND ALL SUBCONTRACTORS WILL COOPERATE WITH THE CITY'S CONSTRUCTION INSPECTORS BY CEASING OPERATIONS WHEN WINDS ARE OF SUFFICIENT VELOCITY TO CREATE BLOWING DUST WHICH, IN THE INSPECTOR'S OPINION, IS HAZARDOUS TO THE PUBLIC HEALTH AND WELFARE. 14. WHERE SEASONAL CONSTRAINTS (E.G., DURING SUMMER AND WINTER MONTHS) INHIBIT PERMANENT SEEDING OPERATIONS, DISTURBED AREAS WILL BE TREATED WITH MULCH AND MULCH TACKIFIER OR OTHER MATERIALS APPROVED BY EROSION CONTROL STAFF TO PREVENT EROSION. 15. SEE LANDSCAPE PLANS FOR ADDITIONAL INFORMATION ON PLANTING, REVEGETATION, HARDSCAPE AND OTHER PERMANENT SITE STABILIZATION METHODS. EROSION CONTROL NOTES: TABLE OF CONSTRUCTION SEQUENCE AND BMP APPLICATION/REMOVAL Project: BRICK STONE APARTMENTS ON HARMONY Date: 11.30.17 Contractor to utilize this table to indicate when construction activities occur and when each associated BMP is installed or removed. CONSTRUCTION PHASE (Monthly) 1 2 3 4 5 6 7 8 9 10 11 12 Comments Grading Overlot Swales, Drainageways Pipeline Installation Stormwater Concrete Installation Building Structure Miscellaneous Hardscape Amenities BEST MANAGEMENT PRACTICES Temporary Contour Furrows and Diversion Dikes (Ripping/Disking) Inlet Protection (IP) Vehicle Tracking Control (VTC) Flow Barriers (Bales, Wattles, Etc) (WD) Concrete Washout Area (CWA) Preventative Maintenance Activities/Meetings/ etc. Permanent Mulching/Sealant Permanent Seed Planting Water Service Sanitary Sewer Service Curb and Gutter Concrete Parking and Drive Aisle Bio-Swale Permeable Pavers KEYMAP DOUGLAS RD TURNBERRY RD DEC1 DEC2 DEC3 DEC4 G G G G G G G E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E WV WV WV WV WV WV X X X X X V.P. WV WV X X X X X X X X X X X X X X X X X X X M X X X X F E S M M F E S F E S MM X TELE F.O. TELE F E S MGAS X X F E S M F E S TELE X F E S M F E S X X X X X W S O X V.P. X VAULT CABLE BOX CABLE H2O V.GAS P. GAS OHE OHE OHE OHE OHE OHE OHE OHE OHE B B B B B B B B ST ST A.V. AW LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD UD UD UD UD SWALE WINGED FOOT DR. KIAWAH DR. ROYAL TROON AVE. CARNOUSTIE DR. BALTUSROL DR. BETHPAGE DR. RAIN GARDEN 2 BALTUSROL CT. W W W W W W W IP OP SF SF W W FES CONCRETE CULVERT POND 1 SITE OUTFALL SIDEWALK CHASE NATURAL HABITAT BUFFER ZONE FES POND 3 RAIN GARDEN 3 INLET (2) CWA IP IP IP OP SF SF SF W IP SF RS RS RS OUTFALL INLET INLET INLET E. DOUGLAS ROAD VTC VTC IP IP IP RS RS RS RS VTC W RS RS RAIN GARDEN 1 RS SIDEWALK AND CONCRETE CHASE EXISTING 24" CMP TURNBERRY ROAD IP SF SF IP IP RS RS OUTFALL FES OP W W ECB ECB W W RIPRAP RIPRAP RIPRAP RIPRAP RIPRAP SF SF EC1 EROSION CONTROL PLAN 13 Sheet of 68 COUNTRY CLUB RESERVE These drawings are instruments of service provided by Northern Engineering Services, Inc. and are not to be used for any type of construction unless signed and sealed by a Professional Engineer in the employ of Northern Engineering Services, Inc. NOT FOR CONSTRUCTION REVIEW SET 301 North Howes Street, Suite 100 Fort Collins, Colorado 80521 E NGINEER ING N O R T H E RN PHONE: 970.221.4158 www.northernengineering.com CALL 2 BUSINESS DAYS IN ADVANCE BEFORE YOU DIG, GRADE, OR EXCAVATE FOR THE MARKING OF UNDERGROUND MEMBER UTILITIES. CALL UTILITY NOTIFICATION CENTER OF COLORADO Know what'sbelow. Call before you dig. R BENCHMARK/BASIS OF BEARING PROPOSED CONTOUR EXISTING STORM SEWER PROPOSED SWALE EXISTING CONTOUR SILT FENCE WATTLE PROTECTION VEHICLE TRACKING PAD SF INLET PROTECTION 1. CONTRACTOR SHALL IMMEDIATELY STABILIZE ALL DISTURBED SLOPES BY CRIMP MULCHING OR SIMILAR METHODS (AS APPLICABLE). 2. TOTAL DISTURBED AREA = 2.69 ACRES 3. SWMP ADMINISTRATOR: Contact ________________________________ Company ________________________________ Address ________________________________ Phone________________________________ 4. CONTRACTOR TO PROVIDE VEHICLE TRACKING CONTROL FOR CONCRETE WASHOUT AREA IF ACCESS IS OFF PAVEMENT. 5. REFER TO THE FINAL STORM WATER MANAGMENT PLAN BY NORTHERN ENGINEERING SERVICES, DATED 03.13.2019 FOR ADDITIONAL INFORMATION. 6. ALL DISTURBED AREAS SHOULD BE REVEGETATED PER THE APPROVED LANDSCAPING PLANS. 7. RAIN GARDENS SHALL BE INSTALLED IN THE LAST PHASE OF DEVELOPMENT TO MINIMIZE POTENTIAL FOR SEDIMENT TO INFILTRATE AND CLOG THE SYSTEM. GENERAL NOTES: LEGEND: ROCK SOCK WITH MARKER EROSION CONTROL BLANKET 1. IT SHOULD BE NOTED THAT ANY EROSION CONTROL PLAN SERVES ONLY AS A GUIDELINE TO THE CONTRACTOR. STAGING AND/OR PHASING OF BEST MANAGEMENT PRACTICES (BMPs) IS EXPECTED. ADDITIONAL AND/OR DIFFERENT BMPs FROM THOSE ORIGINALLY DEPICTED MAY BE NECESSARY DURING CONSTRUCTION DUE TO CHANGING SITE CONDITIONS OR AS REQUIRED BY LOCAL AUTHORITIES. 2. THIS EROSION CONTROL PLAN IS SCHEMATIC IN NATURE. AS SUCH, GRAPHICAL SYMBOLS MAY NOT BE TO SCALE, NOR ARE THEY NECESSARILY SHOWN IN THEIR EXACT LOCATION. 3. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL PERMITTING (CITY, STATE DISCHARGE PERMIT, ETC.) AND COMPLIANCE WITH GOVERNING AUTHORITIES. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR (OR PERMIT HOLDER) TO ENSURE EROSION CONTROL MEASURES ARE PROPERLY MAINTAINED AND FOLLOWED. 4. CONTRACTOR SHALL IMPLEMENT THE APPROPRIATE EROSION CONTROL MEASURES ACCORDING THE THE CONSTRUCTION SEQUENCING AND LEVEL OF SITE STABILIZATION. 5. CONTRACTOR SHALL IMPLEMENT APPROPRIATE INLET PROTECTION FOR ALL STORM DRAINS, SWALES, PONDS AND RAIN GARDENS UNTIL SITE IS FULLY STABILIZED. 6. CONTRACTOR SHALL IMPLEMENT APPROPRIATE INLET PROTECTION FOR DOWNSPOUT CONNECTIONS, TO THE STORM DRAIN SYSTEM, UNTIL CONNECTION IS ESTABLISHED WITH DOWNSPOUT. 7. INLET PROTECTION SHALL BE ADAPTED, AS NECESSARY, TO THE SURROUNDING SURFACE TYPE AND CONDITION (i.e., STAKE-DRIVEN WATTLES FOR BARE SOIL, SAND BAGS OR GRAVEL SOCKS FOR PAVEMENT, ETC.) 8. CONTRACTOR IS RESPONSIBLE FOR STABILIZING ALL SLOPES, PARTICULARLY THOSE STEEPER THAN 6:1. CRIMP MULCHING, HYDRO MULCHING, EROSION MATS, TEMPORARY IRRIGATION, AND ADDITIONAL WATTLES OR SILT FENCING MAY BE NECESSARY TO ESTABLISH VEGETATIVE COVER AND STABILIZE THE SLOPE. 9. ADDITIONAL WATTLES, SILT FENCE, OR OTHER MEASURES, MAY BE NECESSARY TO INSURE THAT EACH BUILDING PAD IS STABILIZED THROUGHOUT CONSTRUCTION. AT NO TIME SHALL SEDIMENT BE ALLOWED TO CROSS THE PUBLIC SIDEWALKS. 10. CONTRACTOR SHALL IMPLEMENT APPROPRIATE PERIMETER PROTECTION FOR AREAS DIRECTING DRAINAGE OFFSITE. PERIMETER PROTECTION SHALL BE ADAPTED, AS NECESSARY, TO THE SURROUNDING SURFACE TYPE AND CONDITION (i.e., STAKE-DRIVEN SEDIMENT CONTROL LOGS OR SILT FENCE FOR BARE SOIL, SAND BAGS OR GRAVEL SOCKS FOR PAVEMENT, ETC.) 11. FUELING FACILITIES SHALL BE LOCATED AT LEAST ONE HUNDRED (100) FEET FROM NATURAL BODY OF WATER, WETLAND, NATURAL DRAINAGE WAY OR MANMADE DRAINAGE WAY. THE FUEL TANKS AND FUELING AREA MUST BE SET IN A CONTAINMENT AREA THAT WILL NOT ALLOW A FUEL SPILL TO DIRECTLY FLOW, SEEP, RUN OFF, OR BE WASHED INTO A BODY OF WATER, WETLAND OR DRAINAGE WAY. 12. CONSTRUCTION WASTE STORAGE (DUMPSTERS) AND PORTABLE SANITATION UNITS (CONSTRUCTION TOILETS) SHALL BE LOCATED AT LEAST FIFTY (50) FEET FROM ANY STORMWATER INLET, WETLAND, OR DRAINAGE WAY. SAID FACILITIES MUST BE SET IN A CONTAINMENT AREA THAT WILL NOT ALLOW POLLUTANTS TO DIRECTLY FLOW, SEEP, RUN OFF, OR BE WASHED INTO A BODY OF WATER, WETLAND OR DRAINAGE WAY. DUMPSTERS SHALL BE LOCATED ON FLAT, STABLE GROUND, AND CONSTRUCTION TOILETS SHALL BE STAKED DOWN. 13. THE CONTRACTOR AND ALL SUBCONTRACTORS WILL COOPERATE WITH THE CITY'S CONSTRUCTION INSPECTORS BY CEASING OPERATIONS WHEN WINDS ARE OF SUFFICIENT VELOCITY TO CREATE BLOWING DUST WHICH, IN THE INSPECTOR'S OPINION, IS HAZARDOUS TO THE PUBLIC HEALTH AND WELFARE. 14. WHERE SEASONAL CONSTRAINTS (E.G., DURING SUMMER AND WINTER MONTHS) INHIBIT PERMANENT SEEDING OPERATIONS, DISTURBED AREAS WILL BE TREATED WITH MULCH AND MULCH TACKIFIER OR OTHER MATERIALS APPROVED BY EROSION CONTROL STAFF TO PREVENT EROSION. 15. SEE LANDSCAPE PLANS FOR ADDITIONAL INFORMATION ON PLANTING, REVEGETATION, HARDSCAPE AND OTHER PERMANENT SITE STABILIZATION METHODS. 16. ALL DOWNSTREAM INLETS ALONG DOUGLAS ROAD AND TURNBERRY ROAD SHOULD HAVE INLET PROTECTION. TABLE OF CONSTRUCTION SEQUENCE AND BMP EROSION CONTROL NOTES: APPLICATION CONSTRUCTION PHASE (DESCRIPTION) PHASE I (GRADING) PHASE II (INFRASTRUCTURE) PHASE III (VERTICAL CONSTRUCITON) PHASE IV (PERMANENT BMP'S) Grading (Include Offsite) Overlot Pipeline Installation Stormwater Concrete Installation Site Walls Building Structure Miscellaneous Hardscape Amenities BEST MANAGEMENT PRACTICES Temporary Inlet Protection (IP) Vehicle Tracking Control (VTC) Flow Barriers (Wattles, Rock Socks, etc.) (WD) Concrete Washout Area (CWA) Preventative Maintenance Activities/Meetings/etc. Silt Fence (SF) Permanent Mulching/Sealant Permanent Seed Planting Sewer Service Water Service Curb and Gutter CONCRETE WASHOUT AREA OUTFALL PROTECTION INDIVIDUAL LOT PROTECTION LIMITS OF DISTURBANCE LOD SF W VTC IP RS ECB CWA OP ILP OVERLAND FLOW DIRECT FLOW PROJECT DATUM: NAVD 88 BENCHMARK #1: CITY OF FORT COLLINS BENCHMARK 92-14 NORTHEAST CORNER OF DOUGLAS ROAD AND TURNBERRY ROAD, ON TOP OF AN IRRIGATION STRUCTURE. ELEVATION = 5075.10 BENCHMARK #2: CITY OF FORT COLLINS BENCHMARK 92-15 DOUGLAS ROAD AND COUNTY ROAD 13, ON A LARIMER COUNTRY BRASS CAP, ON THE SOUTHWEST CORNER OF A BRIDGE OVER LARIMER CANAL DITCH. ELEVATION = 5123.89 PLEASE NOTE: THIS PLAN SET IS USING NAVD88 FOR A VERTICAL DATUM. SURROUNDING DEVELOPMENTS HAVE USED NGVD29 UNADJUSTED (PRIOR CITY OF FORT COLLINS DATUM) FOR THEIR VERTICAL DATUMS. IF NGVD29 UNADJUSTED DATUM (PRIOR CITY OF FORT COLLINS DATUM) IS REQUIRED FOR ANY PURPOSE, THE FOLLOWING EQUATION SHOULD BE USED: NGVD29 UNADJUSTED(PRIOR CITY OF FORT COLLINS DATUM) = NAVD88 - 3.17 BASIS OF BEARING: THE BASIS OF BEARINGS IS THE NORTH LINE OF THE NORTHEAST QUARTER OF SECTION 30-T8N-R68W AS BEARING SOUTH 89°21'11" EAST. NORTH ( IN FEET ) 0 1 INCH = 40 FEET 40 40 80 120