Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
WILMARC MEDICAL - FDP - FDP170005 - SUBMITTAL DOCUMENTS - ROUND 1 - DRAINAGE REPORT
Hydrology Basin No. Total Area (ac.) Soil Type Paved Area (sqft) (100% Imp) Roof Area (sqft) (90% Imp) Pavers Area (sqft) (60% Imp) Packed Gravel Area (sqft) (40% Imp) Greenbelt Area (sqft) (2% Imp) Lawn Area (sqft) (0% Imp) Basin % Impervious Basin Impervious Area (sqft) C2 C5 C100 1 0.87 c 0 25,000 0 0 12,859 0 60% 22,757 0.41 0.46 0.63 2 1.19 c 13,569 31,461 0 0 6,893 0 81% 42,022 0.61 0.64 0.75 3 0.48 c 16,386 0 0 0 4,740 0 78% 16,481 0.57 0.60 0.73 4 1.05 c 13,016 24,711 0 0 7,977 0 77% 35,415 0.57 0.60 0.72 4a 0.14 c 6,198 0 0 0 0 100% 6,198 0.89 0.90 0.96 5 0.70 c 17,611 0 0 0 12,836 0 59% 17,868 0.40 0.45 0.63 6 0.16 c 0 0 0 0 7,039 0 2% 141 0.06 0.16 0.51 7 0.37 c 0 8,800 0 0 7,195 0 50% 8,064 0.34 0.40 0.60 8 0.12 c 477 0 0 0 4,646 0 11% 570 0.12 0.22 0.53 Site 4.94 61,059 89,972 0 0 64,185 0 67% 143,318 LID 75% Area Threshold = 107,488 Design Point Basins Area (ac) % Imp C2 C100 Q2 (cfs) Q100 (cfs) 1 1 0.87 60% 0.41 0.63 1.0 6.5 2 2 1.19 81% 0.61 0.75 1.7 9.2 3 3 0.48 78% 0.57 0.73 0.7 3.9 4 2,4 2.24 79% 0.59 0.74 2.8 14.9 4a 4a 0.14 100% 0.89 0.96 0.3 1.4 5 5 0.70 59% 0.40 0.63 0.6 4.2 6 6 0.16 2% 0.06 0.51 0.0 1.0 7 2,4,5 2.94 74% 0.54 0.71 3.3 19.2 8 7 0.37 50% 0.34 0.60 0.4 2.7 9 8 0.12 11% 0.12 0.53 0.0 0.7 Site 4.94 67% Rain Garden ID Total Tributary TIME OF CONCENTRATION Harmony Tech Park - Lot 1 SUB-BASIN DATA INITIAL/OVERLAND TIME TRAVEL TIME FINAL REMARKS BASIN AREA C5 LENGTH SLOPE ti LENGTH CHANNEL SLOPE VELOCITY tL tc NO. (ac) (ft) (ft/ft) (min) (ft) TYPE(a) (%) (ft/s) (min) (min) 1 2 4 5 6 7 8 9 10 11 12 13 14 1 0.87 0.46 15 0.100 2.10 263 GW 0.6 1.19 3.7 5.8 2 1.19 0.64 57 0.023 4.81 372 GW 1.1 1.61 3.8 8.7 3 0.48 0.60 57 0.023 5.13 189 GW 1.2 1.67 1.9 7.0 4 1.05 0.60 154 0.011 10.87 64 GW 2.0 2.18 0.5 11.4 4a 0.14 0.90 80 0.013 3.06 0 -- -- 0.00 0.0 5.0 5 0.70 0.45 80 0.027 7.58 310 GW 1.5 1.89 2.7 10.3 6 0.16 0.16 16 0.150 2.77 129 GW 1.4 1.82 1.2 5.0 7 0.37 0.40 50 0.050 5.25 0 -- -- 0.00 0.0 5.3 8 0.12 0.22 33 0.040 5.80 0 -- -- 0.00 0.0 5.8 Note: a) Codes the channel type for velocity calculations. PA = Paved, PL = Pasture & Lawns, GW = Grassed Waterway 8:11 AM 1/25/2017 Design Point Basins tc Length Type Slope Velocity Travel Pipe Travel tc' C Intensity Area Direct Runoff Other Runoff Total Runoff Location (min) (ft) (a) (%) (ft/s) (min) (min) (min) (in/hr) (ac) (cfs) (cfs) (cfs) 1 1 5.8 -- -- -- -- 0.0 0.0 5.8 0.41 2.72 0.87 1.0 0.00 1.0 2 2 8.7 -- -- -- -- 0.0 0.0 8.7 0.61 2.34 1.19 1.7 0.00 1.7 3 3 7.0 -- -- -- -- 0.0 0.0 7.0 0.57 2.54 0.48 0.7 0.00 0.7 4 2,4 11.4 -- -- -- -- 0.0 0.0 11.4 0.59 2.10 2.24 2.8 0.00 2.8 4a 4a 5.0 -- -- -- -- 0.0 1.0 6.0 0.89 2.69 0.14 0.3 0.00 0.3 5 5 10.3 -- -- -- -- 0.0 0.0 10.3 0.40 2.18 0.70 0.6 0.00 0.6 6 6 5.0 -- -- -- -- 0.0 0.0 5.0 0.06 2.85 0.16 0.0 0.00 0.0 7 2,4,5 11.4 -- -- -- -- 0.0 0.0 11.4 0.54 2.10 2.94 3.3 0.00 3.3 8 7 5.3 -- -- -- -- 0.0 0.0 5.3 0.34 2.81 0.37 0.4 0.00 0.4 9 8 5.8 -- 0.0 0.0 5.8 0.12 2.72 0.12 0.0 0.00 0.0 Routing Flow Time (tL) Runoff Rational Method 2 Year Design Storm Harmony Tech Park - Lot 1 Note: a) Codes the channel type for velocity calculations. PA = Paved, PL = Pasture & Lawns, GW = Grassed Waterway 8:15 AM 1/25/2017 Design Point Basins tc Length Type Slope Velocity Travel Pipe Travel tc' C C*Cf Intensity Area Direct Runoff Other Runoff Total Runoff Location (min) (ft) (a) (%) (ft/s) (min) (min) (min) (in/hr) (ac) (cfs) (cfs) (cfs) 1 1 5.8 -- -- -- -- 0.0 0.0 5.8 0.63 0.79 9.51 0.87 6.5 0.00 6.5 2 2 8.7 -- -- -- -- 0.0 0.0 8.7 0.75 0.94 8.19 1.19 9.2 0.00 9.2 3 3 7.0 -- -- -- -- 0.0 0.0 7.0 0.73 0.91 8.88 0.48 3.9 0.00 3.9 4 2,4 11.4 -- -- -- -- 0.0 0.0 11.4 0.72 0.91 7.32 2.24 14.9 0.00 14.9 4a 4a 5.0 -- -- -- -- 0.0 1.0 5.0 0.96 1.00 9.95 0.14 1.4 0.00 1.4 5 5 10.3 -- -- -- -- 0.0 0.0 10.3 0.63 0.79 7.62 0.70 4.2 0.00 4.2 6 6 5.0 -- -- -- -- 0.0 0.0 5.0 0.51 0.63 9.95 0.16 1.0 0.00 1.0 7 2,4,5 11.4 -- -- -- -- 0.0 0.0 11.4 0.71 0.89 7.32 2.94 19.2 0.00 19.2 8 7 5.3 -- -- -- -- 0.0 0.0 5.3 0.60 0.75 9.80 0.37 2.7 0.00 2.7 9 8 5.8 -- -- -- -- 0.0 0.0 5.8 0.53 0.67 9.49 0.12 0.7 0.00 0.7 Roof Drains 10,000 SF 5.0 -- -- -- -- 0.0 0.0 5.0 0.83 1.00 9.95 0.23 2.3 0.00 2.3 Routing Flow Time (tL) Runoff Rational Method 100 Year Design Storm Harmony Tech Park - Lot 1 Note: a) Codes the channel type for velocity calculations. PA = Paved, PL = Pasture & Lawns, GW = Grassed Waterway 8:17 AM 1/25/2017 Storm Sewer South Storm Sewer System: North Storm Sewer System: Roof Drain – Basin 2 31,461 sqft Q100 = 7.3 cfs Roof Drain – Basin 4 24,710 sqft Q100 = 5.7 cfs Culvert Report Project filename: DP-4 Culvert.cst Culvert Studio v 1.0.0.18 01-26-2017 DP-4 Culvert 1 CULVERT Shape = Circular Inlet Edge = Projecting Material = Concrete Manning's n = 0.013 Rise = 18 in Span = 18 in Invert Elev. Down = 8.40 ft Length = 20.00 ft Slope = 0.005 ft/ft Invert Elev. Up = 8.50 ft No. Barrels = 2 Plan Skew Angle = 0 degrees EMBANKMENT Top Width = 15.00 ft Top Elevation = 11.95 ft Crest Length = 20.00 ft DISCHARGE Method = User-defined TAILWATER Tailwater Elevation = Normal Depth CALCULATION SAMPLE Discharge Velocity Depth Hydraulic Grade Line Total Culvert Over Top Down Up Down Up Down Up Hw (cfs) (cfs) (cfs) (ft/s) (ft/s) (in) (in) (ft) (ft) (ft) 14.90 14.90 0.00 4.78 4.78 14.8 14.8 9.64 9.74 10.13 DP-4: Outlet Protection Inlets Type C Area Inlet Design Standard Grate - Sump Condition Harmony Tech Park - Lot 1 Design Point: DP-1 *Computes the controlling area inlet flow condition. Weir - Orifice Control Weir Equation: where: H = head above weir Orifice Equation: where: H = h 2 - h 1 Grate: CDOT Type C Standard Weir: Orifice: Cweir = 3.00 Corifice = 0.6 Lcrest = 8.33 ft. (1) Aorifice = 3.77 ft2 Clogging Factor = 0.50 Number of Inlets = 1 Flowline elevation of grate = 11.16 100 year Design Flow (cfs) = 6.50 100 year WSEL (6.5) = 11.82 Head (ft.) Qweir Qorifice Qcontrol WSEL 0.00 0.00 0.00 0.00 11.16 0.50 4.42 6.42 4.42 11.66 1.00 12.50 9.08 9.08 12.16 1.50 22.96 11.12 11.12 12.66 2.00 35.34 12.84 12.84 13.16 2.50 49.40 14.36 14.36 13.66 3.00 64.93 15.73 15.73 14.16 3.50 81.82 16.99 16.99 14.66 4.00 99.97 18.16 18.16 15.16 4.50 119.29 19.27 19.27 15.66 5.00 139.71 20.31 20.31 16.16 Q weir CLH 3 2 Q orifice C o A o 2 gH Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. 0 20 40 60 80 100 120 140 160 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow (cfs) Flow Depth (ft.) Weir-Orifice Control Qweir Qorifice Type C Area Inlet Design Standard Grate - Sump Condition Harmony Tech Park - Lot 1 Design Point: DP-4a (6" Outlets) *Computes the controlling area inlet flow condition. Weir - Orifice Control Weir Equation: where: H = head above weir Orifice Equation: where: H = h 2 - h 1 Grate: CDOT Type C Standard Weir: Orifice: Cweir = 3.00 Corifice = 0.6 Lcrest = 1.57 ft. (1) Aorifice = 0.20 ft2 Clogging Factor = 0.00 Number of Inlets = 2 Flowline elevation of grate = 10.33 100 year Design Flow (cfs) = 1.40 100 year WSEL (1.4) = 10.88 Head (ft.) Qweir Qorifice Qcontrol WSEL 0.00 0.00 0.00 0.00 10.33 0.50 3.33 1.34 1.34 10.83 1.00 9.42 1.89 1.89 11.33 1.50 17.31 2.31 2.31 11.83 2.00 26.64 2.67 2.67 12.33 2.50 37.24 2.99 2.99 12.83 3.00 48.95 3.27 3.27 13.33 3.50 61.68 3.53 3.53 13.83 4.00 75.36 3.78 3.78 14.33 4.50 89.92 4.01 4.01 14.83 5.00 105.32 4.22 4.22 15.33 Q weir CLH 3 2 Q orifice C o A o 2 gH Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. 0 20 40 60 80 100 120 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow (cfs) Flow Depth (ft.) Weir-Orifice Control Qweir Qorifice Type C Area Inlet Design Standard Grate - Sump Condition Harmony Tech Park - Lot 1 Design Point: DP-6 *Computes the controlling area inlet flow condition. Weir - Orifice Control Weir Equation: where: H = head above weir Orifice Equation: where: H = h 2 - h 1 Grate: CDOT Type C Standard Weir: Orifice: Cweir = 3.00 Corifice = 0.6 Lcrest = 8.33 ft. (1) Aorifice = 3.77 ft2 Clogging Factor = 0.50 Number of Inlets = 1 Flowline elevation of grate = 12.75 100 year Design Flow (cfs) = 1.00 100 year WSEL (1) = 12.92 Head (ft.) Qweir Qorifice Qcontrol WSEL 0.00 0.00 0.00 0.00 12.75 0.50 4.42 6.42 4.42 13.25 1.00 12.50 9.08 9.08 13.75 1.50 22.96 11.12 11.12 14.25 2.00 35.34 12.84 12.84 14.75 2.50 49.40 14.36 14.36 15.25 3.00 64.93 15.73 15.73 15.75 3.50 81.82 16.99 16.99 16.25 4.00 99.97 18.16 18.16 16.75 4.50 119.29 19.27 19.27 17.25 5.00 139.71 20.31 20.31 17.75 Q weir CLH 3 2 Q orifice C o A o 2 gH Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. 0 20 40 60 80 100 120 140 160 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow (cfs) Flow Depth (ft.) Weir-Orifice Control Qweir Qorifice Type C Area Inlet Design Standard Grate - Sump Condition Harmony Tech Park - Lot 1 Design Point: DP-8 *Computes the controlling area inlet flow condition. Weir - Orifice Control Weir Equation: where: H = head above weir Orifice Equation: where: H = h 2 - h 1 Grate: CDOT Type C Standard Weir: Orifice: Cweir = 3.00 Corifice = 0.6 Lcrest = 8.33 ft. (1) Aorifice = 3.77 ft2 Clogging Factor = 0.50 Number of Inlets = 1 Flowline elevation of grate = 13.00 100 year Design Flow (cfs) = 2.70 100 year WSEL (2.7) = 13.37 Head (ft.) Qweir Qorifice Qcontrol WSEL 0.00 0.00 0.00 0.00 13.00 0.50 4.42 6.42 4.42 13.50 1.00 12.50 9.08 9.08 14.00 1.50 22.96 11.12 11.12 14.50 2.00 35.34 12.84 12.84 15.00 2.50 49.40 14.36 14.36 15.50 3.00 64.93 15.73 15.73 16.00 3.50 81.82 16.99 16.99 16.50 4.00 99.97 18.16 18.16 17.00 4.50 119.29 19.27 19.27 17.50 5.00 139.71 20.31 20.31 18.00 Q weir CLH 3 2 Q orifice C o A o 2 gH Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. 0 20 40 60 80 100 120 140 160 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow (cfs) Flow Depth (ft.) Weir-Orifice Control Qweir Qorifice Type C Area Inlet Design Standard Grate - Sump Condition Harmony Tech Park - Lot 1 Design Point: DP-9 *Computes the controlling area inlet flow condition. Weir - Orifice Control Weir Equation: where: H = head above weir Orifice Equation: where: H = h 2 - h 1 Grate: CDOT Type C Standard Weir: Orifice: Cweir = 3.00 Corifice = 0.6 Lcrest = 8.33 ft. (1) Aorifice = 3.77 ft2 Clogging Factor = 0.50 Number of Inlets = 1 Flowline elevation of grate = 12.00 100 year Design Flow (cfs) = 0.70 100 year WSEL (0.7) = 12.12 Head (ft.) Qweir Qorifice Qcontrol WSEL 0.00 0.00 0.00 0.00 12.00 0.50 4.42 6.42 4.42 12.50 1.00 12.50 9.08 9.08 13.00 1.50 22.96 11.12 11.12 13.50 2.00 35.34 12.84 12.84 14.00 2.50 49.40 14.36 14.36 14.50 3.00 64.93 15.73 15.73 15.00 3.50 81.82 16.99 16.99 15.50 4.00 99.97 18.16 18.16 16.00 4.50 119.29 19.27 19.27 16.50 5.00 139.71 20.31 20.31 17.00 Q weir CLH 3 2 Q orifice C o A o 2 gH Notes: 1) This is the effective weir length which equals the sum of the open space lengths between bars in the predominant flow directions. 0 20 40 60 80 100 120 140 160 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Flow (cfs) Flow Depth (ft.) Weir-Orifice Control Qweir Qorifice Cross Section Cross Section for Rectangular Channel c:\...\channels\lot 1.fm2 01/26/17 06:15:54 AM Ernst Engineering © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Project Engineer: Frederick C. Ernst FlowMaster v7.0 [7.0005] Page 1 of 1 Project Description Worksheet DP-4a Trench Drain Flow Element Rectangular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coefficient 0.013 Channel Slope 0.020000 ft/ft Depth 0.67 ft Bottom Width 0.67 ft Discharge 2.67 cfs 0.67 ft 0.67 ft V:2.0 H:1 NTS Open Channels Table Rating Table for Trapezoidal Channel c:\...\channels\lot 1.fm2 10/24/16 11:13:04 AM Ernst Engineering © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Project Engineer: Frederick C. Ernst FlowMaster v7.0 [7.0005] Page 1 of 1 Project Description Worksheet DP-1 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Channel Slope 0.010200 ft/ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Width 0.00 ft Discharge 11.00 cfs Attribute Minimum Maximum Increment Mannings Coefficient 0.030 0.035 0.005 Mannings Coefficient Depth (ft) Velocity (ft/s) Flow Area (ft²) Wetted Perimeter (ft) Top Width (ft) 0.030 0.96 3.00 3.7 7.89 7.66 0.035 1.01 2.67 4.1 8.37 8.12 Table Rating Table for Trapezoidal Channel c:\...\channels\lot 1.fm2 10/24/16 11:11:55 AM Ernst Engineering © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Project Engineer: Frederick C. Ernst FlowMaster v7.0 [7.0005] Page 1 of 1 Project Description Worksheet DP-3 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Channel Slope 0.022400 ft/ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Width 0.00 ft Discharge 5.22 cfs Attribute Minimum Maximum Increment Mannings Coefficient 0.030 0.035 0.005 Mannings Coefficient Depth (ft) Velocity (ft/s) Flow Area (ft²) Wetted Perimeter (ft) Top Width (ft) 0.030 0.62 3.34 1.6 5.15 5.00 0.035 0.66 2.98 1.8 5.46 5.29 Table Rating Table for Trapezoidal Channel c:\...\channels\lot 1.fm2 10/24/16 11:10:23 AM Ernst Engineering © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Project Engineer: Frederick C. Ernst FlowMaster v7.0 [7.0005] Page 1 of 1 Project Description Worksheet DP-4 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Channel Slope 0.006000 ft/ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Width 0.00 ft Discharge 19.80 cfs Attribute Minimum Maximum Increment Mannings Coefficient 0.030 0.035 0.005 Mannings Coefficient Depth (ft) Velocity (ft/s) Flow Area (ft²) Wetted Perimeter (ft) Top Width (ft) 0.030 1.32 2.85 7.0 10.87 10.55 0.035 1.40 2.54 7.8 11.52 11.17 Table Rating Table for Trapezoidal Channel c:\...\channels\lot 1.fm2 10/24/16 11:16:32 AM Ernst Engineering © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Project Engineer: Frederick C. Ernst FlowMaster v7.0 [7.0005] Page 1 of 1 Project Description Worksheet DP-5 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Channel Slope 0.017500 ft/ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Width 0.00 ft Discharge 5.60 cfs Attribute Minimum Maximum Increment Mannings Coefficient 0.030 0.035 0.005 Mannings Coefficient Depth (ft) Velocity (ft/s) Flow Area (ft²) Wetted Perimeter (ft) Top Width (ft) 0.030 0.67 3.10 1.8 5.54 5.37 0.035 0.71 2.76 2.0 5.87 5.69 Table Rating Table for Trapezoidal Channel c:\...\channels\lot 1.fm2 10/24/16 11:14:49 AM Ernst Engineering © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Project Engineer: Frederick C. Ernst FlowMaster v7.0 [7.0005] Page 1 of 1 Project Description Worksheet DP-6 Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Input Data Channel Slope 0.011000 ft/ft Left Side Slope 4.00 H : V Right Side Slope 4.00 H : V Bottom Width 0.00 ft Discharge 1.33 cfs Attribute Minimum Maximum Increment Mannings Coefficient 0.030 0.035 0.005 Mannings Coefficient Depth (ft) Velocity (ft/s) Flow Area (ft²) Wetted Perimeter (ft) Top Width (ft) 0.030 0.43 1.82 0.7 3.52 3.42 0.035 0.45 1.62 0.8 3.73 3.62 LID Calculations Sheet 1 of 2 Designer: Company: Date: Project: Location: 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, Ia Ia = 78.0 % (100% if all paved and roofed areas upstream of rain garden) B) Tributary Area's Imperviousness Ratio (i = Ia/100) i = 0.780 C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time WQCV = 0.25 watershed inches (WQCV= 0.8 * (0.91* i3 - 1.19 * i2 + 0.78 * i) D) Contributing Watershed Area (including rain garden area) Area = 21,103 sq ft E) Water Quality Capture Volume (WQCV) Design Volume VWQCV = 445 cu ft Vol = (WQCV / 12) * Area F) For Watersheds Outside of the Denver Region, Depth of d6 = in Average Runoff Producing Storm G) For Watersheds Outside of the Denver Region, VWQCV OTHER = cu ft Water Quality Capture Volume (WQCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume VWQCV USER = cu ft (Only if a different WQCV Design Volume is desired) 2. Basin Geometry A) WQCV Depth (12-inch maximum) DWQCV = 12 in B) Rain Garden Side Slopes (Z = 4 min., horiz. dist per unit vertical) Z = 4.00 ft / ft (Use "0" if rain garden has vertical walls) C) Mimimum Flat Surface Area AMin = 329 sq ft D) Actual Flat Surface Area AActual = 330 sq ft E) Area at Design Depth (Top Surface Area) ATop = 738 sq ft F) Rain Garden Total Volume VT= 534 cu ft (VT= ((ATop + AActual) / 2) * Depth) 3. Growing Media 4. Underdrain System A) Are underdrains provided? B) Underdrain system orifice diameter for 12 hour drain time i) Distance From Lowest Elevation of the Storage y = 1.9 ft Volume to the Center of the Orifice ii) Volume to Drain in 12 Hours Vol12 = 445 cu ft iii) Orifice Diameter, 3/8" Minimum DO = 1/2 in Design Procedure Form: Rain Garden (RG) October 24, 2016 Harmony Tech Park - Lot 1 Rain Garden - 1 Choose One Choose One 18" Rain Garden Growing Media Other (Explain): YES NO RG1-Basin1.xlsm, RG 10/24/2016, 8:21 AM Sheet 2 of 2 Designer: Company: Date: Project: Location: 5. Impermeable Geomembrane Liner and Geotextile Separator Fabric A) Is an impermeable liner provided due to proximity of structures or groundwater contamination? 6. Inlet / Outlet Control A) Inlet Control 7. Vegetation 8. Irrigation A) Will the rain garden be irrigated? Notes: Design Procedure Form: Rain Garden (RG) October 24, 2016 Harmony Tech Park - Lot 1 Rain Garden - 1 Choose One Choose One Choose One Sheet Flow- No Energy Dissipation Required Concentrated Flow- Energy Dissipation Provided Plantings Seed (Plan for frequent weed control) Sand Grown or Other High Infiltration Sod Choose One YES NO YES NO RG1-Basin1.xlsm, RG 10/24/2016, 8:21 AM Sheet 1 of 2 Designer: Company: Date: Project: Location: 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, Ia Ia = 71.0 % (100% if all paved and roofed areas upstream of rain garden) B) Tributary Area's Imperviousness Ratio (i = Ia/100) i = 0.710 C) Water Quality Capture Volume (WQCV) for a 12-hour Drain Time WQCV = 0.22 watershed inches (WQCV= 0.8 * (0.91* i3 - 1.19 * i2 + 0.78 * i) D) Contributing Watershed Area (including rain garden area) Area = 135,113 sq ft E) Water Quality Capture Volume (WQCV) Design Volume VWQCV = 2,519 cu ft Vol = (WQCV / 12) * Area F) For Watersheds Outside of the Denver Region, Depth of d6 = in Average Runoff Producing Storm G) For Watersheds Outside of the Denver Region, VWQCV OTHER = cu ft Water Quality Capture Volume (WQCV) Design Volume H) User Input of Water Quality Capture Volume (WQCV) Design Volume VWQCV USER = cu ft (Only if a different WQCV Design Volume is desired) 2. Basin Geometry A) WQCV Depth (12-inch maximum) DWQCV = 12 in B) Rain Garden Side Slopes (Z = 4 min., horiz. dist per unit vertical) Z = 4.00 ft / ft (Use "0" if rain garden has vertical walls) C) Mimimum Flat Surface Area AMin = 1919 sq ft D) Actual Flat Surface Area AActual = 2390 sq ft E) Area at Design Depth (Top Surface Area) ATop = 3456 sq ft F) Rain Garden Total Volume VT= 2,923 cu ft (VT= ((ATop + AActual) / 2) * Depth) 3. Growing Media 4. Underdrain System A) Are underdrains provided? B) Underdrain system orifice diameter for 12 hour drain time i) Distance From Lowest Elevation of the Storage y = 1.9 ft Volume to the Center of the Orifice ii) Volume to Drain in 12 Hours Vol12 = 2,519 cu ft iii) Orifice Diameter, 3/8" Minimum DO = 1 1/6 in Design Procedure Form: Rain Garden (RG) October 24, 2016 Harmony Tech Park - Lot 1 Rain Garden - 2 Choose One Choose One 18" Rain Garden Growing Media Other (Explain): YES NO RG2-Basin2.xlsm, RG 10/24/2016, 8:28 AM Sheet 2 of 2 Designer: Company: Date: Project: Location: 5. Impermeable Geomembrane Liner and Geotextile Separator Fabric A) Is an impermeable liner provided due to proximity of structures or groundwater contamination? 6. Inlet / Outlet Control A) Inlet Control 7. Vegetation 8. Irrigation A) Will the rain garden be irrigated? Notes: Design Procedure Form: Rain Garden (RG) October 24, 2016 Harmony Tech Park - Lot 1 Rain Garden - 2 Choose One Choose One Choose One Sheet Flow- No Energy Dissipation Required Concentrated Flow- Energy Dissipation Provided Plantings Seed (Plan for frequent weed control) Sand Grown or Other High Infiltration Sod Choose One YES NO YES NO RG2-Basin2.xlsm, RG 10/24/2016, 8:28 AM Worksheet Worksheet for Sharp Crested Rectangular Weir c:\...\channels\lot 1.fm2 10/24/16 11:19:48 AM Ernst Engineering © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Project Engineer: Frederick C. Ernst FlowMaster v7.0 [7.0005] Page 1 of 1 Project Description Worksheet RG-2 Weir Type Sharp Crested Rectangular Weir Solve For Crest Length Input Data Discharge 19.20 cfs Headwater Elevation 100.50 ft Crest Elevation 100.00 ft Tailwater Elevation 0.00 ft Discharge Coefficient3.10 US Number of Contractions2 Results Crest Length 17.62 ft Headwater Height Above Crest 0.50 ft Tailwater Height Above -100.Crest 00 ft Flow Area 8.8 ft² Velocity 2.18 ft/s Wetted Perimeter 18.62 ft Top Width 17.62 ft Table RO-11 Rational Method Runoff Coefficients for Composite Analysis Character of Surface Runoff Coefficient Streets, Parking Lots, Drives: Asphalt 0.95 Concrete 0.95 Gravel 0.5 Roofs 0.95 Recycled Asphalt 0.8 Lawns, Sandy Soil: Flat <2% 0.1 Average 2 to 7% 0.15 Steep >7% 0.2 Lawns, Heavy Soil: Flat <2% 0.2 Average 2 to 7% 0.25 Steep >7% 0.35 (4) A new Section 2.9 is added, to read as follows: 2.9 Composite Runoff Coefficient Drainage sub-basins are frequently composed of land that has multiple surfaces or zoning classifications. In such cases a composite runoff coefficient must be calculated for any given drainage sub-basin. The composite runoff coefficient is obtained using the following formula: ( ) t n i i i A C A C = = 1 * (RO-8) Where: C = Composite Runoff Coefficient Ci = Runoff Coefficient for Specific Area (Ai) Ai = Area of Surface with Runoff Coefficient of Ci, acres or feet2 n = Number of different surfaces to be considered At = Total Area over which C is applicable, acres or feet2 (5) A new Section 2.10 is added, to read as follows: Runoff Chapter 6 6-8 Urban Drainage and Flood Control District January 2016 Urban Storm Drainage Criteria Manual Volume 1 Table 6-3. Recommended percentage imperviousness values Land Use or Percentage Imperviousness Surface Characteristics (%) Business: Downtown Areas 95 Suburban Areas 75 Residential: Single-family 2.5 acres or larger 12 0.75 – 2.5 acres 20 0.25 – 0.75 acres 30 0.25 acres or less 45 Apartments 75 Industrial: Light areas 80 Heavy areas 90 Parks, cemeteries 10 Playgrounds 25 Schools 55 Railroad yard areas 50 Undeveloped Areas: Historic flow analysis 2 Greenbelts, agricultural 2 Off-site flow analysis (when land use not defined) 45 Streets: Paved 100 Gravel (packed) 40 Drive and walks 90 Roofs 90 Lawns, sandy soil 2 Lawns, clayey soil 2 06/2005 Larimer County Stormwater Design Standards 18 Figure RA-2. Rainfall Intensity – Duration – Frequency Curve for Area I This unofficial copy was downloaded on May-26-2016 from the City of Fort Collins Public Records Website: http://citydocs.fcgov.com For additional information or an official copy, please contact Engineering Office 281 North College Fort Collins, CO 80521 USA Area (sqft) Tributary Impervious Area (sqft) Percentage of Treated Site Impervious Area RG-1 21,126 16,481 11% RG-2 128,074 95,305 66% Percentage of Treated Site Impervious Area = 78% Harmony Commons - Lot 1 LID - Rain Garden Effective Credit Tabulation Site Percent Imperviousness Calculations and LID Credit Tabulations Developed Site Hydrology Harmony Commons - Lot 1