HomeMy WebLinkAboutLINDEN STREET PARKING LOT (FORMERLY JEFFERSON STREET PARKING LOT) - PDP - PDP150001 - SUBMITTAL DOCUMENTS - ROUND 1 - DRAINAGE REPORTJanuary 7, 2015
PRELIMINARY DRAINAGE AND
EROSION CONTROL REPORT FOR
LINDEN STREET PARKING LOT
Fort Collins, Colorado
Prepared for:
Blue Ocean Enterprises
401 W. Mountain Ave.
Fort Collins, CO 805211
Prepared by:
200 South College Avenue, Suite 10
Fort Collins, Colorado 80524
Phone: 970.221.4158 Fax: 970.221.4159
www.northernengineering.com
Project Number: 838-014
This Drainage Report is consciously provided as a PDF.
Please consider the environment before printing this document in its entirety.
When a hard copy is absolutely necessary, we recommend double-sided printing.
January 7, 2014
City of Fort Collins
Stormwater Utility
700 Wood Street
Fort Collins, Colorado 80521
RE: Preliminary Drainage and Erosion Control Report for
LINDEN STREET PARKING LOT
Dear Staff:
Northern Engineering is pleased to submit this Preliminary Drainage and Erosion Control Report
for your review. This report accompanies the Project Development Plan submittal for the
proposed Linden Street Parking Lot Project.
This report has been prepared in accordance to Fort Collins Stormwater Criteria Manual (FCSCM),
and serves to document the stormwater impacts associated with the proposed project. We
understand that review by the City is to assure general compliance with standardized criteria
contained in the FCSCM.
If you should have any questions as you review this report, please feel free to contact us.
Sincerely,
NORTHERN ENGINEERING SERVICES, INC.
Aaron Cvar, PE
Project Engineer
Linden Street Parking Lot
Preliminary Drainage Report
TABLE OF CONTENTS
I. GENERAL LOCATION AND DESCRIPTION .................................................................... 1
A. Location ............................................................................................................................................. 1
B. Description of Property ..................................................................................................................... 2
C. Floodplain ......................................................................................................................................... 3
II. DRAINAGE BASINS AND SUB-BASINS ........................................................................ 4
A. Major Basin Description .................................................................................................................... 4
B. Sub-Basin Description ....................................................................................................................... 4
III. DRAINAGE DESIGN CRITERIA .................................................................................... 4
A. Regulations ........................................................................................................................................ 4
B. Four Step Process .............................................................................................................................. 5
C. Development Criteria Reference and Constraints ............................................................................ 5
D. Hydrological Criteria ......................................................................................................................... 6
E. Hydraulic Criteria .............................................................................................................................. 6
F. Modifications of Criteria ................................................................................................................... 6
IV. DRAINAGE FACILITY DESIGN ..................................................................................... 6
A. General Concept ............................................................................................................................... 6
B. Specific Details .................................................................................................................................. 7
V. CONCLUSIONS .......................................................................................................... 8
A. Compliance with Standards .............................................................................................................. 8
B. Drainage Concept .............................................................................................................................. 8
APPENDICES:
APPENDIX A – Hydrologic Computations
APPENDIX B - Water Quality Design Computations
APPENDIX C – Erosion Control Report
Linden Street Parking Lot
Preliminary Drainage Report
LIST OF FIGURES:
Figure 1 – Aerial Photograph .................................................................................................. 2
Figure 2– Proposed Site Plan .................................................................................................. 3
Figure 3 – Existing Floodplains ............................................................................................... 4
MAP POCKET:
Proposed Drainage Exhibit
Linden Street Parking Lot
Preliminary Drainage Report 1
I. GENERAL LOCATION AND DESCRIPTION
A. Location
1. Vicinity Map
2. The project site is located in Block 7 of Fort Collins, which is within the northwest
quarter of Section 12, Township 7 North, Range 69 West of the 6th Principal
Meridian, City of Fort Collins, County of Larimer, State of Colorado.
3. The project site is located just north of the intersection of Linden Street and Jefferson
Street.
4. The project site lies within the Old Town Basin, and must detain and release at the
Historic 2-year release rate. Additionally, the site still must provide water quality
treatment. Water quality treatment methods in the form of permeable pavers and
extended detention are proposed for the site, and are described in further detail
below.
5. As this is an infill site, the area surrounding the site is fully developed.
6. No offsite flows enter the site.
Linden Street Parking Lot
Preliminary Drainage Report 2
B. Description of Property
1. The development area is roughly 0.57 net acres.
Figure 1 – Aerial Photograph
2. The subject property is currently a park. Existing ground slopes are mild to moderate
(i.e., 1 - 6±%) through the interior of the property. General topography slopes from
northwest to southeast.
3. According to the United States Department of Agriculture (USDA) Natural Resources
Conservation Service (NRCS) Soil Survey website:
http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx,
the site consists of Nunn Clay Loam, which falls into Hydrologic Soil Group C.
4. The proposed project site plan is composed of the development of a parking lot.
Associated site work, including pavement, curb and gutter, and the installation of a
permeable paver system will be constructed with the development. Onsite water
quality treatment is proposed and will consist of several features which are discussed
in Section IV, below.
Linden Street Parking Lot
Preliminary Drainage Report 3
Figure 2– Proposed Site Plan
5. There are no known irrigation laterals crossing the site.
6. The proposed land use is a parking lot.
C. Floodplain
1. The project site is not encroached by any FEMA or City designated 100-year
floodplain.
Linden Street Parking Lot
Preliminary Drainage Report 4
Figure 3 –Area Floodplain Mapping
II. DRAINAGE BASINS AND SUB-BASINS
A. Major Basin Description
1. The project site lies within the Old Town Basin. Detention requirements are to detain
the difference between the 100-year developed inflow rate and the historic 2-year
release rate. Conceptual review comments for the site allowed for a portion of the site
to release undetained, however, it was determined through the preliminary design
process that the entirety of the site must drain southeast into the existing storm
system in Linden Street as shown in the Preliminary Drainage Exhibit. Because of
this, Old Town Basin requirements must be met, and we are proposing both quantity
detention and extended detention as well as the provision of LID measures as
discussed below.
B. Sub-Basin Description
1. The subject property historically drains overland from northwest to southeast. Runoff
from the majority of the site has historically been collected in the existing storm
systems within Linden Street and Jefferson Street.
2. A more detailed description of the project drainage patterns is provided below.
III. DRAINAGE DESIGN CRITERIA
A. Regulations
There are no optional provisions outside of the FCSCM proposed with the proposed
project.
Linden Street Parking Lot
Preliminary Drainage Report 5
B. Four Step Process
The overall stormwater management strategy employed with the proposed project utilizes
the “Four Step Process” to minimize adverse impacts of urbanization on receiving waters.
The following is a description of how the proposed development has incorporated each
step.
Step 1 – Employ Runoff Reduction Practices
Several techniques have been utilized with the proposed development to facilitate the
reduction of runoff peaks, volumes, and pollutant loads as the site is developed from the
current use by implementing multiple Low Impact Development (LID) strategies including:
Conserving existing amenities in the site including existing vegetated areas and
mature trees.
Providing vegetated landscape islands in the parking lot to reduce the overall
impervious area and to minimize directly connected impervious areas (MDCIA).
Step 2 – Implement BMPs That Provide a Water Quality Capture Volume (WQCV) with
Slow Release
The efforts taken in Step 1 will facilitate the reduction of runoff; however, urban
development of this intensity will still generate stormwater runoff that will require
additional BMPs and water quality. The majority of stormwater runoff from the site will
ultimately be intercepted and treated using extended detention methods prior to exiting the
site.
Step 3 – Stabilize Drainageways
There are no major drainageways within the subject property. While this step may not
seem applicable to proposed development, the project indirectly helps achieve stabilized
drainageways nonetheless. By providing water quality treatment, where none previously
existed, sediment with erosion potential is removed from downstream drainageway
systems. Furthermore, this project will pay one-time stormwater development fees, as
well as ongoing monthly stormwater utility fees, both of which help achieve City-wide
drainageway stability.
Step 4 – Implement Site Specific and Other Source Control BMPs.
The proposed project will improve upon site specific source controls compared to historic
conditions:
The proposed development will provide LID and water quality treatment; thus,
eliminating sources of potential pollution previously left exposed to weathering and
runoff processes.
C. Development Criteria Reference and Constraints
The subject property is surrounded by currently developed properties. Thus, several
constraints have been identified during the course of this analysis that will impact the
proposed drainage system including:
Existing elevations along the property lines will generally be maintained.
As previously mentioned, overall drainage patterns of the existing site will be
maintained.
Elevations of existing downstream facilities that the subject property will release to
will be maintained.
Linden Street Parking Lot
Preliminary Drainage Report 6
D. Hydrological Criteria
1. The City of Fort Collins Rainfall Intensity-Duration-Frequency Curves, as depicted in
Figure RA-16 of the FCSCM, serve as the source for all hydrologic computations
associated with the proposed development. Tabulated data contained in Table RA-7
has been utilized for Rational Method runoff calculations.
2. The Rational Method has been employed to compute stormwater runoff utilizing
coefficients contained in Tables RO-11 and RO-12 of the FCSCM.
3. Three separate design storms have been utilized to address distinct drainage
scenarios. A fourth design storm has also been computed for comparison purposes.
The first design storm considered is the 80th percentile rain event, which has been
employed to design the project’s water quality features. The second event analyzed is
the “Minor,” or “Initial” Storm, which has a 2-year recurrence interval. The third
event considered is the “Major Storm,” which has a 100-year recurrence interval.
The fourth storm computed, for comparison purposes only, is the 10-year event.
4. No other assumptions or calculation methods have been used with this development
that are not referenced by current City of Fort Collins criteria.
E. Hydraulic Criteria
1. As previously noted, the subject property maintains historic drainage patterns.
2. All drainage facilities proposed with the project are designed in accordance with
criteria outlined in the FCSCM and/or the Urban Drainage and Flood Control District
(UDFCD) Urban Storm Drainage Criteria Manual.
3. As stated above, the proposed project does not propose to modify any natural
drainageways.
F. Modifications of Criteria
1. The proposed development is not requesting any modifications to criteria at this time.
IV. DRAINAGE FACILITY DESIGN
A. General Concept
1. The main objectives of the project drainage design are to maintain existing drainage
patterns, and to ensure no adverse impacts to any adjacent properties.
2. Onsite water quality treatment will be provided, as well as other LID features, which
are discussed further below. Water quality capture volume for the purpose of water
quality treatment conforming to extended detention criteria will be provided within the
permeable paver system.
3. Drainage patterns anticipated for drainage basins shown in the Drainage Exhibit are
described below. Drainage basins have been defined for preliminary design purposes
an are subject to change at Final design; however, general drainage patterns and
concepts are not expected to be significantly altered.
Linden Street Parking Lot
Preliminary Drainage Report 7
Basin 1
Basin 1 consists of the parking lot area and will generally drain via sheet flow and
curb and gutter into the proposed permeable paver system. Please see further
discussion of water quality and LID features in Section IV.B, below.
Basin 2
Basin 2 will consist of landscaped areas adjacent to the parking lot area and will drain
across the parking lot, into Linden Street. Since Basin 2 is composed primarily of
landscaped area, we are not proposing detention for this area. Additionally, because
of the surface character of this basin, we are proposing no water quality treatment.
A full-size copy of the Drainage Exhibit can be found in the Map Pocket at the end of
this report.
B. Specific Details
1. Extended detention within the proposed permeable paver system is proposed,
which will provide standard 40-hour extended detention treatment.
2. The site plan currently reflects over 25% of paved area being composed of
permeable pavers. The Final site design will also ensure the 25% requirement
for permeable pavers is met.
3. The following table summarizes LID features and overall percentage of the basin being
treated by the proposed LID features.
Table 1 – LID Summary
Basin
Basin
Area
(sq.ft.)
Portion of Basin
Captured
(sq.ft.)
Treatment
Type
1 17859 17859
Porous Landscape
Detention
2 6969 6969 Landscaping
Total 24828 24828 Total % Treated: 100%
4. Final design details, construction documentation, and Standard Operating
Procedures (SOP) Manual shall be provided to the City of Fort Collins for
review prior to Final Development Plan approval. A final copy of the approved
SOP manual shall be provided to City and must be maintained on-site by the
entity responsible for the facility maintenance. Annual reports must also be
prepared and submitted to the City discussing the results of the maintenance
program (i.e. inspection dates, inspection frequency, volume loss due to
sedimentation, corrective actions taken, etc.).
5. Proper maintenance of the drainage facilities designed with the proposed
development is a critical component of their ongoing performance and
effectiveness.
Linden Street Parking Lot
Preliminary Drainage Report 8
V. CONCLUSIONS
A. Compliance with Standards
1. The drainage design proposed with the proposed project complies with the City of Fort
Collins’ Stormwater Criteria Manual.
2. The drainage design proposed with this project complies with requirements for the Old
Town Basin.
3. The drainage plan and stormwater management measures proposed with the
proposed development are compliant with all applicable State and Federal regulations
governing stormwater discharge.
B. Drainage Concept
1. The drainage design proposed with this project will effectively limit any potential
damage associated with its stormwater runoff by providing detention and water
quality mitigation features.
2. The drainage concept for the proposed development is consistent with requirements
for the Old Town Basin.
References
1. Fort Collins Stormwater Criteria Manual, City of Fort Collins, Colorado, as adopted by Ordinance No.
174, 2011, and referenced in Section 26-500 (c) of the City of Fort Collins Municipal Code.
2. Larimer County Urban Area Street Standards, Adopted January 2, 2001, Repealed and
Reenacted, Effective October 1, 2002, Repealed and Reenacted, Effective April 1, 2007.
3. Soils Resource Report for Larimer County Area, Colorado, Natural Resources Conservation
Service, United States Department of Agriculture.
4. Urban Storm Drainage Criteria Manual, Volumes 1-3, Urban Drainage and Flood Control
District, Wright-McLaughlin Engineers, Denver, Colorado, Revised April 2008.
APPENDIX A
HYDROLOGIC COMPUTATIONS
CHARACTER OF SURFACE:
Runoff
Coefficient
Percentage
Impervious Project: 838-014
Streets, Parking Lots, Roofs, Alleys, and Drives: Calculations By: ATC
Asphalt ……....……………...……….....…...……………….…………………………………. 0.95 100% Date:
Concrete …….......……………….….……….………………..….……………………………… 0.95 90%
Gravel ……….…………………….….…………………………..………………………………. 0.50 40%
Roofs …….…….………………..……………….…………………………………………….. 0.95 90%
Pavers…………………………...………………..…………………………………………….. 0.40 22%
Lawns and Landscaping
Sandy Soil ……..……………..……………….…………………………………………….. 0.15 0%
Clayey Soil ….….………….…….…………..………………………………………………. 0.25 0% 2-year Cf
= 1.00 100-year Cf = 1.25
Basin ID
Basin Area
(s.f.)
Basin Area
(ac)
Area of
Asphalt
(ac)
Area of
Concrete
(ac)
Area of
Roofs
(ac)
Area of
Pavers
(ac)
Area of
Lawn, Rain
Garden, or
Landscaping
(ac)
2-year
Composite
Runoff
Coefficient
10-year
Composite
Runoff
Coefficient
100-year
Composite
Runoff
Coefficient
Composite
% Imperv.
H1 24654 0.57 0.000 0.000 0.000 0.000 0.570 0.25 0.25 0.31 0%
HISTORIC COMPOSITE % IMPERVIOUSNESS AND RUNOFF COEFFICIENT CALCULATIONS
Runoff Coefficients are taken from the City of Fort Collins Storm Drainage Design Criteria and Construction Standards, Table 3-3. % Impervious taken from UDFCD USDCM, Volume I.
10-year Cf = 1.00
12/31/14
Overland Flow, Time of Concentration:
Project: 838-014
Calculations By:
Date:
Gutter/Swale Flow, Time of Concentration:
Tt = L / 60V
Tc = Ti + Tt (Equation RO-2)
Velocity (Gutter Flow), V = 20·S½
Velocity (Swale Flow), V = 15·S½
NOTE: C-value for overland flows over grassy surfaces; C = 0.25
Is Length
>500' ?
C*Cf
(2-yr
Cf=1.00)
C*Cf
(10-yr
Cf=1.00)
C*Cf
(100-yr
Cf=1.25)
Length,
L
(ft)
Slope,
S
(%)
Ti
2-yr
(min)
Ti
10-yr
(min)
Ti
100-yr
(min)
Length,
L
(ft)
Slope,
S
(%)
Velocity,
V
(ft/s)
Tt
(min)
Length,
L
(ft)
Slope,
S
(%)
Velocity,
V
(ft/s)
Tt
(min)
2-yr
Tc
Rational Method Equation: Project: 838-014
Calculations By:
Date:
From Section 3.2.1 of the CFCSDDC
Rainfall Intensity:
H1 H1 0.57 41 40 37 0.25 0.25 0.31 1.06 1.83 3.93 0.2 0.3 0.7
Intensity,
i10
(in/hr)
Rainfall Intensity taken from the City of Fort Collins Storm Drainage Design Criteria (CFCSDDC), Figure 3.1
C10
Area, A
(acres)
Intensity,
i2
(in/hr)
100-yr
Tc
(min)
HISTORIC RUNOFF COMPUTATIONS
C100
Design
Point
Flow,
Q100
(cfs)
Flow,
Q2
(cfs)
10-yr
Tc
(min)
2-yr
Tc
(min)
C2
Flow,
Q10
(cfs)
Intensity,
i100
(in/hr)
Basin(s)
ATC
12/31/14
Q C f C i A
CHARACTER OF SURFACE:
Runoff
Coefficient
Percentage
Impervious Project: 838-014
Streets, Parking Lots, Roofs, Alleys, and Drives: Calculations By: ATC
Asphalt ……....……………...……….....…...……………….………………………………….. 0.95 100% Date:
Concrete …….......……………….….……….………………..….……………………………… 0.95 90%
Gravel ……….…………………….….…………………………..………………………………. 0.50 40%
Roofs …….…….………………..……………….…………………………………………….. 0.95 90%
Pavers…………………………...………………..…………………………………………….. 0.40 22%
Lawns and Landscaping
Sandy Soil ……..……………..……………….…………………………………………….. 0.15 0%
Clayey Soil ….….………….…….…………..………………………………………………. 0.25 0% 2-year Cf
= 1.00 100-year Cf = 1.25
Basin ID
Basin Area
(s.f.)
Basin Area
(ac)
Area of
Asphalt
(ac)
Area of
Concrete
(ac)
Area of
Roofs
(ac)
Area of
Pavers
(ac)
Area of
Lawn, Rain
Garden, or
Landscaping
(ac)
2-year
Composite
Runoff
Coefficient
10-year
Composite
Runoff
Coefficient
100-year
Composite
Runoff
Coefficient
Composite
% Imperv.
1 17729 0.41 0.190 0.000 0.000 0.103 0.114 0.61 0.61 0.77 52%
2 6924 0.16 0.020 0.000 0.000 0.000 0.139 0.34 0.34 0.42 13%
DEVELOPED COMPOSITE % IMPERVIOUSNESS AND RUNOFF COEFFICIENT CALCULATIONS
Runoff Coefficients are taken from the City of Fort Collins Storm Drainage Design Criteria and Construction Standards, Table 3-3. % Impervious taken from UDFCD USDCM, Volume I.
10-year Cf = 1.00
January 6, 2015
Overland Flow, Time of Concentration:
Project: 838-014
Calculations By:
Date:
Gutter/Swale Flow, Time of Concentration:
Tt = L / 60V
Tc = Ti + Tt (Equation RO-2)
Velocity (Gutter Flow), V = 20·S½
Velocity (Swale Flow), V = 15·S½
NOTE: C-value for overland flows over grassy surfaces; C = 0.25
Is Length
>500' ?
C*Cf
(2-yr
Cf=1.00)
C*Cf
(10-yr
Cf=1.00)
C*Cf
(100-yr
Cf=1.25)
Length,
L
(ft)
Slope,
S
(%)
Ti
2-yr
(min)
Ti
10-yr
(min)
Ti
100-yr
(min)
Length,
L
(ft)
Slope,
S
(%)
Velocity,
V
(ft/s)
Tt
(min)
Length,
L
(ft)
Slope,
S
(%)
Velocity,
V
(ft/s)
Tt
(min)
2-yr
Tc
Rational Method Equation: Project: 838-014
Calculations By:
Date:
From Section 3.2.1 of the CFCSDDC
Rainfall Intensity:
1 1 0.41 5 5 5 0.61 0.61 0.77 2.85 4.87 9.95 0.7 1.2 3.1
2 2 0.16 9 9 9 0.34 0.34 0.42 2.35 4.02 8.21 0.1 0.2 0.6
DEVELOPED RUNOFF COMPUTATIONS
C100
Design
Point
Flow,
Q100
(cfs)
Flow,
Q2
(cfs)
10-yr
Tc
(min)
2-yr
Tc
(min)
C2
Flow,
Q10
(cfs)
Intensity,
i100
(in/hr)
Basin(s)
ATC
January 6, 2015
Intensity,
i10
(in/hr)
Rainfall Intensity taken from the City of Fort Collins Storm Drainage Design Criteria (CFCSDDC), Figure 3.1
C10
Area, A
(acres)
Intensity,
i2
(in/hr)
100-yr
Tc
(min)
Q C f C i A
40
Table RO-10
Rational Method Minor Storm Runoff Coefficients for Zoning Classifications
Description of Area or Zoning Coefficient
R-F 0.3
U-E 0.3
L-M-In 0.55
R-L, N-C-L 0.6
M-M-N, N-C-M 0.65
N-C-B 0.7
Business:
C-C-N, C-C-R, C-N, N-C, C-S 0.95
R-D-R, C-C, C-L 0.95
D, C 0.95
H-C 0.95
C-S 0.95
Industrial:
E 0.85
I 0.95
Undeveloped:
R-C, T 0.2
P-O-L 0.25
For guidance regarding zoning districts and classifications of such districts please refer to
Article Four of the City Land Use Code, as amended.
41
Table RO-11
Rational Method Runoff Coefficients for Composite Analysis
Character of Surface Runoff Coefficient
Streets, Parking Lots,
Drives:
Asphalt 0.95
Concrete 0.95
Gravel 0.5
Roofs 0.95
Recycled Asphalt 0.8
Lawns, Sandy Soil:
Flat <2% 0.1
Average 2 to 7% 0.15
Steep >7% 0.2
Lawns, Heavy Soil:
Flat <2% 0.2
Average 2 to 7% 0.25
Steep >7% 0.35
(4) A new Section 2.9 is added, to read as follows:
2.9 Composite Runoff Coefficient
Drainage sub-basins are frequently composed of land that has multiple surfaces or zoning
classifications. In such cases a composite runoff coefficient must be calculated for any
given drainage sub-basin.
The composite runoff coefficient is obtained using the following formula:
( )
t
n
i
i i
A
C A
C
∑
= = 1
*
(RO-8)
Where: C = Composite Runoff Coefficient
Ci = Runoff Coefficient for Specific Area (Ai)
Ai = Area of Surface with Runoff Coefficient of Ci, acres or feet2
n = Number of different surfaces to be considered
At = Total Area over which C is applicable, acres or feet2
(5) A new Section 2.10 is added, to read as follows:
42
2.10 Runoff Coefficient Adjustment for Infrequent Storms
The runoff coefficients provided in tables RO-10 and RO-11 are appropriate for use with
the 2-year storm event. For storms with higher intensities, an adjustment of the runoff
coefficient is required due to the lessening amount of infiltration, depression retention,
evapo-transpiration and other losses that have a proportionally smaller effect on storm
runoff. This adjustment is applied to the composite runoff coefficient.
These frequency adjustment factors are found in Table RO-12.
Table RO-12
Rational Method Runoff Coefficients for Composite Analysis
Storm Return Period
(years)
Frequency Factor
Cf
2 to 10
11 to 25
26 to 50
51 to 100
1.00
1.10
1.20
1.25
Note: The product of C times Cf cannot exceed the value of 1, in the cases where it does a value of
1 must be used
(6) Section 3.1 is deleted in its entirety.
(7) Section 3.2 is deleted in its entirety.
(8) Section 3.3 is deleted in its entirety.
(9) A new Section 4.3 is added, to read as follows:
4.3 Computer Modeling Practices
(a) For circumstances requiring computer modeling, the design storm hydrographs must
be determined using the Stormwater Management Model (SWMM). Basin and
conveyance element parameters must be computed based on the physical characteristics
of the site.
(b) Refer to the SWMM Users’ Manual for appropriate modeling methodology, practices
and development. The Users’ Manual can be found on the Environmental Protection
Agency (EPA) website (http://www.epa.gov/ednnrmrl/models/swmm/index.htm).
(c) It is the responsibility of the design engineer to verify that all of the models used in
the design meet all current City criteria and regulations.
4.3.1 Surface Storage, Resistance Factors, and Infiltration
Table RO-13 provides values for surface storage for pervious and impervious surfaces
and the infiltration rates to be used with SWMM. Table RO-13 also lists the appropriate
infiltration decay rate, zero detention depth and resistance factors, or Manning’s “n”
values, for pervious and impervious surfaces to be used for SWMM modeling in the city
of Fort Collins.
33
(11) Section 4.0 is amended to read as follows:
4.0 Intensity-Duration-Frequency Curves for Rational Method:
The one-hour rainfall Intensity-Duration-Frequency tables for use the Rational Method
of runoff analysis are provided in Table RA-7 and in Table RA-8.
Table RA-7 -- City of Fort Collins
Rainfall Intensity-Duration-Frequency Table
for Use with the Rational Method
(5 minutes to 30 minutes)
2-Year 10-Year 100-Year
Duration
(min)
Intensity
(in/hr)
Intensity
(in/hr)
Intensity
(in/hr)
5 2.85 4.87 9.95
6 2.67 4.56 9.31
7 2.52 4.31 8.8
8 2.4 4.1 8.38
9 2.3 3.93 8.03
10 2.21 3.78 7.72
11 2.13 3.63 7.42
12 2.05 3.5 7.16
13 1.98 3.39 6.92
14 1.92 3.29 6.71
15 1.87 3.19 6.52
16 1.81 3.08 6.3
17 1.75 2.99 6.1
18 1.7 2.9 5.92
19 1.65 2.82 5.75
20 1.61 2.74 5.6
21 1.56 2.67 5.46
22 1.53 2.61 5.32
23 1.49 2.55 5.2
24 1.46 2.49 5.09
25 1.43 2.44 4.98
26 1.4 2.39 4.87
27 1.37 2.34 4.78
28 1.34 2.29 4.69
29 1.32 2.25 4.6
30 1.3 2.21 4.52
34
Table RA-8 -- City of Fort Collins
Rainfall Intensity-Duration-Frequency Table
for Use with the Rational Method
(31 minutes to 60 minutes)
2-Year 10-Year 100-Year
Duration
(min)
Intensity
(in/hr)
Intensity
(in/hr)
Intensity
(in/hr)
31 1.27 2.16 4.42
32 1.24 2.12 4.33
33 1.22 2.08 4.24
34 1.19 2.04 4.16
35 1.17 2.0 4.08
36 1.15 1.96 4.01
37 1.16 1.93 3.93
38 1.11 1.89 3.87
39 1.09 1.86 3.8
40 1.07 1.83 3.74
41 1.05 1.8 3.68
42 1.04 1.77 3.62
43 1.02 1.74 3.56
44 1.01 1.72 3.51
45 0.99 1.69 3.46
46 0.98 1.67 3.41
47 0.96 1.64 3.36
48 0.95 1.62 3.31
49 0.94 1.6 3.27
50 0.92 1.58 3.23
51 0.91 1.56 3.18
52 0.9 1.54 3.14
53 0.89 1.52 3.1
54 0.88 1.5 3.07
55 0.87 1.48 3.03
56 0.86 1.47 2.99
57 0.85 1.45 2.96
58 0.84 1.43 2.92
59 0.83 1.42 2.89
60 0.82 1.4 2.86
35
(12) A new Section 4.1 is added, to read as follows:
4.1 Intensity-Duration-Frequency Curves for SWMM:
The hyetograph input option must be selected when creating SWMM input files.
Hyetographs for the 2-, 5-, 10-, 25-, 50-, and 100-year City of Fort Collins rainfall events
are provided in Table RA-9.
Table RA-9 – City of Fort Collins
Rainfall Intensity-Duration-Frequency Table
for Use with SWMM
2-Year 5-Year 10-Year 25-Year 50-Year 100-Year
Duration
(min)
Intensity
(in/hr)
Intensity
(in/hr)
Intensity
(in/hr)
Intensity
(in/hr)
Intensity
(in/hr)
Intensity
(in/hr)
5 0.29 0.40 0.49 0.63 0.79 1.00
10 0.33 0.45 0.56 0.72 0.90 1.14
15 0.38 0.53 0.65 0.84 1.05 1.33
20 0.64 0.89 1.09 1.41 1.77 2.23
25 0.81 1.13 1.39 1.80 2.25 2.84
30 1.57 2.19 2.69 3.48 4.36 5.49
35 2.85 3.97 4.87 6.30 7.90 9.95
40 1.18 1.64 2.02 2.61 3.27 4.12
45 0.71 0.99 1.21 1.57 1.97 2.48
50 0.42 0.58 0.71 0.92 1.16 1.46
55 0.35 0.49 0.60 0.77 0.97 1.22
60 0.30 0.42 0.52 0.67 0.84 1.06
65 0.20 0.28 0.39 0.62 0.79 1.00
70 0.19 0.27 0.37 0.59 0.75 0.95
75 0.18 0.25 0.35 0.56 0.72 0.91
80 0.17 0.24 0.34 0.54 0.69 0.87
85 0.17 0.23 0.32 0.52 0.66 0.84
90 0.16 0.22 0.31 0.50 0.64 0.81
95 0.15 0.21 0.30 0.48 0.62 0.78
100 0.15 0.20 0.29 0.47 0.60 0.75
105 0.14 0.19 0.28 0.45 0.58 0.73
110 0.14 0.19 0.27 0.44 0.56 0.71
115 0.13 0.18 0.26 0.42 0.54 0.69
120 0.13 0.18 0.25 0.41 0.53 0.67
36
RAINFALL INTENSITY-DURATION-FREQUENCY CURVE
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
0.00 10.00 20.00 30.00 40.00 50.00 60.00
STORM DURATION (minutes)
RAINFALL INTENSITY (inches/hour)
2-Year Storm 10-Year Storm 100-Year Storm
Figure RA-16 City of Fort Collins Rainfall Intensity-Duration-Frequency Curves
(13) Section 5.0 is deleted in its entirety.
(14) Section 6.0 is deleted in its entirety.
(15) Section 7.0 is deleted in its entirety.
(16) Section 7.1 is deleted in its entirety.
(17) Section 7.2 is deleted in its entirety.
(18) Section 7.3 is deleted in its entirety.
(19) Section 8.0 is deleted in its entirety.
(20) Table RA-1 is deleted in its entirety.
DRAINAGE CRITERIA MANUAL (V. 1) RUNOFF
Table RO-3—Recommended Percentage Imperviousness Values
Land Use or
Surface Characteristics
Percentage
Imperviousness
Business:
Commercial areas 95
Neighborhood areas 85
Residential:
Single-family *
Multi-unit (detached) 60
Multi-unit (attached) 75
Half-acre lot or larger *
Apartments 80
Industrial:
Light areas 80
Heavy areas 90
Parks, cemeteries 5
Playgrounds 10
Schools 50
Railroad yard areas 15
Undeveloped Areas:
Historic flow analysis 2
Greenbelts, agricultural 2
Off-site flow analysis
(when land use not defined)
45
Streets:
Paved 100
Gravel (packed) 40
Drive and walks 90
Roofs 90
Lawns, sandy soil 0
Lawns, clayey soil 0
* See Figures RO-3 through RO-5 for percentage imperviousness.
C A = K A + ( 1 . 31 i 3 − 1 . 44 i 2 + 1 . 135 i − 0 . 12 ) for CA ≥ 0, otherwise CA = 0 (RO-6)
C CD = K CD + ( 0 . 858 i 3 − 0 . 786 i 2 + 0 . 774 i + 0 . 04 ) (RO-7)
C B = (CA + C CD ) 2
2007-01 RO-9
Urban Drainage and Flood Control District
DRAINAGE CRITERIA MANUAL (V. 1) RUNOFF
Table RO-5— Runoff Coefficients, C
Percentage
Imperviousness Type C and D NRCS Hydrologic Soil Groups
2-yr 5-yr 10-yr 25-yr 50-yr 100-yr
0% 0.04 0.15 0.25 0.37 0.44 0.50
5% 0.08 0.18 0.28 0.39 0.46 0.52
10% 0.11 0.21 0.30 0.41 0.47 0.53
15% 0.14 0.24 0.32 0.43 0.49 0.54
20% 0.17 0.26 0.34 0.44 0.50 0.55
25% 0.20 0.28 0.36 0.46 0.51 0.56
30% 0.22 0.30 0.38 0.47 0.52 0.57
35% 0.25 0.33 0.40 0.48 0.53 0.57
40% 0.28 0.35 0.42 0.50 0.54 0.58
45% 0.31 0.37 0.44 0.51 0.55 0.59
50% 0.34 0.40 0.46 0.53 0.57 0.60
55% 0.37 0.43 0.48 0.55 0.58 0.62
60% 0.41 0.46 0.51 0.57 0.60 0.63
65% 0.45 0.49 0.54 0.59 0.62 0.65
70% 0.49 0.53 0.57 0.62 0.65 0.68
75% 0.54 0.58 0.62 0.66 0.68 0.71
80% 0.60 0.63 0.66 0.70 0.72 0.74
85% 0.66 0.68 0.71 0.75 0.77 0.79
90% 0.73 0.75 0.77 0.80 0.82 0.83
95% 0.80 0.82 0.84 0.87 0.88 0.89
100% 0.89 0.90 0.92 0.94 0.95 0.96
TYPE B NRCS HYDROLOGIC SOILS GROUP
0% 0.02 0.08 0.15 0.25 0.30 0.35
5% 0.04 0.10 0.19 0.28 0.33 0.38
10% 0.06 0.14 0.22 0.31 0.36 0.40
15% 0.08 0.17 0.25 0.33 0.38 0.42
20% 0.12 0.20 0.27 0.35 0.40 0.44
25% 0.15 0.22 0.30 0.37 0.41 0.46
30% 0.18 0.25 0.32 0.39 0.43 0.47
35% 0.20 0.27 0.34 0.41 0.44 0.48
40% 0.23 0.30 0.36 0.42 0.46 0.50
45% 0.26 0.32 0.38 0.44 0.48 0.51
50% 0.29 0.35 0.40 0.46 0.49 0.52
55% 0.33 0.38 0.43 0.48 0.51 0.54
60% 0.37 0.41 0.46 0.51 0.54 0.56
65% 0.41 0.45 0.49 0.54 0.57 0.59
70% 0.45 0.49 0.53 0.58 0.60 0.62
75% 0.51 0.54 0.58 0.62 0.64 0.66
80% 0.57 0.59 0.63 0.66 0.68 0.70
85% 0.63 0.66 0.69 0.72 0.73 0.75
90% 0.71 0.73 0.75 0.78 0.80 0.81
95% 0.79 0.81 0.83 0.85 0.87 0.88
100% 0.89 0.90 0.92 0.94 0.95 0.96
2007-01 RO-11
Urban Drainage and Flood Control District
RUNOFF DRAINAGE CRITERIA MANUAL (V. 1)
TABLE RO-5 (Continued)—Runoff Coefficients, C
Percentage
Imperviousness Type A NRCS Hydrologic Soils Group
2-yr 5-yr 10-yr 25-yr 50-yr 100-yr
0% 0.00 0.00 0.05 0.12 0.16 0.20
5% 0.00 0.02 0.10 0.16 0.20 0.24
10% 0.00 0.06 0.14 0.20 0.24 0.28
15% 0.02 0.10 0.17 0.23 0.27 0.30
20% 0.06 0.13 0.20 0.26 0.30 0.33
25% 0.09 0.16 0.23 0.29 0.32 0.35
30% 0.13 0.19 0.25 0.31 0.34 0.37
35% 0.16 0.22 0.28 0.33 0.36 0.39
40% 0.19 0.25 0.30 0.35 0.38 0.41
45% 0.22 0.27 0.33 0.37 0.40 0.43
50% 0.25 0.30 0.35 0.40 0.42 0.45
55% 0.29 0.33 0.38 0.42 0.45 0.47
60% 0.33 0.37 0.41 0.45 0.47 0.50
65% 0.37 0.41 0.45 0.49 0.51 0.53
70% 0.42 0.45 0.49 0.53 0.54 0.56
75% 0.47 0.50 0.54 0.57 0.59 0.61
80% 0.54 0.56 0.60 0.63 0.64 0.66
85% 0.61 0.63 0.66 0.69 0.70 0.72
90% 0.69 0.71 0.73 0.76 0.77 0.79
95% 0.78 0.80 0.82 0.84 0.85 0.86
100% 0.89 0.90 0.92 0.94 0.95 0.96
RO-12 2007-01
Urban Drainage and Flood Control District
APPENDIX B
WATER DETENTION COMPUTATIONS
ATC
Pond ID: Paver System
1
100-yr
0.77
Area (A)= 0.41 acres 3390 ft
3
Max Release Rate = 0.11 cfs 0.08 ac-ft
Time Time
100-yr
Intensity
Q100
Inflow
(Runoff)
Volume
Outflow
(Release)
Volume
Storage
Detention
Volume
(mins) (secs) (in/hr) (cfs) (ft
3
) (ft
3
) (ft
3
)
5 300 9.950 3.14 942 33.0 909.4
10 600 7.720 2.44 1462 66.0 1396.3
15 900 6.520 2.06 1853 99.0 1753.5
20 1200 5.600 1.77 2122 132.0 1989.5
25 1500 4.980 1.57 2358 165.0 2193.3
30 1800 4.520 1.43 2569 198.0 2370.5
35 2100 4.080 1.29 2705 231.0 2473.9
40 2400 3.740 1.18 2834 264.0 2569.7
45 2700 3.460 1.09 2949 297.0 2652.3
50 3000 3.230 1.02 3059 330.0 2729.1
55 3300 3.030 0.96 3157 363.0 2793.7
60 3600 2.860 0.90 3250 396.0 2854.4
65 3900 2.720 0.86 3349 429.0 2919.9
70 4200 2.590 0.82 3434 462.0 2972.2
75 4500 2.480 0.78 3523 495.0 3028.2
80 4800 2.380 0.75 3607 528.0 3078.6
85 5100 2.290 0.72 3687 561.0 3126.1
90 5400 2.210 0.70 3768 594.0 3173.6
95 5700 2.130 0.67 3833 627.0 3205.9
100 6000 2.060 0.65 3902 660.0 3242.1
105 6300 2.000 0.63 3978 693.0 3284.8
110 6600 1.940 0.61 4042 726.0 3316.2
115 6900 1.890 0.60 4117 759.0 3358.0
120 7200 1.840 0.58 4182 792.0 3390.4
Project Location : Fort Collins
Input Variables Results
Calculations By:
DETENTION POND CALCULATION; FAA METHOD
Project Number : 838-014
Date : 12-31-14
1.35
Design Point
APPENDIX C
WATER QUALITY DESIGN COMPUTATIONS
EXTENDED DETENTION WATER QUALITY POND DESIGN CALCULATIONS
Pond 1
Project: 838-014
By: ATC
Date: 12-31-14
REQUIRED STORAGE & OUTLET WORKS:
BASIN AREA = 0.410 <-- INPUT from impervious calcs
BASIN IMPERVIOUSNESS PERCENT = 52.00 <-- INPUT from impervious calcs
BASIN IMPERVIOUSNESS RATIO = 0.5200 <-- CALCULATED
WQCV (watershed inches) = 0.212 <-- CALCULATED from Figure EDB-2
WQCV (ac-ft) = 0.009 <-- CALCULATED from UDFCD DCM V.3 Section 6.5
WQ Depth (ft) = ** <-- INPUT from stage-storage table
AREA REQUIRED PER ROW, a (in
2
) = ** <-- CALCULATED from Figure EDB-3
CIRCULAR PERFORATION SIZING:
dia (in) = ** <-- INPUT from Figure 5
n = ** <-- INPUT from Figure 5
t (in) = ** <-- INPUT from Figure 5
number of rows = ** <-- CALCULATED from WQ Depth and row spacing
**To be completed at final design
APPENDIX D
EROSION CONTROL REPORT
Linden Street Parking Lot
Preliminary Erosion Control Report
EROSION CONTROL REPORT
A comprehensive Erosion and Sediment Control Plan (along with associated details) will be included
with the final construction drawings. It should be noted, however, that any such Erosion and
Sediment Control Plan serves only as a general guide to the Contractor. Staging and/or phasing of
the BMPs depicted, and additional or different BMPs from those included may be necessary during
construction, or as required by the authorities having jurisdiction.
It shall be the responsibility of the Contractor to ensure erosion control measures are properly
maintained and followed. The Erosion and Sediment Control Plan is intended to be a living
document, constantly adapting to site conditions and needs. The Contractor shall update the
location of BMPs as they are installed, removed or modified in conjunction with construction
activities. It is imperative to appropriately reflect the current site conditions at all times.
The Erosion and Sediment Control Plan shall address both temporary measures to be implemented
during construction, as well as permanent erosion control protection. Best Management Practices
from the Volume 3, Chapter 7 – Construction BMPs will be utilized. Measures may include, but are
not limited to, silt fencing along the disturbed perimeter, gutter protection in the adjacent roadways
and inlet protection at existing and proposed storm inlets. Vehicle tracking control pads, spill
containment and clean-up procedures, designated concrete washout areas, dumpsters, and job site
restrooms shall also be provided by the Contractor.
Grading and Erosion Control Notes can be found on the Utility Plans. The Final Plans will contain a
full-size Erosion Control sheet as well as a separate sheet dedicated to Erosion Control Details. In
addition to this report and the referenced plan sheets, the Contractor shall be aware of, and adhere
to, the applicable requirements outlined in the Development Agreement for the development. Also,
the Site Contractor for this project will be required to secure a Stormwater Construction General
Permit from the Colorado Department of Public Health and Environment (CDPHE), Water Quality
Control Division – Stormwater Program, prior to any earth disturbance activities. Prior to securing
said permit, the Site Contractor shall develop a comprehensive StormWater Management Plan
(SWMP) pursuant to CDPHE requirements and guidelines. The SWMP will further describe and
document the ongoing activities, inspections, and maintenance of construction BMPs.
MAP POCKET
DRAINAGE EXHIBITS
X
X X X X X X
X
X
X
X
X
X
X X
X
X
X X
X X
X X
X
X
X X
X
X
X X
X
X X
X
X
X
X
X X
X X
X
X
X
2
EXISTING INLET
PAVER
OUTLET STRUCTURE
PAVER OUTFALL
EXISTING INLET
1
2
1
JEFFERSON STREET
(70' PUBLIC R.O.W.)
LINDEN STREET
(100' PUBLIC R.O.W.)
No. Revisions: By: Date:
REVIEWED BY:
N. Haws
DESIGNED BY:
DRAWN BY:
SCALE:
PROJECT:
838-014
These drawings are
instruments of service
provided by Northern
Engineering Services, Inc.
and are not to be used for
any type of construction
unless signed and sealed by
a Professional Engineer in
the employ of Northern
Engineering Services, Inc.
NOT FOR CONSTRUCTION
N O R T H E RN
01/07/15
301 North Howes Street, Suite 100
Fort Collins, Colorado 80521
www.northernengineering.com
Phone: 970.221.4158
DATE:
JANUARY 7, 2015
C400
N. Haws
A. Boese
1"=20'
( IN FEET )
0
1 INCH = 20 FEET
20 20 40 60
NORTH
LEGEND:
4953
PROPOSED CONTOUR 93
PROPOSED STORM DRAIN
PROPOSED SWALE
EXISTING CONTOUR
PROPOSED CURB & GUTTER
PROPERTY BOUNDARY
PROPOSED INLET
1
DESIGN POINT
FLOW ARROW
DRAINAGE BASIN LABEL
DRAINAGE BASIN BOUNDARY
PROJECT BENCHMARKS
NOTES:
1. REFER TO THE "PRELIMINARY DRAINAGE & EROSION CONTROL REPORT FOR
LINDEN STREET PARKING LOT " BY NORTHERN ENGINEERING, DATED JANUARY 7,
2015 FOR ADDITIONAL INFORMATION.
BASIN
DESIGNATION
BASIN
AREA (AC)
FOR DRAINAGE REVIEW ONLY
NOT FOR CONSTRUCTION
PROPOSED UNDERDRAIN UD
PERMEABLE PAVERS
PROJECT DATUM: NAVD 88
BENCHMARK #1:
City of Fort Collins Benchmark 5-00
NAVD88 Elevation= 4978.05
BENCHMARK #2:
City of Fort Collins Benchmark 1-13
NAVD88 Elevation= 4979.75
1
CALL 2 BUSINESS DAYS IN ADVANCE BEFORE YOU
DIG, GRADE, OR EXCAVATE FOR THE MARKING OF
UNDERGROUND MEMBER UTILITIES.
CALL UTILITY NOTIFICATION CENTER OF
COLORADO
R
Design Storm Required Detention Volume
Developed "C" =
(min)
10-yr
Tc
(min)
100-yr
Tc
(min)
11No0.90 0.90 1.00 25 1.00% 1.9 1.9 0.9 313 0.75% 1.73 3.0 0 0.00% N/A N/A 5 5 5
22No0.25 0.31 0.31 20 2.00% 5.6 5.2 5.2 252 0.40% 1.26 3.3 0 0.00% N/A N/A 9 9 9
DEVELOPED TIME OF CONCENTRATION COMPUTATIONS
Gutter Flow Swale Flow
Design
Point
Basin
Overland Flow
ATC
January 6, 2015
Time of Concentration
(Equation RO-4)
3
1
1 . 87 1 . 1 *
S
Ti C Cf L
(min)
10-yr
Tc
(min)
100-yr
Tc
(min)
H1 H1 No 0.25 0.25 0.31 353 0.40% 40.5 40.4 37.4 0 0.50% N/A N/A 0 0.00% N/A N/A 41 40 37
HISTORIC TIME OF CONCENTRATION COMPUTATIONS
Gutter Flow Swale Flow
Design
Point
Basin
Overland Flow
ATC
12/31/14
Time of Concentration
(Equation RO-4)
3
1
1 . 87 1 . 1 *
S
Ti C Cf L