HomeMy WebLinkAboutPRAIRIE VILLAGE - FDP - FDP140024 - SUBMITTAL DOCUMENTS - ROUND 1 - STORMWATER MANAGEMENT PLANSTORMWATER MANAGEMENT PLAN (SWMP)/
AND EROSION CONTROL REPORT
Prairie Village
October 15, 2014
Prepared for:
Mosaic Real Estate, LLC
1021 Nightengale Drive
Fort Collins, CO 80525
Prepared by:
301 N. Howes Street Suite 100
Fort Collins, Colorado 80521
Phone: 970.221.4158
www.northernengineering.com
Project Number: 1013-001
October 15, 2014
City of Fort Collins
Stormwater Utility
700 Wood Street
Fort Collins, CO 80521
RE: Stormwater Management Plan and Erosion Control Report
Prairie Village
Fort Collins, CO
To whom it may concern:
Northern Engineering Services, Inc. is pleased to submit this Stormwater Management Plan and Erosion
Control Report for the Prairie Village project. This report outlines Best Management Practices (BMPs) to be
implemented with the proposed construction in order to minimize potential pollutants in stormwater
discharges.
We have prepared this report to accompany the Colorado Department of Public Health and Environment
General Permit for Stormwater Discharge Associated with Construction Activities (aka, Stormwater Discharge
Permit or SDP). Please note: this Stormwater Management plan (including the Site Maps) is a dynamic
device that should be kept current and logged as construction takes place. As such, this version was
prepared to facilitate initial plan approvals and permitting, but does not necessarily reflect the final version, or
the transitions throughout the construction process. As the site develops and changes, the Contractor is
expected and encouraged to make changes to what is contained herein so that the SWMP works as effectively
and efficiently as possible. It shall be the responsibility of the SWMP Administrator and/or the permit holder
(or applicant thereof) to ensure the plan is properly maintained and followed.
If you should have any questions or comments as you review this report, please feel free to contact us at your
convenience.
Sincerely,
NORTHERN ENGINEERING SERVICES, INC.
Andy Reese
Project Engineer
Prairie Village
Stormwater Management Plan
TABLE OF CONTENTS
Vicinity Map
1.0 General Requirements..............................................................................................1
1.1 Objectives...............................................................................................................1
1.2 SMWP Availability ...................................................................................................1
1.3 Definitions ..............................................................................................................1
1.4 Additional Permitting ................................................................................................1
2.0 Narrative Site Description .........................................................................................2
2.1 Existing Site Description ............................................................................................2
2.2 Wind and Rainfall Erodibility .....................................................................................2
2.3 Nature of Construction Activity ...................................................................................2
2.4 Sequence of Major Activities ......................................................................................2
2.5 Site Disturbance ......................................................................................................3
2.6 Existing Vegetation ...................................................................................................3
2.7 Potential Pollution Sources ........................................................................................3
2.8 Non-stormwater discharges .......................................................................................4
2.9 Receiving Waters .....................................................................................................4
3.0 Stormwater Management Controls .............................................................................5
3.1 SWMP Administrator ................................................................................................5
3.2 Best Management Practices (BMP’s) for Stormwater Pollution Prevention .........................5
3.3 Structural Practices for Erosion and Sediment Control ....................................................5
3.4 Phased BMP Installation ...........................................................................................6
3.5 Non-Structural Practices for Erosion and Sediment Control .............................................8
3.6 Material Handling and Spill Prevention ...................................................................... 10
3.7 Dedicated Concrete or Asphalt Batch Plant ................................................................ 11
3.8 Vehicle Tracking Control ......................................................................................... 11
3.9 Waste Management and Disposal ............................................................................. 11
3.10 Groundwater and Stormwater Dewatering .................................................................. 11
4.0 Final Stabilization and Long-Term Stormwater Management ....................................... 13
4.1 Final Stabilization .................................................................................................. 13
4.2 Long-Term Stormwater Management ......................................................................... 14
5.0 Inspection, Maintenance and Record Keeping ........................................................... 15
5.1 BMP Inspection ..................................................................................................... 15
5.2 BMP Maintenance ................................................................................................. 15
5.3 Record Keeping ..................................................................................................... 15
6.0 Additional SWMP and BMP Resources ..................................................................... 17
References 18
Prairie Village
Stormwater Management Plan
APPENDICES:
APPENDIX A – Site Maps
APPENDIX B – Erosion Control Details
APPENDIX C – Landscape Plan
APPENDIX D – Copies of Permits/Applications (to be provided by contractor)
APPENDIX E – Stormwater Management Plan Inspection Logs
APPENDIX F – Contractor Inserts (as needed)
APPENDIX G – Reference Material
Prairie Village
Stormwater Management Plan 1
1.0 General Requirements
1.1 Objectives
The objective of a Stormwater Management Plan (SWMP) is to identify all potential sources of
pollution likely to occur as a result of construction activity associated with the site construction, and
to describe the practices that will be used to reduce the pollutants in stormwater discharges from
the site. The SWMP must be completed and implemented at the time the project breaks ground,
and revised as necessary as construction proceeds to accurately reflect the conditions and practices
at the site.
This report summarizes the Stormwater Management Plan for the construction activity that will
occur with the Prairie Village development project in Fort Collins, CO. This plan has been prepared
according to regulations of the Colorado Department of Public Health and Environment (CDPHE),
Water Quality Control Division.
1.2 SMWP Availability
This report is intended to remain on the aforementioned construction site to allow for maintenance
and inspection updates, and for review during inspection.
1.3 Definitions
BMP – Best Management Practice encompassing a wide range of erosion and sediment control
practices, both structural and non-structural in nature, which are intended to reduce or eliminate
any possible water quality impacts from stormwater leaving a construction site.
Erosion Control BMPs – Practices that PREVENT the erosion of soil, such as minimizing the amount
of disturbed area through phasing, temporary stabilization, and preserving existing vegetation
Sediment Control BMP’s – Practices to REMOVE sediment from runoff, such as sediment basins,
silt fence, or inlet protection.
Non-structural BMP’s – The implementation of methods, practices, and procedures to minimize
water quality impacts, such as the preservation of natural vegetation, preventive maintenance and
spill response procedures.
Structural BMP’s – Physical devices that prevent or minimize water quality impacts, such as
sediment basins, inlet protection, or silt fence.
1.4 Additional Permitting
As mentioned above, this Stormwater Management Plan is associated with the Colorado
Department of Public Health and Environment Stormwater Permit that is issued by the Water
Quality Control Division of the CDPHE. Additional Environmental permitting not described in this
report will likely be required as a part of this project. An example is the Construction Dewatering
Permit for groundwater, which will be discussed later. Another example is the Air Pollution
Emission Notice (APEN). The CDPHE website contains links to both of these permits, as well as
many other potential permits. The Contractor is responsible for ensuring the proper permits are
acquired.
Prairie Village
Stormwater Management Plan 2
2.0 Narrative Site Description
2.1 Existing Site Description
The project site is located in the southwest quarter of Section 34, Township 7 North, Range 69
West of the 6th Principal Meridian, City of Fort Collins, County of Larimer, State of Colorado The
project site is located on the north side of Fromme Prairie Way, just west of Harmony Road.
The proposed project is surrounded by existing development. Single family developments exist to
the west and north of the proposed project. Commercial development exists to the north and east
of the proposed project. Townhomes exist south of the project. The subject property currently has
no buildings onsite, but does have an existing asphalt parking lot serving the adjacent commercial
properties. Existing ground cover generally consists of native grasses. Existing ground slopes are
generally mild (i.e., 1 to 5±%) through the interior of the property, with some steeper slopes along
the northwest property line. The site topography generally slopes from northwest to southeast
towards Fromme Prairie Way.
According to the United States Department of Agriculture (USDA) Natural Resources Conservation
Service (NRCS) Soil Survey website: http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx,
the site primarily consists of soil types which fall into Hydrologic Soil Group B.
2.2 Wind and Rainfall Erodibility
The site is located within a moderate risk Erodibility Zone per the City of Fort Collins Wind
Erodibility Map. According to the Natural Resources Conservation Service website -
www.websoilsurvey.nrcs.usda.gov, the applicable soil erosion factor (K), which indicates the susceptibility
of a soil to sheet and rill erosion, is 0.20. This value is indicative of soils moderately susceptible to
rainfall erosion.
Impervious area (i.e., roof area, concrete walks and asphalt parking area) and landscaping will
permanently stabilize the areas disturbed by the proposed construction activity; therefore, the
likelihood of erosion and sediment problems occurring on-site is minimal. During the interim period,
in which the disturbed areas are open, the BMPs described herein were selected to prevent erosion
and limit sediment migration.
2.3 Nature of Construction Activity
The proposed project will consist of the construction of two townhome buildings. Parking areas and
associated utilities will be constructed. LID (Low Impact Design) features will be provided
throughout the project site, with a bio-retention rain-garden and cobble swales providing the
primary treatment of stormwater runoff.
2.4 Sequence of Major Activities
To complete the project, many basic construction activities will take place. The project will begin
by stripping the site of topsoil, followed by overlot grading. The installation of utilities will occur
next, including water, sewer, and storm sewer. Once overlot grading is complete, and utilities have
been installed, it is anticipated that construction of the building foundations will begin. While
building foundations are being constructed, curb and gutter will be installed throughout the project,
followed by asphalt paving of the parking areas. Vertical construction of the buildings is expected to
commence once the public infrastructure has been inspected by the city. Fine grading of the areas
around the buildings, and the installation of landscaping throughout the project will follow. The
final stage of construction will be the construction of the buildings, along with detailed grading
around each building and installation of landscaping.
Prairie Village
Stormwater Management Plan 3
2.5 Site Disturbance
The entire project boundary is 1.11 acres, while the total disturbance area is approximately 0.87
acres.
2.6 Existing Vegetation
The existing ground cover consists of grasses and asphalt parking. The pre-disturbance individual
plant density is at least 75 percent. Final stabilization with an individual plant density of at least 70
percent of pre-disturbance levels, or equivalent permanent, physical erosion reduction methods will
be achieved. A portion of the total disturbed area will be permanently stabilized with asphalt,
concrete, or roof area. The remaining area will be stabilized with landscaping such as sod and
planting beds. It is highly recommended that pre-construction photos be taken to clearly
document vegetative conditions prior any disturbance activities.
2.7 Potential Pollution Sources
As is typical with most construction sites, there are a number of potential pollution sources which
could affect water quality. It is not possible for this report to identify all materials that will be used
or stored on the construction site. It is the sole responsibility of the Contractor to identify and
properly handle all materials that are potential pollution sources.
All materials coming and going will be handled according to appropriate procedures specific to each
material.
The following are some common examples of potential pollution sources:
x Exposed and stored soils
x Management of contaminated soils
x Off-site tracking of soils and sediment
x Loading and unloading operations
x Outdoor storage of building materials, fertilizers, chemicals, etc.
x Vehicle and equipment maintenance and fueling
x Significant dust or particulate generating processes
x Routine maintenance activities involving fertilizers, pesticides, detergents, fuels, solvents, oils, etc.
x On-site waste disposal practices (waste piles, dumpsters, etc.)
x Concrete truck/equipment washing
x Non-industrial waste sources that may be significant, such as worker trash and portable toilets
x Uncovered trash bins
x Other areas or procedures where potential spills can occur
x Stockpiling of materials that can be transported to receiving waterway(s)
Management of Contaminated Soils: We are not aware of on-site contaminated soils. However, the
contractor should conduct a thorough, pre-construction environmental site assessment. If
contaminated soils are discovered, the contractor will identify appropriate practices and procedures
for the specific contaminants discovered on-site.
Loading and Unloading Operations: As site development and building construction progresses,
space constraints will limit the number of on-site locations for loading and unloading activities to
the building from Fromme Prairie Way. The contractor will be responsible for the proper handling
and management of pollution sources during loading and unloading operations.
Dedicated Asphalt and Concrete Batch Plants: Neither a dedicated asphalt nor a concrete batch
plant will be constructed on-site.
Prairie Village
Stormwater Management Plan 4
2.8 Non-stormwater discharges
The Stormwater Construction Permit only covers discharges composed entirely of stormwater.
Concrete Washout water can NOT be discharged to surface waters or to storm sewer systems
without separate permit coverage. The discharge of Concrete Washout water to the ground, under
specific conditions, may be allowed by the Stormwater Construction Permit when appropriate BMPs
are implemented. The discharge of pumped stormwater, ONLY, from excavations, ponds,
depressions, etc. to surface waters, or to a municipal storm sewer system is allowed by the
Stormwater Construction Permit, as long as the dewatering activity and associated BMPs are
identified in the Stormwater Management Plan (SWMP) and are implemented in accordance with
the SWMP.
Exceptions include emergency fire fighting activities, landscape irrigation return flow,
uncontaminated springs, construction dewatering (caused by storm events). Proper treatment and
use of BMPs is still required for these exceptions when available.
Aside from the exceptions noted above, non-stormwater discharges must be addressed in a separate
permit issued for that discharge. If groundwater is encountered, and dewatering is required, a
Construction Dewatering Permit must be acquired from the Colorado Department of Public Health
and Environment.
2.9 Receiving Waters
Stormwater runoff from the project area will generally flow into the existing Fromme Prairie Way
storm system, which ties ultimately to drainage systems in Seneca Center P.U.D. that ultimately
drain to Fossil Creek. The majority of developed runoff will be treated within onsite water quality
measures prior to release from the site. The proposed post-development drainage pattern generally
follows the historic drainage course.
Prairie Village
Stormwater Management Plan 5
3.0 Stormwater Management Controls
3.1 SWMP Administrator
A SWMP Administrator must be designated in conjunction with the Stormwater Permit. This person
shall be responsible for developing, implementing, maintaining, and revising the SWMP. The
SWMP Administrator will also be the contact for all SWMP-related issues and will be the person
responsible for the accuracy, completeness, and implementation of the SWMP. The Administrator
should be a person with authority to adequately manage and direct day-to-day stormwater quality
management activities at the site.
Please note: It is the responsibility of the SWMP Administrator to evaluate the proposed BMPs as
shown on the Stormwater Management Plan and modify the Plan as necessary throughout the
construction process. The final decision on where all BMPs will be located and when they will be
installed shall be made by the SWMP Administrator. All documentation throughout the
construction process shall also be the responsibility of the SWMP Administrator.
The SWMP Administrator for this site is (to be filled in by the SWMP Administrator, when
selected):
Name:
Company:
Phone:
E-mail:
3.2 Best Management Practices (BMP’s) for Stormwater Pollution Prevention
Beginning from mobilization, and throughout the entire construction of the buildings, erosion control
devices shall be installed to ensure minimal pollutant migration. These erosion control devices may
be installed in phases, or not at all, depending on actual conditions encountered at the site. It is
the responsibility of the Contractor to make the ultimate determination as to what practices should
be employed and when. In the event that a review agency deems onsite erosion control measure to
be insufficient, it shall be the responsibility of the contractor to implement modifications as directed.
Best Management Practices (BMPs) are loosely defined as a method, activity, maintenance
procedure, or other management practice for reducing the amount of pollution entering a water
body. The term originated from rules and regulations in Section 208 of the Clean Water Act.
Details for Structural and Non-Structural BMPs have been included in Appendix B. These details
should be used for additional information on installation and maintenance of BMPs specified in this
report. It is also intended to serve as a resource for additional BMPs that may be appropriate for
the site that have not specifically been mentioned in the report.
3.3 Structural Practices for Erosion and Sediment Control
Structural BMPs are physical devices that are implemented to prevent erosion from happening or to
limit erosion once it occurs. These devices can be temporary or permanent, and installation of
individual components will vary depending on the stage of construction.
A table depicting construction sequence and BMP application/removal has been placed on the
“Dynamic Site Plan” to help document the implementation of these BMPs. Refer to the Stormwater
Prairie Village
Stormwater Management Plan 6
Management Plan Static Site Plan in the Appendix for the assumed location of all BMPs.
Construction Details for Temporary BMPs are located in the Appendix for reference.
Again, the final determination for which BMP’s will be installed, where they will be located, and
when they will be installed shall be made by the Contractor, along with all documentation
throughout the construction process.
3.4 Phased BMP Installation
It is important to recognize the four (4) major Development Phases as defined by the State of
Colorado’s Stormwater Discharge Permit (SDP). These four development phases have been
distinguished to aid in the appropriate timing of installation/implementation of BMPs at different
stages of the construction process. These phases are described as follows:
Phase I – Grading Stage; BMPs for initial installation of perimeter controls
Phase II – Infrastructure Stage; BMPs for utility, paving and curb installation
Phase III – Vertical Construction Stage; BMPs for individual building construction.
Phase IV – Permanent BMPs and final site stabilization.
The following is a rough estimate of the anticipated construction sequence for site improvements.
The schedule outlined below is subject to change as the project progresses and as determined by
the General Contractor.
Table 1 – Preliminary Permit and Construction Schedule (Beginning and Ending Dates are Rough
Estimates Only)
TASK
BEGINNING
DATE ENDING DATE
"BMP PHASE OF
DEVELOPMENT"
Development Construction Permit
Issued by City of Fort Collins May 2015 I
Overlot Grading May 2015 June 2015 I
Utility Installation June 2015 July 2015 II
Building Construction July 2015 October 2015 III
Final Stabilization
September
2015 TBD IV
Prairie Village
Stormwater Management Plan 7
Included in the back map pockets are the Site Plans: a “Static” Site Plan and a “Dynamic” Site
Plans (one for each phase of construction). The “Static” plan serves to display the overall
management plan all at once. However, proper implementation of BMPs does not occur at once,
and certain BMPs may move location in the construction process; therefore, the “Dynamic” Site
Plan is intended for the Contractor to write in the BMP symbols to document the location and time
the BMPs are installed and maintained throughout the entire construction process.
Silt Fencing (Phase I)
Silt fencing shall be provided to prevent migration of sediment off-site or into adjacent
properties. All silt fencing shall be installed prior to any land disturbing activity (stockpiling,
stripping, grading, etc.). Silt fencing is to be installed prior to site excavation or earthwork
activities.
Inspections of the silt fence should identify tears or holes in the material, and should check
for slumping fence or undercut areas that allow flows to bypass the fencing. Damaged
sections of fencing should be repaired or replaced to ensure proper functioning. Sediment
accumulated behind the silt fence should be removed to maintain BMP effectiveness,
typically before it reaches a depth of 6 inches.
Vehicle Tracking Control Pads (Phase I)
Vehicle tracking control pads shall be provided to minimize tracking of mud and sediment
onto paved surfaces and neighboring roadways. All vehicle tracking control pads shall be
installed prior to any land disturbing activity (stockpiling, stripping, grading, etc.). Location
of vehicle tracking control pads will be located at any and all existing and future vehicle
accesses being used during any of the construction phases. These locations will primarily be
dictated by gates or openings in the temporary construction fencing that is expected to be
installed. Vehicle tracking control pads are to be installed prior to site excavation or
earthwork activities.
Vehicle tracking pads should be inspected for degradation and aggregate material should be
replaced as needed. If the area becomes clogged with water, excess sediment should be
removed. Aggregate material should remain rough, and at no point should aggregate be
allowed to compact in a manner that causes the tracking pad to stop working as intended.
Sediment Control Log – aka “Straw Wattles” (Phase I)
A Sediment Control Log is a linear roll made of natural materials, such as straw, coconut
fiber, or other fibrous material trenched into the ground and held with a wooden stake.
Sediment Control Logs can be used in many instances. Examples include perimeter control
for stockpiles, as part of inlet protection designs, as check dams in small drainage ways, or
on disturbed slopes to shorten flow lengths.
Sediment Control Logs should be inspected for excess sediment accumulation. Sediment
should be removed prior to reaching half the height of the log.
At a minimum, Sediment Control Logs should be used around soil stockpiles and for inlet
protection in unpaved areas of the site.
Inlet Protection (Phase I & II)
Inlet protection shall be provided to prevent sediment transport from adjacent earthwork
disturbance. Installation of these filters shall occur before adjacent earthmoving activities
(Phase I implementation). Wattle type filters are to be implemented for new and existing
Prairie Village
Stormwater Management Plan 8
inlets where asphalt is not yet installed. For these inlets, if pavement is constructed
adjacent to the structure or if the area adjacent to the inlet is changed such that the wattle
type filter is no longer effective, it shall be the responsibility of the Contractor to ensure that
an appropriate method is used instead. For example, the wattle filter could be reused, or a
gravel-block inlet filter may be installed. It will be left to the discretion of the Contractor as
to whether replacement of any inlet filter is necessary.
Inlet protection should be inspected regularly for tears that can result in sediment entering
an inlet. Inlet protection should also be inspected for sediment accumulation upstream of
the inlet, and sediment should be removed when the less than half of the capacity is
available, or per manufacturer specifications.
Concrete Washout Area (Phase II)
A concrete washout should be provided on the site. The washout can be lined or unlined
excavated pits in the ground, commercially manufactured prefabricated containers, or
aboveground holding areas. The concrete washout must be located a minimum of 400 feet
from any natural drainage way or body of water, and at least 1000 feet from any wells or
drinking water sources. Washout areas should not be located in an area where shallow
groundwater may be present. Contractor shall clearly show the desired location and access
to the Concrete Washout Area on the Stormwater Management Plan - Dynamic Site Plan.
Contractor shall place a Vehicle Tracking Pad if the selected location for the Concrete
Washout Area is detached from pavement. Clear signage identifying the concrete washout
should also be provided.
The Concrete Washout Area should be inspected regularly. Particular attention should be
paid to signage to ensure that the area is clearly marked. Confirmation that the washout is
being used should also be noted to ensure that other undesignated areas of the site are not
being used incorrectly as a concrete washout.
Permanent/Established Vegetation (Phase IV)
Permanent or established vegetation and landscaping is considered a permanent form of
sediment and erosion control for common open spaces, steep slopes and areas not exposed
to prolonged scour velocities, or acute incipient motion bed shear stresses that will create
soil erosion, rill formation and subsequent sediment transport. Areas where the previous
conditions apply will contain sufficient permanent BMPs, such as riprap and Erosion Control
Blankets. Permanent/Established vegetation defines Phase IV of development.
3.5 Non-Structural Practices for Erosion and Sediment Control
Non-Structural BMPs are practices or activities that are implemented to prevent erosion from
happening or to limit erosion once it occurs. These BMPs can be a practice resulting in physical
change to the site, such as mulching or slope stabilization. They can also result in behavioral
changes on the site, such as changes to construction phasing to minimize exposure to weather
elements, or increased employee awareness gained through training.
Protection of Existing Vegetation (Phases I-IV)
Protection of existing vegetation on a construction site can be accomplished through
installation of a construction fence around the area requiring protection. In cases where
upgradient areas are disturbed, it may also be necessary to install perimeter controls to
minimize sediment loading to sensitive areas such as wetlands.
Trees that are to remain after construction is complete must be protected. Most tree roots
grow within the top 12”-18” of soil, and soil compaction is a significant threat to tree
Prairie Village
Stormwater Management Plan 9
health. As such, particular care should be taken to avoid activities within the drip-line of
the tree. Direct equipment damage should also be prevented. The most effective way to
ensure the health of trees is to establish a protection zone at the drip-line of the tree to
prevent unintended activity in the area directly surrounding the tree.
Fencing should be inspected and repaired when needed. If damage occurs to a tree, an
arborist should be consulted on how to care for the tree. If a tree is damage beyond repair,
the City Forester should be consulted on remediation measures.
Stockpile Management (Phases I-III)
Stockpile management should be utilized to minimize erosion and sediment transport from
soil stockpiles. In general, soil stockpiles should be located a minimum of 100 feet from
any drainage way and 50 feet from any storm sewer inlets. Where practical, choose a
stockpile location that will remain undisturbed for the longest period of time as the phases
of construction progress. Sediment control BMPs should be placed around the perimeter of
the stockpile, and a designated access point on the upstream side of the stockpile should be
identified. BMPs such as surface roughening, temporary seeding, mulching, erosion control
blankets, or soil binders should be used to stabilize the stockpile surface.
As a part of stockpile management, regular inspections of the perimeter controls should be
completed. If BMPs have been utilized to stabilize the surface of the stockpile, they should
be inspected and repaired as needed.
Mulching (Phase I-III)
Mulching helps reduce erosion by protecting bare soil from rainfall impact, increasing
infiltration, and reducing runoff. Although often applied in conjunction with temporary or
permanent seeding, it can also be used for temporary stabilization of areas that cannot be
reseeded due to seasonal constraints. The most common type of mulch used is hay or grass
that is crimped into the soil to keep it secure. However, crimping may not be practical on
slopes steeper than three to one (3H:1V).
The Contractor shall mulch all planted areas within twenty-four (24) hours after planting.
Only weed-free and seed-free straw mulch may be used. Straw mulch should be applied at
two (2) tons per acre, and shall be adequately secured by crimping, tackifier, netting or
blankets. Hydraulic mulching may also be used on steep slopes or where access is limited.
In the case that hydraulic mulching is utilized, the Contractor shall use wood cellulose fibers
mixed with water at two thousands to two thousand five hundred (2,000-2,500) pounds
per acre and organic tackifier at one hundred to four hundred (100-400) pounds per acre.
Wind Erosion/Dust Control (Phase I-IV)
Wind Erosion and Dust Control BMP’s help to keep soil particles from entering the air as a
result of land disturbing construction activities. Examples include use of a water truck or
irrigation/sprinkler system to wet the top layer of disturbed soil, seeding and mulching, soil
binders, or wind fences.
If a water truck or irrigation/sprinkler system is utilized, monitoring to ensure that sufficient
water is applied is crucial to ensuring soil particles don’t become airborne. Equally
important is monitoring for overwatering, as too much water can lead to increased erosion.
Good Housekeeping Practices (All phases)
Good housekeeping practices that will prevent pollution associated with solid, liquid, and
hazardous construction-related materials and wastes should be implemented throughout the
project. Examples of good housekeeping include providing an appropriate location for waste
Prairie Village
Stormwater Management Plan 10
management containers, establishing proper building material staging areas, designating
paint and concrete washout areas, establishing proper equipment/vehicle fueling and
maintenance practices. Development of a spill prevention and response plan is another
example of Good Housekeeping practices that should be used on the project. The following
items are detailed examples of some of the good housekeeping practices that should be
utilized throughout the project.
Street Sweeping and Vacuuming – Street sweeping and vacuuming should be used to
remove sediment that has been tracked onto adjacent roadways. Roadways should be
inspected at least once a day, and sediment should be removed as needed. A check of inlet
protection should be completed after sweeping to ensure nothing was displaced during
sweeping operations.
Waste Management – Designate trash and bulk waste collection areas on-site. When
possible, materials should be recycled. Hazardous material waste should be segregated
from other solid waste. Waste collection areas should be located away from streets, gutters,
watercourses, and storm drains. Dumpsters should be located near site entrances to
minimize traffic on disturbed soils, and they should be placed on a level soil surface.
Establish Proper Building Material Handling and Staging areas – Clearly designate site
areas for staging and storage of building materials. Provide appropriate BMPs to ensure
that spills or leaks are contained.
Establish Proper Equipment/Vehicle Fueling and Maintenance Practices – If needed, create
a clearly designated on-site fueling and maintenance area that is clean and dry. Provide
appropriate BMPs to ensure that spills or leaks are contained.
3.6 Material Handling and Spill Prevention
Potential pollution sources, as discussed in earlier sections, are to be to be identified by the
Contractor. Spill prevention procedures are to be determined and put in place prior to construction
by the Contractor. A spill and flooding response procedure must also be determined and put in
place prior to construction by the Contractor. Additionally, steps should be taken to reduce the
potential for leaks and spills to come in contact with stormwater runoff, such as storing and
handling toxic materials in covered areas or by storing chemicals within berms or other secondary
containment devices.
All materials coming and going will be handled according to appropriate procedures specific to each
material.
A notification procedure must be put in place by the Contractor, by which workers would first notify
the site construction superintendent, who would then notify the SWMP Administrator. Depending
on the severity of the spill, the site construction superintendent and SWMP Administrator would
possibly notify the Colorado Department of Public Health and Environment - Water Quality Control
Division, downstream water users, or other appropriate agencies. The release of any chemical, oil,
petroleum product, sewage, etc., which enter waters of the State of Colorado (which include
surface water, ground water, and dry gullies or storm sewers leading to surface water) must be
reported immediately to the Division’s emergency spill reporting line at (877) 518-5608. All
spills that will require cleanup, even if the spill is minor and does not need to be reported to the
state, should still be reported to the City of Fort Collins.
While not expected with this project, it will be the responsibility of the Contractor to designate a
fueling area and take the necessary precautions to ensure that no stormwater pollution occurs in the
event that a fueling area is needed. Fueling areas shall be located a minimum 100 feet from all
Prairie Village
Stormwater Management Plan 11
drainage courses. A 12-inch high compacted earthen ridge capable of retaining potential spills
shall enclose fueling areas. Other secondary containment devices can be used instead of the
earthen ridge. The area shall be covered with a non-porous lining to prevent soil contamination.
Printed instructions for cleanup procedures shall be posted in the fueling area and appropriate fuel
absorbents shall be available along with containers for used absorbents within the fueling area.
3.7 Dedicated Concrete or Asphalt Batch Plant
There are not any dedicated concrete or asphalt batch plants anticipated with this project. In the
event that a plant is needed, the Contractor should be aware that additional permitting will be
required. In particular, an Air Pollutant Emission Notice (APEN) will need to be obtained from
CDPHE.
3.8 Vehicle Tracking Control
In addition to the vehicle tracking pads discussed previously, additional measures can be taken to
minimize and control sediment discharges from the site due to vehicle tracking. These measures
can include fencing around the site to control access points. Regular street sweeping can also be
used to minimize the transmission of sediment from the site due to vehicles leaving the site. The
use of gravel parking areas and wash racks can also be implemented to ensure minimal vehicle
tracking from the site. Minimizing or limiting the number of vehicles accessing the site by providing
designated delivery areas, or by restricting deliveries when the site is muddy, is also encouraged.
3.9 Waste Management and Disposal
It will be the responsibility of the Contractor to designate a concrete truck chute washout area and
to clearly identify that area. Detailed information about the design and maintenance of the Concrete
Washout can be found under the Structural Practices section of this report. At no time should
untreated wash water be allowed to discharge from the site or to enter a storm drain system or
stream. Upon completion of construction activities the concrete washout material shall be removed
and properly disposed of prior to the area being restored.
Any waste material that currently exists on the site or that is generated by construction will be
disposed of in such a manner as to not cause pollutants in stormwater discharges. If waste is to be
stored on-site, it shall be in an area located a minimum of 100 feet from all drainage courses.
Whenever waste is not stored in a non-porous container, it shall be in an area enclosed by a 12-
inch high compacted earthen ridge or some other approved secondary containment device. The area
shall be covered with a non-porous lining to prevent soil contamination. Whenever precipitation is
predicted, the waste shall be covered with a non-porous cover, anchored on all sides to prevent its
removal by wind, in order to prevent precipitation from leaching out potential pollutants from the
waste. On-site waste disposal practices, such as dumpsters, should be covered or otherwise
contained as to prevent dispersion of waste materials from wind. It shall also be the responsibility
of the Contractor to maintain a clean jobsite as to prevent dispersion of waste material and potential
pollutants into adjacent properties or waterways.
The location of, and protective measures for, temporary restroom facilities shall be the responsibility
of the SWMP Administrator.
3.10 Groundwater and Stormwater Dewatering
The BMPs selected for construction dewatering vary depending on the site-specific features, such as
soils, topography, discharge quantities, and discharge location. Typically, dewatering involves
pumping water from an inundated area to a BMP, prior to the water being released downstream
into a receiving waterway, sediment basin, or well-vegetated area. Acceptable BMPs included
Prairie Village
Stormwater Management Plan 12
discharging water into a sediment trap or basin, using a dewatering filter bag, or using a series of
sediment logs. A settlement tank or an active treatment system can also be utilized. Another
commonly used method to handle the pumped water is the “sprinkler method,” which involves
applying the water to vegetated areas through a perforated discharge hose. Dispersal from a water
truck for dust control can also be used to disperse the pumped water.
Prairie Village
Stormwater Management Plan 13
4.0 Final Stabilization and Long-Term Stormwater Management
4.1 Final Stabilization
All disturbed areas will be seeded, crimped and mulched. Soil amendments must comply with the
requirements found in City Municipal Code Sections 12-130, 12-131, and 12-132 (refer also to
Land Use Code 3.8.21).
Steps to Ammend the Soil (Source: City Code Sections 12-130, 12-131, and 12-132):
x Loosen the top 8 inches
x Till or mix 3 cubic yards of amendment/1000 square feet into the top 6 inches of soil or
x Add 4 inches of topsoil that meets the following requirements:
Topsoil Requirements
Sand 20 - 75%
Silt 5 - 60%
Clay 5 - 360%
Organic Material 5% or more
pH 6.0 - 8.0
As defined by the Colorado Department of Public Health and Environment (CDPHE) in the General
Permit Application for Stormwater Discharges, “Final stabilization is reached when all soil disturbing
activities at the site have been completed, and uniform vegetative cover has been established with a
density of at least 70 percent of pre-disturbance levels or equivalent permanent, physical erosion
reduction methods have been employed.”
Table 1 – Native Grass Seed Mix
Preferred
Varieties
Seeded Rate
(lbs. per acre,
drilled)
PLS
Seeded/acre
Leymus Cinereus Great Basin Wilrye Mangar 3 285,000
Nassella Viridula Green Needlegrass Lodorm 2 362,000
Chnatherum Hymenoides Indian Ricegrass Paloma, Nezpar 1 188,000
Elymus Trachycaulus Slender Wheatgrass Primar, Revenue 2 320,000
Elymus Lanceolatus Thickspike Wheatgrass Critana 3 580,500
Pascopyrum Smithii Western Wheatgrass Arriba, Barton 4 504,000
Totals 15 2,239,500
Species
Prairie Village
Stormwater Management Plan 14
4.2 Long-Term Stormwater Management
The primary method of long-term stormwater management will be the use of a concrete outlet
structure and an extended detention pond. The outlet structure shall be designed in a manner that
allows smaller, more frequent rainfall events to be detained and released over an extended amount
of time. This extended detention allows suspended sediment and pollutants to settle from the water
prior to entering drainage facilities downstream of the site.
A cobble swale will also be provided with engineered soil sections that will promote infiltration of
stormwater.
In addition to the water quality pond, riprap will be placed at the outlets of all storm sewer pipes,
curb cuts, drainage pans, and similar concentrated discharge points in order to prevent erosion. All
disturbed areas will receive permanent paving or will be vegetated per the Landscape Plan. All
stormwater runoff from paved surfaces and rooftops is released through a vegetated swale or the
extended detention pond prior to reaching the piped storm sewer system. Therefore, the
disconnection of impervious areas combined with the detention pond design, offer significant water
quality enhancement, and will serve the long-term stormwater management goals for this project.
Prairie Village
Stormwater Management Plan 15
5.0 Inspection, Maintenance and Record Keeping
5.1 BMP Inspection
All temporary erosion control facilities shall be inspected at a minimum of once every two (2) weeks
and after each significant storm event or snowmelt. Repairs or reconstruction of BMPs, as
necessary, shall occur as soon as possible in order to ensure the continued performance of their
intended function. It is the responsibility of the SWMP Administrator to conduct bi-weekly
inspections, maintain BMPs if needed, to keep records of site conditions and inspections, and to
update the SWMP as necessary.
The construction site perimeter, disturbed areas, all applicable/installed erosion and sediment
control measures, and areas used for material storage that are exposed to precipitation shall be
inspected for evidence of, or the potential for, pollutants entering the drainage system. Erosion and
sediment control measures identified in the SWMP shall be observed to ensure that they are
operating correctly. Particular attention should be paid to areas that have a significant potential for
stormwater pollution, such as demolition areas, concrete washout locations, and vehicle entries to
the site. The inspection must be documented to ensure compliance with the permit requirements.
5.2 BMP Maintenance
Any BMP’s not operating in accordance with the SWMP must be addressed as soon as possible,
immediately in most cases, to prevent the discharge of pollutants. If modifications are necessary,
such modifications shall be documented so that the SWMP accurately reflects on-site conditions.
The SWMP needs to accurately represent field conditions at all times.
Uncontrolled releases of mud, muddy water, or measurable amounts of sediment found off-site will
be recorded with a brief explanation of the measures taken to clean-up the sediment that has left
the site, as well as the measures taken to prevent future releases. This record shall be made
available to the appropriate public agencies (Colorado Department of Public Health and
Environment, Water Quality Control Division; Environmental Protection Agency; City of Fort Collins;
etc.) upon request.
Preventative maintenance of all temporary and permanent erosion control BMPs shall be provided
in order to ensure the continued performance of their intended function. Temporary erosion control
measures are to be removed after the site has been sufficiently stabilized as determined by the City
of Fort Collins. Maintenance activities and actions to correct problems shall be noted and recorded
during inspections.
Inspection and maintenance procedures specific to each BMP identified with this SWMP are
discussed in Section 3. Details have also been included with Appendix C.
5.3 Record Keeping
Documentation of site inspections must be maintained. The following items are to be recorded and
kept with the SWMP:
x Date of Inspection
x Name(s) and title(s) of personnel making the inspection
x Location(s) of sediment discharges or other pollutants from the site
x Location(s) of BMP’s that need to be maintained
x Location(s) of BMP’s that failed to operate as designed or proved inadequate
x Locations(s) where additional BMP’s are needed that were not in place at the time of inspection
x Deviations from the minimum inspection schedule
x Descriptions of corrective action taken to remedy deficiencies that have been identified
Prairie Village
Stormwater Management Plan 16
x The report shall contain a signed statement indicating the site is in compliance with the permit to the
best of the signer’s knowledge and belief after corrective actions have been taken.
Provided within Appendix E of this SWMP is an Example Inspection Log to aid in the record
keeping of BMP inspections and maintenance. Photographs, field notebooks, drawings and maps
should be included when appropriate.
In addition to the Inspection Log, records should be kept documenting:
x BMP maintenance and operation
x Stormwater contamination
x Contacts with suppliers
x Notes on the need for and performance of preventive maintenance and other repairs
x Implementation of specific items in the SWMP
x Training events (given or attended)
x Events involving materials handling and storage
x Contacts with regulatory agencies and personnel
x Notes of employee activities, contact, notifications, etc.
Records of spills, leaks, or overflows that result in the discharge of pollutants must be documented
and maintained. A record of other spills that are responded to, even if they do not result in a
discharge of pollutants, should be made. Information that should be recorded for all occurrences
includes the time and date, weather conditions, reasons for the spill, etc. Some spills may need to
be reported to authorities immediately. Specifically, a release of any chemical, oil, petroleum
product, sewage, etc., which may enter waters of the State of Colorado (which include surface
water, ground water and dry gullies or storm sewers leading to surface water) must be reported to
the CDPHE.
The Stormwater Management Plan is intended to be a “living document” where the SWMP
Administrator can hand write the location of BMPs as they are installed to appropriately reflect the
current site conditions.
This Stormwater Management Plan (both the text and map) is not a static document. It
is a dynamic device intended to be kept current and logged as construction takes place.
It shall be the responsibility of the SWMP Administrator and/or the permit holder (or
applicant thereof) to ensure the plan is properly maintained and followed. Diligent
administration is critical, including processing the Notice to Proceed and noting on the
Stormwater Management Plan the dates that various construction activities occur and
respective BMPs are installed and/or removed.
Prairie Village
Stormwater Management Plan 17
6.0 Additional SWMP and BMP Resources
Urban Drainage and Flood Control District
Urban Storm Drainage Criteria Manual - Volume 3 “Best Management Practices”
Colorado Department of Transportation
Erosion Control and Stormwater Quality Guide
BMP Field Academy
EPA Menu of BMP’s
Construction Site Storm Water Runoff Control
International Stormwater Best Management (BMP) Database
Rocky Mountain Education Center
Rocky Mountain Education Center
Red Rocks Community College, Lakewood
Keep It Clean Partnership
Boulder
Prairie Village
Stormwater Management Plan 18
References
1. Drainage Memorandum, Prairie Village, Northern Engineering, October 15, 2014 (currently
under City review).
2. Soil Resource Report for Larimer County Area, Colorado, Natural Resources Conservation
Service, United States Department of Agriculture.
3. Urban Storm Drainage Criteria Manual, Volumes 1-3, Urban Drainage and Flood Control
District, Water Resources Publications, LLC., Denver, Colorado, Updated November 2010.
APPENDIX A
SITE MAPS
APPENDIX B
EROSION CONTROL DETAILS
Chapter 7 Construction BMPs
November 2010 Urban Drainage and Flood Control District 7-13
Urban Storm Drainage Criteria Manual Volume 3
Final Stabilization
▪ Revegetate Site
▪ Activate Post Construction BMPs
(e.g., convert sediment basin to extended
detention basin)
▪ Remove Temporary BMPs
▪ Closeout State and Local Stormwater Permits
Construction Phase
Representative Phases:
▪ Clearing and Grubbing
▪ Rough Grading
▪ Road Construction
▪ Utility and Infrastructure Installation
▪ Vertical Construction (Buildings)
▪ Final Grading
Management Practices:
▪ Phase Construction Activities to Minimize
Disturbed Area at a Given Time
▪ Sequence Contruction within Phases to Avoid
Idle Disturbed Areas
▪ Install, Inspect and Proactively Maintain BMPs
Appropriate for Each Phase of Construction
▪ Maintain and Update SWMP as Construction
Progresses
Pre-Construction
▪ Develop Site Plan
▪ Obtain Site Survey, Hydrology and Soils
Information
▪ Prepare SWMP
▪ Obtain Stormwater Construction Permits
(State and Local)
▪ Obtain Other Relevant Permits
(e.g., 404 , Floodplain, Dewatering)
Figure 7-2. Construction Stormwater Management
Construction BMPs Construction BMPs
7-14 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
Functions
Erosion
Control
Sediment
Control
Site/Material
Management
Surface Roughening Yes No No
Temporary/Permanent Seeding Yes No No
Soil Binders Yes No Moderate
Mulching Yes Moderate No
Compost Blankets and Filter Berms Yes Moderate No
Rolled Erosion Control Products Yes No No
Temporary Slope Drains Yes No No
Temporary Outlet Protection Yes Moderate No
Rough Cut Street Control Yes Moderate No
Earth Dikes / Drainage Swales Yes Moderate No
Terracing Yes Moderate No
Check Dams Yes Moderate No
Streambank Stabilization Yes No No
Wind Erosion / Dust Control Yes No Moderate
Silt Fence No Yes No
Sediment Control Log Moderate Yes No
Straw Bale Barrier No Moderate No
Brush Barrier Moderate Moderate No
Rock Sock (perimeter control) No Yes No
Inlet Protection (various forms) No Yes No
Sediment Basins No Yes No
Sediment Traps No Yes No
Vegetative Buffers Moderate Yes Yes
Chemical Treatment Moderate Yes No
Concrete Washout Area No No Yes
Stockpile Management Yes Yes Yes
Good Houskeeping (multiple practices) No No Yes
Construction Phasing Moderate Moderate Yes
Protection of Existing Vegetation Yes Moderate Yes
Construction Fence No No Yes
Vehicle Tracking Control Moderate Yes Yes
Stabilized Construction Roadway Yes Moderate Yes
Stabilized Staging Area Yes Moderate Yes
Street Sweeping / Vacuuming No Yes Yes
Temporary Diversion Channel Yes No No
Dewatering Operations Moderate Yes Yes
Temporary Stream Crossing Yes Yes No
Temporary Batch Plants No No Yes
Paving and Grinding Operations No No Yes
Site Management and Other Specific Practices
Sediment Control BMPs
Erosion Control BMPs
Materials Management
Table 7-2. Overview of Construction BMPs
Surface Roughening (SR) EC-1
November 2010 Urban Drainage and Flood Control District SR-1
Urban Storm Drainage Criteria Manual Volume 3
Photograph SR-1. Surface roughening via imprinting for temporary
stabilization.
Description
Surface roughening is an erosion control
practice that involves tracking,
scarifying, imprinting, or tilling a
disturbed area to provide temporary
stabilization of disturbed areas. Surface
roughening creates variations in the soil
surface that help to minimize wind and
water erosion. Depending on the
technique used, surface roughening may
also help establish conditions favorable
to establishment of vegetation.
Appropriate Uses
Surface roughening can be used to
provide temporary stabilization of
disturbed areas, such as when
revegetation cannot be immediately established due to seasonal planting limitations. Surface roughening
is not a stand-alone BMP, and should be used in conjunction with other erosion and sediment controls.
Surface roughening is often implemented in conjunction with grading and is typically performed using
heavy construction equipment to track the surface. Be aware that tracking with heavy equipment will also
compact soils, which is not desirable in areas that will be revegetated. Scarifying, tilling, or ripping are
better surface roughening techniques in locations where revegetation is planned. Roughening is not
effective in very sandy soils and cannot be effectively performed in rocky soil.
Design and Installation
Typical design details for surfacing roughening on steep and mild slopes are provided in Details SR-1 and
SR-2, respectively.
Surface roughening should be performed either after final grading or to temporarily stabilize an area
during active construction that may be inactive for a short time period. Surface roughening should create
depressions 2 to 6 inches deep and approximately 6 inches apart. The surface of exposed soil can be
roughened by a number of techniques and equipment. Horizontal grooves (running parallel to the
contours of the land) can be made using tracks from equipment treads, stair-step grading, ripping, or
tilling.
Fill slopes can be constructed with a roughened surface. Cut slopes that have been smooth graded can be
roughened as a subsequent operation. Roughening should follow along the contours of the slope. The
tracks left by truck mounted equipment working perpendicular
to the contour can leave acceptable horizontal depressions;
however, the equipment will also compact the soil.
Surface Roughening
Functions
Erosion Control Yes
Sediment Control No
Site/Material Management No
EC-1 Surface Roughening (SR)
SR-2 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
Maintenance and Removal
Care should be taken not to drive vehicles or equipment over areas that have been surface roughened.
Tire tracks will smooth the roughened surface and may cause runoff to collect into rills and gullies.
Because surface roughening is only a temporary control, additional treatments may be necessary to
maintain the soil surface in a roughened condition.
Areas should be inspected for signs of erosion. Surface roughening is a temporary measure, and will not
provide long-term erosion control.
Surface Roughening (SR) EC-1
November 2010 Urban Drainage and Flood Control District SR-3
Urban Storm Drainage Criteria Manual Volume 3
EC-1 Surface Roughening (SR)
SR-4 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
Temporary and Permanent Seeding (TS/PS) EC-2
November 2010 Urban Drainage and Flood Control District TS/PS-1
Urban Storm Drainage Criteria Manual Volume 3
Photograph TS/PS -1. Equipment used to drill seed. Photo courtesy of
Douglas County.
Description
Temporary seeding can be used to
stabilize disturbed areas that will be
inactive for an extended period.
Permanent seeding should be used to
stabilize areas at final grade that will not
be otherwise stabilized. Effective seeding
includes preparation of a seedbed,
selection of an appropriate seed mixture,
proper planting techniques, and protection
of the seeded area with mulch, geotextiles,
or other appropriate measures.
Appropriate Uses
When the soil surface is disturbed and
will remain inactive for an extended
period (typically 30 days or longer),
proactive stabilization measures should be implemented. If the inactive period is short-lived (on the order
of two weeks), techniques such as surface roughening may be appropriate. For longer periods of
inactivity, temporary seeding and mulching can provide effective erosion control. Permanent seeding
should be used on finished areas that have not been otherwise stabilized.
Typically, local governments have their own seed mixes and timelines for seeding. Check jurisdictional
requirements for seeding and temporary stabilization.
Design and Installation
Effective seeding requires proper seedbed preparation, selection of an appropriate seed mixture, use of
appropriate seeding equipment to ensure proper coverage and density, and protection with mulch or fabric
until plants are established.
The USDCM Volume 2 Revegetation Chapter contains detailed seed mix, soil preparations, and seeding
and mulching recommendations that may be referenced to supplement this Fact Sheet.
Drill seeding is the preferred seeding method. Hydroseeding is not recommended except in areas where
steep slopes prevent use of drill seeding equipment, and even in these instances it is preferable to hand
seed and mulch. Some jurisdictions do not allow hydroseeding or hydromulching.
Seedbed Preparation
Prior to seeding, ensure that areas to be revegetated have
soil conditions capable of supporting vegetation. Overlot
grading can result in loss of topsoil, resulting in poor quality
subsoils at the ground surface that have low nutrient value,
little organic matter content, few soil microorganisms,
rooting restrictions, and conditions less conducive to
infiltration of precipitation. As a result, it is typically
necessary to provide stockpiled topsoil, compost, or other
Temporary and Permanent Seeding
Functions
Erosion Control Yes
Sediment Control No
Site/Material Management No
EC-2 Temporary and Permanent Seeding (TS/PS)
TS/PS-2 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
soil amendments and rototill them into the soil to a depth of 6 inches or more.
Topsoil should be salvaged during grading operations for use and spread on areas to be revegetated later.
Topsoil should be viewed as an important resource to be utilized for vegetation establishment, due to its
water-holding capacity, structure, texture, organic matter content, biological activity, and nutrient content.
The rooting depth of most native grasses in the semi-arid Denver metropolitan area is 6 to 18 inches. At a
minimum, the upper 6 inches of topsoil should be stripped, stockpiled, and ultimately respread across
areas that will be revegetated.
Where topsoil is not available, subsoils should be amended to provide an appropriate plant-growth
medium. Organic matter, such as well digested compost, can be added to improve soil characteristics
conducive to plant growth. Other treatments can be used to adjust soil pH conditions when needed. Soil
testing, which is typically inexpensive, should be completed to determine and optimize the types and
amounts of amendments that are required.
If the disturbed ground surface is compacted, rip or rototill the surface prior to placing topsoil. If adding
compost to the existing soil surface, rototilling is necessary. Surface roughening will assist in placement
of a stable topsoil layer on steeper slopes, and allow infiltration and root penetration to greater depth.
Prior to seeding, the soil surface should be rough and the seedbed should be firm, but neither too loose
nor compacted. The upper layer of soil should be in a condition suitable for seeding at the proper depth
and conducive to plant growth. Seed-to-soil contact is the key to good germination.
Seed Mix for Temporary Vegetation
To provide temporary vegetative cover on disturbed areas which will not be paved, built upon, or fully
landscaped or worked for an extended period (typically 30 days or more), plant an annual grass
appropriate for the time of planting and mulch the planted areas. Annual grasses suitable for the Denver
metropolitan area are listed in Table TS/PS-1. These are to be considered only as general
recommendations when specific design guidance for a particular site is not available. Local governments
typically specify seed mixes appropriate for their jurisdiction.
Seed Mix for Permanent Revegetation
To provide vegetative cover on disturbed areas that have reached final grade, a perennial grass mix should
be established. Permanent seeding should be performed promptly (typically within 14 days) after
reaching final grade. Each site will have different characteristics and a landscape professional or the local
jurisdiction should be contacted to determine the most suitable seed mix for a specific site. In lieu of a
specific recommendation, one of the perennial grass mixes appropriate for site conditions and growth
season listed in Table TS/PS-2 can be used. The pure live seed (PLS) rates of application recommended
in these tables are considered to be absolute minimum rates for seed applied using proper drill-seeding
equipment.
If desired for wildlife habitat or landscape diversity, shrubs such as rubber rabbitbrush (Chrysothamnus
nauseosus), fourwing saltbush (Atriplex canescens) and skunkbrush sumac (Rhus trilobata) could be
added to the upland seedmixes at 0.25, 0.5 and 1 pound PLS/acre, respectively. In riparian zones,
planting root stock of such species as American plum (Prunus americana), woods rose (Rosa woodsii),
plains cottonwood (Populus sargentii), and willow (Populus spp.) may be considered. On non-topsoiled
upland sites, a legume such as Ladak alfalfa at 1 pound PLS/acre can be included as a source of nitrogen
for perennial grasses.
Temporary and Permanent Seeding (TS/PS) EC-2
November 2010 Urban Drainage and Flood Control District TS/PS-3
Urban Storm Drainage Criteria Manual Volume 3
Seeding dates for the highest success probability of perennial species along the Front Range are generally
in the spring from April through early May and in the fall after the first of September until the ground
freezes. If the area is irrigated, seeding may occur in summer months, as well. See Table TS/PS-3 for
appropriate seeding dates.
Table TS/PS-1. Minimum Drill Seeding Rates for Various Temporary Annual Grasses
Speciesa
(Common name)
Growth
Seasonb
Pounds of
Pure Live Seed
(PLS)/acrec
Planting
Depth
(inches)
1. Oats Cool 35 - 50 1 - 2
2. Spring wheat Cool 25 - 35 1 - 2
3. Spring barley Cool 25 - 35 1 - 2
4. Annual ryegrass Cool 10 - 15 ½
5. Millet Warm 3 - 15 ½ - ¾
6. Sudangrass Warm 5–10 ½ - ¾
7. Sorghum Warm 5–10 ½ - ¾
8. Winter wheat Cool 20–35 1 - 2
9. Winter barley Cool 20–35 1 - 2
10. Winter rye Cool 20–35 1 - 2
11. Triticale Cool 25–40 1 - 2
a Successful seeding of annual grass resulting in adequate plant growth will
usually produce enough dead-plant residue to provide protection from
wind and water erosion for an additional year. This assumes that the cover
is not disturbed or mowed closer than 8 inches.
Hydraulic seeding may be substituted for drilling only where slopes are
steeper than 3:1 or where access limitations exist. When hydraulic
seeding is used, hydraulic mulching should be applied as a separate
operation, when practical, to prevent the seeds from being encapsulated in
the mulch.
b See Table TS/PS-3 for seeding dates. Irrigation, if consistently applied,
may extend the use of cool season species during the summer months.
c Seeding rates should be doubled if seed is broadcast, or increased by 50
percent if done using a Brillion Drill or by hydraulic seeding.
EC-2 Temporary and Permanent Seeding (TS/PS)
TS/PS-4 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
Table TS/PS-2. Minimum Drill Seeding Rates for Perennial Grasses
Common
a
Name
Botanical
Name
Growth
Seasonb
Growth
Form
Seeds/
Pound
Pounds of
PLS/acre
Alakali Soil Seed Mix
Alkali sacaton Sporobolus airoides Cool Bunch 1,750,000 0.25
Basin wildrye Elymus cinereus Cool Bunch 165,000 2.5
Sodar streambank wheatgrass Agropyron riparium 'Sodar' Cool Sod 170,000 2.5
Jose tall wheatgrass Agropyron elongatum 'Jose' Cool Bunch 79,000 7.0
Arriba western wheatgrass Agropyron smithii 'Arriba' Cool Sod 110,000 5.5
Total 17.75
Fertile Loamy Soil Seed Mix
Ephriam crested wheatgrass Agropyron cristatum
'Ephriam' Cool Sod 175,000 2.0
Dural hard fescue Festuca ovina 'duriuscula' Cool Bunch 565,000 1.0
Lincoln smooth brome Bromus inermis leyss
'Lincoln' Cool Sod 130,000 3.0
Sodar streambank wheatgrass Agropyron riparium 'Sodar' Cool Sod 170,000 2.5
Arriba western wheatgrass Agropyron smithii 'Arriba' Cool Sod 110,000 7.0
Total 15.5
High Water Table Soil Seed Mix
Meadow foxtail Alopecurus pratensis Cool Sod 900,000 0.5
Redtop Agrostis alba Warm Open sod 5,000,000 0.25
Reed canarygrass Phalaris arundinacea Cool Sod 68,000 0.5
Lincoln smooth brome Bromus inermis leyss
'Lincoln' Cool Sod 130,000 3.0
Pathfinder switchgrass Panicum virgatum
'Pathfinder' Warm Sod 389,000 1.0
Alkar tall wheatgrass Agropyron elongatum
'Alkar' Cool Bunch 79,000 5.5
Total 10.75
Transition Turf Seed Mixc
Ruebens Canadian bluegrass Poa compressa 'Ruebens' Cool Sod 2,500,000 0.5
Dural hard fescue Festuca ovina 'duriuscula' Cool Bunch 565,000 1.0
Citation perennial ryegrass Lolium perenne 'Citation' Cool Sod 247,000 3.0
Lincoln smooth brome Bromus inermis leyss
'Lincoln' Cool Sod 130,000 3.0
Total 7.5
Temporary and Permanent Seeding (TS/PS) EC-2
November 2010 Urban Drainage and Flood Control District TS/PS-5
Urban Storm Drainage Criteria Manual Volume 3
Table TS/PS-2. Minimum Drill Seeding Rates for Perennial Grasses (cont.)
Common
Name
Botanical
Name
Growth
Seasonb
Growth
Form
Seeds/
Pound
Pounds of
PLS/acre
Sandy Soil Seed Mix
Blue grama Bouteloua gracilis Warm Sod-forming
bunchgrass 825,000 0.5
Camper little bluestem Schizachyrium scoparium
'Camper' Warm Bunch 240,000 1.0
Prairie sandreed Calamovilfa longifolia Warm Open sod 274,000 1.0
Sand dropseed Sporobolus cryptandrus Cool Bunch 5,298,000 0.25
Vaughn sideoats grama Bouteloua curtipendula
'Vaughn' Warm Sod 191,000 2.0
Arriba western wheatgrass Agropyron smithii 'Arriba' Cool Sod 110,000 5.5
Total 10.25
Heavy Clay, Rocky Foothill Seed Mix
Ephriam crested wheatgrass
d
Agropyron cristatum
'Ephriam' Cool Sod 175,000 1.5
Oahe Intermediate wheatgrass Agropyron intermedium
'Oahe' Cool Sod 115,000 5.5
Vaughn sideoats grama
e
Bouteloua curtipendula
'Vaughn' Warm Sod 191,000 2.0
Lincoln smooth brome Bromus inermis leyss
'Lincoln' Cool Sod 130,000 3.0
Arriba western wheatgrass Agropyron smithii 'Arriba' Cool Sod 110,000 5.5
Total 17.5
a All of the above seeding mixes and rates are based on drill seeding followed by crimped hay or straw mulch. These rates
should be doubled if seed is broadcast and should be increased by 50 percent if the seeding is done using a Brillion Drill or is
applied through hydraulic seeding. Hydraulic seeding may be substituted for drilling only where slopes are steeper than 3:1.
If hydraulic seeding is used, hydraulic mulching should be done as a separate operation.
b
See Table TS/PS-3 for seeding dates.
c
If site is to be irrigated, the transition turf seed rates should be doubled.
d
Crested wheatgrass should not be used on slopes steeper than 6H to 1V.
e
Can substitute 0.5 lbs PLS of blue grama for the 2.0 lbs PLS of Vaughn sideoats grama.
EC-2 Temporary and Permanent Seeding (TS/PS)
TS/PS-6 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
Table TS/PS-3. Seeding Dates for Annual and Perennial Grasses
Annual Grasses
(Numbers in table reference
species in Table TS/PS-1)
Perennial Grasses
Seeding Dates Warm Cool Warm Cool
January 1–March 15
March 16–April 30 4 1,2,3
May 1–May 15 4
May 16–June 30 4,5,6,7
July 1–July 15 5,6,7
July 16–August 31
September 1–September 30 8,9,10,11
October 1–December 31
Mulch
Cover seeded areas with mulch or an appropriate rolled erosion control product to promote establishment
of vegetation. Anchor mulch by crimping, netting or use of a non-toxic tackifier. See the Mulching BMP
Fact Sheet for additional guidance.
Maintenance and Removal
Monitor and observe seeded areas to identify areas of poor growth or areas that fail to germinate. Reseed
and mulch these areas, as needed.
An area that has been permanently seeded should have a good stand of vegetation within one growing
season if irrigated and within three growing seasons without irrigation in Colorado. Reseed portions of
the site that fail to germinate or remain bare after the first growing season.
Seeded areas may require irrigation, particularly during extended dry periods. Targeted weed control may
also be necessary.
Protect seeded areas from construction equipment and vehicle access.
Mulching (MU) EC-4
November 2010 Urban Drainage and Flood Control District MU-1
Urban Storm Drainage Criteria Manual Volume 3
Photograph MU-1. An area that was recently seeded, mulched,
and crimped.
Description
Mulching consists of evenly applying
straw, hay, shredded wood mulch, bark or
compost to disturbed soils and securing
the mulch by crimping, tackifiers, netting
or other measures. Mulching helps reduce
erosion by protecting bare soil from
rainfall impact, increasing infiltration, and
reducing runoff. Although often applied
in conjunction with temporary or
permanent seeding, it can also be used for
temporary stabilization of areas that
cannot be reseeded due to seasonal
constraints.
Mulch can be applied either using
standard mechanical dry application
methods or using hydromulching equipment
that hydraulically applies a slurry of water,
wood fiber mulch, and often a tackifier.
Appropriate Uses
Use mulch in conjunction with seeding to help protect the seedbed and stabilize the soil. Mulch can also
be used as a temporary cover on low to mild slopes to help temporarily stabilize disturbed areas where
growing season constraints prevent effective reseeding. Disturbed areas should be properly mulched and
tacked, or seeded, mulched and tacked promptly after final grade is reached (typically within no longer
than 14 days) on portions of the site not otherwise permanently stabilized.
Standard dry mulching is encouraged in most jurisdictions; however, hydromulching may not be allowed
in certain jurisdictions or may not be allowed near waterways.
Do not apply mulch during windy conditions.
Design and Installation
Prior to mulching, surface-roughen areas by rolling with a crimping or punching type roller or by track
walking. Track walking should only be used where other methods are impractical because track walking
with heavy equipment typically compacts the soil.
A variety of mulches can be used effectively at construction
sites, including the following types:
Mulch
Functions
Erosion Control Yes
Sediment Control Moderate
Site/Material Management No
EC-4 Mulching (MU)
MU-2 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
Clean, weed- and seed-free, long-stemmed grass hay (preferred) or cereal grain straw. Hay is preferred
because it is less susceptible to removal by wind. Mulch should be applied evenly at a rate of 2 tons per
acre and must be tacked or fastened by an approved method suitable for the type of mulch used. At least
50 percent of the grass hay mulch, by weight, should be 10 inches or more in length.
Grass hay mulch must be anchored and not merely placed on the surface. This can be accomplished
mechanically by crimping or with the aid of tackifiers or nets. Anchoring with a crimping implement is
preferred, and is the recommended method for areas flatter than 3:1. Mechanical crimpers must be
capable of tucking the long mulch fibers into the soil to a depth of 3 inches without cutting them. An
agricultural disk, while not an ideal substitute, may work if the disk blades are dull or blunted and set
vertically; however, the frame may have to be weighted to afford proper soil penetration.
On small areas sheltered from the wind and heavy runoff, spraying a tackifier on the mulch is satisfactory
for holding it in place. For steep slopes and special situations where greater control is needed, erosion
control blankets anchored with stakes should be used instead of mulch.
Hydraulic mulching consists of wood cellulose fibers mixed with water and a tackifying agent and should
be applied at a rate of no less than 1,500 pounds per acre (1,425 lbs of fibers mixed with at least 75 lbs of
tackifier) with a hydraulic mulcher. For steeper slopes, up to 2000 pounds per acre may be required for
effective hydroseeding. Hydromulch typically requires up to 24 hours to dry; therefore, it should not be
applied immediately prior to inclement weather. Application to roads, waterways and existing vegetation
should be avoided.
Erosion control mats, blankets, or nets are recommended to help stabilize steep slopes (generally 3:1 and
steeper) and waterways. Depending on the product, these may be used alone or in conjunction with grass
or straw mulch. Normally, use of these products will be restricted to relatively small areas.
Biodegradable mats made of straw and jute, straw-coconut, coconut fiber, or excelsior can be used instead
of mulch. (See the ECM/TRM BMP for more information.)
Some tackifiers or binders may be used to anchor mulch. Check with the local jurisdiction for allowed
tackifiers. Manufacturer's recommendations should be followed at all times. (See the Soil Binder BMP
for more information on general types of tackifiers.)
Rock can also be used as mulch. It provides protection of exposed soils to wind and water erosion and
allows infiltration of precipitation. An aggregate base course can be spread on disturbed areas for
temporary or permanent stabilization. The rock mulch layer should be thick enough to provide full
coverage of exposed soil on the area it is applied.
Maintenance and Removal
After mulching, the bare ground surface should not be more than 10 percent exposed. Reapply mulch, as
needed, to cover bare areas.
Wind Erosion/Dust Control (DC) EC-14
November 2010 Urban Drainage and Flood Control District DC-1
Urban Storm Drainage Criteria Manual Volume 3
Photograph DC-1. Water truck used for dust suppression. Photo
courtesy of Douglas County.
Description
Wind erosion and dust control BMPs
help to keep soil particles from entering
the air as a result of land disturbing
construction activities. These BMPs
include a variety of practices generally
focused on either graded disturbed areas
or construction roadways. For graded
areas, practices such as seeding and
mulching, use of soil binders, site
watering, or other practices that provide
prompt surface cover should be used.
For construction roadways, road
watering and stabilized surfaces should
be considered.
Appropriate Uses
Dust control measures should be used on any site where dust poses a problem to air quality. Dust control
is important to control for the health of construction workers and surrounding waterbodies.
Design and Installation
The following construction BMPs can be used for dust control:
An irrigation/sprinkler system can be used to wet the top layer of disturbed soil to help keep dry soil
particles from becoming airborne.
Seeding and mulching can be used to stabilize disturbed surfaces and reduce dust emissions.
Protecting existing vegetation can help to slow wind velocities across the ground surface, thereby
limiting the likelihood of soil particles to become airborne.
Spray-on soil binders form a bond between soil particles keeping them grounded. Chemical
treatments may require additional permitting requirements. Potential impacts to surrounding
waterways and habitat must be considered prior to use.
Placing rock on construction roadways and entrances will help keep dust to a minimum across the
construction site.
Wind fences can be installed on site to reduce wind
speeds. Install fences perpendicular to the prevailing
wind direction for maximum effectiveness.
Maintenance and Removal
When using an irrigation/sprinkler control system to aid in
dust control, be careful not to overwater. Overwatering will
cause construction vehicles to track mud off-site.
Wind Erosion Control/
Dust Control
Functions
Erosion Control Yes
Sediment Control No
Site/Material Management Moderate
Concrete Washout Area (CWA) MM-1
November 2010 Urban Drainage and Flood Control District CWA-1
Urban Storm Drainage Criteria Manual Volume 3
Photograph CWA-1. Example of concrete washout area. Note gravel
tracking pad for access and sign.
Description
Concrete waste management involves
designating and properly managing a
specific area of the construction site as a
concrete washout area. A concrete
washout area can be created using one of
several approaches designed to receive
wash water from washing of tools and
concrete mixer chutes, liquid concrete
waste from dump trucks, mobile batch
mixers, or pump trucks. Three basic
approaches are available: excavation of a
pit in the ground, use of an above ground
storage area, or use of prefabricated haul-
away concrete washout containers.
Surface discharges of concrete washout
water from construction sites are prohibited.
Appropriate Uses
Concrete washout areas must be designated on all sites that will generate concrete wash water or liquid
concrete waste from onsite concrete mixing or concrete delivery.
Because pH is a pollutant of concern for washout activities, when unlined pits are used for concrete
washout, the soil must have adequate buffering capacity to result in protection of state groundwater
standards; otherwise, a liner/containment must be used. The following management practices are
recommended to prevent an impact from unlined pits to groundwater:
The use of the washout site should be temporary (less than 1 year), and
The washout site should be not be located in an area where shallow groundwater may be present, such
as near natural drainages, springs, or wetlands.
Design and Installation
Concrete washout activities must be conducted in a manner that does not contribute pollutants to surface
waters or stormwater runoff. Concrete washout areas may be lined or unlined excavated pits in the
ground, commercially manufactured prefabricated washout containers, or aboveground holding areas
constructed of berms, sandbags or straw bales with a plastic liner.
Although unlined washout areas may be used, lined pits may be required to protect groundwater under
certain conditions.
Do not locate an unlined washout area within 400 feet
of any natural drainage pathway or waterbody or
within 1,000 feet of any wells or drinking water
sources. Even for lined concrete washouts, it is
advisable to locate the facility away from waterbodies
and drainage paths. If site constraints make these
Concrete Washout Area
Functions
Erosion Control No
Sediment Control No
Site/Material Management Yes
MM-1 Concrete Washout Area (CWA)
CWA-2 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
setbacks infeasible or if highly permeable soils exist in the area, then the pit must be installed with an
impermeable liner (16 mil minimum thickness) or surface storage alternatives using prefabricated
concrete washout devices or a lined aboveground storage area should be used.
Design details with notes are provided in Detail CWA-1 for pits and CWA-2 for aboveground storage
areas. Pre-fabricated concrete washout container information can be obtained from vendors.
Maintenance and Removal
A key consideration for concrete washout areas is to ensure that adequate signage is in place identifying
the location of the washout area. Part of inspecting and maintaining washout areas is ensuring that
adequate signage is provided and in good repair and that the washout area is being used, as opposed to
washout in non-designated areas of the site.
Remove concrete waste in the washout area, as needed to maintain BMP function (typically when filled to
about two-thirds of its capacity). Collect concrete waste and deliver offsite to a designated disposal
location.
Upon termination of use of the washout site, accumulated solid waste, including concrete waste and any
contaminated soils, must be removed from the site to prevent on-site disposal of solid waste. If the wash
water is allowed to evaporate and the concrete hardens, it may be recycled.
Photograph CWA-3. Earthen concrete washout. Photo
courtesy of CDOT.
Photograph CWA-2. Prefabricated concrete washout. Photo
courtesy of CDOT.
Concrete Washout Area (CWA) MM-1
November 2010 Urban Drainage and Flood Control District CWA-3
Urban Storm Drainage Criteria Manual Volume 3
MM-1 Concrete Washout Area (CWA)
CWA-4 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
Stockpile Management (SP) MM-2
November 2010 Urban Drainage and Flood Control District SP-1
Urban Storm Drainage Criteria Manual Volume 3
Photograph SP-1. A topsoil stockpile that has been partially
revegetated and is protected by silt fence perimeter control.
Description
Stockpile management includes
measures to minimize erosion and
sediment transport from soil stockpiles.
Appropriate Uses
Stockpile management should be used
when soils or other erodible materials
are stored at the construction site.
Special attention should be given to
stockpiles in close proximity to natural
or manmade storm systems.
Design and Installation
Locate stockpiles away from all drainage system components including storm sewer inlets. Where
practical, choose stockpile locations that that will remain undisturbed for the longest period of time as the
phases of construction progress. Place sediment control BMPs around the perimeter of the stockpile, such
as sediment control logs, rock socks, silt fence, straw bales and sand bags. See Detail SP-1 for guidance
on proper establishment of perimeter controls around a stockpile. For stockpiles in active use, provide a
stabilized designated access point on the upgradient side of the stockpile.
Stabilize the stockpile surface with surface roughening, temporary seeding and mulching, erosion control
blankets, or soil binders. Soils stockpiled for an extended period (typically for more than 60 days) should
be seeded and mulched with a temporary grass cover once the stockpile is placed (typically within 14
days). Use of mulch only or a soil binder is acceptable if the stockpile will be in place for a more limited
time period (typically 30-60 days). Timeframes for stabilization of stockpiles noted in this fact sheet are
"typical" guidelines. Check permit requirements for specific federal, state, and/or local requirements that
may be more prescriptive.
Stockpiles should not be placed in streets or paved areas unless no other practical alternative exists. See
the Stabilized Staging Area Fact Sheet for guidance when staging in roadways is unavoidable due to
space or right-of-way constraints. For paved areas, rock socks must be used for perimeter control and all
inlets with the potential to receive sediment from the stockpile (even from vehicle tracking) must be
protected.
Maintenance and Removal
Inspect perimeter controls and inlet protection in accordance with their respective BMP Fact Sheets.
Where seeding, mulch and/or soil binders are used, reseeding or reapplication of soil binder may be
necessary.
When temporary removal of a perimeter BMP is necessary
to access a stockpile, ensure BMPs are reinstalled in
accordance with their respective design detail section.
Stockpile Management
Functions
Erosion Control Yes
Sediment Control Yes
Site/Material Management Yes
MM-2 Stockpile Management (SM)
SP-2 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
When the stockpile is no longer needed, properly dispose of excess materials and revegetate or otherwise
stabilize the ground surface where the stockpile was located.
Stockpile Management (SP) MM-2
November 2010 Urban Drainage and Flood Control District SP-3
Urban Storm Drainage Criteria Manual Volume 3
MM-2 Stockpile Management (SM)
SP-4 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
Stockpile Management (SP) MM-2
November 2010 Urban Drainage and Flood Control District SP-5
Urban Storm Drainage Criteria Manual Volume 3
MM-2 Stockpile Management (SM)
SP-6 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
Good Housekeeping Practices (GH) MM-3
November 2010 Urban Drainage and Flood Control District GH-1
Urban Storm Drainage Criteria Manual Volume 3
Photographs GH-1 and GH-2. Proper materials
storage and secondary containment for fuel tanks
are important good housekeeping practices. Photos
courtesy of CDOT and City of Aurora.
Description
Implement construction site good housekeeping practices to
prevent pollution associated with solid, liquid and hazardous
construction-related materials and wastes. Stormwater
Management Plans (SWMPs) should clearly specify BMPs
including these good housekeeping practices:
Provide for waste management.
Establish proper building material staging areas.
Designate paint and concrete washout areas.
Establish proper equipment/vehicle fueling and
maintenance practices.
Control equipment/vehicle washing and allowable non-
stormwater discharges.
Develop a spill prevention and response plan.
Acknowledgement: This Fact Sheet is based directly on
EPA guidance provided in Developing Your Stormwater
Pollution Prevent Plan (EPA 2007).
Appropriate Uses
Good housekeeping practices are necessary at all construction sites.
Design and Installation
The following principles and actions should be addressed in SWMPs:
Provide for Waste Management. Implement management procedures and practices to prevent or
reduce the exposure and transport of pollutants in stormwater from solid, liquid and sanitary wastes
that will be generated at the site. Practices such as trash disposal, recycling, proper material handling,
and cleanup measures can reduce the potential for stormwater runoff to pick up construction site
wastes and discharge them to surface waters. Implement a comprehensive set of waste-management
practices for hazardous or toxic materials, such as paints, solvents, petroleum products, pesticides,
wood preservatives, acids, roofing tar, and other materials. Practices should include storage,
handling, inventory, and cleanup procedures, in case of spills. Specific practices that should be
considered include:
Solid or Construction Waste
o Designate trash and bulk waste-collection areas on-
site.
Good Housekeeping
Functions
Erosion Control No
Sediment Control No
Site/Material Management Yes
MM-3 Good Housekeeping Practices (GH)
GH-2 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
Photograph GH-3. Locate portable toilet facilities on level
surfaces away from waterways and storm drains. Photo
courtesy of WWE.
o Recycle materials whenever possible (e.g., paper, wood, concrete, oil).
o Segregate and provide proper disposal options for hazardous material wastes.
o Clean up litter and debris from the construction site daily.
o Locate waste-collection areas away from streets, gutters, watercourses, and storm drains. Waste-
collection areas (dumpsters, and such) are often best located near construction site entrances to
minimize traffic on disturbed soils. Consider secondary containment around waste collection
areas to minimize the likelihood of contaminated discharges.
o Empty waste containers before they are full and overflowing.
Sanitary and Septic Waste
o Provide convenient, well-maintained, and properly located toilet facilities on-site.
o Locate toilet facilities away from storm drain inlets and waterways to prevent accidental spills
and contamination of stormwater.
o Maintain clean restroom facilities and empty portable toilets regularly.
o Where possible, provide secondary containment pans under portable toilets.
o Provide tie-downs or stake-downs for portable toilets.
o Educate employees, subcontractors, and suppliers on locations of facilities.
o Treat or dispose of sanitary and septic waste in accordance with state or local regulations. Do not
discharge or bury wastewater at the construction site.
o Inspect facilities for leaks. If found, repair or replace immediately.
o Special care is necessary during maintenance (pump out) to ensure that waste and/or biocide are
not spilled on the ground.
Hazardous Materials and Wastes
o Develop and implement employee and
subcontractor education, as needed, on
hazardous and toxic waste handling,
storage, disposal, and cleanup.
o Designate hazardous waste-collection
areas on-site.
o Place all hazardous and toxic material
wastes in secondary containment.
Good Housekeeping Practices (GH) MM-3
November 2010 Urban Drainage and Flood Control District GH-3
Urban Storm Drainage Criteria Manual Volume 3
o Hazardous waste containers should be inspected to ensure that all containers are labeled properly
and that no leaks are present.
Establish Proper Building Material Handling and Staging Areas. The SWMP should include
comprehensive handling and management procedures for building materials, especially those that are
hazardous or toxic. Paints, solvents, pesticides, fuels and oils, other hazardous materials or building
materials that have the potential to contaminate stormwater should be stored indoors or under cover
whenever possible or in areas with secondary containment. Secondary containment measures prevent
a spill from spreading across the site and may include dikes, berms, curbing, or other containment
methods. Secondary containment techniques should also ensure the protection of groundwater.
Designate staging areas for activities such as fueling vehicles, mixing paints, plaster, mortar, and
other potential pollutants. Designated staging areas enable easier monitoring of the use of materials
and clean up of spills. Training employees and subcontractors is essential to the success of this
pollution prevention principle. Consider the following specific materials handling and staging
practices:
o Train employees and subcontractors in proper handling and storage practices.
o Clearly designate site areas for staging and storage with signs and on construction drawings.
Staging areas should be located in areas central to the construction site. Segment the staging area
into sub-areas designated for vehicles, equipment, or stockpiles. Construction entrances and exits
should be clearly marked so that delivery vehicles enter/exit through stabilized areas with vehicle
tracking controls (See Vehicle Tracking Control Fact Sheet).
o Provide storage in accordance with Spill Protection, Control and Countermeasures (SPCC)
requirements and plans and provide cover and impermeable perimeter control, as necessary, for
hazardous materials and contaminated soils that must be stored on site.
o Ensure that storage containers are regularly inspected for leaks, corrosion, support or foundation
failure, or other signs of deterioration and tested for soundness.
o Reuse and recycle construction materials when possible.
Designate Concrete Washout Areas. Concrete contractors should be encouraged to use the washout
facilities at their own plants or dispatch facilities when feasible; however, concrete washout
commonly occurs on construction sites. If it is necessary to provide for concrete washout areas on-
site, designate specific washout areas and design facilities to handle anticipated washout water.
Washout areas should also be provided for paint and stucco operations. Because washout areas can
be a source of pollutants from leaks or spills, care must be taken with regard to their placement and
proper use. See the Concrete Washout Area Fact Sheet for detailed guidance.
Both self-constructed and prefabricated washout containers can fill up quickly when concrete, paint,
and stucco work are occurring on large portions of the site. Be sure to check for evidence that
contractors are using the washout areas and not dumping materials onto the ground or into drainage
facilities. If the washout areas are not being used regularly, consider posting additional signage,
relocating the facilities to more convenient locations, or providing training to workers and
contractors.
When concrete, paint, or stucco is part of the construction process, consider these practices which will
help prevent contamination of stormwater. Include the locations of these areas and the maintenance
and inspection procedures in the SWMP.
MM-3 Good Housekeeping Practices (GH)
GH-4 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
o Do not washout concrete trucks or equipment into storm drains, streets, gutters, uncontained
areas, or streams. Only use designated washout areas.
o Establish washout areas and advertise their locations with signs. Ensure that signage remains in
good repair.
o Provide adequate containment for the amount of wash water that will be used.
o Inspect washout structures daily to detect leaks or tears and to identify when materials need to be
removed.
o Dispose of materials properly. The preferred method is to allow the water to evaporate and to
recycle the hardened concrete. Full service companies may provide dewatering services and
should dispose of wastewater properly. Concrete wash water can be highly polluted. It should
not be discharged to any surface water, storm sewer system, or allowed to infiltrate into the
ground in the vicinity of waterbodies. Washwater should not be discharged to a sanitary sewer
system without first receiving written permission from the system operator.
Establish Proper Equipment/Vehicle Fueling and Maintenance Practices. Create a clearly
designated on-site fueling and maintenance area that is clean and dry. The on-site fueling area should
have a spill kit, and staff should know how to use it. If possible, conduct vehicle fueling and
maintenance activities in a covered area. Consider the following practices to help prevent the
discharge of pollutants to stormwater from equipment/vehicle fueling and maintenance. Include the
locations of designated fueling and maintenance areas and inspection and maintenance procedures in
the SWMP.
o Train employees and subcontractors in proper fueling procedures (stay with vehicles during
fueling, proper use of pumps, emergency shutoff valves, etc.).
o Inspect on-site vehicles and equipment regularly for leaks, equipment damage, and other service
problems.
o Clearly designate vehicle/equipment service areas away from drainage facilities and watercourses
to prevent stormwater run-on and runoff.
o Use drip pans, drip cloths, or absorbent pads when replacing spent fluids.
o Collect all spent fluids, store in appropriate labeled containers in the proper storage areas, and
recycle fluids whenever possible.
Control Equipment/Vehicle Washing and Allowable Non-Stormwater Discharges. Implement
practices to prevent contamination of surface and groundwater from equipment and vehicle wash
water. Representative practices include:
o Educate employees and subcontractors on proper washing procedures.
o Use off-site washing facilities, when available.
o Clearly mark the washing areas and inform workers that all washing must occur in this area.
o Contain wash water and treat it using BMPs. Infiltrate washwater when possible, but maintain
separation from drainage paths and waterbodies.
Good Housekeeping Practices (GH) MM-3
November 2010 Urban Drainage and Flood Control District GH-5
Urban Storm Drainage Criteria Manual Volume 3
o Use high-pressure water spray at vehicle washing facilities without detergents. Water alone can
remove most dirt adequately.
o Do not conduct other activities, such as vehicle repairs, in the wash area.
o Include the location of the washing facilities and the inspection and maintenance procedures in
the SWMP.
Develop a Spill Prevention and Response Plan. Spill prevention and response procedures must be
identified in the SWMP. Representative procedures include identifying ways to reduce the chance of
spills, stop the source of spills, contain and clean up spills, dispose of materials contaminated by
spills, and train personnel responsible for spill prevention and response. The plan should also specify
material handling procedures and storage requirements and ensure that clear and concise spill cleanup
procedures are provided and posted for areas in which spills may potentially occur. When developing
a spill prevention plan, include the following:
o Note the locations of chemical storage areas, storm drains, tributary drainage areas, surface
waterbodies on or near the site, and measures to stop spills from leaving the site.
o Provide proper handling and safety procedures for each type of waste. Keep Material Safety Data
Sheets (MSDSs) for chemical used on site with the SWMP.
o Establish an education program for employees and subcontractors on the potential hazards to
humans and the environment from spills and leaks.
o Specify how to notify appropriate authorities, such as police and fire departments, hospitals, or
municipal sewage treatment facilities to request assistance. Emergency procedures and contact
numbers should be provided in the SWMP and posted at storage locations.
o Describe the procedures, equipment and materials for immediate cleanup of spills and proper
disposal.
o Identify personnel responsible for implementing the plan in the event of a spill. Update the spill
prevention plan and clean up materials as changes occur to the types of chemicals stored and used
at the facility.
MM-3 Good Housekeeping Practices (GH)
GH-6 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
Spill Prevention, Control, and Countermeasure (SPCC) Plan
Construction sites may be subject to 40 CFR Part 112 regulations that require the preparation and
implementation of a SPCC Plan to prevent oil spills from aboveground and underground storage tanks.
The facility is subject to this rule if it is a non-transportation-related facility that:
Has a total storage capacity greater than 1,320 gallons or a completely buried storage capacity
greater than 42,000 gallons.
Could reasonably be expected to discharge oil in quantities that may be harmful to navigable waters
of the United States and adjoining shorelines.
Furthermore, if the facility is subject to 40 CFR Part 112, the SWMP should reference the SPCC Plan.
To find out more about SPCC Plans, see EPA's website on SPPC at www.epa.gov/oilspill/spcc.htm.
Reporting Oil Spills
In the event of an oil spill, contact the National Response Center toll free at 1-800-424- 8802 for
assistance, or for more details, visit their website: www.nrc.uscg.mil.
Maintenance and Removal
Effective implementation of good housekeeping practices is dependent on clear designation of personnel
responsible for supervising and implementing good housekeeping programs, such as site cleanup and
disposal of trash and debris, hazardous material management and disposal, vehicle and equipment
maintenance, and other practices. Emergency response "drills" may aid in emergency preparedness.
Checklists may be helpful in good housekeeping efforts.
Staging and storage areas require permanent stabilization when the areas are no longer being used for
construction-related activities.
Construction-related materials, debris and waste must be removed from the construction site once
construction is complete.
Design Details
See the following Fact Sheets for related Design Details:
MM-1 Concrete Washout Area
MM-2 Stockpile Management
SM-4 Vehicle Tracking Control
Design details are not necessary for other good housekeeping practices; however, be sure to designate
where specific practices will occur on the appropriate construction drawings.
Silt Fence (SF) SC-1
November 2010 Urban Drainage and Flood Control District SF-1
Urban Storm Drainage Criteria Manual Volume 3
Photograph SF-1. Silt fence creates a sediment barrier, forcing
sheet flow runoff to evaporate or infiltrate.
Description
A silt fence is a woven geotextile fabric
attached to wooden posts and trenched
into the ground. It is designed as a
sediment barrier to intercept sheet flow
runoff from disturbed areas.
Appropriate Uses
A silt fence can be used where runoff is
conveyed from a disturbed area as sheet
flow. Silt fence is not designed to
receive concentrated flow or to be used
as a filter fabric. Typical uses include:
Down slope of a disturbed area to
accept sheet flow.
Along the perimeter of a receiving
water such as a stream, pond or
wetland.
At the perimeter of a construction site.
Design and Installation
Silt fence should be installed along the contour of slopes so that it intercepts sheet flow. The maximum
recommended tributary drainage area per 100 lineal feet of silt fence, installed along the contour, is
approximately 0.25 acres with a disturbed slope length of up to 150 feet and a tributary slope gradient no
steeper than 3:1. Longer and steeper slopes require additional measures. This recommendation only
applies to silt fence installed along the contour. Silt fence installed for other uses, such as perimeter
control, should be installed in a way that will not produce concentrated flows. For example, a "J-hook"
installation may be appropriate to force runoff to pond and evaporate or infiltrate in multiple areas rather
than concentrate and cause erosive conditions parallel to the silt fence.
See Detail SF-1 for proper silt fence installation, which involves proper trenching, staking, securing the
fabric to the stakes, and backfilling the silt fence. Properly installed silt fence should not be easily pulled
out by hand and there should be no gaps between the ground and the fabric.
Silt fence must meet the minimum allowable strength requirements, depth of installation requirement, and
other specifications in the design details. Improper installation
of silt fence is a common reason for silt fence failure; however,
when properly installed and used for the appropriate purposes, it
can be highly effective.
Silt Fence
Functions
Erosion Control No
Sediment Control Yes
Site/Material Management No
SC-1 Silt Fence (SF)
SF-2 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
Photograph SF-2. When silt fence is not installed along
the contour, a "J-hook" installation may be appropriate
to ensure that the BMP does not create concentrated
flow parallel to the silt fence. Photo courtesy of Tom
Gore.
Maintenance and Removal
Inspection of silt fence includes observing the
material for tears or holes and checking for slumping
fence and undercut areas bypassing flows. Repair of
silt fence typically involves replacing the damaged
section with a new section. Sediment accumulated
behind silt fence should be removed, as needed to
maintain BMP effectiveness, typically before it
reaches a depth of 6 inches.
Silt fence may be removed when the upstream area
has reached final stabilization.
Silt Fence (SF) SC-1
November 2010 Urban Drainage and Flood Control District SF-3
Urban Storm Drainage Criteria Manual Volume 3
SC-1 Silt Fence (SF)
SF-4 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
Sediment Control Log (SCL) SC-2
November 2010 Urban Drainage and Flood Control District SCL-1
Urban Storm Drainage Criteria Manual Volume 3
Photographs SCL-1 and SCL-2. Sediment control logs used as 1) a
perimeter control around a soil stockpile; and, 2) as a "J-hook"
perimeter control at the corner of a construction site.
Description
A sediment control log is a linear roll
made of natural materials such as
straw, coconut fiber, or other fibrous
material trenched into the ground and
held with a wooden stake. Sediment
control logs are also often referred to
as "straw wattles." They are used as a
sediment barrier to intercept sheet flow
runoff from disturbed areas.
Appropriate Uses
Sediment control logs can be used in
the following applications to trap
sediment:
As perimeter control for stockpiles
and the site.
As part of inlet protection designs.
As check dams in small drainage
ditches. (Sediment control logs
are not intended for use in
channels with high flow
velocities.)
On disturbed slopes to shorten flow
lengths (as an erosion control).
As part of multi-layered perimeter control along a receiving water such as a stream, pond or wetland.
Sediment control logs work well in combination with other layers of erosion and sediment controls.
Design and Installation
Sediment control logs should be installed along the contour to avoid concentrating flows. The maximum
allowable tributary drainage area per 100 lineal feet of sediment control log, installed along the contour, is
approximately 0.25 acres with a disturbed slope length of up to 150 feet and a tributary slope gradient no
steeper than 3:1. Longer and steeper slopes require additional measures. This recommendation only
applies to sediment control logs installed along the contour. When installed for other uses, such as
perimeter control, it should be installed in a way that will not
produce concentrated flows. For example, a "J-hook"
installation may be appropriate to force runoff to pond and
evaporate or infiltrate in multiple areas rather than concentrate
and cause erosive conditions parallel to the BMP.
Sediment Control Log
Functions
Erosion Control Moderate
Sediment Control Yes
Site/Material Management No
SC-2 Sediment Control Log (SCL)
SCL-2 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
Although sediment control logs initially allow runoff to flow through the BMP, they can quickly become
a barrier and should be installed is if they are impermeable.
Design details and notes for sediment control logs are provided in Detail SCL-1. Sediment logs must be
properly trenched and staked into the ground to prevent undercutting, bypassing and displacement. When
installed on slopes, sediment control logs should be installed along the contours (i.e., perpendicular to
flow).
Improper installation can lead to poor performance. Be sure that sediment control logs are properly
trenched, anchored and tightly jointed.
Maintenance and Removal
Be aware that sediment control logs will eventually degrade. Remove accumulated sediment before the
depth is one-half the height of the sediment log and repair damage to the sediment log, typically by
replacing the damaged section.
Once the upstream area is stabilized, remove and properly dispose of the logs. Areas disturbed beneath
the logs may need to be seeded and mulched. Sediment control logs that are biodegradable may
occasionally be left in place (e.g., when logs are used in conjunction with erosion control blankets as
permanent slope breaks). However, removal of sediment control logs after final stabilization is typically
recommended when used in perimeter control, inlet protection and check dam applications.
Sediment Control Log (SCL) SC-2
November 2010 Urban Drainage and Flood Control District SCL-3
Urban Storm Drainage Criteria Manual Volume 3
SC-2 Sediment Control Log (SCL)
SCL-4 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
Sediment Control Log (SCL) SC-2
November 2010 Urban Drainage and Flood Control District SCL-5
Urban Storm Drainage Criteria Manual Volume 3
Rock Sock (RS) SC-5
November 2010 Urban Drainage and Flood Control District RS-1
Urban Storm Drainage Criteria Manual Volume 3
Photograph RS-1. Rock socks placed at regular intervals in a curb
line can help reduce sediment loading to storm sewer inlets. Rock
socks can also be used as perimeter controls.
Description
A rock sock is constructed of gravel
that has been wrapped by wire mesh or
a geotextile to form an elongated
cylindrical filter. Rock socks are
typically used either as a perimeter
control or as part of inlet protection.
When placed at angles in the curb line,
rock socks are typically referred to as
curb socks. Rock socks are intended to
trap sediment from stormwater runoff
that flows onto roadways as a result of
construction activities.
Appropriate Uses
Rock socks can be used at the perimeter
of a disturbed area to control localized
sediment loading. A benefit of rock
socks as opposed to other perimeter controls is that they do not have to be trenched or staked into the
ground; therefore, they are often used on roadway construction projects where paved surfaces are present.
Use rock socks in inlet protection applications when the construction of a roadway is substantially
complete and the roadway has been directly connected to a receiving storm system.
Design and Installation
When rock socks are used as perimeter controls, the maximum recommended tributary drainage area per
100 lineal feet of rock socks is approximately 0.25 acres with disturbed slope length of up to 150 feet and
a tributary slope gradient no steeper than 3:1. A rock sock design detail and notes are provided in Detail
RS-1. Also see the Inlet Protection Fact Sheet for design and installation guidance when rock socks are
used for inlet protection and in the curb line.
When placed in the gutter adjacent to a curb, rock socks should protrude no more than two feet from the
curb in order for traffic to pass safely. If located in a high traffic area, place construction markers to alert
drivers and street maintenance workers of their presence.
Maintenance and Removal
Rock socks are susceptible to displacement and breaking due to vehicle traffic. Inspect rock socks for
damage and repair or replace as necessary. Remove sediment by sweeping or vacuuming as needed to
maintain the functionality of the BMP, typically when sediment
has accumulated behind the rock sock to one-half of the sock's
height.
Once upstream stabilization is complete, rock socks and
accumulated sediment should be removed and properly disposed.
Rock Sock
Functions
Erosion Control No
Sediment Control Yes
Site/Material Management No
SC-5 Rock Sock (RS)
RS-2 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
Rock Sock (RS) SC-5
November 2010 Urban Drainage and Flood Control District RS-3
Urban Storm Drainage Criteria Manual Volume 3
Inlet Protection (IP) SC-6
November 2010 Urban Drainage and Flood Control District IP-1
Urban Storm Drainage Criteria Manual Volume 3
Photograph IP-1. Inlet protection for a curb opening inlet.
Description
Inlet protection consists of permeable
barriers installed around an inlet to
filter runoff and remove sediment prior
to entering a storm drain inlet. Inlet
protection can be constructed from rock
socks, sediment control logs, silt fence,
block and rock socks, or other materials
approved by the local jurisdiction.
Area inlets can also be protected by
over-excavating around the inlet to
form a sediment trap.
Appropriate Uses
Install protection at storm sewer inlets
that are operable during construction.
Consider the potential for tracked-out
sediment or temporary stockpile areas to contribute sediment to inlets when determining which inlets
must be protected. This may include inlets in the general proximity of the construction area, not limited
to downgradient inlets. Inlet protection is not
Design and Installation
a stand-alone BMP and should be used in conjunction with
other upgradient BMPs.
To function effectively, inlet protection measures must be installed to ensure that flows do not bypass the
inlet protection and enter the storm drain without treatment. However, designs must also enable the inlet
to function without completely blocking flows into the inlet in a manner that causes localized flooding.
When selecting the type of inlet protection, consider factors such as type of inlet (e.g., curb or area, sump
or on-grade conditions), traffic, anticipated flows, ability to secure the BMP properly, safety and other
site-specific conditions. For example, block and rock socks will be better suited to a curb and gutter
along a roadway, as opposed to silt fence or sediment control logs, which cannot be properly secured in a
curb and gutter setting, but are effective area inlet protection measures.
Several inlet protection designs are provided in the Design Details. Additionally, a variety of proprietary
products are available for inlet protection that may be approved for use by local governments. If
proprietary products are used, design details and installation procedures from the manufacturer must be
followed. Regardless of the type of inlet protection selected, inlet protection is most effective when
combined with other BMPs such as curb socks and check dams. Inlet protection is often the last barrier
before runoff enters the storm sewer or receiving water.
Design details with notes are provided for these forms of inlet
protection:
IP-1. Block and Rock Sock Inlet Protection for Sump or On-grade
Inlets
IP-2. Curb (Rock) Socks Upstream of Inlet Protection, On-grade
Inlets
Inlet Protection
(various forms)
Functions
Erosion Control No
Sediment Control Yes
Site/Material Management No
SC-6 Inlet Protection (IP)
IP-2 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
IP-3. Rock Sock Inlet Protection for Sump/Area Inlet
IP-4. Silt Fence Inlet Protection for Sump/Area Inlet
IP-5. Over-excavation Inlet Protection
IP-6. Straw Bale Inlet Protection for Sump/Area Inlet
CIP-1. Culvert Inlet Protection
Propriety inlet protection devices should be installed in accordance with manufacturer specifications.
More information is provided below on selecting inlet protection for sump and on-grade locations.
Inlets Located in a Sump
When applying inlet protection in sump conditions, it is important that the inlet continue to function
during larger runoff events. For curb inlets, the maximum height of the protective barrier should be lower
than the top of the curb opening to allow overflow into the inlet during larger storms without excessive
localized flooding. If the inlet protection height is greater than the curb elevation, particularly if the filter
becomes clogged with sediment, runoff will not enter the inlet and may bypass it, possibly causing
localized flooding, public safety issues, and downstream erosion and damage from bypassed flows.
Area inlets located in a sump setting can be protected through the use of silt fence, concrete block and
rock socks (on paved surfaces), sediment control logs/straw wattles embedded in the adjacent soil and
stacked around the area inlet (on pervious surfaces), over-excavation around the inlet, and proprietary
products providing equivalent functions.
Inlets Located on a Slope
For curb and gutter inlets on paved sloping streets, block and rock sock inlet protection is recommended
in conjunction with curb socks in the gutter leading to the inlet. For inlets located along unpaved roads,
also see the Check Dam Fact Sheet.
Maintenance and Removal
Inspect inlet protection frequently. Inspection and maintenance guidance includes:
Inspect for tears that can result in sediment directly entering the inlet, as well as result in the contents
of the BMP (e.g., gravel) washing into the inlet.
Check for improper installation resulting in untreated flows bypassing the BMP and directly entering
the inlet or bypassing to an unprotected downstream inlet. For example, silt fence that has not been
properly trenched around the inlet can result in flows under the silt fence and directly into the inlet.
Look for displaced BMPs that are no longer protecting the inlet. Displacement may occur following
larger storm events that wash away or reposition the inlet protection. Traffic or equipment may also
crush or displace the BMP.
Monitor sediment accumulation upgradient of the inlet protection.
Inlet Protection (IP) SC-6
November 2010 Urban Drainage and Flood Control District IP-3
Urban Storm Drainage Criteria Manual Volume 3
Remove sediment accumulation from the area upstream of the inlet protection, as needed to maintain
BMP effectiveness, typically when it reaches no more than half the storage capacity of the inlet
protection. For silt fence, remove sediment when it accumulates to a depth of no more than 6 inches.
Remove sediment accumulation from the area upstream of the inlet protection as needed to maintain
the functionality of the BMP.
Propriety inlet protection devices should be inspected and maintained in accordance with
manufacturer specifications. If proprietary inlet insert devices are used, sediment should be removed
in a timely manner to prevent devices from breaking and spilling sediment into the storm drain.
Inlet protection must be removed and properly disposed of when the drainage area for the inlet has
reached final stabilization.
SC-6 Inlet Protection (IP)
IP-4 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
Inlet Protection (IP) SC-6
November 2010 Urban Drainage and Flood Control District IP-5
Urban Storm Drainage Criteria Manual Volume 3
SC-6 Inlet Protection (IP)
IP-6 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
Inlet Protection (IP) SC-6
November 2010 Urban Drainage and Flood Control District IP-7
Urban Storm Drainage Criteria Manual Volume 3
Vegetated Buffers (VB) SC-9
November 2010 Urban Drainage and Flood Control District VB-1
Urban Storm Drainage Criteria Manual Volume 3
Photograph VB-1. A vegetated buffer is maintained between the
area of active construction and the drainage swale. Photo courtesy
of WWE.
Description
Buffer strips of preserved natural
vegetation or grass help protect
waterways and wetlands from land
disturbing activities. Vegetated buffers
improve stormwater runoff quality by
straining sediment, promoting
infiltration, and slowing runoff
velocities.
Appropriate Uses
Vegetated buffers can be used to
separate land disturbing activities and
natural surface waters or conveyances.
In many jurisdictions, local governments
require some type of setback from natural waterways. Concentrated flow should not be directed through
a buffer; instead, runoff should be in the form of sheet flow. Vegetated buffers are typically used in
combination with other perimeter control BMPs such as sediment control logs or silt fence for multi-
layered protection.
Design and Installation
Minimum buffer widths may vary based on local regulations. Clearly delineate the boundary of the
natural buffer area using construction fencing, silt fence, or a comparable technique. In areas that have
been cleared and graded, vegetated buffers such as sod can also be installed to create or restore a
vegetated buffer around the perimeter of the site.
Maintenance and Removal
Inspect buffer areas for signs of erosion such as gullies or rills. Stabilize eroding areas, as needed. If
erosion is due to concentrated flow conditions, it may be necessary to install a level spreader or other
technique to restore sheet flow conditions. Inspect perimeter controls delineating the vegetative buffer
and repair or replace as needed.
Vegetated Buffers
Functions
Erosion Control Moderate
Sediment Control Yes
Site/Material Management Yes
Protection of Existing Vegetation (PV) SM-2
November 2010 Urban Drainage and Flood Control District PV-1
Urban Storm Drainage Criteria Manual Volume 3
Photograph PV-1. Protection of existing vegetation and a sensitive
area. Photo courtesy of CDOT.
Description
Protection of existing vegetation on a
construction site can be accomplished
through installation of a construction
fence around the area requiring protection.
In cases where upgradient areas are
disturbed, it may also be necessary to
install perimeter controls to minimize
sediment loading to sensitive areas such as
wetlands. Existing vegetation may be
designated for protection to maintain a
stable surface cover as part of construction
phasing, or vegetation may be protected in
areas designated to remain in natural
condition under post-development
conditions (e.g., wetlands, mature trees,
riparian areas, open space).
Appropriate Uses
Existing vegetation should be preserved for the maximum practical duration on a construction site
through the use of effective construction phasing. Preserving vegetation helps to minimize erosion and
can reduce revegetation costs following construction.
Protection of wetland areas is required under the Clean Water Act, unless a permit has been obtained from
the U.S. Army Corps of Engineers (USACE) allowing impacts in limited areas.
If trees are to be protected as part of post-development landscaping, care must be taken to avoid several
types of damage, some of which may not be apparent at the time of injury. Potential sources of injury
include soil compaction during grading or due to construction traffic, direct equipment-related injury such
as bark removal, branch breakage, surface grading and trenching, and soil cut and fill. In order to
minimize injuries that may lead to immediate or later death of the tree, tree protection zones should be
developed during site design, implemented at the beginning of a construction project, as well as continued
during active construction.
Design and Installation
General
Once an area has been designated as a preservation area, there should be no construction activity allowed
within a set distance of the area. Clearly mark the area with construction fencing. Do not allow
stockpiles, equipment, trailers or parking within the
protected area. Guidelines to protect various types of
existing vegetation follow.
Protection of Existing Vegetation
Functions
Erosion Control Yes
Sediment Control Moderate
Site/Material Management Yes
SM-2 Protection of Existing Vegetation (PV)
PV-2 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
Surface Cover During Phased Construction
Install construction fencing or other perimeter controls around areas to be protected from clearing and
grading as part of construction phasing.
Maintaining surface cover on steep slopes for the maximum practical duration during construction is
recommended.
Open Space Preservation
Where natural open space areas will be preserved as part of a development, it is important to install
construction fencing around these areas to protect them from compaction. This is particularly important
when areas with soils with high infiltration rates are preserved as part of LID designs. Preserved open
space areas should not be used for staging and equipment storage.
Wetlands and Riparian Areas
Install a construction fence around the perimeter of the wetland or riparian (streamside vegetation) area to
prevent access by equipment. In areas downgradient of disturbed areas, install a perimeter control such as
silt fence, sediment control logs, or similar measure to minimize sediment loading to the wetland.
Tree Protection
1
Before beginning construction operations, establish a tree protection zone around trees to be
preserved by installing construction fences. Allow enough space from the trunk to protect the root
zone from soil compaction and mechanical damage, and the branches from mechanical damage (see
Table PV-1). If low branches will be kept, place the fence outside of the drip line. Where this is not
possible, place fencing as far away from the trunk as possible. In order to maintain a healthy tree, be
aware that about 60 percent of the tree's root zone extends beyond the drip line.
Table PV-1
Guidelines for Determining the Tree Protection Zone
(Source: Matheny and Clark, 1998; as cited in GreenCO and WWE 2008)
Distance from Trunk (ft) per inch of DBH
Species Tolerance to Damage Young Mature Over mature
Good 0.5' 0.75' 1.0'
Moderate 0.75' 1.0' 1.25'
Poor 1.0' 1.25' 1.5'
Notes: DBH = diameter at breast height (4.5 ft above grade); Young = <20% of
life expectancy; Mature = 20%-80% of life expectancy; Over mature =>80% of
life expectancy
Most tree roots grow within the top 12 to 18 inches of soil. Grade changes within the tree protection
zone should be avoided where possible because seemingly minor grade changes can either smother
1 Tree Protection guidelines adapted from GreenCO and WWE (2008). Green Industry Best Management Practices (BMPs) for
the Conservation and Protection of Water Resources in Colorado: Moving Toward Sustainability, Third Release. See
www.greenco.org for more detailed guidance on tree preservation.
Protection of Existing Vegetation (PV) SM-2
November 2010 Urban Drainage and Flood Control District PV-3
Urban Storm Drainage Criteria Manual Volume 3
roots (in fill situations) or damage roots (in cut situations). Consider small walls where needed to
avoid grade changes in the tree protection zone.
Place and maintain a layer of mulch 4 to 6-inch thick from the tree trunk to the fencing, keeping a
6-inch space between the mulch and the trunk. Mulch helps to preserve moisture and decrease soil
compaction if construction traffic is unavoidable. When planting operations are completed, the mulch
may be reused throughout planting areas.
Limit access, if needed at all, and appoint one route as the main entrance and exit to the tree
protection zone. Within the tree protection zone, do not allow any equipment to be stored, chemicals
to be dumped, or construction activities to take place except fine grading, irrigation system
installation, and planting operations. These activities should be conducted in consultation with a
landscaping professional, following Green Industry BMPs.
Be aware that soil compaction can cause extreme damage to tree health that may appear gradually
over a period of years. Soil compaction is easier to prevent than repair.
Maintenance and Removal
Repair or replace damaged or displaced fencing or other protective barriers around the vegetated area.
If damage occurs to a tree, consult an arborist for guidance on how to care for the tree. If a tree in a
designated preservation area is damaged beyond repair, remove and replace with a 2-inch diameter tree of
the same or similar species.
Construction equipment must not enter a wetland area, except as permitted by the U.S. Army Corps of
Engineers (USACE). Inadvertent placement of fill in a wetland is a 404 permit violation and will require
notification of the USACE.
If damage to vegetation occurs in a protected area, reseed the area with the same or similar species,
following the recommendations in the USDCM Revegetation chapter.
Construction Fence (CF) SM-3
November 2010 Urban Drainage and Flood Control District CF-1
Urban Storm Drainage Criteria Manual Volume 3
Photograph CF-1. A construction fence helps delineate areas where
existing vegetation is being protected. Photo courtesy of Douglas
County.
Description
A construction fence restricts site access
to designated entrances and exits,
delineates construction site boundaries,
and keeps construction out of sensitive
areas such as natural areas to be
preserved as open space, wetlands and
riparian areas.
Appropriate Uses
A construction fence can be used to
delineate the site perimeter and locations
within the site where access is restricted
to protect natural resources such as
wetlands, waterbodies, trees, and other
natural areas of the site that should not be
disturbed.
If natural resource protection is an objective, then the construction fencing should be used in combination
with other perimeter control BMPs such as silt fence, sediment control logs or similar measures.
Design and Installation
Construction fencing may be chain link or plastic mesh and should be installed following manufacturer’s
recommendations. See Detail CF-1 for typical installations.
Do not place construction fencing in areas within work limits of machinery.
Maintenance and Removal
Inspect fences for damage; repair or replace as necessary.
Fencing should be tight and any areas with slumping or fallen posts should be reinstalled.
Fencing should be removed once construction is complete.
Construction Fence
Functions
Erosion Control No
Sediment Control No
Site/Material Management Yes
SM-3 Construction Fence (CF)
CF-2 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
Construction Fence (CF) SM-3
November 2010 Urban Drainage and Flood Control District CF-3
Urban Storm Drainage Criteria Manual Volume 3
Vehicle Tracking Control (VTC) SM-4
November 2010 Urban Drainage and Flood Control District VTC-1
Urban Storm Drainage Criteria Manual Volume 3
Photograph VTC-1. A vehicle tracking control pad constructed with
properly sized rock reduces off-site sediment tracking.
Description
Vehicle tracking controls provide
stabilized construction site access where
vehicles exit the site onto paved public
roads. An effective vehicle tracking
control helps remove sediment (mud or
dirt) from vehicles, reducing tracking onto
the paved surface.
Appropriate Uses
Implement a stabilized construction
entrance or vehicle tracking control where
frequent heavy vehicle traffic exits the
construction site onto a paved roadway. An
effective vehicle tracking control is
particularly important during the following conditions:
Wet weather periods when mud is easily tracked off site.
During dry weather periods where dust is a concern.
When poorly drained, clayey soils are present on site.
Although wheel washes are not required in designs of vehicle tracking controls, they may be needed at
particularly muddy sites.
Design and Installation
Construct the vehicle tracking control on a level surface. Where feasible, grade the tracking control
towards the construction site to reduce off-site runoff. Place signage, as needed, to direct construction
vehicles to the designated exit through the vehicle tracking control. There are several different types of
stabilized construction entrances including:
VTC-1. Aggregate Vehicle Tracking Control. This is a coarse-aggregate surfaced pad underlain by a
geotextile. This is the most common vehicle tracking control, and when properly maintained can be
effective at removing sediment from vehicle tires.
VTC-2. Vehicle Tracking Control with Construction Mat or Turf Reinforcement Mat. This type of
control may be appropriate for site access at very small construction sites with low traffic volume over
vegetated areas. Although this application does not typically remove sediment from vehicles, it helps
protect existing vegetation and provides a stabilized entrance.
Vehicle Tracking Control
Functions
Erosion Control Moderate
Sediment Control Yes
Site/Material Management Yes
SM-4 Vehicle Tracking Control (VTC)
VTC-2 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
Photograph VTC-2. A vehicle tracking control pad with wheel wash
facility. Photo courtesy of Tom Gore.
VTC-3. Stabilized Construction Entrance/Exit with Wheel Wash. This is an aggregate pad, similar
to VTC-1, but includes equipment for tire washing. The wheel wash equipment may be as simple as
hand-held power washing equipment to more advance proprietary systems. When a wheel wash is
provided, it is important to direct wash water to a sediment trap prior to discharge from the site.
Vehicle tracking controls are sometimes installed in combination with a sediment trap to treat runoff.
Maintenance and Removal
Inspect the area for degradation and
replace aggregate or material used for a
stabilized entrance/exit as needed. If the
area becomes clogged and ponds water,
remove and dispose of excess sediment
or replace material with a fresh layer of
aggregate as necessary.
With aggregate vehicle tracking controls,
ensure rock and debris from this area do
not enter the public right-of-way.
Remove sediment that is tracked onto the
public right of way daily or more
frequently as needed. Excess sediment
in the roadway indicates that the
stabilized construction entrance needs
maintenance.
Ensure that drainage ditches at the
entrance/exit area remain clear.
A stabilized entrance should be removed only when there is no longer the potential for vehicle tracking to
occur. This is typically after the site has been stabilized.
When wheel wash equipment is used, be sure that the wash water is discharged to a sediment trap prior to
discharge. Also inspect channels conveying the water from the wash area to the sediment trap and
stabilize areas that may be eroding.
When a construction entrance/exit is removed, excess sediment from the aggregate should be removed
and disposed of appropriately. The entrance should be promptly stabilized with a permanent surface
following removal, typically by paving.
Vehicle Tracking Control (VTC) SM-4
November 2010 Urban Drainage and Flood Control District VTC-3
Urban Storm Drainage Criteria Manual Volume 3
SM-4 Vehicle Tracking Control (VTC)
VTC-4 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
Vehicle Tracking Control (VTC) SM-4
November 2010 Urban Drainage and Flood Control District VTC-5
Urban Storm Drainage Criteria Manual Volume 3
SM-4 Vehicle Tracking Control (VTC)
VTC-6 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
Stabilized Staging Area (SSA) SM-6
November 2010 Urban Drainage and Flood Control District SSA-1
Urban Storm Drainage Criteria Manual Volume 3
Photograph SSA-1. Example of a staging area with a gravel surface to
prevent mud tracking and reduce runoff. Photo courtesy of Douglas
County.
Description
A stabilized staging area is a clearly
designated area where construction
equipment and vehicles, stockpiles, waste
bins, and other construction-related
materials are stored. The contractor
office trailer may also be located in this
area. Depending on the size of the
construction site, more than one staging
area may be necessary.
Appropriate Uses
Most construction sites will require a
staging area, which should be clearly
designated in SWMP drawings. The layout
of the staging area may vary depending on
the type of construction activity. Staging areas located in roadways due to space constraints require
special measures to avoid materials being washed into storm inlets.
Design and Installation
Stabilized staging areas should be completed prior to other construction activities beginning on the site.
Major components of a stabilized staging area include:
Appropriate space to contain storage and provide for loading/unloading operations, as well as parking
if necessary.
A stabilized surface, either paved or covered, with 3-inch diameter aggregate or larger.
Perimeter controls such as silt fence, sediment control logs, or other measures.
Construction fencing to prevent unauthorized access to construction materials.
Provisions for Good Housekeeping practices related to materials storage and disposal, as described in
the Good Housekeeping BMP Fact Sheet.
A stabilized construction entrance/exit, as described in the Vehicle Tracking Control BMP Fact Sheet,
to accommodate traffic associated with material delivery and waste disposal vehicles.
Over-sizing the stabilized staging area may result in disturbance of existing vegetation in excess of that
required for the project. This increases costs, as well as
requirements for long-term stabilization following the
construction period. When designing the stabilized staging area,
minimize the area of disturbance to the extent practical.
Stabilized Staging Area
Functions
Erosion Control Yes
Sediment Control Moderate
Site/Material
Yes
SM-6 Stabilized Staging Area (SSA)
SSA-2 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
See Detail SSA-1 for a typical stabilized staging area and SSA-2 for a stabilized staging area when
materials staging in roadways is required.
Maintenance and Removal
Maintenance of stabilized staging areas includes maintaining a stable surface cover of gravel, repairing
perimeter controls, and following good housekeeping practices.
When construction is complete, debris, unused stockpiles and materials should be recycled or properly
disposed. In some cases, this will require disposal of contaminated soil from equipment leaks in an
appropriate landfill. Staging areas should then be permanently stabilized with vegetation or other surface
cover planned for the development.
Minimizing Long-Term Stabilization Requirements
Utilize off-site parking and restrict vehicle access to the site.
Use construction mats in lieu of rock when staging is provided in an area that will not be disturbed
otherwise.
Consider use of a bermed contained area for materials and equipment that do not require a
stabilized surface.
Consider phasing of staging areas to avoid disturbance in an area that will not be otherwise
disturbed.
Stabilized Staging Area (SSA) SM-6
November 2010 Urban Drainage and Flood Control District SSA-3
Urban Storm Drainage Criteria Manual Volume 3
SM-6 Stabilized Staging Area (SSA)
SSA-4 Urban Drainage and Flood Control District November 2010
Urban Storm Drainage Criteria Manual Volume 3
Street Sweeping and Vacuuming (SS) SM-7
November 2010 Urban Drainage and Flood Control District SS-1
Urban Storm Drainage Criteria Manual Volume 3
Photograph SS-1. A street sweeper removes sediment and potential
pollutants along the curb line at a construction site. Photo courtesy of
Tom Gore.
Description
Street sweeping and vacuuming remove
sediment that has been tracked onto
roadways to reduce sediment transport
into storm drain systems or a surface
waterway.
Appropriate Uses
Use this practice at construction sites
where vehicles may track sediment
offsite onto paved roadways.
Design and Installation
Street sweeping or vacuuming should be
conducted when there is noticeable
sediment accumulation on roadways adjacent to the construction site. Typically, this will be concentrated
at the entrance/exit to the construction site. Well-maintained stabilized construction entrances, vehicle
tracking controls and tire wash facilities can help reduce the necessary frequency of street sweeping and
vacuuming.
On smaller construction sites, street sweeping can be conducted manually using a shovel and broom.
Never wash accumulated sediment on roadways into storm drains.
Maintenance and Removal
Inspect paved roads around the perimeter of the construction site on a daily basis and more
frequently, as needed. Remove accumulated sediment, as needed.
Following street sweeping, check inlet protection that may have been displaced during street
sweeping.
Inspect area to be swept for materials that may be hazardous prior to beginning sweeping operations.
Street Sweeping/ Vacuuming
Functions
Erosion Control No
Sediment Control Yes
Site/Material Management Yes
Paving and Grinding Operations (PGO) SM-12
November 2010 Urban Drainage and Flood Control District PGO-1
Urban Storm Drainage Criteria Manual Volume 3
Photograph PGO-1. Paving operations on a Colorado highway. Photo
courtesy of CDOT.
Description
Manage runoff from paving and grinding
operations to reduce pollutants entering
storm drainage systems and natural
drainageways.
Appropriate Uses
Use runoff management practices during
all paving and grinding operations such
as surfacing, resurfacing, and saw
cutting.
Design and Installation
There are a variety of management
strategies that can be used to manage runoff from paving and grinding operations:
Establish inlet protection for all inlets that could potentially receive runoff.
Schedule paving operations when dry weather is forecasted.
Keep spill kits onsite for equipment spills and keep drip pans onsite for stored equipment.
Install perimeter controls when asphalt material is used on embankments or shoulders near
waterways, drainages, or inlets.
Do not wash any paved surface into receiving storm drain inlets or natural drainageways. Instead,
loose material should be swept or vacuumed following paving and grinding operations.
Store materials away from drainages or waterways.
Recycle asphalt and pavement material when feasible. Material that cannot be recycled must be
disposed of in accordance with applicable regulations.
See BMP Fact Sheets for Inlet Protection, Silt Fence and other perimeter controls selected for use during
paving and grinding operations.
Maintenance and Removal
Perform maintenance and removal of inlet protection and perimeter controls in accordance with their
respective fact sheets.
Promptly respond to spills in accordance with the spill
prevention and control plan.
Paving and Grinding Operations
Functions
Erosion Control No
Sediment Control No
Site/Material Management Yes
APPENDIX C
LANDSCAPE PLAN
EXISITING TREES TO REMAIN
TURF, SODDED (HIGH WATER USE)
SHRUB BEDS (MEDIUM WATER USE)
TO BE MULCHED WITH WASHINGTON
CEDAR (GORILLA HAIR) MULCH
BOULDERS
CANOPY SHADE TREE
EVERGREEN TREE
ORNAMENTAL TREE
WATER QUALITY SWALE (RIVER ROCK)
CITY STREETLIGHT
GM
EM
GM
GM
GM
GM
GM
GM
GM
EM EM EM
EM EM EM EM
FO FO FO
FO
FO FO FO FO
FO FO
FO
FO FO FO
FO FO FO FO FO FO FO FO FO FO FO FO FO FO
E
E
E
E
E E
E
E E E
E
E
E E
E
E E E
E
X
X
X X X X X
X
X
FO FO FO FO FO FO FO FO FO FO FO FO FO FO
T
T
T
T
T
T T T
T
T T
T
T
T
T
APPENDIX D
COPIES OF PERMITS/APPLICATIONS (TO BE PROVIDED BY CONTRACTOR)
For Agency Use Only
Permit Number Assigned
COR03-
Date Received /_ /_
Month Day Year
COLORADO DISCHARGE PERMIT SYSTEM (CDPS)
STORMWATER DISCHARGE ASSOCIATED WITH CONSTRUCTION ACTIVITIES APPLICATION
PHOTO COPIES, FAXED COPIES, PDF COPIES OR EMAILS WILL NOT BE ACCEPTED.
Please print or type. Original signatures are required. All items must be completed accurately and in their entirety for
the application to be deemed complete. Incomplete applications will not be processed until all information is received
which will ultimately delay the issuance of a permit. If more space is required to answer any question, please attach
additional sheets to the application form. Applications must be submitted by mail or hand delivered to:
Colorado Department of Public Health and Environment
Water Quality Control Division
4300 Cherry Creek Drive South
WQCD-P-B2
Denver, Colorado 80246-1530
Any additional information that you would like the Division to consider in developing the permit should be provided with
the application. Examples include effluent data and/or modeling and planned pollutant removal strategies.
PERMIT INFORMATION
Reason for Application: NEW CERT
RENEW CERT EXISTING CERT #
Applicant is: Property Owner Contractor/Operator
A. CONTACT INFORMATION - NOT ALL CONTACT TYPES MAY APPLY * indicates required
*PERMITTEE (If more than one please add additional pages)
*ORGANIZATION FORMAL NAME:
1) *PERMITTEE the person authorized to sign and certify the permit application. This person receives all
permit correspondences and is legally responsible for compliance with the permit.
Responsible Position (Title):
Currently Held By (Person):
Telephone No:_
email address
Organization:
Mailing Address:
City:_ State: Zip:
This form must be signed by the Permittee (listed in item 1) to be considered complete.
Per Regulation 61 In all cases, it shall be signed as follows:
a) In the case of corporations, by a responsible corporate officer. For the purposes of this section, the responsible
corporate officer is responsible for the overall operation of the facility from which the discharge described in the
application originates.
b) In the case of a partnership, by a general partner.
c) In the case of a sole proprietorship, by the proprietor.
d) In the case of a municipal, state, or other public facility, by either a principal executive officer or ranking elected official
page 1 of 5 revised April 2011
2) DMR COGNIZANT OFFICIAL (i.e. authorized agent) the person or position authorized to sign and certify reports required
by the Division including Discharge Monitoring Reports *DMR’s, Annual Reports, Compliance Schedule submittals,
and other information requested by the Division. The Division will transmit pre-printed reports (ie. DMR’s) to this person.
If more than one, please add additional pages. Same As 1) Permittee
Responsible Position (Title):
Currently Held By (Person):
Telephone No:_
email address
Organization:
Mailing Address:
City:_ State: Zip:
Per Regulation 61 : All reports required by permits, and other information requested by the Division shall be signed by
the permittee or by a duly authorized representative of that person. A person is a duly authorized representative only if:
(i) The authorization is made in writing by the permittee
(ii) The authorization specifies either an individual or a position having responsibility for the overall operation of the
regulated facility or activity such as the position of plant manager, operator of a well or a well field, superintendent,
position of equivalent responsibility, or an individual or position having overall responsibility for environmental matters
for the company. (A duly authorized representative may thus be either a named individual or any individual occupying a
named position); and
(iii) The written authorization is submitted to the Division
3) *SITE CONTACT local contact for questions relating to the facility & discharge authorized by this permit
for the facility.
Same As 1) Permittee
Responsible Position (Title):
Currently Held By (Person):
Telephone No:_
email address
Organization:
Mailing Address:
City:_ State: Zip:
4) * BILLING CONTACT if different than the permittee
Responsible Position (Title):
Currently Held By (Person):
Telephone No:_
email address
Organization:
Mailing Address:
City:_ State: Zip:
Page 2 of 5 revised April 2011
5) OTHER CONTACT TYPES (check below) Add pages if necessary:
ResponsiblePosition (Title):
Currently Held By (Person):
Telephone No:_
email address
Organization:
Mailing Address:
City:_ State: Zip:
o Pretreatment
Coordinator
o Environmental Contact
o Biosolids Responsible
Party
o Property Owner
Inspection Facility Contact
Consultant
Compliance Contact
Stormwater MS4 Responsible
Person
Stormwater Authorized
Representative
Other
B. Permitted Project/Facility Information
Project/Facility Name
Street Address or cross streets
(e.g., “S. of Park St. between 5th Ave. and 10th Ave.”, or “W. side of C.R. 21, 3.25 miles N. of Hwy 10”; A street name without an address,
intersection, mile marker, or other identifying information describing the location of the project is not adequate. For linear projects,
the route of the project should be described as best as possible with the location more accurately indicated by a map.)
City, Zip Code County
Facility Latitude/Longitude— (approximate center of site to nearest 15 seconds using one of
following formats
001A Latitude . Longitude . (e.g., 39.703°, 104.933°’)
degrees (to 3 decimal places) degrees (to 3 decimal places)
or
001A Latitude º ’ " Longitude º ’ " (e.g., 39°46'11"N, 104°53'11"W)
degrees minutes seconds degrees minutes seconds
For the approximate center point of the property, to the nearest 15 seconds. The latitude and longitude must be provided as
either degrees, minutes, and seconds, or in decimal degrees with three decimal places. This information may be obtained from
a variety of sources, including:
o Surveyors or engineers for the project should have, or be able to calculate, this information.
o EPA maintains a web-based siting tool as part of their Toxic Release Inventory program that uses interactive maps and
aerial photography to help users get latitude and longitude. The siting tool can be accessed at
www.epa.gov/tri/report/siting_tool/index.htm
o U.S. Geological Survey topographical map(s), available at area map stores.
o Using a Global Positioning System (GPS) unit to obtain a direct reading.
Note: the latitude/longitude required above is not the directional degrees, minutes, and seconds provided on a site legal
description to define property boundaries.
C. MAP (Attachment) If no map is submitted, the permit will not be issued.
Map: Attach a map that indicates the site location and that CLEARLY shows the boundaries of the area that will be
disturbed. Maps must be no larger than 11x17 inches.
D. LEGAL DESCRIPTION
Legal description: If subdivided, provide the legal description below, or indicate that it is not applicable (do not supply
Township/Range/Section or metes and bounds description of site)
Subdivision(s): Lot(s): Block(s):
OR
Not applicable (site has not been subdivided)
page 3 of 5 revised April 2011
E. AREA OF CONSTRUCTION SITE
Total area of project site (acres): Area of project site to undergo disturbance (acres):
Note: aside from clearing, grading and excavation activities, disturbed areas also include areas receiving
overburden (e.g., stockpiles), demolition areas, and areas with heavy equipment/vehicle traffic and storage
that disturb existing vegetative cover
Total disturbed area of Larger Common Plan of Development or Sale, if applicable:
(i.e., total, including all phases, filings, lots, and infrastructure not covered by this application)
Provide both the total area of the construction site, and the area that will undergo disturbance, in acres. Note: aside
from clearing, grading and excavation activities, disturbed areas also include areas receiving overburden (e.g.,
stockpiles), demolition areas, and areas with heavy equipment/vehicle traffic and storage that disturb existing
vegetative cover (see construction activity description under the APPLICABILITY section on page 1).
If the project is part of a larger common plan of development or sale (see the definition under the APPLICABILITY
section on page 1), the disturbed area of the total plan must also be included.
F. NATURE OF CONSTRUCTION ACTIVITY
Check the appropriate box(s) or provide a brief description that indicates the general nature of the construction activities.
(The full description of activities must be included in the Stormwater Management Plan.)
Single Family Residential Development
Multi-Family Residential Development
Commercial Development
Oil and Gas Production and/or Exploration (including pad sites and associated infrastructure)
Highway/Road Development (not including roadways associated with commercial or residential development)
Other – Description:
G. ANTICIPATED CONSTRUCTION SCHEDULE
Construction Start Date: ___________________________ Final Stabilization Date: _____________________________
Construction Start Date - This is the day you expect to begin ground disturbing activities, including grubbing, stockpiling, excavating,
demolition, and grading activities.
Final Stabilization Date - in terms of permit coverage, this is when the site is finally stabilized. This means that all ground surface
disturbing activities at the site have been completed, and all disturbed areas have been either built on, paved, or a uniform vegetative
cover has been established with an individual plant density of at least 70 percent of pre-disturbance levels. Permit coverage must be
maintained until the site is finally stabilized. Even if you are only doing one part of the project, the estimated final stabilization
date must be for the overall project. If permit coverage is still required once your part is completed, the permit certification may be
transferred or reassigned to a new responsible entity(s).
H. RECEIVING WATERS (If discharge is to a ditch or storm sewer, include the name of the ultimate receiving waters)
Immediate Receiving Water(s):
Ultimate Receiving Water(s):
Identify the receiving water of the stormwater from your site. Receiving waters are any waters of the State of Colorado. This includes
all water courses, even if they are usually dry. If stormwater from the construction site enters a ditch or storm sewer system, identify
that system and indicate the ultimate receiving water for the ditch or storm sewer. Note: a stormwater discharge permit does not
allow a discharge into a ditch or storm sewer system without the approval of the owner/operator of that system.
page 4 of 5 revised April 2011
I. REQUIRED SIGNATURES (Both parts i. and ii. must be signed)
Signature of Applicant: The applicant must be either the owner and/or operator of the construction site. Refer to Part B of the instructions for additional information.
The application must be signed by the applicant to be considered complete. In all cases, it shall be signed as follows: (Regulation 61.4 (1ei)
a) In the case of corporations, by the responsible corporate officer is responsible for the overall operation of the facility from which the discharge
described in the form originates
b) In the case of a partnership, by a general partner.
c) In the case of a sole proprietorship, by the proprietor.
d) In the case of a municipal, state, or other public facility, by either a principal executive officer, ranking elected official, (a principal executive officer
has responsibility for the overall operation of the facility from which the discharge originates).
STOP!: A Stormwater Management Plan must be completed prior to signing the following certifications!
i. STORMWATER MANAGEMENT PLAN CERTIFICATION
“I certify under penalty of law that a complete Stormwater Management Plan, has been prepared for my activity. Based on my inquiry of the person or
persons who manage the system, or those persons directly responsible for gathering the information, the Stormwater Management Plan is, to the best of
my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for falsely certifying the completion of said SWMP,
including the possibility of fine and imprisonment for knowing violations.”
XX
Signature of Legally Responsible Person or Authorized Agent (submission must include original signature) Date Signed
Name (printed) Title
ii. SIGNATURE OF PERMIT LEGAL CONTACT
"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system
designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons
who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my
knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the
possibility of fine and imprisonment for knowing violations."
“I understand that submittal of this application is for coverage under the State of Colorado General Permit for Stormwater Discharges Associated with
Construction Activity for the entirety of the construction site/project described and applied for, until such time as the application is amended or the
certification is transferred, inactivated, or expired.”
XX
Signature of Legally Responsible Person (submission must include original signature) Date Signed
Name (printed Title
DO NOT INCLUDE A COPY OF THE STORMWATER MANAGEMENT PLAN
DO NOT INCLUDE PAYMENT – AN INVOICE WILL BE SENT AFTER THE CERTIFICATION IS ISSUED.
page 5 of 5 revised April 2011
COLORADO DISCHARGE PERMIT SYSTEM (CDPS)
For Agency Use Only
Permit Number Assigned
COG07-______________
Date Received ____/____/____
Month Day Year
CONSTRUCTION DEWATERING INDUSTRIAL WASTEWATER DISCHARGE APPLICATION
PHOTO COPIES, FAXED COPIES, PDF COPIES OR EMAILS WILL NOT BE ACCEPTED.
Please print or type. Original signatures are required. All items must be completed accurately and in their entirety
for the application to be deemed complete. Incomplete applications will not be processed until all information is received
which will ultimately delay the issuance of a permit. If more space is required to answer any question, please attach
additional sheets to the application form. Applications must be submitted by mail or hand delivered to:
Colorado Department of Public Health and Environment
Water Quality Control Division
4300 Cherry Creek Drive South
WQCD-P-B2
Denver, Colorado 80246-1530
Any additional information that you would like the Division to consider in developing the permit should be provided with
the application. Examples include effluent data and/or modeling and planned pollutant removal strategies.
PERMIT INFORMATION
Reason for Application: NEW CERT
RENEW CERT EXISTING CERT #____________________
Applicant is: Property Owner Contractor/Operator
A. Contact Information
Permittee (If more than one please add additional pages)
Organization Formal Name: ___________________________________________________________
1. Permittee the person authorized to sign and certify the permit application. This person receives all permit
correspondences and is legally responsible for compliance with the permit.
Responsible Position (Title): ______________________________________________________________
Currently Held By (Person): _______________________________________________________________
Telephone No:__________________________________________________________________________
email address__________________________________________________________________________
Organization: ___________________________________________________________________________
Mailing Address: ________________________________________________________________________
City:_______________________________ State: ______________________ Zip: ____________________
This form must be signed by the Permittee to be considered complete.
Per Regulation 61: In all cases the permit application shall be signed as follows:
a) In the case of corporations, by a responsible corporate officer. For the purposes of this section, the
responsible corporate officer is responsible for the overall operation of the facility from which the discharge
described in the application originates.
b) In the case of a partnership, by a general partner.
c) In the case of a sole proprietorship, by the proprietor.
d) In the case of a municipal, state, or other public facility, by either a principal executive officer or ranking
elected official
Page 1 of 6 Revised April 2011
Industrial Wastewater Discharge Permit – Construction Dewatering www.coloradowaterpermits.com
2. DMR Cognizant Official (i.e. authorized agent)—the person or position authorized to sign and certify reports
required by permits including Discharge Monitoring Reports [DMR’s], Annual Reports, Compliance Schedule
submittals, and other information requested by the Division. The Division will send pre-printed reports (e.g. DMR’s) to
this person. If more than one, please add additional pages. Same as 1) Permittee
Responsible Position (Title): _______________________________________________________
Currently Held By (Person): ________________________________________________________
Telephone No:___________________________________________________________________
Email address____________________________________________________________________
Organization: ____________________________________________________________________
Mailing Address: _________________________________________________________________
City:______________________________ State: ______________ Zip: ______________________
Per Regulation 61: All reports required by permits, and other information requested by the Division shall be
signed by the permittee or by a duly authorized representative of that person. A person is a duly authorized
representative only if:
(i) The authorization is made in writing by the permittee;
(ii) The authorization specifies either an individual or a position having responsibility for the overall operation of
the regulated facility or activity such as the position of plant manager, operator of a well or a well field,
superintendent, position of equivalent responsibility, or an individual or position having overall responsibility for
environmental matters for the company. (A duly authorized representative may thus be either a named
individual or any individual occupying a named position); and
(iii) The written authorization is submitted to the Division.
3. Site/Local Contact—contact for questions regarding the facility & discharges authorized by this permit
Same as Permittee—Item 1
Responsible Position (Title): ________________________________________________________
Currently Held By (Person): _________________________________________________________
Telephone No:____________________________________________________________________
Email address_____________________________________________________________________
Organization: _____________________________________________________________________
Mailing Address: __________________________________________________________________
City:______________________________ State: ______________ Zip: _______________________
4. Operator in Responsible Charge Same as Permittee—Item 1
Responsible Position (Title): __________________________________________________________
Currently Held By (Person): ___________________________________________________________
Telephone No:______________________________________________________________________
Email address______________________________________________________________________
Organization: _______________________________________________________________________
Mailing Address: ____________________________________________________________________
City:_______________________________ State: ______________ Zip: ________________________
Certification Type____________________Certification Number________________________________
Page 2 of 6 Revised April 2011
Industrial Wastewater Discharge Permit – Construction Dewatering www.coloradowaterpermits.com
5. Billing Contact (if different than the permittee)
Responsible Position (Title): _____________________________________________________________
Currently Held By (Person): ______________________________________________________________
Telephone No:_________________________________________________________________________
Email address_________________________________________________________________________
Organization: __________________________________________________________________________
Mailing Address: _______________________________________________________________________
City:______________________________ State: ______________ Zip: ____________________________
6. Other Contact Types (check below) Add pages if necessary:
Responsible Position (Title): ______________________________________________________________
Currently Held By (Person): _______________________________________________________________
Telephone No:__________________________________________________________________________
Email address__________________________________________________________________________
Organization: ___________________________________________________________________________
Mailing Address: ________________________________________________________________________
City:______________________________________ State: ______________ Zip: _____________________
Pretreatment Coordinator
Environmental Contact
Biosolids Responsible Party
Property Owner
Inspection Facility Contact
Consultant
Compliance Contact
Stormwater MS4 Responsible
Person
Stormwater Authorized
Representative
Other ____________________
B. Permitted Project/Facility Information
1. Project/Facility Name ____________________________________________________________________________
Street Address or cross streets_____________________________________________________________________
City, State and Zip Code _____________________________________________County _____________________
Type of Facility Ownership
City Government Corporation Private Municipal or Water District
State Government Mixed Ownership _________________________________
2. Facility Latitude/Longitude—List the latitude and longitude of the excavation(s) resulting in the discharge(s). If the exact excavation
location(s) are not known, list the latitude and longitude of the center point of the construction project. If using the center point, be
sure to specify that it is the center point of construction activity.
001A Latitude __________ . _________ Longitude ___________ . _____________ (e.g., 39.703°, 104.933°’)
degrees (to 3 decimal places) degrees (to 3 decimal places)
or
001A Latitude _____ º _____’ _____" Longitude _____ º _____’ _____" (e.g., 39°46'11"N, 104°53'11"W)
degrees minutes seconds degrees minutes seconds
Horizontal Collection Method: GPS Unspecified Interpolation Map – Map Scale Number__________
Reference Point: Project/Facility Entrance Project/Facility Center/Centroid
Horizontal Accuracy Measure (WQCD Requires use of NAD83 Datum for all references)___________________
(add additional pages if necessary)
Page 3 of 6 Revised April 2011
Industrial Wastewater Discharge Permit – Construction Dewatering www.coloradowaterpermits.com
B. Permitted Project/Facility Information Continued…
3. Facility Activity and Anticipated Schedule
Dewatering will begin (date) _______________
Estimate how long dewatering will last: Years____________Months_______________Days_________________
Describe Activity e.g., highway bridge and tunnel construction, storm drain expansion, etc. and a description of activities
being performed, including construction schedule and months of operation. Specify source(s) of wastewater to be discharged
(i.e.well, foundation excavation, trenching, etc).
4. Will the discharge go to a ditch or storm sewer? YES NO
If YES, in the appropriate table below include the name of the ultimate receiving waters where the ditch or storm sewer
discharges.
If YES, applicant must contact the owner of the ditch or storm sewer system (prior to discharging) to verify local ordinances
and to determine whether or not additional requirements are going to be imposed by the owner.
5. What type of discharge will this be? Defined Discharge Undefined Discharge
A Defined Discharge is a discharge where the dewatering discharge locations and number of outfalls are known at the time of permit
application.
If discharge is Defined – enter information in table C for Defined Discharges
An Undefined Discharge is a discharge where the exact dewatering discharge locations are unknown at the time of permit application.
The permit applicant must request the maximum number of potential outfalls (discharges) for the permitted facility.
If discharge is Undefined – enter information in table D for Undefined Discharges
Note: For undefined discharges, the site specific sampling and monitoring parameters will be selected based on the potential
pollutant sources found within the entire permitted project area and will be applied to all outfall(s). The most stringent of the
surface water limitations for each identified site specific parameter will be applied to each permitted outfall.
C. Information for Defined Discharge Location(s):
1. In the following table, include the following information for the discharge:
Include the number of discharge points (outfalls);
Include the name of the receiving stream for each Outfall Number. If the discharge is to groundwater fill out discharge
information located next to G001A, G002A, etc.—Please review the Division’s Low Risk Discharge Guidance for
Discharges of Uncontaminated Groundwater to Land to determine if discharges to groundwater can be allowed under
the Guidance in lieu of obtaining a Construction Dewatering Permit.;
Include the approximate location of the discharge (e.g. ―discharge will occur between 5th Avenue and 20th Avenue‖, or ―the
discharge will enter the storm sewer located at the corner of Speer Blvd and 8th Ave., which eventually flows to Cherry Creek‖ ;
Include the maximum anticipated flow rate of the discharge; this can be based on pump capacity or other applicable measure.
OUTFALL
NUMBER
RECEIVING
STREAM(S)
APPROXIMATE LOCATION OF
DISCHARGE
MAXIMUM
FLOW RATE
LATITUDE/LONGITUDE
OF EACH DISCHARGE
OUTFALL
001A
002A
OUTFALL
NUMBER
GROUNDWATER APPROXIMATE LOCATION OF
DISCHARGE
MAXIMUM
FLOW RATE
LATITUDE/LONGITUDE
OF EACH DISCHARGE
OUTFALL
G001A
G002A
Add more pages if necessary
Page 4 of 6 Revised April 2011
Industrial Wastewater Discharge Permit – Construction Dewatering www.coloradowaterpermits.com
D. Information for Undefined Discharge Location(s):
1. In the following table include the following information for the discharge:
Include the maximum number of potential outfalls (discharges) for the permitted facility/project;
Include the maximum anticipated flow rate of the discharge; this can be based on pump capacity or other applicable measure;
Include the name of all potential receiving streams for the entire project. If the discharge is to groundwater fill out discharge
information located next to G001A, G002A, etc.—Please review the Division’s Low Risk Discharge Guidance for
Discharges of Uncontaminated Groundwater to Land to determine if discharges to groundwater can be allowed under
the Guidance in lieu of obtaining a Construction Dewatering Permit.
Note: For undefined discharges, the site specific sampling and monitoring parameters will be selected based on the potential
pollutant sources found within the entire permitted project area and will be applied to all outfall(s). The most stringent of the surface
water limitations for each identified site specific parameter will be applied to each permitted outfall.
OUTFALL
NUMBER
MAXIMUM FLOW
RATE (GPM) POTENTIAL RECEIVING STREAM(S)
001A
002A
OUTFALL
NUMBER
MAXIMUM FLOW
RATE (GPM)
GROUNDWATER
G001A
GROUNDWATER
G002A
Add more pages if necessary
Sampling and Reporting Requirements for Defined and Undefined Discharges: Sampling must occur at every end-of-
pipe dewatering location (after going through your choice of BMP, if necessary). The permittee will be issued Discharge
Monitoring Report (DMR) forms for all requested outfall numbers. The permittee will be required to submit the DMR forms
for each requested outfall number monthly. For the outfall numbers(s) where no discharge occurred for a given month, the
permittee shall mark ―No Discharge‖ on the DMR forms. The sampling results must be maintained by the permittee.
E. A Location Map for Defined and Undefined Discharges—designating the location of the project/facility, the location of the
discharge point(s)/outfalls—applicable only to defined discharges, and the receiving water(s) listed in Items C & D. A north
arrow shall be shown. This map must be on paper that can be folded to 8 ½ x 11 inches.
F. A Legible Sketch of the Site
1. For Defined Discharges—A legible site sketch shall be submitted and must include: the location of the end of pipe
dewatering discharges at the site (e.g. where the flow will be discharged from the pump or BMP), the BMP(s) that will be
used to treat the discharge(s), and the sampling location(s). Refer to the instructions for additional guidance specific to
sites with multiple potential dewatering locations. This map must be on paper that can be folded to 8 ½ x 11 inches.
OR
2. For Undefined Discharges—A legible site sketch shall be submitted and must include: the limits of the construction site
boundary to include street names (if applicable) or landmarks; description of the BMPs to be implemented; and location of
all potential receiving waters. This map must be on paper that can be folded to 8 ½ x 11 inches.
G. Potential Groundwater Contamination
1. Is this operation located within one mile of a landfill, abandoned landfill or any mine or mill tailings? YES NO
2. Has the dewatering discharge been analyzed for any parameters (pH, Oil and Grease, Metals, Organics, etc.)?
YES NO If YES, please attach a copy of the sampling results.
Page 5 of 6 Revised April 2011
Industrial Wastewater Discharge Permit – Construction Dewatering www.coloradowaterpermits.com
Note to the applicant: Upon review of the application, the Division may request characterization of the water to be
discharged or analysis of certain parameters once the application has been reviewed. If the Division requests a
representative analysis of the water to be discharged, the application processing time may be lengthened.
3. Has the dewatering area been checked for possible groundwater contamination, such as plumes from leaking
underground storage tanks, mine tailings,etc –or- has a Phase I or Phase II been conducted on the site?
YES NO
If YES, show location of the landfill, tailings, or possible groundwater contamination on the location map or general sketch
map. (Explain the location, extent of contamination, and possible effect on the groundwater pumping from this facility). Or
include a copy of the phase I or Phase II report. If the reports are not available, submit a summary of the results of the
report. If any sampling results are available, please attach a copy of all data.
Note: Contact Water Quality Control Division for the proper water chemistry parameters to report.
H. Additional Information
1. Does the applicant have a Stormwater Permit for Construction Activities? YES NO PENDING
If Yes, Stormwater Construction Permit Number _________________________________
WATER RIGHTS
The State Engineers Office (SEO) has indicated that any discharge that does not return water directly to surface
waters (i.e.land application, rapid infiltration basins, etc.) has the potential for material injury to a water right. As a
result, the SEO needs to determine that material injury to a water right will not occur from such activities. To make
this judgment, the SEO requests that a copy of all documentation demonstrating that the requirements of Colorado
water law have been met, be submitted to their office for review. The submittal should be made as soon as possible
to the following address:
Colorado Division of Water Resources
1313 Sherman Street, Room 818
Denver, Colorado 80203
Should there be any questions on the issue of water rights, the SEO can be contacted at (303) 866-3581. It is
important to understand that any CDPS permit issued by the Division does not constitute a water right. The issuance
of a CDPS permit does not negate the need to also have the necessary water rights in place. Additionally, if the
activity has an existing CDPS permit, there is no guarantee that the proper water rights are in place.
I. Required Certification Signature [Reg 61.4(1)(h)]
"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in
accordance with a system designed to assure that qualified personnel properly gather and evaluate the information
submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for
gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate and
complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine
and imprisonment for knowing violations."
―I understand that submittal of this application is for coverage under the State of Colorado General Permit for Discharges
Associated with Construction Dewatering for the entirety of the construction site/project described and applied for,
until such time as the application is amended or the certification is transferred, inactivated, or expired.‖
Signature (Legally Responsible Party)_________________________________________Date ________________
Name (printed) _____________________________________________Title______________________________
Page 6 of 6 Revised April 2011
Industrial Wastewater Discharge Permit – Construction Dewatering www.coloradowaterpermits.com
Construction Dewatering Application Instructions
Item A- Contact Information
Permit Applicant: Provide the company, corporation, or organization name
1. Permittee—Identify the title and name of the individual who is the legally responsible for the permit. The requirement of
who can be listed as the legally responsible party is included in the permit application. Include all requested information such
as the legal party‘s phone number, email address and mailing address. The individual identified here must sign the permit
application—Part I.
2. DMR Cognizant Official—Identify the title and individual‘s name
3. Site Contact—Identify the title and name of individual who is familiar with the day to day operations of the site. This
person will have first-hand information regarding the construction site, discharges occurring on site, and implementation of
BMPs.
4. Operator in Responsible Charge— Identify the title and individual‘s name if there is an Operator in Charge (Not
required)
5. Billing Contact— Identify the title and individual‘s name
6. Other Contacts – Identify the title and individual‘s name for any of the listed descriptions (Not required)
Item B – Permitted Project/Facility Information
1. Name of the project/facility and location; include the name of the project/facility and include a description of the location
of the project/facility. The location may be a physical address or if the exact address is not available you may use an
approximate address such as: the nearest intersection or boundary streets including directional identifiers (e.g., ―South of 14th
Avenue between Sherman St. and Logan St.‖, or ―West side of C.R. 21, 3.25 miles North of Hwy 10‖) or other identifying
information. A street name without an address, intersection, mile marker or other identifying information is not adequate.
2. Latitude/Longitude: For each excavation resulting in a discharge/outfall provide the Latitude/Longitude of the excavation.
If the exact location of the disturbance resulting in discharge is not known, provide the lat/long of the center point of the
construction activity. If identifying the center point of construction activity, make sure to write in ―center point‘ next to
lat/long. The lat/long may be provided as decimal degrees or degrees, minutes, seconds format. This information can be
obtained from a variety of sources, including:
Various Websites: http://terraserver.microsoft.com, http://geocoder.us/, or
www.epa.gov/tri/reports/siting_tool/index.htm
U.S Geological Survey topographical map, available at area map stores
Surveyors or engineers for the construction project should have, or be able to calculate this information using a
Global Positioning System (GPS) unit
Specify whether the Latitude/Longitude information was collected either by using a GPS unit or through Map interpolation.
3. Facility Activity and Schedule: Include the anticipated start date of construction dewatering and provide the length of
time dewatering is anticipated to last. Provide a description of the general nature of the construction activities that are
requiring the dewatering. Also describe if the dewatering discharge is from an open excavation, such as a trench or foundation,
or from groundwater lowering wells. Examples of activity descriptions may include: ‗open trench excavation for installation
of 4,000 linear feet of new water lines‘, or ‗a series of shallow groundwater wells will be installed around the perimeter of the
construction site in order to lower the water table for construction of a new 5,000 square foot music shop—all wells will be
piped to one manifold resulting in one discharge location as indicated on our site sketch.
4. Discharges to ditches and storm sewers: Indicate by checking yes or no whether or not the immediate effluent will be
discharged to a ditch or storm sewer. If yes is marked, the applicant must contact the owner of the ditch or storm sewer
system prior to discharge to verify if the owner will allow a discharge to their system. The owner of the ditch/storm sewer
system may impose additional requirements. Storm drainage systems are typically owned by the city or county they are located
within, and therefore contacting the local city/county is the appropriate place to start. If yes is marked, in Table C or Table D
be sure to include the location of the system and the ultimate receiving waters.
5. Defined or Undefined Discharge: Identify whether the applicant is applying for a Defined or Undefined discharge.
A Defined Discharge is a discharge where the dewatering discharge locations are known at the time of permit application.
If discharge is Defined – enter discharge information in Table C
Page 1 of 3—Revised April 2011
Industrial Wastewater Discharge Permit – Construction Dewatering www.coloradowaterpermits.com
An Undefined Discharge is a discharge where the exact dewatering discharge locations are unknown at the time of permit
application. The permit applicant must request the maximum number of potential outfalls (discharges) for the permitted
facility/project. If discharge is Undefined – enter discharge information in Table D. The applicant must identify all
potential receiving streams for the entire project.
If the applicant is requesting undefined discharges, the site specific sampling and monitoring parameters will be selected
based on the potential pollutant sources found within the entire permitted project area and will be applied to all outfall(s).
The most stringent of the surface water limitations for each identified site specific parameter will be applied to each
permitted outfall. For example, if the undefined project includes installation of 8 miles of linear pipeline and leaking
underground storage tanks are expected to present in one section of the project, sampling and monitoring for Benzene,
Toluene, Ethyl benzene, and Xylenes will be required for all requested outfall(s).
Item C- Information for Defined Discharge Location(s).
1. If Defined Discharge was marked in Section B.5 fill out Table C. Table C requires the following information:
Number of discharge(s) (outfalls)—Identify the number of outfalls requested in Table C, this includes
discharges to surface water and groundwater. If there are more than two requested discharges to surface water,
attach a separate piece of paper including all requested information.
Name of the receiving water(s)—If the discharge is to a ditch, identify the ditch and the ultimate receiving
water(s). Receiving waters are any waters of the state of Colorado, even if the natural drainage is usually dry. If
discharge is to groundwater, then fill out the appropriate information within Table C next to G001A, G001A. If
there are more than two discharges to groundwater, attach a separate piece of paper including all requested
information. If the applicant is requesting a discharge to groundwater, please review the Division‘s Low Risk
Discharge Guidance for Discharges of Uncontaminated Groundwater to Land.
http://www.cdphe.state.co.us/wq/PermitsUnit/policyguidancefactsheets/policyandguidance/lowriskgwdischargeto
land.pdf
Discharges performed in accordance with the Guidance for Discharges of Uncontaminated Groundwater to Land
do not require a separate construction dewatering permit.
Narrative description of the approximate location of the discharge—Include a narrative description of the
discharge path. For example, ―the dewatering discharge will enter the storm sewer located at 6th Avenue and
Sheridan which flows to Bear Creek‖ or ―the dewatering will discharge to a field located at 66
th
and Farmers
Road with potential to runoff to Sanders Creek‖. If there is more than one known discharge, include this
descriptive information for all known discharges.
Maximum anticipated flow rate of the discharge (in gallons per minute)—Do not leave this section blank.
Include the maximum flow rate. You may estimate the flow contribution based on pump capacity if data is not
available.
Latitude/Longitude of each discharge location—Include the latitude/longitude of each discharge location. See
the instructions B.2 for information on how to obtain latitude/longitude information.
Item D- Information for Undefined Discharge Location(s).
1. If Undefined Discharge was marked in Section B.5 fill out Table D. Table D requires the flowing information:
Maximum number of potential outfalls (discharges) for the permitted facility—The applicant must identify the
maximum number of discharge locations (outfalls) for the entire construction project. If more than 5 outfalls are
requested, attach a separate piece of paper. DMRs will be sent to the permittee for each requested outfall.
Maximum anticipated flow rate of the discharge (in gallons per minute)—Do not leave this section blank. The
flow rate may be estimated based on pump capacity if data is not available.
Name(s) of the all potential receiving stream(s)—Identify all potential receiving streams for the entire project.
If the discharge is to groundwater then fill out the information in Table D next to G001A, G002A, etc.
Page 2 of 3 Revised April 2011
Industrial Wastewater Discharge Permit – Construction Dewatering www.coloradowaterpermits.com
Item E – Location Map—A location map is required to be submitted with all applications for both defined and undefined
discharges. The location map must include the location of the project/facility, the approximate location of each defined discharge
points, and the identified receiving water(s) listed in Items C or D. The map must have a minimum scale of 1:24000 (the scale of a
USGS 7.5 minute map). A legible submittal is required on paper that can be folded to8 ½ by 11 inches.
Item F- Detailed Sketch of the Site—If a defined discharge is requested please submit a detailed site sketch which includes
the information requested in F.1. If an undefined discharge is requested please submit a detailed site sketch which includes
the information requested in F.2.
1. Detailed Sketch of the Site for Defined Discharges—Must included a detailed sketch of the site showing the location of
end of pipe dewatering discharge(s) at the site—to include the flow line of each requested dewatering discharge. The
location and identification of the structural Best Management Practices (BMPs) used to treat the effluent prior to discharge.
The map shall also include the sampling locations for each requested outfall. A legible submittal is required on paper that
can be folded to 8 ½ by 11 inches.
2. Detailed Sketch of the Site for Undefined Discharges—This map must include the boundary of the construction site
where all potential dewatering could occur. The boundaries should include a northern boundary, an eastern boundary, a
southern boundary and a western boundary. The map must highlight or call out street names that border the project
boundary. If streets are not available, landmarks or mile-markers must be identified. The map must highlight all potential
receiving streams. The map must also include the identification of the structural BMPs used to treat the effluent prior to
discharge. A legible submittal is required on paper that can be folded to 8 ½ by 11 inches.
Item G—Potential Groundwater Contamination
1. Dewatering on/near Landfills, Mines, or Mill Tailings: If the dewatering project is located within one mile of a landfill,
abandoned landfill, mine or mill tailings check yes. In addition, provide as much detail as possible regarding the extent of
contamination and attach all sampling data. Indicate the location of the landfill, mine, etc. on the Location and Detail Maps.
Contamination plume information can be obtained from the following source:
http://www.cdphe.state.co.us/hm/HMSiteCover.htm
2. Sampling Data: If any sampling data is available that is representative of the proposed discharge mark yes. Attach a copy
of all sampling results to the application. If the data was collected for another agency or private company include a brief
description as to why the data was collected.
3. Additional Sources of Contamination: Mark yes if the proposed construction site resulting in a dewatering discharge has
been evaluated for any additional sources of contamination. Additional sources include underground storage tanks, dry
cleaners, voluntary clean-up sites, etc. Also mark yes, if a Phase I or Phase II has been conducted on the property or adjacent
properties. Attach a copy of all records (phase I, phase II, sampling efforts) that could help characterized the water to be
discharged.
Contamination plume information can be obtained from the following source:
http://www.cdphe.state.co.us/hm/HMSiteCover.htm
Item H—Additional Information
1. Stormwater Permit for Construction Activities: If the applicant holds a stormwater permit for construction related
activities (parcels > 1 acre) include the stormwater permit number. If you have applied, or intend to apply but have not yet
obtained coverage and your certification number, indicate ―Pending‖ for this item.
Item I—Signature Requirements—The permit applicant listed in Part A.1 must sign the permit application. Signatures must
meet the requirements established in Regulation 61.4(1)(h).
Page 3 of 3—Revised April 2011
APPENDIX E
INSPECTION LOGS
'3036%(3()4%681)283*86%274368%8-32
(%-0=78361;%8)603+
-REGGSVHERGI[MXLWYFWIGXMSR
7XSVQ[EXIV1EREKIQIRX*MIPH(EMP]-RWTIGXMSR6ITSVX-RWXVYGXMSRW
-RWTIGXEPPIVSWMSRERHWIHMQIRXGSRXVSP&14WXLVSYKLSYXXLIIRXMVIGSRWXVYGXMSRWMXIzSFWIVZIVIGSVHERHHIXIVQMRIXLIMV
IJJIGXMZIRIWW-JEHHMXMSREP&14WEVIRIIHIHSVER]&14MWRSXSTIVEXMRKIJJIGXMZIP]MXWLEPPFIVIGSVHIHSRXLMWJSVQERH
EHHVIWWIHMQQIHMEXIP]
6IGSVHXLIWMXIPSGEXMSR
'3036%(3()4%681)283*86%274368%8-32
(%-0=78361;%8)603+%((-8-32%04%+)
(EXI 4VSNIGXRYQFIV 7YFEGGSYRXRYQFIV
8LIIRXMVIWMXIWLEPPFIMRWTIGXIHXSHIXIVQMRI[LIXLIV&14WEVIFIMRKMQTPIQIRXIHERHQEMRXEMRIHMREGGSVHERGI[MXLXLI
TVSNIGXvWWMXIWTIGMJMG7;14ERHXLI'(477'48LI)VSWMSR'SRXVSP7YTIVZMWSV
APPENDIX F
CONTRACTOR INSERTS
APPENDIX G
REFERENCE MATERIAL
)'7
SV7YTIVMRXIRHIRXWLEPPMHIRXMJ]MJ
EHHMXMSREP&14WEVIRIIHIHGERFIVIQSZIHSVRIIHQEMRXIRERGI8LIGSRHMXMSRSJXLIGYVVIRXP]YWIH&14WWLEPPFI
VIGSVHIHYWMRKSRISVQSVISJXLIJSPPS[MRKPIXXIVW
-
-RGSVVIGX-RWXEPPEXMSR
1
1EMRXIRERGIMWRIIHIH
*
&14JEMPIHXS
STIVEXI
%
%HHMXMSREP&14MWRIIHIH
6
6IQSZI&143RP]&14W[MXLXLIGSRHMXMSRWEFSZIRIIHFIVIGSVHIH
8LI4VSNIGX)RKMRIIV[MPPETTVSZIERHXLI7YTIVMRXIRHIRXWLEPPHMVIGXXLI[SVOEWWSGMEXIH[MXLER]&14WMHIRXMJMIHMRXLMWHEMP]
PSKXSIRWYVIGSQTPMERGI[MXLXLIWMXIWTIGMJMG7;14ERHXLI'(477'4
'(477'47XEXIWw&14WXLEXEVIRSXSTIVEXMRKIJJIGXMZIP]LEZITVSZIRXSFIMREHIUYEXISVLEZIJEMPIHQYWXFI
EHHVIWWIHEWWSSREWTSWWMFPIMQQIHMEXIP]MRQSWXGEWIWx
0SGEXMSR &148]TI 'SRHMXMSR 2SXIW'SQQIRXW
(EXI
'SQTPIXIH
-RMXMEPW
4%SVQ+)3* '(38*
IKTVSNIGXWXEXMSRRYQFIVQMPIQEVOIVMRXIVWIGXMSRUYEHVERXIXG
-RHMGEXIXLIX]TISJ&14EXXLMWPSGEXMSRXLEXVIUYMVIWEXXIRXMSR
IKWMPXJIRGIIVSWMSRPSKWWSMPVIXIRXMSRFPEROIXW
IXG
-HIRXMJ]XLIGSRHMXMSRSJXLI&14YWMRKSRISVQSVISJXLIJSPPS[MRKPIXXIVW
-
-RGSVVIGX-RWXEPPEXMSR
1
1EMRXIRERGI
MWRIIHIH
MIWIHMQIRXRIIHWXSFIVIQSZIH
*
&14*EMPIHXSSTIVEXI
%
%HHMXMSREP&14MWRIIHIH
6
6IQSZIXLI&14
-JEPP&14WEVIMRSTIVEXMRKGSRHMXMSRERHRS&14QEMRXIRERGIMWRIIHIHWMKRERHMRMXMEPXLIFS\XSXLIVMKLXSJXLI
WXEXIQIRX
4VSZMHIXLITVSTSWIHGSVVIGXMZIEGXMSRRIIHIHXSFVMRKXLIEVIESV&14MRXSGSQTPMERGI
(EXIERHMRMXMEP[LIRXLIGSVVIGXMZIEGXMSR[EWGSQTPIXIH
7MKRXLIJSVQ[LIRXLIMRWTIGXMSRLEWFIIRGSQTPIXIH
4PEGIXLIGSQTPIXIHHEMP]WXSVQ[EXIVPSKWLIIX
W
MRXLI7;142SXIFSSO
4%+)3* '(38*SVQ
G
HEMP]WXSVQ[EXIVGSQTPMERGIMRWTIGXMSRWEVIVIUYMVIHSREPPTVSNIGXWLSPHMRKE'SPSVEHS
(MWGLEVKI4IVQMX7]WXIQz7XSVQ[EXIV'SRWXVYGXMSR4IVQMX
'(477'4
8LMWJSVQMWXSFIYWIHEWXLIHEMP]HMEV]XSIZEPYEXI&14WYWIHHYVMRKGSRWXVYGXMSREGXMZMXMIW
7IIXLIMRWXVYGXMSRWJSVQSVIMRJSVQEXMSR
(EXI 4VSNIGXRYQFIV 7YFEGGSYRXRYQFIV
8LIIRXMVIWMXIWLEPPFIMRWTIGXIHXSHIXIVQMRI[LIXLIV&14WEVIFIMRKMQTPIQIRXIHERHQEMRXEMRIHMREGGSVHERGI[MXLXLI
TVSNIGXvWWMXIWTIGMJMG7;14ERHXLI'(477'48LI)VSWMSR'SRXVSP7YTIVZMWSV
)'7
SV7YTIVMRXIRHIRXWLEPPMHIRXMJ]MJ
EHHMXMSREP&14WEVIRIIHIHGERFIVIQSZIHSVRIIHQEMRXIRERGI8LIGSRHMXMSRSJXLIGYVVIRXP]YWIH&14WWLEPPFI
VIGSVHIHYWMRKSRISVQSVISJXLIJSPPS[MRKPIXXIVW
-
-RGSVVIGX-RWXEPPEXMSR
1
1EMRXIRERGIMWRIIHIH
*
&14JEMPIHXS
STIVEXI
%
%HHMXMSREP&14MWRIIHIH
6
6IQSZI&143RP]&14W[MXLXLIGSRHMXMSRWEFSZIRIIHFIVIGSVHIH
9WIXLI
I\XVETEKIEXXLIIRHSJXLMWJSVQMJRIIHIH
8LI4VSNIGX)RKMRIIV[MPPETTVSZIERHXLI7YTIVMRXIRHIRXWLEPPHMVIGXXLI[SVOEWWSGMEXIH[MXLER]&14WMHIRXMJMIHMRXLMWHEMP]
PSKXSIRWYVIGSQTPMERGI[MXLXLIWMXIWTIGMJMG7;14ERHXLI'(477'4
'(477'47XEXIWw&14WXLEXEVIRSXSTIVEXMRKIJJIGXMZIP]LEZITVSZIRXSFIMREHIUYEXISVLEZIJEMPIHQYWXFI
EHHVIWWIHEWWSSREWTSWWMFPIMQQIHMEXIP]MRQSWXGEWIWx
0SGEXMSR &148]TI 'SRHMXMSR 2SXIW'SQQIRXW
(EXI
'SQTPIXIH
-RMXMEPW
%00&147%6)-234)6%8-2+'32(-8-32%2(231%-28)2%2')-72))()(
MRMXMEPXLIFS\XSXLIVMKLX[LIRXLMWETTPMIW
'SQQIRXW+IRIVEPRSXIW
EXXEGLTLSXSWMJRIGIWWEV]
-RWTIGXMSRWMKREXYVI
7YTIVMRXIRHIRXSV)'72EQI
4VMRX 7MKREXYVIEXIWMKRIH (
4%SVQ+)3* '(38*
T
FO FO FO
FO
FO FO FO FO
FO FO
FO
FO FO FO
T T
T
T T T
T
T T T T
T
T T T T
T
SS
SS
SS
SS
D
W
W
W
W W
W W W W W
W
W W W W
UNIT 1 UNIT 2 UNIT 3 UNIT 4
UNIT 5
UNIT 6 UNIT 7 UNIT 8
UTILITY
EASEMENT
DRIVEWAY
UD
S W S W S W W S S W S W
S W W S
DETENTION
RIGHT-OF-WAY
UTILITY, ACCESS
AND DRAINAGE
EASEMENT
EXISTING TREE TO REMAIN, REFER
TO 'TREE PROTECTION NOTES', THIS
SHEET.
x
SPECIES: HONEYLOCUST
x SIZE: 6"
x CONDITION: AVERAGE
COURT
YARD
COURT
YARD
COURT
YARD
COURT
YARD
COURT
YARD
COURT
YARD
1-SPM
3-RSS
3-EAE
1-CNN
3-MSG
2-AEC
1-YAG
5-CAK
2-SSM
3-RFG
3-AEC
5-CAK
1-SPM
1-YAG
3-MSG
5-CNN
1-RSS
1-AGA
3-PBB
3-CNN
7-CAK
1-CNN
3-RSS
3-MSP
3-CNN
3-MSG
3-CNN
3-CAK
3-PBB
1-SPM
2-AAM
3-CAK
3-AEC
3-CNN
1-PSO
3-MSP
3-PBB
1-ATH
5-RFG
3-CNN
4-MSG
3-RAG
3-RSS
1-MSS
3-MSP
3-CAK
2-MSG
3-CAK
1-PES
1-PBB
3-MSG
3-EAE
1-EAE
1-TCA
2-MSG
6-CAK
5-PSO
5-RFG 5-CSI
3-RAG
5-MSG
2-PES
1-MSS
3-RAG
1-MSS
3-PSO
3-MSG
3-CNN
1-PCC
2-RAG
2-PCC
1-CSI
3-FAP
1-PES
3-MSG
1-SPM
3-CNN
4-AAM
1-YAG
1-RAG
4-CNN
5-RFG
1-YAG
3-AEC
1-PSO
3-CNN
1-QBU
2-EAE
3-AEC
3-EPA
3-MSP
1-QMU
3-EAE
1-PSO
1-EAE
3-RFG
1-MSP 1-QBU
4-EPA
1-PBB
3-RFG
3-BAG
1-ATH
1-PBB
1-PBB
1-ATH
5-AFA
3-AFA
1-PBB
1-AGA
3-BAG
1-PBB
3-SSM
3-AAM
2-AFA
3-AAM
2-AFA
2-PBB
1-AGA
2-BAG
1-PBB
4-AAM
3-AAM
4-BAG
2-PBB
1-ATH
5-AEC
6-CNN
5-MSG
3-SSM
FROMME PRAIRIE WAY
1-ATH
1-SPM
3-AEC
3-RFG
5-BAG
3-AFA
3-RFG
3-SSM
HYDROZONE AREA
WATER NEEDED
(GALLONS/SF)
ANNUAL WATER USE
(GALLONS)
HIGH 1,988 18 35,784
MODERATE 8,698 10 97,630
LOW 1,229 3 3,687
VERY LOW 0 0 0
TOTAL 11,915 AVG.: 11.51 137,101
QNT. ID SCIENTIFIC NAME COMMON NAME HEIGHT SPREAD CONDITION HYDROZONE
4 DECIDUOUS TREES
2 QBU QUERCUS BUCKLEYI TEXAS RED OAK 40-60' 30-40' 2" CAL. B&B MH
1 QMU QUERCUS MUEHLENBERGII CHINKAPIN OAK 35-50' 35-50' 2" CAL. B&B MH
1 TCA TILIA CORDATA 'GREENSPIRE' GREENSPIRE LINDEN 30-40' 25-35' 2" CAL. B&B MH
14 ORNAMENTAL TREES
3 AGA
AMELANCHIER X GRANDIFLORA 'AUTUMN
BRILLIANCE'
AUTUMN BRILLIANCE
SERVICEBERRY 15-25' 15-20'
1.5" CAL. B&B L
5 ATH ACER TATARICUM 'HOT WINGS' HOT WINGS TATARIAN MAPLE 15-20' 15-20' 1.5" CAL. B&B L
3 MSS MALUS X 'SPRING SNOW' SPRING SNOW CRABAPPLE 15-20' 15-20' 1.5" CAL. B&B M
3 PCC PYRUS CALLERYANA 'CHANTICLEER' CHANTICLEER PEAR 25-35' 15-20' 1.5" CAL. B&B M
4 EVERGREEN TREES
4 PES PINUS EDULIS PINON PINE 20-30' 10-20' 6' HT B&B L
129 SHRUBS
43 CNN CHRYSOTHAMNUS NAUSEOSUS NAUSEOSUS DWARF BLUE RABBITBRUSH 1-4' 1-4' 5 GAL. CONT. L
6 CSI CORNUS STOLONIFERA 'ISANTI' ISANTI DOGWOOD 6' 4' 5 GAL. CONT. M
13 EAE EPHEDRA EQUISETINA BLUESTEM JOINT FIR 3-5' 2-3' 5 GAL. CONT. L
3 FAP FALLUGIA PARADOXA APACHE PLUME 3-6' 3-6' 5 GAL. CONT. L
20 PBB PRUNUS BESSEYI 'PAWNEE BUTTES'
CREEPING WESTERN SAND
CHERRY 18" 4-6'
5 GAL. CONT. L
11 PSO PHYSOCARPUS OPULIFOLIUS 'NANUS' DWARF NINEBARK 3-4' 3-4' 5 GAL. CONT. L
12 RAG RHUS AROMATICA 'GRO-LOW' FRAGRANT DWARF SUMAC 2-3' 6-8' 5 GAL. CONT. L
10 RSS ROSA X 'MORDEN SUNRISE' MORDEN SUNRISE ROSE 3-4' 2-3' 5 GAL. CONT. L
5 SPM SYRINGA PATULA 'MISS KIM' MISS KIM LILAC 3-5' 3-5' 5 GAL. CONT. L
6 YAG YUCCA GLAUCA SOAPWEED 2-4' 2-4' 5 GAL. CONT. L
104 ORNAMENTAL GRASSES
17 BAG BOUTELOUA GRACILLIS 'BLONDE AMBITION' BLONDE AMBITION GRAMA GRASS 2-3' 1-2' 1 GAL. CONT. L
38 CAK CALAMAGROSTIS ACUTIFLORA 'KARL FOERSTER' FEATHER REED GRASS 4-5' 18-24" 1 GAL. CONT. L
36 MSG MISCANTHUS SINENSIS 'GRACILLIMUS' MAIDEN GRASS 4-5' 4-5' 1 GAL. CONT. M
13 MSP MISCANTHUS SINENSUS PURPURASCENS PURPLE MAIDEN GRASS 3-4' 2-3' 1 GAL. CONT. M
0 SSC SCHIZACHYRIUM SCOPARIUM LITTLE BLUESTEM GRASS 3-4' 24-30" 1 GAL. CONT. L
106 PERENNIALS
19 AAM ACHILLEA 'MOONSHINE' MOONSHINE YARROW 24-30" 18-24" 1 GAL. CONT. L
24 AEC AGASTACHE CORONADO RED CORONADO RED HYSSOP 18-24" 18-24" 1 GAL. CONT. L
15 AFA ARTEMISIA FRIGIDA FRINGED SAGE 12-18" 18-24" 1 GAL. CONT. L
7 EPA ECHINACEA PURPUREA PURPLE CONEFLOWER 24-30" 18-24" 1 GAL. CONT. L
30 RFG RUDBECKIA FULGIDA 'GOLDSTRUM' BLACK-EYED SUSAN 18-24" 18-24" 1 GAL. CONT. L
11 SSM SALVIA SYLVESTRIS X 'MAINACHT' MAY NIGHT SALVIA 18-24" 12-18" 1 GAL. CONT. L
3
LEGEND
LANDSCAPE PLAN
PLANT LIST
DEVELOPER / APPLICANT
MOSAIC REAL ESTATE
KEN MITCHELL
1021 NIGHTINGALE DR
FORT COLLINS, CO 80525
214.557.2000
SITE ENGINEER AND SURVEYOR
NORTHERN ENGINEERING
NICK HAWS, PE, LEED AP
301 N. HOWES ST. SUITE 100
FORT COLLINS, CO 80521
970.221.4158
ARCHITECT
RENTFROW DESIGN
JON RENTFROW
205 ALLEN ST.
FORT COLLINS, CO 80525
970.412.3400
401 West Mountain Avenue Suite 100 Fort Collins, CO 80521
fax 970.224.1662 phone 970.224.5828 www.ripleydesigninc.com
Ŷ land planning Ŷ landscape architecture Ŷ
Ŷ urban design Ŷ entitlement Ŷ
FORT COLLINS, COLORADO
PRAIRIE VILLAGE
IN ASSOCIATION WITH:
PROJECT No.: R14-019
DRAWN BY: RDI
REVIEWED BY: RDI
SEAL:
THIS IS A LAND USE PLANNING DOCUMENT,
NOT A CONSTRUCTION DOCUMENT. REFER
TO CIVIL ENGINEERING PLANS.
MAJOR AMENDMENT
ISSUED
No. DESCRIPTION DATE
1 CONCEPTUAL REVIEW 04.28.14
2 MAJOR AMENDMENT 07.09.14
3 RE-SUBMITTAL 08.27.14
4 FINAL COMPLIANCE PLANS 10.15.14
REVISIONS
No. DESCRIPTION DATE
SCALE ACCORDINGLY IF REDUCED
DRAWING NUMBER:
1. ALL PLANT MATERIAL SHALL MEET SPECIFICATIONS OF THE AMERICAN ASSOCIATION OF NURSERYMEN (AAN) FOR NUMBER ONE GRADE. ALL TREES SHALL
BE BALLED AND BURLAPPED OR EQUIVALENT.
2. TREES SHALL NOT BE PLANTED CLOSER THAN 4 FEET TO ANY GAS OR ELECTRIC LINE, NO CLOSER THAN 6 FEET TO ANY WATER OR SEWER SERVICE LINE,
AND NO CLOSER THAN 10 FEET TO ANY WATER OR SEWER MAIN. TREE PLANTING SHALL BE COORDINATED WITH PUBLIC SERVICE COMPANY. A HORIZONTAL
DISTANCE OF 40 FEET BETWEEN STREET TREES AND STREET LIGHTS AND 15 FEET BETWEEN ORNAMENTAL TREES AND STREET LIGHTS SHALL BE
MAINTAINED. SHRUBS ARE NOT TO BE PLANTED WITHIN 4 FEET OF ANY WATER OR SEWER MAINS. PLANT MATERIAL SHALL BE ADJUSTED IN THE FIELD TO
MAINTAIN THE ABOVE CLEARANCES.
3. LANDSCAPING SHALL BE INSTALLED OR SECURED WITH A LETTER OF CREDIT, ESCROW, OR PERFORMANCE BOND FOR 125% OF THE VALUE OF THE
LANDSCAPING AND INSTALLATION PRIOR TO THE ISSUANCE OF A CERTIFICATE OF OCCUPANCY.
4. LANDSCAPING WITHIN PUBLIC RIGHT-OF-WAYS AND COMMON OPEN SPACE AREAS SHALL BE INSTALLED BY THE DEVELOPER AND MAINTAINED BY THE
OWNER.
5. DEVELOPER SHALL ENSURE THAT THE LANDSCAPE PLAN IS COORDINATED WITH THE PLANS DONE BY OTHER CONSULTANTS SO THAT THE PROPOSED
GRADING, STORM DRAINAGE, OR OTHER CONSTRUCTION DOES NOT CONFLICT NOR PRECLUDE INSTALLATION AND MAINTENANCE OF LANDSCAPE
ELEMENTS ON THIS PLAN.
6. ALL LANDSCAPE AREAS WITHIN THE SITE SHALL BE IRRIGATED WITH AN AUTOMATIC UNDERGROUND IRRIGATION SYSTEM. AN IRRIGATION PLAN, REVIEWED
AND APPROVED BY THE WATER UTILITIES, WILL BE REQUIRED PRIOR TO ISSUANCE OF A BUILDING PERMIT.
7. ALL TURF AREAS TO BE IRRIGATED WITH AN AUTOMATIC POP-UP IRRIGATION SYSTEM. ALL SHRUB BEDS AND TREES ARE TO BE IRRIGATED WITH AN
AUTOMATIC DRIP (TRICKLE) IRRIGATION SYSTEM, OR ACCEPTABLE ALTERNATIVE. THE IRRIGATION SYSTEM IS TO BE ADJUSTED TO MEET THE WATER
REQUIREMENTS OF THE INDIVIDUAL PLANT MATERIAL.
8. ALL SHRUB BEDS TO BE MULCHED WITH A THREE INCH (3") LAYER OF WASHINGTON CEDAR (GORILLA HAIR) MULCH BY PIONEER SAND COMPANY,
PIONEERSAND.COM.
9. EDGING BETWEEN GRASS AND SHRUB BEDS SHALL BE 1
8" X 4" STEEL WITH ROLLED TOP EDGE, SET LEVEL WITH TOP OF SOD.
10. IRRIGATED TURF TO BE SODDED WITH REVEILLE BLUEGRASS
11. TO THE MAXIMUM EXTENT FEASIBLE, TOPSOIL THAT IS REMOVED DURING CONSTRUCTION ACTIVITY SHALL BE CONSERVED FOR LATER USE.
12. THE SOIL IN ALL LANDSCAPE AREAS, INCLUDING PARKWAYS AND MEDIANS, SHALL BE THOROUGHLY LOOSENED TO A DEPTH OF NOT LESS THAN EIGHT (8)
INCHES AND SOIL AMENDMENT SHALL BE THOROUGHLY INCORPORATED INTO THE SOIL OF ALL LANDSCAPE AREAS TO A DEPTH OF AT LEAST SIX (6) INCHES
BY TILLING, DISCING OR OTHER SUITABLE METHOD, AT A RATE OF AT LEAST THREE (3) CUBIC YARDS OF SOIL AMENDMENT PER ONE THOUSAND (1,000)
SQUARE FEET OF LANDSCAPE AREA. TO PROTECT EXISTING TREES FROM ROOT DAMAGE DO NOT CULTIVATE MORE THAN 2 INCHES DEEP WITHIN THE DRIP
LINE ZONE OF EXISTING TREES.
13. STREET LANDSCAPING, INCLUDING STREET TREES, SHALL BE SELECTED AND MAINTAINED IN ACCORDANCE WITH ALL CITY CODES AND POLICIES.
14. ALL PLANTINGS IN THE SITE DISTANCE EASEMENT MUST COMPLY WITH SIGHT DISTANCE RESTRICTIONS.
LANDSCAPE NOTES
SET TOP OF ROOTBALL 1-2" HIGHER
THAN ADJACENT GRADE
STAKING NOTES:
STAKE TREES PER FOLLOWING SCHEDULE, THEN REMOVE AT
END OF FIRST GROWING SEASON AS FOLLOWS:
1 1/2" CALIPER SIZE - MIN. 1 STAKE ON SIDE OF PREVAILING
WIND. (GENERALLY N.W. SIDE)
1 1/2" - 3" CALIPER SIZE - MIN. 2 STAKES - ONE ON N.W.
SIDE, ONE ON S.W. SIDE
3" CALIPER SIZE AND LARGER - 3 STAKES PER DIAGRAM
WIRE OR CABLE SHALL BE MIN. 12 GAUGE, TIGHTEN ONLY
ENOUGH TO KEEP FROM SLIPPING. ALLOW FOR SOME TRUNK
MOVEMENT. NYLON STRAPS SHALL BE LONG ENOUGH TO
ACCOMMODATE 1 1/2" OF GROWTH AND BUFFER ALL
BRANCHES FROM WIRE
REMOVE ALL WIRE, TWINE
BURLAP, MESH AND
CONTAINERS FROM ENTIRE
ROOT BALL AND TRUNK
3" DEEP MULCH RING PLACED A
MINIMUM OF 6' IN DIAMETER. DO
NOT PLACE MULCH IN CONTACT
WITH TREE TRUNK
GUYING PLAN
PLANT SO THAT TOP OF ROOT BALL IS 2"
HIGHER THAN FINISHED GRADE
GROMMETED NYLON STRAPS
GALVANIZED WIRE
TWIST TO TIGHTEN
PEELED FIR POLE STAKE, DRIVEN
(MIN. 24") FIRMLY INTO UNDISTURBED
SOIL OUTSIDE ROOTBALL.
SCARIFY SIDES OF PLANTING
HOLE LEAVING 1:1 SLOPE
BACKFILL WITH BLEND OF EXISTING
SOIL AND A MAXIMUM 20% (BY VOL.)
ORGANIC MATERIAL TAMP SOIL AROUND
ROOT BALL W/ FOOT PRESSURE SO
THAT IT DOESN'T SHIFT. WATER
THOROUGHLY TO SETTLE AND REMOVE
AIR POCKETS
PRUNING NOTES:
DO NOT HEAVILY PRUNE THE TREE AT PLANTING.
PRUNE ONLY CROSSOVER LIMBS, CO-DOMINANT
LEADERS AND BROKEN BRANCHES. SOME
INTERIOR TWIGS AND LATERAL BRANCHES MAY BE
PRUNED. HOWEVER, DO NOT REMOVE THE
TERMINAL BUDS OF BRANCHES THAT EXTEND TO
THE EDGE OF THE CROWN
2 X BALL DIA.
PREVAILING WIND
PREVAILING WIND
4" WATER SAUCER
(OMIT IN LAWN AREAS)
SCARIFY SIDES OF HOLE
LEAVING 1:1 SLOPE
NOTES:
SET S0 THAT TOP OF ROOT 1-2" HIGHER
THAN FINISHED GRADE
MARK NORTH SIDE OF TREE IN NURSERY
AND ROTATE TREE TO FACE NORTH AT
THE SITE WHENEVER POSSIBLE
2 STRAND 12 GAUGE GAL. WIRE
(TWIST TO TIGHTEN) & GROMMETED
NYLON STRAPS
PEELED FIR POLE STAKE, DRIVEN (MIN.
24") FIRMLY INTO UNDISTURBED SOIL
OUTSIDE OF PLANTING HOLE BEFORE
BACKFILLING
STAKE ABOVE FIRST BRANCHES OR AS
NECESSARY FOR FIRM SUPPORT
BACKFILL WITH BLEND OF EXISTING
SOIL AND A MAXIMUM 20% (BY VOL.)
ORGANIC MATERIAL PLACE FIRMLY
BUT DON'T TAMP OR COMPACT
AROUND ROOT BALL. WATER WATER
THOROUGHLY TO SETTLE AND
REMOVE AIR POCKETS
REMOVE ALL WIRE, TWINE
BURLAP, MESH AND
CONTAINERS FROM ENTIRE
ROOT BALL AND TRUNK
3" DEEP MULCH RING PLACED A
MINIMUM OF 6' IN DIAMETER. DO
NOT PLACE MULCH IN CONTACT
WITH TREE TRUNK
PLAN VIEW - THREE STAKES
2 X BALL DIA.
A SHRUB PLANTING DETAIL
C CONIFER TREE PLANTING DETAIL
B TREE PLANTING DETAIL
SIZE
ITEM
1. EXISTING TREES MARKED FOR PROTECTION AND PRESERVATION SHALL NOT BE REMOVED.
2. HEAVY EQUIPMENT SHOULD NOT BE ALLOWED TO COMPACT OVER THE ROOT ZONE OF EXISTING TREES.
3. AVOID CUTTING SURFACE ROOTS WHENEVER POSSIBLE. SIDEWALKS AND PAVING LEVELS SHOULD BE CONTOURED SUFFICIENTLY TO AVOID DAMAGE.
4. ROOT CUTS FROM EXCAVATION SHOULD BE DONE RAPIDLY. SMOOTH FLUSH CUTS SHOULD BE MADE. BACKFILL BEFORE THE ROOTS HAVE A CHANCE TO DRY OUT AND WATER THE
TREE IMMEDIATELY.
5. PRIOR TO CONSTRUCTION, ALL PROTECTED TREES SHALL HAVE ORANGE PROTECTION BARRIER FENCING ERECTED, WHICH AS A MINIMUM ARE SUPPORTED BY 1" X 1" OR SIMILAR
STURDY STOCK, FOR SHIELDING OF PROTECTED TREES, NO CLOSER THAN SIX (6) FEET FROM THE TRUNK OR ONE HALF ( 1
2) OF THE DRIP LINE, WHICH EVER IS GREATER. WITHIN
THIS PROTECTION ZONE THERE SHALL BE NO MOVEMENT OF EQUIPMENT OR STORAGE OF EQUIPMENT, MATERIALS, DEBRIS, FILL OR CUT UNLESS APPROVED BY THE CITY
FORESTER.
6. WITHIN THE DRIP LINE OF ANY PROTECTED EXISTING TREE, THERE SHALL BE NO CUT OR FILL OVER A FOUR-INCH DEPTH UNLESS A QUALIFIED ARBORIST OR FORESTER HAS
EVALUATED AND APPROVED THE DISTURBANCE.
7. DURING THE CONSTRUCTION STAGE OF DEVELOPMENT, THE APPLICANT SHALL PREVENT THE CLEANING OF EQUIPMENT OR MATERIAL OR THE STORAGE OR DISPOSAL OF WASTE
MATERIAL SUCH AS PAINTS, OILS, SOLVENTS, ASPHALT, CONCRETE, MOTOR OIL OR ANY OTHER MATERIAL HARMFUL TO THE LIFE OF A TREE, WITHIN THE DRIP LINE OF ANY
PROTECTED TREE OR GROUP OF TREES.
8. NO DAMAGING ATTACHMENT, WIRES, SIGNS OR PERMITS MAY BE FASTENED TO ANY PROTECTED TREE.
9. LARGE PROPERTY AREAS CONTAINING PROTECTED TREES AND SEPARATED FROM CONSTRUCTION OR LAND CLEARING AREAS, ROAD RIGHTS-OF-WAY AND UTILITY EASEMENTS
MAY BY "RIBBONED OFF," RATHER THAN ERECTING PROTECTIVE FENCING AROUND EACH TREE AS REQUIRED IN NOTE (5) ABOVE. THIS MAY BE ACCOMPLISHED BY PLACING METAL
T-POSTS STAKES A MAXIMUM OF FIFTY FEET APART AND TYING A RIBBON OR ROPE FROM STAKE-TO-STAKE ALONG THE OUTSIDE PERIMETERS OF SUCH AREAS BEING CLEARED.
10. ALL EXISTING TREES SHALL BE PRUNED TO THE CITY FORESTER'S "MEDIUM PRUNE STANDARDS".
11. ALL TREE PRUNING AND REMOVAL WORK SHALL BE PERFORMED BY A LICENSED ARBORIST AS REQUIRED BY CODE.
12. PRIOR TO GRADING OR EXCAVATION WITHIN THE DRIP LINE ZONE OF ANY EXISTING TREE CONTACT THE CITY FORESTER. CONTRACTOR IS RESPONSIBLE TO SCHEDULE
INSPECTIONS.
13. THE INSTALLATION OF UTILITIES, IRRIGATION LINES OR ANY UNDERGROUND FIXTURE REQUIRING EXCAVATION DEEPER THAN SIX (6) INCHES SHALL BE ACCOMPLISHED BY BORING
UNDER THE ROOT SYSTEM OF PROTECTED EXISTING TREES AT A MINIMUM DEPTH OF TWENTY-FOUR (24) INCHES. THE AUGER DISTANCE IS ESTABLISHED FROM THE FACE OF THE
TREE (OUTER BARK) AND IS SCALED FROM TREE DIAMETER AT BREAST HEIGHT AS DESCRIBED IN THE CHART BELOW.
TREE PROTECTION NOTES
WATER BUDGET CHART
1. A PERMIT MUST BE OBTAINED FROM THE CITY FORESTER BEFORE ANY TREES OR SHRUBS AS NOTED ON THIS PLAN ARE PLANTED, PRUNED OR REMOVED ON
THE PUBLIC RIGHT-OF-WAY. THIS INCLUDES ZONES BETWEEN THE SIDEWALK AND CURB, MEDIANS AND OTHER CITY PROPERTY. THIS PERMIT SHALL
APPROVE THE LOCATION AND SPECIES TO BE PLANTED. FAILURE TO OBTAIN THIS PERMIT MAY RESULT IN REPLACING OR RELOCATING TREES AND A HOLD ON
CERTIFICATE OF OCCUPANCY.
2. CONTACT THE CITY FORESTER TO INSPECT ALL STREET TREE PLANTINGS AT THE COMPLETION OF EACH PHASE OF THE DEVELOPMENT. ALL TREES NEED TO
HAVE BEEN INSTALLED AS SHOWN ON THE LANDSCAPE PLAN. APPROVAL OF STREET TREE PLANTING IS REQUIRED BEFORE FINAL APPROVAL OF EACH
PHASE.
3. STREET TREES SHALL BE SUPPLIED AND PLANTED BY THE DEVELOPER USING A QUALIFIED LANDSCAPE CONTRACTOR.
4. THE DEVELOPER SHALL REPLACE ALL DEAD AND DYING STREET TREES AFTER PLANTING UNTIL FINAL MAINTENANCE INSPECTION AND ACCEPTANCE BY THE
CITY OF FORT COLLINS FORESTRY DIVISION. ALL STREET TREES IN THE PROJECT MUST BE ESTABLISHED, OF AN APPROVED SPECIES AND OF ACCEPTABLE
CONDITION PRIOR TO ACCEPTANCE.
5. STREET TREE LOCATIONS AND NUMBERS MAY BE ADJUSTED TO ACCOMMODATE DRIVEWAY LOCATIONS, UTILITY STANDARDS, SEPARATIONS BETWEEN
TREES, STREET SIGNS AND STREET LIGHTS. STREET TREES SHALL BE CENTERED IN THE MIDDLE OF THE PARKWAY. QUANTITIES SHOWN ON PLAN MUST BE
INSTALLED UNLESS A REDUCTION OCCURS TO MEET SEPARATION STANDARDS.
STREET TREE NOTES