Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
FORT COLLINS LDS TEMPLE - PDP - PDP120029 - SUBMITTAL DOCUMENTS - ROUND 1 - DRAINAGE REPORT
PRELIMINARY DRAINAGE REPORT FOR THE CHURCH OF JESUS CHRIST OF LATTER DAY SAINTS TEMPLE, FORT COLLINS, COLORADO Prepared for: Church of Jesus Christ of Latter Day Saints 50 E. North Temple Street, 10th Floor Salt Lake City, Utah 84150-6300 Contact: Mark Tingey P.970.391.0212 mtingey@comcast.net November, 2012 Project No. ARCHNE-1L8A-01-301 Consulting Engineer LANDMARK ENGINEERING, LTD. 3521 West Eisenhower Blvd. Loveland, CO 80537 Ph: (970) 667-6286/Toll Free (866)-379-6252 November 7, 2012 Project No. ARCHNE-1L8A-01-301 Wes Lamarque, P.E. City of Fort Collins Stormwater 700 Wood Street Fort Collins, CO 80521 RE: Preliminary Drainage Report for Church of Jesus Christ of Latter Day Saints Dear Wes, Enclosed, please find the Preliminary Drainage Report for the proposed improvements for the LDS Temple located in the Northwest Quarter of Section 17, Township 6 North, Range 68 West of the 6th Principal Meridian. The proposed site may also be described as located on the southeast corner of South Timberline Road and East Trilby Road. The 11.5-acre Temple site consists of open land covered in native grasses/alfalfa and an assortment of trees along the right of way of the surrounding adjacent roads. The site also currently supports one single-family structure, a garage and field flood-irrigation appurtenances. The following report addresses the existing condition hydrology, as well as the proposed condition hydrology, hydraulics for drainage amenities and erosion control measures for the proposed Temple and parking facilities to be installed on the site. If you have any questions regarding this report, please contact me at your convenience. Sincerely, LANDMARK ENGINEERING, LTD. Timothy J. Halopoff, P.E. CO Lic. # 37953 Cc: JO/file CERTIFICATION I hereby certify that this report (plan) for the final drainage design of the LDS Temple Project was prepared by me (or under my direct supervision) for the owners thereof and meets or exceeds the criteria in the City of Fort Collins Storm Drainage Design Standards. Prepared By and Approved By: _______________________________________________ Timothy J. Halopoff Colorado P.E. 37953 Sealed: TABLE OF CONTENTS SECTION 1 - EXECUTIVE SUMMARY...............................................................Page No. Introduction ........................................................................................................................................ 1-1 Findings, Conclusions and Recommendations............................................................................ 1-2 1) Existing Drainage Patterns 2) Proposed On-site Drainage Patterns & Storm Drainage System 3) Constructed Wetland Channels, Detention & Water Quality Facilities SECTION 2 - PROJECT HYDROLOGIC DESCRIPTION Major Basin Paths & Topographic Description........................................................................... 2-1 Vicinity/Drainage Basin Map............................................................................................................ 2-2 Soil/Basin Map..................................................................................................................................... 2-3 SECTION 3 - DRAINAGE FACILITY DESIGN General Concept ............................................................................................................................... 3-1 Details for On-site Storm Drainage Systems................................................................... 3-1 – 3-8 SECTION 4 – DETENTION / WATER QUALITY PONDS & NATURAL AREAS Detention Ponds............................................................................................................................... 4-1 Water Quality Ponds.............................................................................................................4-1 & 4-2 Constructed Wetland/Natural Channels..................................................................................... 4-2 SECTION 5 - SOILS Natural Resources Conservation Service.................................................................................... 5-1 SECTION 6 - EROSION AND SEDIMENT CONTROL Erosion and Sediment Control Measures...........................................................................6-1– 6-2 Erosion Control Estimate of Cost................................................................................................. 6-2 APPENDIX City of Fort Collins Drainage Standards City of Fort Collins Flood Plain Review Checklist Detention Pond Calculations Basin Calculations Flowmaster – Street & Right-of-Way Calculations (AT FINAL) Storm Cad – Pipe & Inlet Run Calculations UD-Inlet & Nyoplast Inlet Calculations Water Quality Outlet Structure & Overflow Weir Calculations (AT FINAL) Outlet & Swale Protection Calculations Map Pockets: Historic Drainage Exhibit Developed Drainage Plan Erosion Control Plan 1 - 1 SECTION 1 EXECUTIVE SUMMARY This section creates an overall understanding of the Church of Jesus Christ of Latter Day Saints (LDS) Temple project, defines the need for implementation of storm water conveyance appurtenances and explains the major findings and recommendations of this Drainage Study. Introduction The property being considered in this Drainage Study is for an LDS Temple, located in the Northwest Quarter of Section 17, Township 6 North, Range 68 West of the 6th Principal Meridian. In 2011, the LDS church purchased approximately 35.6 acres on the southeast corner of Timberline and Trilby Roads. The area encompassing the Temple Lot (Approx. 11.5 acres), Majestic Drive right-of-way (Approx. 2.5 acres), one (1) residential lot (Approx. 0.35 acres) and two (2) outlots (Approx. 1.36 acres), was recently annexed to the City of Fort Collins. A residual tract of land (Approx. 19.9 acres), remains in Larimer County as an Urban Estate (UE) Parcel. The proposed Temple site is scheduled to be situated directly adjacent to the southeast corner of the intersection of Timberline Road and Trilby Road. The entire LDS property, now fallow farmland (previously planted in hay), is now covered in native grasses and sparse alfalfa, with an assortment of trees near the property lines of the two roadways. The project will consist of an elaborate Temple structure, a Temple President’s parsonage, a stand alone mechanical enclosure, maintenance/utility building, parking, drainage facilities, and utilities. There is one proposed road (Majestic Drive) that will encompass the south and east sides of the Temple site, connecting Timberline Road to Trilby Road. The main vehicular access to the site will occur from two commercial style driveways that will loop through the parking lot that is situated south of the Temple. Various pedestrian walks also extend to the Temple and parking lot from all of the surrounding roads. The purpose of this Drainage Study is to provide comprehensive drainage planning and design for the development. This includes identifying and defining functional solutions for handling developed condition storm flows in a complete, safe and environmentally sound way. A fundamental objective of this Drainage Study is to develop a visionary drainage plan that can be designed, verified/approved, constructed and maintained in a practical fashion. Two distinguishing drainage features worthy of note in this study are the Outlot B detention pond and the off-site detention pond on Tract N of the Westchase subdivision, which will be utilized for the detention and water quality facilities on this project. For that reason, the Fort Collins approved drainage study for the Westchase subdivision entitled “Final Drainage Study for the Westchase P.U.D.”, with latest revision dated December, 14, 2000, should be referenced with this report. This Drainage Study evaluates the existing drainage patterns of the site and identifies future drainage patterns for the development based on the subdivision plat, the proposed grading plan, and other existing site constraints. This includes evaluating historical runoff, investigating routing for design storms through the development, determining what improvements and structures are necessary along with required design capacity, and evaluating off-site drainage which may affect or be affected by the development. The City of Fort Collins Storm Drainage Criteria Manual dated May, 1984 (Revised April 1997), has been utilized for designing the Temple’s drainage facilities. The grading for the site and the storm drainage system has been designed as shown on the accompanying Drainage Exhibit. The inlets, storm pipe, manholes and detention/water quality ponds have all been designed to safely convey storm flows for the 100-Year storm event, through the development and to the downstream waterways in a manner that minimizes hazards to life, damage to real estate and destruction to the natural environment. 1 - 2 Findings, Conclusions and Recommendations The principal findings, conclusions, and recommendations which arise out of this Drainage Study are presented below. These findings are supported by the detailed material presented in the analyses & calculations of this report. 1) Existing Drainage Patterns The proposed LDS Temple, Westchase detention pond (Tract N) and the residual urban estate sites are all located within the Fossil Creek Drainage Basin. The Fossil Creek drainage basin extends along the south end of Fort Collins, from the foothills across Interstate 25 past County Road 5. It encompasses 32 square miles in the city of Fort Collins and Larimer County. Historically, the basin consisted of agricultural land, but the basin has experienced significant development in the recent past. This site has existed as agricultural land and has been kept as a family farm for decades. Since a raised earthen tributary irrigation ditch essentially bisects the property in an L-shape, drainage patterns have historically run perpendicular to and away from the foot of the ditch edge. The west edge of the greater 40 acre property from which the 11.5 acre Temple site was subdivided, conveys storm water to the Timberline borrow ditch and south to the Fossil Creek wetlands/open space area. The northeast zone of the 40 acre parcel traditionally drains to the northeast corner of the site, where the flows are conveyed to the Westchase Tract N detention pond through a 15” ADS pipe. The southern side of the irrigation ditch historically flows south to the north borrow ditch of Rock Castle Drive and crosses under the drive through a 12” CMP at the southeast corner of the property. 2) Proposed On-site Drainage Patterns & Storm Drainage System Generally, the proposed LDS Temple site (11.5 acres) and the residual Urban Estate parcel (UE-28.5 acres, largely left naturally seeded) maintain the existing condition drainage paths, with minimal diversion of storm flow. The storm infrastructure will consist of appropriately sized Nyoplast inlet basins and piping on-site, and reinforced concrete inlet boxes and basins within the right-of-ways. Reinforced concrete manholes, flared end sections and water quality/detention box structures will also be used where necessary. The west portion of the grounds of the Temple, approximately 1/3 of the new Majestic Drive and the eastern side of Timberline Road (south of Trilby Road), will flow into a detention pond on the southwest open space lot (Outlot B -See “Vicinity/Drainage Basin Map” on page 2-2). As required by City storm drainage criteria, this detention pond will mitigate increased development storm flow from the developed condition 100-year storm event down to the existing condition 2-year storm release rate. This detention pond will also have the extra volume needed for the required storm water quality treatment. On the northeast side of the overall site, storm flow will be conveyed into a large detention pond on the southwest corner of the Westchase subdivision which resides in Tract N. This detention pond was sized to accept flow from the overall LDS property and the off-site pond’s calculated volume accounted for the reduction of the developed condition 100-year storm flow. (See specifics in next paragraph below). 3) Constructed Wetland Channels, Detention & Water Quality Facilities In conjunction with the development of the LDS Temple, the existing irrigation channel that bisects the property will be demolished. The proposed Constructed Wetland Channels will replace the low quality natural habitat removed with the irrigation ditch. These Wetland channels will be located both, within the Outlot B Detention Pond (southwest) and the UE Parcel Water Quality Pond (northeast). The Wetland Channel details come from the Urban Storm Drainage Manual and they heighten the water quality characteristics of the runoff. Due to the fact that the large detention pond on Tract N (Westchase) has been designed to handle up to 216 cfs from the larger LDS site (+ 35 acres) during the 100-year storm event, we have planned to simply treat the flows generated from the Temple site with the proposed water quality pond in the northeast, before releasing to the oversized offsite pond. Since the allowable allotted 216 cfs (100-year event) is not being completely utilized with the Temple project, there will be remaining storage that can be utilized by future Urban Estate development (Residual Site). 2-1 SECTION 2 PROJECT HYDROLOGIC DESCRIPTION This project hydrologic description defines the limits of study, major basins and general topography of the study area for the proposed development. Major Basin Paths & Topographic Description The major basins outlined in solid bold black lines on the Vicinity/Drainage Basin Map (Next Page), represent the portions of land that fall within the analyses of this study. The Land to the north of this site includes Trilby Road and Westchase residential subdivision. The lands to the east, south and west consist of large urban estates. All of the properties that flank the overall LDS property flow in directions that do not impact this site. Additionally, although very slight additions in impervious area are being added to the edges of off-site Timberline Road (mainly on the west side), the impact on storm runoff from those improvements is negligible when factored into the flow rates generated by their overall basins. For this reason we have not included those areas in our detention and water quality calculations. Alternatively, this report takes into account the eastern side of Timberline Road in our pond calculations, as this storm system design captures the easterly roadway with inlets at the intersection of Majestic Drive and conveys them to the Outlot B detention pond. Notwithstanding the west side of Timberline Road, all of the developed condition improvement area flows are captured and conveyed through the proposed storm drainage system and into the planned detention/water quality ponds. The less bolded, dashed sub-basins shown on the map on the next page, delineate smaller areas of land within the major basins that run off to individual flow capture structures. The calculations from these smaller basins are used to size the individual structures to which they flow and the storm drains through which the flows are conveyed. The existing topography of the vicinity in which the LDS site lies, consists of lightly undulating farmland, gradually graded subdivisions and low-lying wetlands. The region’s receiving body of water is Fossil Creek Reservoir. More specifically, existing on-site terrain is predominantly controlled by the raised irrigation lateral that originates approximately 250’ from the southwest corner of Timberline Road and Trilby Road. The ditch flows southerly for 500’ before angling southeast for 1,150’. The ditch falls approximately 12’ in total along that stretch. The rest of the land generally falls away from the ditch to the northeast, southeast and southwest corners of the property at slopes ranging from 1.5% to 5%. The grading and earthwork design of the development will provide positive surface drainage to the parking lots, storm water inlets, pans, storm pipes, and detention areas. The improved surfaces of the project are sloped at grades ranging from 0.6% to 4% and the naturally graded areas of the site range from 1% to 25%. All of the unpaved and pervious areas on the site will be landscaped with trees, shrubs, flowers, turf or native drought tolerant grasses. All portions of the site will be stabilized following fine grading to a manner in which storm runoff will have no adverse affect to downstream neighboring properties. 2-2 2-3 3-1 SECTION 3 DRAINAGE FACILITY DESIGN This section describes the drainage facilities shown on the Developed Drainage Plan and explains how storm water will be routed through the development and safely conveyed downstream. General Concept The overall drainage plan for the LDS Temple development is to route storm water to detention ponds, where storm flows generated by the developed 100-year storm event can be contained and released at a rate equal to the historic 2-year storm flow. Details for On-site Storm Drainage Systems The storm flow from the majority of the Temple site, parking lot and Majestic Drive will be captured in at grade and curb inlets, then conveyed through two storm drain systems that pass under the north end of Majestic Drive. As the concentrated storm drain flows are released onto rip-rap pads and into two sweeping mainline swales on the east side of Majestic Drive, the waters are conveyed toward the northwest corner of the property. Once storm water reaches the northwest corner of the LDS property, the flow will be collected in a naturally graded ponding area. This pond, located in Sub-basin D59, is sized to provide the required water quality cleansing volume and will have a sweeping overflow weir that will pass the entirety of the 100-year storm water generated by this major basin. The 100- year flow passing over the weir will be detained in the Westchase Tract N detention pond. The far west side of the Temple site, the east side of Timberline Road south of Trilby, and approximately 1/3 of the west end of Majestic Drive will flow southerly along the east curb of Timberline Road and within the southwestern storm drain system. Once all of the mentioned storm flows are deposited into the storm pipe system via area and curb inlets, the southwestern storm runoff will be conveyed to the detention pond in Outlot B. The Outlot B detention pond represented in Sub-basin D54 is sized to provide both required volumes for storm water quality cleansing and 100-year detention. Once the 100-year storm water is detained in Outlot B, they will be allowed to release at the historic 2-year flow rate calculated at the identical point previous to development. Furthermore, portions of the southeastern area of the residual UE Tract will be returned to a naturally reseeded state following grading, and allowed to flow in a historical nature to the southeast corner of the LDS property. This calculation represents the flows generated for Sub-basin D58. The following describes the scheme and individual tributary drainage area summaries for the sub-basins, inlets and structures indicated at the design points shown on the Developed Drainage plan. Calculations have been performed in the appendix of this report for the various drainage capacities and design of the project. The calculations that we have performed within this study, demonstrate that the storm drainage design for the LDS Temple site and the Residual Urban Estate lot meet or exceed the requirements specified in the City of Fort Collins Storm Drainage Criteria Manual. Referring to the Developed Drainage Plan (provided in sleeve at back), the sub-basin calculation summaries are as follows: Sub-basin D1 Conveyance method: South side Trilby curb & gutter Q 2 =....................................................................................................................................1.66 CFS Q100 =....................................................................................................................................7.24 CFS 3-2 Sub-basin D2 Conveyance method: Nyoplast 12” Standard Grate Q10 =....................................................................................................................................0.20 CFS Q100 =....................................................................................................................................0.51 CFS Sub-basin D3 Conveyance method: Nyoplast 12” Standard Grate Q10 =....................................................................................................................................0.23 CFS Q100 =....................................................................................................................................0.59 CFS Sub-basin D4 Conveyance method: Nyoplast 12” Standard Grate Q10 =....................................................................................................................................0.21 CFS Q100 =....................................................................................................................................0.54 CFS Sub-basin D5 Conveyance method: Nyoplast 10” Standard Grate Q10 =....................................................................................................................................0.08 CFS Q100 =....................................................................................................................................0.20 CFS Sub-basin D6 Conveyance method: Nyoplast 12” Standard Grate Q10 =....................................................................................................................................0.13 CFS Q100 =....................................................................................................................................0.32 CFS Sub-basin D7 Conveyance method: Nyoplast 18” Standard Grate Q10 =....................................................................................................................................0.55 CFS Q100 =....................................................................................................................................1.42 CFS Sub-basin D8 Conveyance method: Nyoplast 12” Standard Grate Q10 =....................................................................................................................................0.32 CFS Q100 =....................................................................................................................................0.81 CFS Sub-basin D9 Conveyance method: Nyoplast 10” Standard Grate Q10 =....................................................................................................................................0.11 CFS Q100 =....................................................................................................................................0.28 CFS Sub-basin D10 Conveyance method: Nyoplast 12” Standard Grate Q10 =....................................................................................................................................0.20 CFS Q100 =....................................................................................................................................0.50 CFS Sub-basin D11 Conveyance method: Nyoplast 12” Standard Grate Q10 =....................................................................................................................................0.10 CFS Q100 =....................................................................................................................................0.25 CFS 3-3 Sub-basin D12 Conveyance method: Nyoplast 15” Standard Grate Q10 =....................................................................................................................................0.27 CFS Q100 =....................................................................................................................................0.68 CFS Sub-basin D13 Conveyance method: Nyoplast 15” Standard Grate Q10 =....................................................................................................................................0.38 CFS Q100 =....................................................................................................................................0.96 CFS Sub-basin D14 Conveyance method: Nyoplast 10” Standard Grate Q10 =....................................................................................................................................0.14 CFS Q100 =....................................................................................................................................0.35 CFS Sub-basin D15 Conveyance method: Nyoplast 30” Standard Grate Q10 =....................................................................................................................................0.78 CFS Q100 =....................................................................................................................................2.06 CFS Sub-basin D16 Conveyance method: Nyoplast 12” Standard Grate Q10 =....................................................................................................................................0.14 CFS Q100 =....................................................................................................................................0.36 CFS Sub-basin D17 Conveyance method: Nyoplast 8” Standard Grate Q10 =....................................................................................................................................0.10 CFS Q100 =....................................................................................................................................0.24 CFS Sub-basin D18 Conveyance method: Nyoplast 12” Standard Grate Q10 =....................................................................................................................................0.33 CFS Q100 =....................................................................................................................................0.84 CFS Sub-basin D19 Conveyance method: Nyoplast 15” Standard Grate Q10 =....................................................................................................................................0.38 CFS Q100 =....................................................................................................................................0.97 CFS Sub-basin D20 Conveyance method: Nyoplast 24” Standard Grate Q10 =....................................................................................................................................0.74 CFS Q100 =....................................................................................................................................1.97 CFS Sub-basin D21 Conveyance method: Nyoplast 12” Standard Grate Q10 =....................................................................................................................................0.14 CFS Q100 =....................................................................................................................................0.36 CFS 3-4 Sub-basin D22 Conveyance method: Nyoplast 10” Standard Grate Q10 =....................................................................................................................................0.09 CFS Q100 =....................................................................................................................................0.20 CFS Sub-basin D23 Conveyance method: Nyoplast 12” Standard Grate Q10 =....................................................................................................................................0.42 CFS Q100 =....................................................................................................................................1.07 CFS Sub-basin D24 Conveyance method: Nyoplast 10” Standard Grate Q10 =....................................................................................................................................0.09 CFS Q100 =....................................................................................................................................0.24 CFS Sub-basin D25 Conveyance method: Nyoplast 10” Standard Grate Q10 =....................................................................................................................................0.09 CFS Q100 =....................................................................................................................................0.24 CFS Sub-basin D26 Conveyance method: Nyoplast 8” Standard Grate Q10 =....................................................................................................................................0.03 CFS Q100 =....................................................................................................................................0.08 CFS Sub-basin D27 Conveyance method: Nyoplast 10” Standard Grate Q10 =....................................................................................................................................0.06 CFS Q100 =....................................................................................................................................0.15 CFS Sub-basin D28 Conveyance method: Nyoplast 8” Standard Grate Q10 =....................................................................................................................................0.02 CFS Q100 =....................................................................................................................................0.06 CFS Sub-basin D29 Conveyance method: CDOT Inlet Type C, Closed Mesh Grate Q10 =....................................................................................................................................1.68 CFS Q100 =....................................................................................................................................4.28 CFS Sub-basin D30 Conveyance method: CDOT Inlet Type C, Closed Mesh Grate Q10 =....................................................................................................................................1.72 CFS Q100 =....................................................................................................................................4.39 CFS Sub-basin D31 Conveyance method: Nyoplast 12” Standard Grate Q10 =....................................................................................................................................0.21 CFS Q100 =....................................................................................................................................0.54 CFS 3-5 Sub-basin D32 Conveyance method: Nyoplast 15” Standard Grate Q10 =....................................................................................................................................0.57 CFS Q100 =....................................................................................................................................1.46 CFS Sub-basin D33 Conveyance method: Nyoplast 10” Standard Grate Q10 =....................................................................................................................................0.12 CFS Q100 =....................................................................................................................................0.30 CFS Sub-basin D34 Conveyance method: Nyoplast 8” Standard Grate Q10 =....................................................................................................................................0.08 CFS Q100 =....................................................................................................................................0.19 CFS Sub-basin D35 Conveyance method: Nyoplast 8” Standard Grate Q10 =....................................................................................................................................0.02 CFS Q100 =....................................................................................................................................0.05 CFS Sub-basin D36 Conveyance method: Nyoplast 8” Standard Grate Q10 =....................................................................................................................................0.02 CFS Q100 =....................................................................................................................................0.05 CFS Sub-basin D37 Conveyance method: CDOT 5’ Type R Curb Inlet Q10 =....................................................................................................................................1.03 CFS Q100 =....................................................................................................................................2.64 CFS Sub-basin D38 Conveyance method: CDOT 5’ Type R Curb Inlet Q10 =....................................................................................................................................1.72 CFS Q100 =....................................................................................................................................4.39 CFS Sub-basin D39 Conveyance method: Nyoplast 15” Standard Grate Q10 =....................................................................................................................................0.53 CFS Q100 =....................................................................................................................................1.36 CFS Sub-basin D40 Conveyance method: Nyoplast 15” Standard Grate Q10 =....................................................................................................................................0.53 CFS Q100 =....................................................................................................................................1.36 CFS Sub-basin D41 Conveyance method: CDOT 5’ Type R Curb Inlet Q10 =....................................................................................................................................1.35 CFS Q100 =....................................................................................................................................3.44 CFS 3-6 Sub-basin D42 Conveyance method: CDOT 5’ Type R Curb Inlet Q10 =....................................................................................................................................2.10 CFS Q100 =....................................................................................................................................5.35 CFS Sub-basin D43 Conveyance method: D43/51 Fort Collins Single Curb Inlet (Detail D-43) Q10 =....................................................................................................................................1.09 CFS Q100 =....................................................................................................................................2.78 CFS Sub-basin D44 Conveyance method: D44/50 Fort Collins Single Curb Inlet Q10 =....................................................................................................................................0.97 CFS Q100 =....................................................................................................................................2.49 CFS Sub-basin D45 Conveyance method: CDOT 5’ Type R Curb Inlet Q10 =....................................................................................................................................1.55 CFS Q100 =....................................................................................................................................3.97 CFS Sub-basin D46 Conveyance method: CDOT 5’ Type R Curb Inlet Q10 =....................................................................................................................................1.52 CFS Q100 =....................................................................................................................................3.88 CFS Sub-basin D47 Conveyance method: CDOT 5’ Type R Curb Inlet Q10 =....................................................................................................................................1.66 CFS Q100 =....................................................................................................................................4.23 CFS Sub-basin D48 Conveyance method: CDOT 5’ Type R Curb Inlet Q10 =....................................................................................................................................1.28 CFS Q100 =....................................................................................................................................3.26 CFS Sub-basin D49 Conveyance method: CDOT 5’ Type R Curb Inlet Q10 =....................................................................................................................................2.42 CFS Q100 =....................................................................................................................................6.19 CFS Sub-basin D50 Conveyance method: D44/50 Fort Collins Single Curb Inlet Q10 =....................................................................................................................................1.13 CFS Q100 =....................................................................................................................................2.88 CFS Sub-basin D51 Conveyance method: D43/51 Fort Collins Single Curb Inlet (Detail D-43) Q10 =....................................................................................................................................1.03 CFS Q100 =....................................................................................................................................2.62 CFS 3-7 Sub-basin D52 Conveyance method: CDOT 10’ Type R Curb Inlet Q10 =....................................................................................................................................1.74 CFS Q100 =....................................................................................................................................4.44 CFS Sub-basin D53 Conveyance method: CDOT 10’ Type R Curb Inlet Q10 =....................................................................................................................................1.64 CFS Q100 =....................................................................................................................................4.18 CFS Sub-basin D54 Conveyance method: Water Quality Outlet Structure Q10 =....................................................................................................................................0.74 CFS Q100 =....................................................................................................................................1.88 CFS Sub-basin D55 Conveyance method: 4X Type 13 Combination Inlets Q10 =....................................................................................................................................4.03 CFS Q100 =................................................................................................................................. 10.28 CFS Sub-basin D56 Conveyance method: 2X Type 13 Combination Inlets Q10 =....................................................................................................................................0.79 CFS Q100 =....................................................................................................................................3.47 CFS Sub-basin D57 Conveyance method: CDOT Type C Inlet Q10 =....................................................................................................................................0.87 CFS Q100 =....................................................................................................................................2.22 CFS Sub-basin D58 Conveyance method: Sheet Flow (Future Flow @ Urban Estate, to be detained by Developer) Q10 =....................................................................................................................................9.34 CFS Q100 =................................................................................................................................. 23.85 CFS Sub-basin D59 Conveyance method: Sheet Flow (Future Flow @ Urban Estate, to be detained by Developer) Q10 =....................................................................................................................................5.37 CFS Q100 =................................................................................................................................. 13.71 CFS Sub-basin D60 Conveyance method: Sheet Flow (Future Flow @ Urban Estate, to be detained by Developer) Q10 =....................................................................................................................................2.04 CFS Q100 =....................................................................................................................................5.20 CFS Sub-basin D61 Conveyance method: 3 X Nyoplast 15” Standard Grates Q10 =....................................................................................................................................0.32 CFS Q100 =....................................................................................................................................0.83 CFS 3-8 Sub-basin D62 Conveyance method: See 62A & 62B Q10 =....................................................................................................................................1.92 CFS Q100 =....................................................................................................................................4.92 CFS Sub-basin D62A Conveyance method: 4 X Type 13 Combination Curb Inlets Q2 =....................................................................................................................................1.28 CFS Q100 =....................................................................................................................................5.61 CFS Sub-basin D62B Conveyance method: CDOT Inlet Type C Q2 =....................................................................................................................................0.23 CFS Q100 =....................................................................................................................................1.02 CFS Sub-basin D63 Conveyance method: Roadside Swale Q10 =....................................................................................................................................2.93 CFS Q100 =....................................................................................................................................7.49 CFS Sub-basin D64 Conveyance method: Roadside Swale Q10 =....................................................................................................................................1.98 CFS Q100 =....................................................................................................................................5.04 CFS IN1 Conveyance method: 3 X Nyoplast 15” Standard Grates Q10 =....................................................................................................................................0.29 CFS Q100 =....................................................................................................................................0.73 CFS IN2 Conveyance method: Nyoplast 30” Pedestrian Grate Q10 =....................................................................................................................................0.23 CFS Q100 =....................................................................................................................................0.59 CFS 4-1 SECTION 4 DETENTION / WATER QUALITY PONDS & NATURAL AREAS Detention Ponds The City of Fort Collins’ required storm water release rate from detention ponds is that of the calculated two-year historic runoff. Both of the ponds proposed with this project satisfy this requirement, albeit in two different ways. The pond located in the Northeast corner of the LDS property, Pond D59, is designed as a typical water quality pond; with additional low-flow cleansing capabilities being provided by constructed wetland/natural channels upstream of the ponding area. Pond D59 is atypical to most constructed ponds in that it provides for no detention. The reason for this lies in the capabilities of the nearby Westchase Tract N detention pond. According to the “Final Drainage Study for the Westchase P.U.D.”, with latest revision dated December, 14, 2000, the Tract N pond is sized to detain a maximum 100-year storm flow of 216 cfs from the LDS property. Calculated 100-year developed condition storm flow from the Temple project and tributary area from residual Urban Estate land amasses to 93.79 cfs. Thus, on-site pond D59 is designed to provide the required Water Quality Capture Volume (WQCV) and to safely convey this project’s 100-year flow over an engineered weir/channel to the Westchase Tract N detention pond. The pond located in the Southwest corner of the LDS property, Pond D54, is designed as a traditional detention pond. Although this pond will be designed with an overflow weir, the WQCV structure and outlet box will be a two chambered structure. The structure/s are intended to provide the required water quality volume, 100-year detention volume and an ultimate bypass, so that non-catastrophic storms will not pass over the banks of the pond. The detention pond design specifics are as follows: Detention Pond D54 (Southwest): Calculated Required Detention Pond Volume = 0.48 Acre-Feet @ EL=4909.75 Water Quality Capture Volume (WQCV) = 0.07 Acre-Feet Calculated Detention Volume = 0.41 Acre-Feet Flowline Out of Structure = 4906.08 2-Box Outlet Structure: Outlet Box 1 Release Rate = 3.28 cfs Outlet Box 1 Grate Elev. = 4907.58 Outlet Box 2 Q100 Release Rate = 20.10 cfs Outlet Box 2 Q100 Grate Elev. = 4909.75 Water Quality Pond D59 (Northeast): Calculated Required Water Quality Pond Volume = 0.26 Acre-Feet @ EL=4902.90 Water Quality Capture Volume at Structure = 0.26 Acre-Feet Overflow/Outlet Weir Height = 4902.90 Overflow/Oulet Weir Length = 88.50 feet Water Height Calculated at Weir = 0.5 feet @ Q100 = 93.79 cfs Water Quality Ponds As previously mentioned, the LDS water quality ponds take the form of both, a stand alone water quality pond (D59), and the typical water quality detention (D54) within a 100-year detention pond. When calculating water quality and detention volumes, our ponds are sized to stack the required volumes upon one another, instead of combining the two. This provides for the rare situation that occurs when the 100-year storm event follows a smaller event that has recently filled the pond’s water 4-2 quality space. The overall goals of the LDS water quality ponds are to cleanse the developed condition storm water of particulates (suspended solids) and chemicals (Dissolved solids) from the runoff prior to release to the receiving waters/dry swales. By correctly sizing the LDS water quality steel perforated plates, low flows and smaller storms can be detained for longer periods (24-48 hrs) prior to release, so that particulates can settle out and chemicals can have a chance to be absorbed by plant material and soils within the pond. Water Quality Ponds D54 and D59 have WQCV of 0.07 ac.-ft. and 0.26 ac.-ft., respectively. These volumes are designed to abate over a period of 40 hours. The water quality system characteristics on the LDS project are appropriately sized and will be enhanced by the UDFCD Constructed Wetland/Natural Channels that we have incorporated in this design. Constructed Wetland/Natural Channels A constructed wetland channel is a conveyance BMP that is built, in part, to enhance stormwater quality. Constructed wetland channels use dense vegetation to slow down runoff and allow time for both biological uptake and settling of sediment. Both of the LDS outfall detention/water quality ponds will utilize Constructed Wetland Channels. Effort has been taken to study and design the wetland channels by making sure the slope, drop structures and plant materials have been scrutinized. The LDS Church sub-contracted Western Ecological Resource, Inc., to consult on the wetland structures. They advised on how much ponding and which plant species should be introduced in and around the natural features. The grading and landscaping plans submitted with this report reflect the individualized design of the wetland structures designed on the Temple project. 5-1 SECTION 5 SOILS Natural Resources Conservation Service The overwhelming majority of the soils on the LDS Temple site are gradually sloping loams as classified by the Natural Resources Conservation Service. The middle and eastern areas of the site are classified as Fort Collins loams with 1 to 3 percent (symbol 35) and 3 to 5 percent (symbol 36) slopes. Portions of the north and south areas on the site, also include soils classified as Nunn Clay loam at slopes ranging from 1 to 3 percent (symbol 74). For purposes of hydrologic calculations, these soils fall under category D type soils. 6-1 SECTION 6 EROSION AND SEDIMENT CONTROL General Erosion and Sediment Control Measures DISCUSSION Erosion and sediment control will consist of controlling runoff across exposed areas and capturing sediment. These recommendations are described briefly below, and should be implemented by the developer during the construction activities for the site. GENERAL EROSION & SEDIMENT CONTROL MEASURES Minimizing Soil Exposure: Where practical, soil exposure should be kept to a minimum. Grading activities should be completed as soon as possible, and temporary seeding or permanent vegetative cover and landscaping should be established in disturbed areas. Temporary seeding will need to occur after overlot grading is completed. Permanent vegetative cover and landscaping will occur within the site boundary and street right-of-ways when site improvements are made. Temporary seeding of disturbed areas shall consist of the following or approved equal: Pawnee Buttes Seed Inc., Greeley, CO Low Grow Native seed mix (10%) Arizona Fescue (40%) Sandberg/Canby Bluegrass (10%) Rocky Mountain Fescue (40%) Big Bluegrass 5 LB/1000 s.f. Permanent seeding of the detention pond shall consist of the following or approved equal (Except in Areas shown as Natural Area Mitigation Boundaries on Utility and Landscape Plans): Pawnee Buttes Seed Inc., Greeley, CO Native Prairie seed mix (23%) Blue Grama (10%) Buffalograss (20%) Green Needlegrass (20%) Sideoats Grama (25%) Western Wheatgrass (2%) Sand Dropseed 15 PLS/lb./Acre Controlling Runoff Across Exposed Areas: All soils exposed during land disturbing activities are to be kept in a roughened condition by ripping or disking along land contours until mulch, vegetation, or other permanent erosion control BMP’s are installed. Installation of temporary drainage swales and straw wattles may be required during construction as a result of stockpiling soils, and the site storm water management administrator will be responsible for assessing potential runoff and erosion conditions and taking the necessary measure to minimize the same. No soils in areas outside project street rights-of- way shall remain exposed by land disturbing activity for more than thirty (30) days before required temporary or permanent erosion control (seed/mulch, landscaping, etc.) is installed, unless otherwise approved by the City of Fort Collins. 6-2 Sediment Capture: Temporary silt fence sediment control should be installed along the downhill portions of the site boundary to minimize sediment transport to adjacent areas. Vehicle tracking control pads should be installed in locations shown on the erosion control plan drawings. Inlet protection should be placed around inlets after they have been installed. Sediment control devices should remain in place and be properly maintained until permanent cover is in place. As site conditions warrant, additional sediment control devices may be required at strategic on-site locations and, as mentioned above, will require evaluation and implementation by the storm water management administrator. Erosion Control / Construction Phasing (At Final): Refer to the included Storm Water Management Plan in the map pockets. Fugitive Dust Control Permit: Per the State of Colorado, this site does not require a Fugitive Dust Control Permit because it is less than 25 contiguous acres and the project should be less than 6 months in duration to build. If dust becomes a problem during construction, the site should be watered on an as needed basis. Erosion Control Estimate of Cost Concrete Washout Area: $600.00 Wattles: $3.00/FT *1,060 FT = $3,180.00 Silt Fence: $3.00/FT *2,500 FT = $7,500.00 Surface Roughening: $200.00/ACRE *25 ACRES = $5,000.00 Vehicle Tracking Control: 1 @ $900.00 = $800.00 Sediment Trap Gravel: 1 @ $100.00 = $100.00 Seeding and Mulching: $500.00/ACRE *30 ACRE = $15,000.00 Total = $32,180 * 1.5 = $48,270 OR $900/ACRE * 30 ACRES * 1.5 = $40,500.00 Greater of the two = $48,270 APPENDIX CITY OF FORT COLLINS DRAINAGE STANDARDS ...... SECTION 3. HYDROLOGY STANDARDS 3.1 General Design Storms F~l drainage systems have to take into consideration two separate and distinct drainage problems. The first is the initial storm which occurs at fairly regular intervals, usually based on the two to ten-year storm, depending on land use. The second is the major storm which is usually based on an infrequent stOrID, such as the IOO-year storm. In some instances the major storm routing will not be the same as the initial storm. In this case, a complete set of drainage plans shall be subm.i tted for each s t orrn s ys t em. 3.1.1 Initial Storm Provisions As stated before, the initial storm shall be based on the two to ten-year storm. The objectives of such drainage system planning are to rninirr~ze inconvenience, to protect against recurring minor damage and to reduce maintenance costs in order to create an orderly drainage system at a reasonable cost for the urban resident. The initial storm drainage system may include such facilities as curb and gutter, storm sewer and open drainageways, and detention facilities. 3.1. 2 Major Storm Provisions The major storm shall be considered the lOO-year storm.. The objectives of the major storm planning are to eliminate substantial property damage or loss of life. Major drainage systems may include storm sewers! open drainageways, and detention facilities. The correlation between the .initial and major storm system shall be analyzed to insure a well coordinated drainage system. 3.1.3 Storm Frequency The initial and major storm design frequencies shall not be less than those found in the following table: Table 3-1 DESIGN STOR~ FREQUENCIES Design Storm Return Period Land Use or Zoningt Initial storm Major Storm Residential: (RE,RL,RLP,RP,ML,RM,RMP, RLM, MM, RH) ••••.••••••••••••••••.•••..... 2-year lOO-year Business: (BG,BL,BP,HB,C,IL,IP,IG) . lO-year lOO-year Public Building Areas . IO-year lOO-year Parks, Greenbelts, etc . 2-year IOO-year Open Channels & Drainageways IOO-year Detention Facilities IOO-year HSee Table 3-2 for zoning definitions 3.1.4 Rainfall Intensities The rainfall intensities to be used in the computation of runoff shall be obtained from the Rainfall Intensity Duration Curves for the City of Fort Collins, included in these specifications as Figure 3.1. 3.1.5 Runoff Computations Storm Runoff computations for both the initial and major storm shall comply with the criteria set forth in Section 3.2 "Analysis Methodology." All runoff calculations made in the design of both initial and ~ajor drainage systems shall be included with the storm drainage plans in the form of a Drainage Report. Repor t s submitted for approval should have a typed narrative with computations and maps in a legible form. May 1984 Design Criteria Revised January 1997 3-1 .- ._- - - _ _-_ .._-- - --_ _-_ . Figure 3·1 City of Fort Collins, Colorado Rainfall Intensity-Duration-Frequency Curve City of Fort Collins Prec ip itation Frequency An alys is, 1999 (Regional Analysis) -s- c - .c: >. ~ l/J C ..Ql .... c 9.00 8 .00 7 .00 6 .00 3.00 2.00 1.00 0.00 _. - . - . _ '---1 ~-- --- 50·year lOO·year I - - -- ···25·year I -- - 1Q·year i 11- .. 5-year ~ C-: - - 2-Y':.:J.':.._J 0 20 40 60 80 100 120 l ._._. ...__.._.__ .. _ Duration (minutes) City of Fort Collins Rainfallintensity-Duration-Frequency Table for using the Rational Method (5 minutes - 30 minutes) Figure 3-1a Duration 2-year 10-year 100-year (minutes) Intensity Intensity , Intensity (in/hr) (in/hr) (in/hr) 5.00 2.85 4.87 9.95 6.00 2.67 4.56 9.31 7.00 2.52 4.31 8.80 8.00 2.40 4.10 8.38 9.00 2.30 3.93 8.03 10.00 2.21 3.78 I 7.72 11.00 2.13 3.63 7.42 12.00 2.05 3.50 7.16 13.00 1.98 3.39 I 6.92 I 14.00 1.92 3.29 6.71 15.00 1.87 3.19 6.52 16.00 1.81 3.08 6.30 17.00 1.75 2.99 6.10 18.00 1.70 2.90 5.92 19.00 1.65 2.82 5.75 20.00 1.61 2.74 5.60 21.00 1.56 2.67 5.46 I 22.00 1.53 2.61 5.32 23.00 1.49 2.55 5.20 24.00 1.46 2.49 5.09 25.00 1.43 2.44 4.98 26.00 1.40 2.39 4.87 27.00 1.37 2.34 4.78 28.00 1.34 2.29 4.69 29.00 1.32 2.25 4.60 30.00 1.30 2.21 4.52 Chapter 3 CalculatingtheWQCVand Volume Reduction 3.0 Calculation of the WQCV The first step in estimating the magnitudeof runofffromasite is to estimate the site's total imperviousness. The total imperviousness of a site is the weightedaverageof individualareasof like imperviousness. For instance, according to Table RO-3 in the Runoffchapterof Volume I of this manual, paved streets (and parking lots) have an imperviousness of 100%; drives, walks and roofs have an imperviousness of 90%; and lawn areas have an imperviousness of 0%. The total imperviousness of a site can be determinedtakinganarea-weightedaverageofalloftheimperviousandperviousareas. When measures are implemented minimizedirectlyconnectedimperviousarea(MDCIA), the imperviousness used to calculatetheWQCVisthe"effective imperviousness." Sections 4 and 5 of this chapter provide guidance and examplesforcalculatingeffectiveimperviousness and adjusting the WQCVto reflect decreases in effective imperviousness. The WQCVis calculated as a functionof imperviousness andBMPdraintime using Equation3-1, and as shown in Figure 3-2: WQCV = a(0.9113 - 1.19/2 + 0.78/) Equation 3-1 Where: WQCV = WaterQuality Capture Volume(watershed inches) a = Coefficientcorrespondingto WQCVdraintime(Table 3-2) 1 = Imperviousness (%) (see Figures 3-3 through 3-5 [single family land use] and lor the Runojfchapter of Volume 1[other typical land uses]) Table 3-2. Drain Time Coefficients for WQCV Calculations Drain Time (hrs) Coefficient, a 12 hours 0.8 24 hours 0.9 40 hours 1.0 Figure 3-2, which illustrates the relationship between imperviousness andWQCYfor variousdraintimes, is appropriate for use in Colorado's high plains near the foothills. For other portions of Colorado or United States, the WQCV obtained from this figure can be adjusted using the following relationships: WQCV) Equation 3-2 WQCVother = d6 ( 0.43 Where: WQCV = WQCVcalculatedusingEquation 3-1 or Figure 3-2 (watershed inches) WQCVother = WQCVoutside of Denver region(watershed inches) = depthofaverage runoffproducingstormfromFigure 3-1 (watershed inches) November 2010 Urban Drainage and Flood Control District .), -) Urban Storm Drainage Criteria Manual Volume 3 Calculatingthe WQCV and Volume Reduction Chapter3 Once the WQCV in watershed inches is found from Figure3-2 or usingEquation 3-1 and/or 3-2, the required BMP storage volume in acre-feetcanbecalculated as follows: Equation 3-3 Where: v = required storagevolume (acre-ft) A = tributary catchmentarea upstream (acres) WQCV = WaterQualityCapture Volume (watershed inches) 0.500 0.450 OJ (/J 0.400 .c u c 0.350 "'0 OJ 0.300 .c (/J ..OJ ~ ... 0.250 ro S 0.200 c > 0.150 U 0 0100 S 0.050 0.000 0.9 140 hour I drain I time ~ / ! r"-,",- V~;' 124 hour drain time ~ / "\ c-; /:,'/ WQCV=a(O.91P-I 1.19P+O.78i) I .' / / 12-hr drain time a =0.8 ~ - 24-hr drain time a =0.9 V:-,,' ,"./ V 40-hr drain time a =1.0 -~ ",-"/ ~....R ~'~ I-- ~'- ...-.--- ~ 6 .~ ~- 12 hour drain time I ~ ~- '/ o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Total Imperviousness Ratio (i =la/100) Figure3-2. WaterQuality Capture Volume (WQCV) Based on BMP Drain Time Urban Drainage and Flood Control District November 20I0 Urban Storm Drainage Criteria Manual Volume 3 3-6 Table 3-3 RATIONAL METHOD RUNOFF COEFFICIENTS FOR CCMPOSITE ANALYSIS Character of Surface Runoff Coefficient Streets, Parking Lots, Drives: Aspha l t - . 0.95 Concrete . 0.95 Gravel " . 0.50 Roofs . 0.95 Lawns, Sandy Soil: Flat <2% . 0.10 Average 2 to 7% . 0.15 Steep >7% . 0.20 Lawns, Heavy Soil: Flat <2% ................................•.... 0.20 Average 2 to 7% . 0.25 Steep>7% . 0.35 3.1.7 Time of Concentration In order to use the Rainfall Intensity Duration Curve, the time of concentration must be known. The time of concentration, Te , represents the time for water to flow from the most remote part of the drainage basin under: consideration to the design point under consideration. The time of concentration can be represented by the following equation. Where: Tc = Time of Concentration, minutes t o v = overland flow time, minutes tt= travel time in the gutter, swale, or storm sewer, minutes The overland flow time, t o v • ,can be determined either by the following equation or the "Overland Time of Flow Curves" from the Urban Storm Drainage Criteria Manual, included in this report (See Figure 3-2). Where: Tov Overland Flow Time of Concentration, minutes S Slope, % C = Rational Method Runoff Coefficient ~ . D = Length of Overland Flow, feet (500' maximum) Ct = frequency Adjustment factor The travel time, tt' in the gutter, swale, or storm sewer can be estimated with the help of Figure 3-3. 3.1. 8 Adjustment for Infrequent StoJ:mS The preceding variables are based on the initial storm, that is, the two to ten year storms. For storms with higher intensities an adjustment of the runoff coefficient is required because of the lessening amount of infiltration, depression retention, and other losses that have a proportionally smaller effect or. storm runoff. These frequency adjustment factors are found in Table 3-4. May 1984 Design Criteria Revised January 1997 J-5 DRAINAGE CRlTERLA. M.J\NUAL RUNOFF \~ I I I I I I I I I I I I I I I j I I I I I I I I I I I I I I I I I I I I ! I I I I I 1/ I 1/ 1/ I J , I I I I I 11III r 1/ j j I I I II I I I I I I A I /1 I -I I l I / 'I I 1 3 0 t----t----;----+-r--t--r-ri+--;:...:--+-f-+-~L-++_+._~j.~I_-__1 . 5 \--_--J..........._~t..--,;_i....:..-...........;....;......;....;_..I-~---...,;-....:.-......;.......;.....:......:.....:__:. ___l z w a. o .J en w (f) c: o ::J U c:: LlJ ..... 3: ~ .1 .2.3 .5 I 1 \ ','5 2 3 5 10 20 VELOCITY I N FEET PER SECOND ESTIMATE OF AVERAGE FLOW VELOCITY FOR USE WITH THE RATIONAL FORMULA. * MOST FREQUENTLY OCCURRING "UNDEVELOPED" LAND SURFACES IN THE DENVER REGION. REFERENCE:: "Urban Hydrology For Small Watersheds" Technical Release No. 55, USDA, SCS Jan. 1975. URBAN DRAINAGE & FLOOD CONTROL DISTRICT 5-1-84 Table 3-4 RATIONAL METHOD FREQUENCY ADJUSTMEN'l' FACTORS Storm Return Period Frequency Factor (vears) C!.' 2 to 10 1.00 11 to 25 1.10 26 to SO 1. 20 51 to 100 1. 25 Note: The produc: of C times Ct shall not exceed 1. 00 3.2 Analysis Methodology The methods presented in this section for use in the determination of runoff at specific design points in the drainage system are currently Q~der review by the Stormwater Utility. Until detailed criteria for hydrologic modeling are developed, the accepted methods for hydrologic analysis are (1) the Rational Method and (2) UDSWM2 PC. The Storrnwater Utility shall determine circumstances requiring computer modeling with UDSWM2-PC. Early contact with the Stormwater Utility is encouraged for the determination of the appropriate method. Where applicable, drainage systems proposed for construction should provide the minimum protection as determined by the methodology so mentioned above. 3.2 .1 Ra tional Method The Rational Method is recommended only for sites less than 5 acres. The runoff may be calculated by the Rational t1ethod, which is essentially the following equation: Where Q ~ Flow Quantity, cfs A = Total Area of Basin, acres Ct~ Storm Frequency Adjustment Factor (See Section 3.1.8) C Runoff Coefficient (See Section 3.1.6) I ~ Rainfall Intensity, inches per hour (See Section 3.1.4) 3.2.2 UDSWM2-PC For circumstances requiring computer modeling I the design storm hydrographs shall be det-ermined using UDSWM2-PC. Basin and conveyance element parameters shall be developed from the physical characteristics of the development. Refer to the UDSWM2-PC User's Manual* for modeling methodology and development. *Urban Drainage and Flood Control District, March 1985 3.2.2.1 Surface Storage and Infiltration Table 3-5 gives those values for surface storage for pervious and impervious surfaces. Table 3-6 gives the infiltration rates to be used with UDSWM2-PC. Table 3-5 VALUES FOR SURFACE STORAGE (All Values in Inches) (For Use with UDSWM2-PC) Impervious Areas . .100 Pervious Areas . .300 May 1984 Design Criteria Revised January 1997 3-6 CITY OF FORT COLLINS FLOOD PLAIN REVIEW CHECKLIST City of Fort Collins Floodplain Review Checklist 50 % Development Review Submittals Instructions: Complete this checklist by markingallboxesthathavebeenadequately completed. Put an "NA" next to any items that are not applicable to this particular submittal. Anyboxesthatareleftblankanddonot have an "NA" marked nexttothem are considered incomplete. Date of Review: II ·1- , z.. Reviewer's Name: hM HAt",cii'of?'PJ PEe Plat Map , The following requireditemsareontheplat: Nft\ IDO-year floodplain boundary ~ :1h City N,r5' FEMA f"~ OFF-S LT~ 141A Floodway boundary '\.f)... City ''(J\ FEMA ../ ~ The benchmarknumberandelevationof benchmark iJ/AJ These items match the ARM. (FEMA Basin) N/~ These items match the Master Plan. (City Basin) ~ Thebenchmark numberandelevation matchwith those published in theCityofFort Collinsbenchmark system. Site Plan The following requireditemsareonthesiteplan: )J/14 IOO-year floodplain boundary- FEMA and City N/A SOD-year floodplain boundary (if proposed structureisa "critical facility" i I. and a SOD-year floodplain is mapped) 1'4/8 Floodway boundary tI/NIA IJ.. Erosion Restriction buffer related zones to use (i.e. critical facility or no residential use of lower floor if floodproofed mixed-use structure) Drainage and/or Grading Plan (or a separateFloodplainSheetifit is too cluttered on Drainage and GradingPlan) The followingrequireditemsareonthedrainageand/or gradingplan: fp,A. ofF-Srrc N!A IDO-year floodplain boundary- FEMA and City NtA SOD-year floodplain boundary (if proposed structure is a "critical facility" and a SOD-year tloodplain is mapped) NIA Floodwayboundary N~ Erosion buffer zones N/A Cross-section locations ~BFElines JJ!A Regulatory Flood Protection Elevation for individual lots or groups of lots if structures are to be built in the floodplain. N/A The floodplain and floodway boundaries are in the correct location and labeled properly. ~ The cross-section and BFE lines are in the correct location and labeled properly. N/1A Elevations arereferredtotheappropriatedatum: 14!H/A A FEMAbasins City basins - list - list only in in both NGVD NGVD29andNAVD88 29 N/rIA Floodwayregulations havebeen met.' . t4/MIA AJ No No manufactured fill in the floodway homes, unless except a hydraulic in an existing analysis park, shows can be "no-placed rise"in . the floodway. D No changinganonconformingnon-residential ormixedusestructuretoa residential structure. D Landscaping meets requirements fornoencroachmentin the floodway without a hydraulic analysisto show "no-rise". o No storage of materials or equipment. Criticalfacilitiesregulations MiA 100year - No life havebeenmet:safety, emergencyresponse,or hazardous material N/A 500 critical year facilities Poudre - No life safetyoremergencyresponsecriticalfacilities HIs Any items in the floodway that can float (Example: picnic tables, bike racks, etc.) are noted as being anchored. N/~ Erosion Buffer Zone requirements have been met: H/~ Design of any allowed development minimizes disturbance to channel bed WA tVA , No No and additions structures banks. to allowed. existing structures allowed. N/A Any fencing is split-rail designandbreak-away,but cabled.Must be tVa No oriented detentionor parallel water to general qualityponds. flow direction. NfA No bike or pedestrian paths or trails except as required to cross streams or N/A Road, waterways. bicycle and pedestrianbridgesmustspanerosionbufferzone. MIA NlA No No outdoor fill. storage of non-residential materials or equipment. N/NItA ~ No No driveways irrigated vegetation or parking and areas. non-native trees, grasses, or shrubs. ~ No utilities except as necessary to cross streams or waterways. ~Jf\ No grading or excavation except as required for permitted activities in N/A erosion No construction buffer zone. traffic except as required for permitted activities in erosion buffer zone. c-LA!\ Any construction in the erosion buffer zone shows that it will not impact the channel stability. H/~ Any necessary floodplain modeling has been submitted and approved. All modeling must follow the City's floodplain modeling guidelines. Special Poudre River Regulations Poudre River Floodway Regulations have been met. Mlf! No construction of new residential, non-residential or mixed-use structures. tJ/ri/A ~ No No additions redevelopment to residential, of residential, non-residential non-residential or mixed-or mixed-use structures. use structures. tl/A No fill unless hydraulic analysis shows "no-rise". N./A Poudre River floodplain regulations have been met liM MfA MIA- No No No additions additions construction to to mixed-residential of new use residential structures structures or if mixed-there use is an structures expansion in the MIA No residential-floatable use materials area of the on non-structure. residential sites Information Related to Structures in the Floodplain J, "","rA ~ The regulatory flood protection elevation shown on the plans is at least 2 ft above the BFE for the Poudre River and at least 18" above the BFE for new development and redevelopment, 6" above the BFE for additions, substantial improvement and accessory structures for all other floodplains. N~ A note is on the plans that the lowest floor (including basement or crawl space) and HVAC will be required to be elevated above the regulatory flood protection elevation. Non-residential structures can be floodproofed instead of elevated to the regulatory flood protection elevation. N/A A typical drawing detail is included for each foundation type proposed (slab-on grade, basement, crawl space) showing the elevation of the HVAC and lowest floor elevation (which includes bottom of the basement or crawl space) relative to the BFE. N/~ If garages are not going to be elevated to the regulatory flood protection elevation, then a note is included stating the following requirements: wfj\ There shall be 1 square inch of venting for every 1 square foot of enclosed NIA NIA The The area. ventingshall bottom of the be venting on at least shall two not be sides, higher preferably than I foot on upstreamand above grade. downstream sides. (Does not have to be divided equally). JJ/A For manufactured homes, a note is included stating that all submittalrequirements on separate sheet titled "Installation of a Mobile Home Located in a Floodplain: Submittal Requirements" shall be met. tJIA A note is on the plans stating that a floodplain use permit will be required for each structure and each site construction element (detention ponds, bike paths, parking lots, utilities, etc.) in the floodplain. tJ/a A note is on the plans stating that a FEMA elevation or floodproofing certificate will be completed and approved before the CO is issued for any structures in the floodplain. This is required even if property is only in a City floodplain. Drainage Report The site is describedasbeing in the floodplain. Floodplainnameandifthefloodplain is a FEMA or City-designated is described. Any floodway or erosion buffer zones on the site are described. The FEMA FIRMpanel # anddateand/or the Master Plan informationiscited. A copy of the FIRM panel with the site location marked is included in the report. If a floodplain modelingreport has been submitted, that report is referenced.The reason for the floodplain modeling report is described. If a FEMA CLOMRor LOMR is going to be needed, the reason for the CLOMR or LOIVIR is described. If a FEMA LOMR is required after construction, this is stated in the report. N/A The location of the structures relative to the floodplain is described. Ifthere is both a FEMA and a City floodplain on the site, the location of the structures relative to both is described. NjA The use of thestructuresis described. This is to determine if the structure is residential, non-residential, or mixed-use. Also,structures in all 100-year and Poudre River 500-yearfloodplains cannot be used as a critical facility. (See Chapter 10of City Code for definitions.) The report describes how the development will be in compliance with the applicable floodplain regulations (Chapter 10 of City Code). (Examples: elevation of lowest floor above regulatory flood protection elevation, floodproofing, floodway regulations, erosionbuffer zone regulations, no-rise, etc.) ~/A The type of foundation construction for the structures (i.e. slab-on-grade, crawl space, basement, etc.)is discussed in the report. N~ The type of foundation matches with the details shown on the grading plan. tVA The report statesthatthelowestfloor(including basement or crawl space) and HVAC will be requiredtobeelevatedabovetheregulatoryflood protectionelevation.Non residential structures can be floodproofed instead of elevated to the regulatory flood protection elevation. lilA If garages are not going to be elevated to the regulatory flood protection elevation, then a note is included stating the following requirements: rJI~ There shall be 1 square inch of venting for every 1 square foot of enclosed area. ~I!Mfi' J The There venting bottom shall of the be venting on at least shall two not sides, be higher preferably than 1 on foot upstream above grade. and downstream sides. (Does not have to be divided equally). ~A If a non-residential structure is to be floodproofed, then a note is included stating that all requirements on separate sheet titled "Floodproofing Guidelines" shall be met. (Floodproofingguidelinescanbeobtainedat http://fcgov.com/stormwater/pdf/fp floodproofing.pdf) r4/~ For manufactured homes, a note is included stating that all submittalrequirementson separate sheet titled "Installation of a Mobile Home Located in a Floodplain: Submittal Requirements" shall be met. (Mobile Home guidelines can be obtained at http://fcgov.com/stormwater/pdf/fp-mobilhome.pdf) N/~ The report statesthata floodplain use permit will be required for each structure and each site construction element (detention ponds, bike paths, parking lots, utilities, etc.) in the floodplain. NlAJ A note is in the report stating that a FEMA elevation or floodproofing certificate will be completed and approved before the CO is issued. rJ./p. In the compliance section, Chapter 10 of City Code is listed. 'I FEMA CLOMR Approval rJ./,4J If a FEMA CLOMR is required, the necessary modeling has been submitted and approved by the City. Additional Comments: Updated 11/29/2007 Terms to Note Lowest Floor Elevation- Elevation of the lowest floorofthelowestenclosedarea (including bottomof basement or crawlspace). This is not the same as finished floor. The lowest floor should be distinguished from finished floor on plans and reports. Regulatory Flood Protection Elevation - For all floodplains except the Poudre River, the regulatory flood protection elevation is eighteen (18) inches above the base flood elevation. For the Poudre River floodplain, the regulatory flood protection elevation is twenty-four (24) inches above the base flood elevation. If there is both a FEMA and a City BFE, the higher Bf'E shouid be used to determine the regulatory flood protection elevation. Additional floodplain terminology is defined in Chapter 10 of City Code. NOTE: Issues specific to individual sites may arise that result in additional requirements. These will be discussed during initial meetings with the applicant. DETENTION POND CALCULATIONS D5~ 100 Year This is to convert% imp. to a C value lQQ_-y_ea_r ~ __ .jinu_SIrn~E!rt Ojo__i_m-,--p._a_nd_C...p_..e_rv_io_.u_s.-".} ._ -__- .-..'-.-r--R-eq-u-ir-ed-'-d-e-te-n-tio-n-l fe acre-ft. 'C'value I 'C' * 1.25 Area I ReleaseRateI TIME ! i , TIME iINTENSITY! Q 100 Runoff Release Required Required cum ! 100 year i Volume I Cum total Detention Detention (mins) '(sees); (in/hr) ! (cfs) ,{ft"3} (ft"3) (ft"3)! (ac-ft) ! I I i I 01 0' 01 0.00 01 0.0 0.0 ____--:-::-5.;-1_ 300: 9.950! 28.46 8537.1 i 984.0 7553.1 10i 600' 7.720! 22.08 13247.52 1968.0 11279.5 151 900! 6.520j 18.65 16782.48/ 2952.0 13830.5 1- 2_0-,--1_.__1200j 5.6001 16.02 19219.2 3936.0 15283.2 0.0000 0.1734 0.2589 0.3175 1 0.3509 25; 1500' 4.980i 14.24 21364.2 1 4920.0 16444.2 0.3775 30: 1800 4.5201 12.93 23268.96 5904.0 17365.0 0.3986 -----~---210b:-· 4.080! 11.67 24504.48 6888.0 17616.5' 0.4044 1-- 4_0"-1 2400: 3.7401 10.70 25671.36 7872.0' 17862.-1 0.4101 17873.4 0.4103 17773.11 0.4080 17638.6 0.4049 17799.4 i 0.4086 __. ._4_5-'---1 2.?00L_...3.460! 9.90 26718.12 8856.0 50, 3000 I 3.230 I 9.24 27713.4, 9840.0 55: 3300r---·--·3~630l· 8.67 28597.14 10824.0 -----------eot-·-···3600: 2.860 I 8.18 29446.56: 11808.0 TO+£?-.\ J~ I.LiMe.:; == ---70:W-"---=3960T-~~~_Q~ __ -.-_ - 2.2.7201 590: 7.7.41 78 31111.30338.081 88 13776.12792.01 01 17546.17335.9 1 ( 0.0.4028 3980 6 ~ I Jr f 0 7~ 0.4S Atre. ~ r+ 75i 45001 2.480i 7.09 31917.6 14760.01 17157.6 0.3939 =-=~=-J3..Q~ .. _n 4~Q9r---'~}380! 6.81 32672.64/ 15744.0! 16928.61 0.3886 851 5100' 2.2901 6.55 33401.941 16728.01 16673.91 0.3828 -------9OI--S400r ·-- 2.2101 6.32 34131.241 1-=7·=-71=-=-2--=.0+-~--:-::-::+-------=---=-=-:=--=-J 16419.2 0.3769 --- 95! ---s700T--- -=-2'..,-13=-=0+1 -__--:6=--:.09 34723.261 18696.0 16027.31 0.3679 , =-=-=-~~ ~§:6_qQ.~=- __-'2.0601 5.89 35349.61 19680.~ 15669.61 0.3597 ______1_0~-----~~~ 2.0001 5.72 36036 1._-:-20-:-:6--:64-=-.-=-0L -.15372......,--c-=-=0[ -c----0.:-t-3529 -~~c= 110! 6600 1 1.940: 5.55 1 36619.441 21648.01 14971.4 0.3437 115 i 6900: 1.890i 5.41 37297.261 22632.01 14665.3 0.3367 t-_.- _.-- __ -_1--=2...:....'-0~:--:~ _..!?qO: -~~~'-T84(j'i-- 5.26 37889.28 23616.0 14273.3! 0.3277 125: 7500i 1.7901 5.12 38395.51 24600.0i 13795.5 0.3167 --_. 1301 780or----1.750i 5.01 390391 25584.0 13455.0 0.3089 1351 8Toat 1.7101 4.89 39613.861 26568.0 13045.91 0.2995 1401 846Qi- 1.6701 4.78 40120.08! 27552.01 12568.1 145! 8700! 1.630[ 4.66 40557.66 28536.0 12021.7 1501 9000! 1.600! 4.58 411841 29520.0 11664.0 1551 93001 1.5701 4.49 41758.86 1601 9~ 1.5401 4.40 42282.24 165! 9900! 1.5101 4.32 42754.14 I ._-~.- i ,""" \ I i !UrI \ 'I ce ou-+ V.A\l ~ DcX' \ ! iQ~CAj~h ___ !PICVYlGfer:=- g,2- 11 Q=;GI(,3bb)k~/4(3~)- G" I . ~ : •I\~~~rt:d == 3. ZB crs LL) o ~U I]3DX I Gt-D:l--e ~ -~~' I"r'~ Y'; C' U i(';r Z-! ~ Z- I !3~ c', .::.:: ! 6 ~.~ I Z Ul It!4,-er:>- q:e..r) '" Z.,93 F+ Z I OM~\CS:: Q:UJ fZih #=-2(1 C~O~ I Q z: • SI (Z,"j3 ) k;./, i/ (zJ!-).:; /7 6.1: CF5 I 50 % -:0 p 83 cr.s -~------'---.--.-_---,...--._.----~- ._--_. II B0'" 2..- book Olx~le+ i i I rrJirl I50~ ~. L\' Il\ I I I k YI (50)( r" Lip _> I IAn:A jAM:A- Open:: (0 7¥ FTC-, IOr~~ ;c-t-- D.:: tA r~ h . I , Q ~ - '4 J\_~ _ f 9/ b L, r i:-> : I I i i I I ! t: z. 4II ~LP 3 &.:J- r'- 33'3 .,:;. I'{bl Hz.. B:>-r-s. -:'- (t 5 "" 16 ) ( 3(e '*' ;5 ~ )::: 3 CJ§ FT 2 Area-Weighting for Runoff Coefficient Calculation Project Title: LDS Catchment ID:---------------D37 --------------- Illustration LEGEND: Flow Direction C•atcbm. eat Boundary Instructions: For each catchment subarea, enter values for A and C. Subarea Area Runoff Product ID acres Coeff. A C* CA input input input output 0:56 18.00 , . 18.5,6 0.28 2.00 0.18 100.00 Sum: 0.46 Sum: Area-Weighted Runoff Coefficient (sum CAisum A) = 4.o~35 *See sheet "Design Info" for inperviousness-based runoff coefficient values. D37-%IMP, Weighted C 11/1/2012,12:13 PM Area-Weighting for Runoff Coefficient Calculation Project Title: LDS Catchment ID:-------------=-D52 =------------- Illustration LEGEND: Flow Direction ~ Catchment Boun.dal'y Instructions: For each catchment subarea, enter values for A and C. Subarea Area Runoff Product ID acres Coeff. A C* CA input input input output 0.47 2.00 0.94 0.40 100.00 40;00 Sum: 0;87 Sum: 40.94 Area-Weighted Runoff Coefficient (sum CAisum A) = 47.06 *See sheet "Design Info" for inperviousness-based runoff coefficient values. 052-10YR, Weighted C 11/1/2012t 12:14 PM ------------------------------ --------------------------- Area-Weighting for Runoff Coefficient Calculation Project Title: LOS Catchment 10: 053 Illustration LEGEND: Flow Direction Catchm. • eor Boundary Instructions: For each catchment subarea, enter values for A and C. Subarea Area Runoff Product 10 acres Coeff. A C* CA input input input output 0.22 2.00 OA4 0.35 100.00 35.00 .. Sum: 0;57 Sum: 35.44 Area-Weighted Runoff Coefficient (sum CAlsum A) = 62.18 *See sheet "Design Info" for inperviousness-based runoff coefficient values. D53-10YR, Weighted C 11/1/2012, 12:15 PM --------------------------- --------------------------- Area-Weighting for Runoff Coefficient Calculation Project Title: LDS Catchment ID: D55 Illustration lEGEND: Flow Direction C•atchment Bot.tndary Instructions: For each catchment subarea, enter values for A and C. Subarea Area Runoff Product ID acres Coeff. A C* CA input input input output 0.81 100.00 81.00 0.56 2.00 1.12 Sum: 1.37 Sum: 82.12 Area-Weighted Runoff Coefficient (sum CAisum A) = 59..94 *Seesheet "Design Info" for inperviousness-based runoff coefficient values. 055-10YR, Weighted C 11/1/2012, 12:17 PM '~/I ~ '2 Vb! /5 /1 ~tz1/-'" / . !d~ I. /0 ~,//-:1 J f(~\, J, c- //) . f'~:/- :'·;'-/ ::-' :.; In,e.i+.. -e ~ I ~- ~ -ro.:....~ •. _ __,~ ••. ,_ ..~_.__• .~, __",~.".; '_"''''''''~' __-,".~~ ' __ "-'_'~'~_''"'''''''_.__ "."",~ ._...".•..-.......-..__.~._.__=-__.-._,.....__.-.""'....._.. "-' ~ _,._. ._~ .....__.-,.______,. , p SZ Q 2-:: I0 Z Q 100 ~ IfLfi- 1: :: 3~~ 10 ( Iyrc- IE; C oZ CD, :. ::(-? 6 11k 0 1 CO:c,: o~ L/ r.~.!- ' L{cl.~ - =- ~ ~N?7 10/ _ 7YPt~/~' r:, .~ C-,(), =-() C.o. ~ ,pb 1,-'rs (D55 Qz.:: 23~. Q ~ /CJ 2;§ 1-;.~ '-I ,- Cj):)l .D~ll/JU t'3 ~vbo (,,0;; ~IO tbO G,Q.:;: ("75 Q-z- ~ o~ 0'00 ::3 '!].. I=- L/~ 2- -C})Ol])e.t\vt:?f 13 ~ C. .6. ~o C.o ';., It: if! TO ~;J i r . }." " l AreA. L-. /",'-'))\ , D?J7 (} Ilf -, '.0 b I Sz. 1/ :DSZ GS7 ~) '--- ~ S7 /' "j) ~,-3 i~j\ 1// j-L/' e :;97 \::.,,:' • \1'2 0 .' ,r) c::' i , ",....::J '-\ /E>c ~ ~25 / 2-% DS;5 l- 37 @ ,&1.0 \// ./ !6Q,4 ~ / :D 0\ GD7 ~ /OD / q, \6 ~ %I=: L.(ll g~~ ~"~\AC ~e_-'Lse. !<Q+-e - 3 z.S 0,S5 --i------,.--~---l-f6ed D_S-+-J---.l ---!-__ 1)('jfeJoped ArC'a- fo pCrd -z: 11,7l( /feres ~ 41. 91 ~ rn,p. ·UrJeJleI~ Arer:L fD ~:= 1.lB Ac..rt::.$ @.- r:% TmP ~f~1 ~ Z6, 7~ % imP ?~r Z! o.G ~__.,-eS t-: , I., C, c: ,~': ~ Z l~ a.:. ( .001 40 f{r5 -:J. ,- . zs t 76/ /ltJO e, tJ. 2'1 (),20 Acre v Pf ac.eou/)+d tor ~n>M prevlol.A~ rep:>rr = Oemf!./1f 501:; 2fC:> (£5 TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION November 3, 2012 PROGRAM INPUT DATA DESCRIPTION VALUE Flow Rate (cfs) . 21.0 ::-Q,ct) Channel Bottom Slope (ft/ft) . 0.02 Manning's Roughness Coefficient (n-value) . 0.027 Channel Left Side Slope (horizontal/vertical) .. '" . 15.0 Channel Right Side Slope (horizontal/vertical) . 15.0 Channel Bottom Width (ft) . 0.1 COMPUTATION RESULTS DESCRIPTION VALUE Normal Depth (ft)··········································· 0.62 Flow Velocity (fps)········································· 3.59 Froude Number : . 1.131 Vel oc i.ty Head (ft)·········································· 0.2 Energy Head (ft)············································ 0.82 Cross-Sectional Area of Flow (sq ft) . 5.85 Top Width of Flow (ft)······································ 18.74 HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright (c) 1996-2010 Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com. All Rights Reserved. ". DSCJ TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION November 3, 2012 PROGRAM INPUT DATA DESCRIPTION VALUE Flow Rate (cfs) Channel Bottom Slope (ft/ft) . . 68.02 0.01 -= Q\ co Manning's Roughness Coefficient (n-value) . 0.027 Channel Left Side Slope (horizontal/vertical) . 30.0 Channel Right Side Slope (horizontal/vertical) . 15.0 Channel Bottom Width (ft) . 0.1 COMPUTATION RESULTS DESCRIPTION VALUE Normal Depth (ft)··········································· 0.95 Flow Velocity (fps)········································· 3.36 Froude Number' . 0.859 Veloci ty Head (ft)·········································· 0.17 Energy Head (ft)············································ 1.12 Cross-Sectional Area of Flow (sq ft) . 20.27 Top Width of Flow (ft)······································ 42.71 HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright (c) 1996-2010 Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com. All Rights Reserved. .. Pond TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION November 3, 2012 PROGRAM INPUT DATA DESCRIPTION VALUE ;~~:-;~~~-~~;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--------------~;~;~- =~lLJ() Channel Bottom Slope (ft/ft)................................ 0.01 Manning's Roughness Coefficient (n-value)................... 0.027 Channel Left Side Slope (horizontal/vertical) 4.0 Channel Right Side Slope (horizontal/vertical) 4.0 Channel Bottom Width (ft) 28.0 COMPUTATION RESULTS DESCRIPTION VALUE Normal Depth (ft)··········································· 0.73 Flow Velocity (fps)········································· 4.18 Froude Numbe r· . 0.904 Velocity Head (ft)·········································· 0.27 Energy Head (ft)············································ 1.0 Cross-Sectional Area of Flow (sq ft) . 22.45 Top Width of Flow (ft)······································ 33.81 HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright (c) 1996-2010 Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com. All Rights Reserved. /7~ I.I ~ 'Ir---------------~ h'\ -------------------------------------------------------------------------------- D0D TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION November 3, 2012 PROGRAM INPUT DATA DESCRIPTION VALUE Flow Rate (cfs) . 5.2 ::::: Q. ,oD Channel Bottom Slope (ft/ft) . 0.01 Manning's Roughness Coefficient (n-value) . 0.027 Channel Left Side Slope (horizontal/vertical) . 4.0 Channel Right Side Slope (horizontal/vertical) . 4.0 Channel Bottom Width (ft) . 4.0 COMPUTATION RESULTS DESCRIPTION VALUE Normal Depth (ft)··········································· 0.38 Flow Velocity (fps)········································· 2.45 Froude Number··············································· 0.79 Veloci ty Head (ft)·········································· 0.09 Energy Head (ft)············································ 0.48 Cross-Sectional Area of Flow (sq ft) . 2.12 Top Width of Flow (ft)······································ 7.06 HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright (c) 1996-2010 Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com. All Rights Reserved. BASIN CALCULATIONS -- DhZ- 1102 ID~L I Qz-:: Il~ Q I 0;: f't1 ! IH02 02 ==o'iJ \~ ..>(~oo - - 4/ 8 i .: I L - ~e.o..r ! ()creo.-se.:= 0 ~ CFS i Ieo -Ymr 1AC.J,·t:e6e -:;:~. 0 7 4 C--FS i r.: l.--..--.__ - :=-. _L'; v-_ L r---.() ('T; Ci C, .~ - OJ L - C w ~ ' l DG4 - Ho \ Db>4 Q2..;:.I/~ tQlo~(t-j8- Q(oc=5 Dj !flO! Qz.:: O~ Q,e<::> '" 3~ Z-,(<. toc.reDL?e- "'" O~ C,F5 Du.e. tD,\oJJl-h~n ~ {CO r'(~ tl\~.... II~ CFS Wldet\L''(j R(,[I\6~ i, (D1l+lnvte. .Q.rt>W\~ £,<.lest on the Mrfh ~~Je- ~ in'lb'j ----_._.---- -------1 Db3- I-fD3 . ~ /fD3 Qz- : /53 Q'm~~ I])~, ~ ~ ,?? Q -:: 74Cf Z. iC'{) - C-~\ If)cr~'Se..:. O~2 CFS D\.ke h ~!t,o/),:d R0-:0 t<.J ,dcill2} I00 Yr I f\c..reo.5 e: -::, 0 ~ CFS i~C>~ fa. to/)tll'\~ t I"'->I~ £ovfh 0" the ·!.Jes+ SIde- ~ -;;-Mkr t~ ..__. -- Dt - Hoq 1/1Jt( Qz.-= In CFS Q,~-:. &; ~ us D\ Q2.z /~ LF$ Lx'/?'\ tJo ::. 724 \I' ...~<..f~ . Z· {~ Inue.a--::e ~ ()'1 CF~ 1/v.e to j r-od I~ ot~ Tr;r&~ 100 • VI< Inc~~;:; o?} CF5 AJd,f!bf)oJ ru-lI"~ to T,d b'1 DEVELOPED CONDITION HYDROLOGY Area-Weighting for Runoff Coefficient Calculation Project Title: . lOS Catchment 10:-----------:----""""'-01 :=-:'"-:------------- Illustration LEGEND: Flow Direction 4 Catchment Boundary Instructions: Foreachcatchment subarea,entervaluesforAandC. Subarea 10 input ,:,:,:,> : ::. « Area acres A input 0.25 0.81 Runoff Coeff. C· input 0 ~25 0.95 Product CA output 0.06 0.77 : ..' .::: .< > .'::< ::' ,.. -c . . :':':::',::.:.>:'.';: '.::.::::. : Sum: 1.06 Sum: . O . 6 ~ . Area-Weighted Runoff Coefficient (sum CA/sum A) ::: 0.78 ·See sheet "Design Info" for inperviousness-based runoff coefficient values. 039-40-10YR, Weighted C 10/25/2012, 8:54 PM 15 Grassed Swalesl Waterwa s 10 Nearly Bare Ground 7 Short Pasture! Lawns TiIIagel Field 2.5 5 Heavy Meadow NRCS Land Type Conveyance CALCULATION OF A PEAK RUNOFF USING RATIONALMETHOD Project Title: .....,- -=::::7- ~--- 01 LOS Catchment 10: ---=.-=-- _ I. Catchment Hydrologic Data Catchment 10=..:D:....:1_--:--=-= Area = 1.06 Acres Percent Imperviousness = . , , 78;00 % NRCS Soil Type = , . ' D A, S, C, or 0 II. Rainfall Information I (inch/hr) = C1 * P1/(C2 + Td)I\C3 Design Storm Return Period , Tr = ·.·· \ :10 years (input return period for design storm) C1 = >28;50 (input the value of C1) C2= .•"". ..' 10:00 (input the value of C2) C3= •.••..,.OWll6 (input the value of C3) P1= ' ... .}l AO· inches (input one-hr precip itation-see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = ' 0.64 Overide Runoff Coefficient, C = . (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = ' 0.60 Overide 5-yr. Runoff Coefficient, C = •••· n·i :}: < (enter an overide C-5 value if desired , or leave blank to accept calculated C-5 .) Illustration J:z.:: Z~ e;Z~' 7'8(2) l~ =-1li9- GF'5> Catdu...ent Boundary Calculations: IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = 3.44 inch/hr Rainfall Intens ity at Regional Tc, I = .....-'~-3='.'+15 :O' . inch/hr Rainfall Intensity at User-Defined Tc, I = . 3.44 inch/hr Peak Flowrate, Qp = Peak Flowrate, Qp = Peak Flowrate, Qp = Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf Wit It C-5 fps minutes input input output input output output Overland ) 0.0100 .30 -t-: 0.60 . .. 'iN/A .\ ·)0.10 4.90 ,·: :·:·>t ?·,·" : 0.OO911 :;". 920 I 20.00 ·· A .98 7.74 Area-Weighting for Runoff Coefficient Calculation Project Title: LOS Catchment 10: --------------02 -------------- ----------------'------------- Illustration lEGEND: Flow Direction ~ Instructions: For each catchment subarea, enter values for A and C. Subarea Area Runoff Product 10 acres Coeff. A C* CA input : input 020 input 0.25 output 0.05 .' . .: ••• .: :.:.: .' .. .. .:.... :: .,. ..:.: ... .....-, .: ..:.'.. . Sum: .. ..'....: ..: .' ...:. .. .: . .,.::. .> :) 042~f'···'" :::. .:: .: .. .-. > :.: .. .. :::. .. / .........:.. Sum: :: ..': .: :.: .. ..',., .'." , :.:... :.. ':' :,' .~~()$ , Area-Weighted Runoff Coefficient (sum CAisum A) =Q~~$, ---------------------------- CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: ..LOS :::.::--=--- _ Catchment 10: 02 I. Catchment Hydrologic Data Catchment ID =_D_2_---,-.."....,..... Area = 0.20 Acres Percent Imperviousness= 25.00 % NRCS Soil Type = D A, S, C, or D II. Rainfall Information I (inch/hr) = C1 * P1/(C2 + Td)"C3 DesignStormReturnPeriod,Tr =,.....-,.....-";""'-oiftO,;,-years (input return period for design storm) C1 = 28.50 (input the value of C1) C2= 10;{)O (input the value of C2) C3= 0.786 (input the value of C3) P1=1.40 inches (input one-hr precipitation-see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient,C = ,.......;-,.....-_O~,··,","36;;,.. OverideRunoffCoefficient,C = (enter an overide C value if desired,or leave blank to accept calculated C.) 5-yr. RunoffCoefficient,C-5 = 0.28 Overide 5-yr. Runoff Coefficient,C = (enter an overide C-5 value if desired, or leave blank to acceptcalculatedC-5.) Illustration Paved Areas & Shallow Paved Swales (Sheet Flow) Catchment Boun.d.ary o LEGEND Beginning Grassed Swales/ Waterways Nearly Bare Ground Short Pasture/ Lawns Tillage/ Field Heavy Meadow NRCS Land Type Conveyance 2.5 5 7 10 II 15 II 20 Calculations: Reach Slope Length 5-yr Flow Flow ID NRCS Convey- Velocity Time Coeff S L Runoff V Tf ft/ft ance fps minutes input ft C-5 input output input output output Overland O~O473 95 0.28 N/A O~18 8j61 ..... . .. 1 Area-Weighting for Runoff Coefficient Calculation Project Title: -=:=:..,::- _ D3 LDS Catchment ID: ---------------=--=------'----------- Illustration LEGEND: Flow Direction 4 Catchment Bounlbry Instructions: For eachcatchment subarea, entervaluesforAandC. Subarea Area Runoff Product ID acres Coeff. A C· CA input : ........... ..input ....• input output J):95 . Thll ' l· ' .i. .' .......... . .. } . Q : ~ 5 · .... .r -. ••• I( .< .. . .· ·c, ·.>' .. I . .. ..... I·', ...• . .•.... 1< ....:. .i..: .••' .:. ;1 ~ .•......:.} .I I ' :" ...: . > . .:. ..:.. .>::>: .... • ::. ···:..:.··:.. ····>1 Sum: Q~~a: ; %, :: sum.] 0.06 Area-Weighted Runoff Coefficient (sum CAlsum A) = : ,0.27 *Seesheet "Design Info" for inperviousness-based runoff coefficient values. D12-10YR, Weighted C 10/23/2012.5:11 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: ---------------"":::'"LOS 7------------- Catchment 10: --=03 -=---- _ I. Catchment Hydrologic Oata Catchme~~~~ : -'D....:3'---0=-.-=23=-Acres Percent Imperviousness = 27.00 % NRCS Soil Type = D A, S, C, or D II. Rainfall Information I (inch/hr) = C1 • P1 l(e2 + Td)"C3 Design Storm Return Period, Tr =_,--~.;.10~ . years (input return period for design storm) Cl =28~50 (inputthe value of Cl) C2= 10:00 (input the value of C2) C3=0.786 (input the value of C3) P1= 1.40 inches (input one-hr precipitation-see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0::.:;~37:· .. Overide Runoff Coefficient. C = (enter an overide C value if desired , or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = ,0;29 Overide 5-yr. Runoff Coefficient, C = . (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration NRCS Land Heavy TiIIagel Short Nearly Type Meadow Field Pasturel Bare Lawns Ground Conveyance 2.5 5 7 10 15 Beginning Catchment Bouniary Grassed Swales! Waterwa s Calculations: 7 Reach Slope Length 5-yr NRCS Flow Flow 10 S L Runoff Convey- Velocity Time Coeff ance V Tf ftllt It C-5 fps minutes input input output input output output Overland 0.0400 . ·.·· ·.·130 0.29 N/N ''' ' 0.21 10.53 .;' . ' · 1 . ..... ·20:00·· .··· ', 2 .'" .: :. .. ..' 7;D!} . 3 ····· .....) : 4 · . 5 I ' . • . Sum 130 Computed Tc = 10.53 ' IV. Peak Runoff Prediction i: - ?- b User-Regional Entered Tc Tc = = '10.10.53 72 Rainfall Intensity at Computed Tc, I =_-,.,._3~..,.7,;-1 inch/hr Rainfall Intensity at Regional Tc, I = . 3.68 inch/hr Rainfall Intensity at User-Defined Tc, I = .3,71 inch/hr Peak Flowrate, Qp = .. . ~S Peak Flowrate, Qp e : .' .' ·~s Peak Flowrate, Qp = :,.~ Q (O~ .. Z--7 (3 70),23 :=D~ GFS D12-10YR, Tc and PeakQ OIC()";; (,Z;;(, 2.7 )75b 10/2312012 ,5 :11 PM (.2.3) z; 0 ~ Cf5 ---------------------------- Area-Weighting for Runoff Coefficient Calculation Project Title: -----------------LDS c=-:------------- Catchment ID: D4 Illustration LEGEND: Flow Direction 4 CatdlmeDI: Boundary Instructions: Foreachcatchment subarea, entervaluesforAandC. Subarea Area Runoff Product ID acres Coeff. A C* CA input input input output 0r 03 0 :95 0.03 0.09 . . 025 · 0.02 ..... .. .. . I.···. . . ' .... .. ' ": I : ? .. ' .::' .... .... . ' :. .. .:.: . ':' .>.:' .. .... :.: . ... .....: .:...:.: ... ' .' .... .:...: . ...... :..:.': :.. . < . .: :> ...::...:.. .. .i:: ..::··: ·:···· '.:. .... .: ..'. I .. :.: : .... 1'< : .:..• :< ......:< :. « ......." ::" Sum: . ) () ~ ~~ ...:. Sum: 0.05 Area-WeightedRunoff Coefficient (sum CAlsum A) =.0.43 *See sheet "Design Info" for inperviousness-based runoff coefficient values. . D23-10YR, Weighted C 10/23/2012,4:59 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: -=LOS :::===- _ Catchment 10: --=05 =---- _ I. Catchment Hydrologic Data Catchme~~~~ : ..::D-=5~-0=-.-=-08-=-Acres Percent Imperviousness = 25.00 % NRCS Soil Type = D A,B, C, or D II. Rainfall Information I (inch/hr) =C1 • P1/(C2 + Td)"C3 Design Storm Return Period, Tr = __-=-:-,.:,1-=-0 years (input return period for design storm) C1 = 28.50 (input the value of C1) C2= 10.00 (input the value of C2) C3= 0.786 (input the value of C3) P1= 1AO inches (input one-hr precipitation --see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient , C = 0",..:.3-,-6 Overide Runoff Coefficient, C = (enter an overide C value if desired , or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0.28 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired , or leave blank to accept calculated C-5.) Illustration NRCSLand Type Conveyance Heavy Meadow 2.5 Tillage! Field 5 FIoIVDirectl» ~ Catchment Boundary PavedAreas& ShallowPaved Swales (SheetFlow) 20 Calculations: 160 Reach Slope Length 5·yr NRCS Flow Flow 10 S L Runoff Convey- Velocity Time Cooff ance V Tf ftllt It C·5 Ips minutes input input output input output output Overland 0.0200 'S3 .••. ·•••·•.:0;28 ,;:' .'WA .'i' ''o·;·(F1Q ·' 8;55 .:1...::, . . : ....: .. . · i ... ••• • ,'." .... ·.·. 2.::· ·· ..... .. · .i·· ..: :..,;;.:..' I"·,·, ; . . 3 . ' .v.. : .•;'<..•.. ..' L ..': 4 5 Sum 53 Computed Te= 8.55 r:, .-..- 11 User-Entered Te= Regional Tc = 10:29 IV. Peak Runoff Prediction - 8.55 Rainfall Intensity at Computed Te, I =_. __4:.:-'.:=,02~inch/hr Peak Flowrate, Qp =. Rainfall Intensity at Regional Te, I = 3.74 ineh/hr Peak Flowrate, Qp = Rainfall Intensity at User-Defined Tc, I = 4.02 inch/hr Peak Flowrate , Qp = Area-Weighting for Runoff Coefficient Calculation Project Title: ---,--~ ~_---,-LDS -~ _ Catchment ID:--------------"06 '------------- Illustration LEGEND: Flow Direction ~ Catchment Bouo.dal'y Instructions: Foreachcatchmentsubarea,entervaluesforAandC. Subarea ID Product Area-Weighted Runoff Coefficient (sum CAlsum A) = 0.33 *See sheet "Design Info" for inperviousness-based runoff coefficient values. D6-10YR, Weighted C 10/29/2012, 4:38 PM ---- CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: LOS Catchment 10:---------------=06 -::-------------- I. Catchment Hydrologic Oata Catchment 10= 06 Area = __.,-0::-'.,-09:- Acres Percent Imperviousness= 33.00 % NRCS Soil Type = 0 A, S, C, or 0 II. Rainfall Information I (inch/hr) =C1 * P1 I(C2 + Td)"C3 Design Storm Return Period, Tr =_----.,..,.,..,-..,:,.10.:,..years (input return period for design storm) C1 = 28.50 (input the value of C1) C2= 10.00 (input the value of C2) C3= 0.786 (input the value of C3) P1= 1.40 inches (input one-hr precipitation--seeSheet"Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0::.;.-=-39=- Overide Runoff Coefficient,C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0.32 Overide 5-yr. Runoff Coefficient,C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration 20 Paved Areas & Shallow Paved Swales (Sheet Flow) Grassed Swales! Waterways 10 II 15 II Nearly Bare Ground 7 Short Pasture! Lawns Tillage! Field 2.5 5 Heavy Meadow NRCS Land Type Conveyance o LEGEND Beginning Flow Directio <If--- Catchment Bowulary Calculations: Velocity Flow Flow I Reach Slope Length 5-yr NRCS ID S L Runoff Convey- Coeff ance ftlft ft C-5 input input output input Overland 0.0200 44 O.~2 N/A< ...·<UQ 1 ......... 2 ...... 3 I CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: ~ _LOS _=====_------------ Catchment 10: --=07 -'-- _ I. Catchment Hydrologic Data Catchment 10=-=Dc.:...7_-,;-::-; Area = 0;61 Acres Percent Imperviousness = .25.00 % NRCS Soil Type = <,D A, B,C, or D II. Rainfall Information I (inch/hr) = C1 • P1 I(C2 + Td)"C3 Design Storm Return Period, Tr = <' '10 years (input return period for design storm) C1 =, " " < 2a~ 50 (input the value of C1) C2= " 4(tCO (input the value of C2) C3= .',' O/78l) (input the value of C3) P1= ' ·· <) l AO inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C ="",,:,- - --"O',",'C'Q $'P Overide Runoff Coefficient, C = ,..." (enter an overide C value if desired , or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = .... !iJ?lr Overide 5-yr. Runoff Coefficient, C = . .'" '.(enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration NRCSLand Heavy TIllage! Short Type Meadow Field Pasture! Lawns Conveyance 2.5 5 7 Flow Diredio ~ Catchment Bounduy Grassed Swales! Waterways II 15 II Paved Areas& Shallow Paved Swales SheetFlow) 20 Calculations: ~ 1-/0 ~ 3 Reach Slope Length 5·yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf ftIft ft C-5 fps minutes input input output input output output Overland '<0;0370 ', . ·.:477 · ·· ·":" ., / 0,28 '·:N/A.;., . ,<JliZ3';,· ;·';j2,15<·' ':';." 1';'." ·" ; ' .2ItOO•.··.. . 2 > 07:00' , ;} ;,... " .. .."', "', ., .".".., .:\ ,. A : "";;;;: "';; :, .: "..5 '.;'.. . Sum 177 Computed Tc = 12.75 Regional Tc = 10:98 b3 ~. -- User-Entered Tc = 10.98 IV. Peak Runoff Prediction - i/3 Rainfallintensily at Computed Tc, 1= .·· .'"" 3A2 inch/hr Rainfallintensily at Regional Tc, I = '." : . , 3:65 inch/hr Rainfallintensily at User-Defined Tc,l = " '; '3.65. inch/hr Peak Flowrate, Qp = Peak Flowrate, Qp = Peak Flowrate, Qp = Area-Weighting for Runoff Coefficient Calculation Project Title: ---=LDS ==-==---- _ Catchment ID: -------------;;;;D8 ..;;.------------ Illustration LEGEND: Flow Direction 4 Car:cbment Boundary Instructions: For eachcatchment subarea, entervaluesforAandC. Subarea Area Runoff Product ID acres Coeff. A C* CA input input input output :' : tt,~5': ': :. 0.01 :;:.: ..r :: ·.. )' .([ . (3:1.> : ..:···• I :: 0;25' :":" {.< ":·( 0.08 ::;:::..." :. } . . k:; .:: ::: ·:::.:} I :]':::1 :: ., ~ 1m R Sum: ., 0.32 MIl Sum: 0.09 Area-Weighted Runoff Coefficient (sum CAlsum A) = 0.27 *See sheet "Design Info" for in perviousness-based runoff coefficient values. D14-10YR, Weighted C 10/23/2012,5:17 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: -,- --LOS :::::'-::,.... -,- -,- _ Catchment ID: --08 =-~ _ 'f I. Catchment Hydrologic Data Catchment 10 =08 Area =..::...::....--0::-,-::32:;- Acres Percent Imperviousness = . 27,00 % NRCSSoilType = . ..: 0 A, S, C, or 0 II. Rainfall Information I (inch/hr) =C1 • P1/(C2 + Td)I\C3 Design StormReturnPeriod,Tr = .:.: ': ':< ..: 10 years (input returnperiodfordesignstorm) C1 =:::::.:· 2~t50 (input the valueof C1) C2= .· : ': 1OJ)0 (input the valueofC2) C3= ." . ' 0.786 (input the valueof C3) P1=1.40 inches (input one-hrprecipltatlon-see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment RunoffCoefficient, C = / .'::/Ol37 OverideRunoffCoefficient, C = , > (enteranoverideCvalueifdesired,or leave blank to accept calculated C.) 5-yr. RunoffCoefficient,C-5 = \ >. .:·.J).29· Overide 5-yr.RunoffCoefficient,C = :. . :" :' :: ' (enter an overideC-5 valueifdesired,or leave blanktoacceptcalculatedC-5.) Illustration FIoIvDirectio ~ Catthment Bouncluy NRCS Land Type Conveyance Heavy Meadow 2.5 Tillagel Field 5 Near1y Bare Ground 10 Grassed Swales! Waterwa s 15 II Paved Areas & Shallow Paved Swales Sheet Flow) 20 Calculations: Reach 10 Overland :'::,' :1::/ ':" : A ' 5 Slope S flIfI input 0:0240····· ' :" :'.:', ':..:": ::"2/., ::.::. : ' :'.. , : : ' 3::.: . . ..... --------------------------- Area-Weighting for Runoff Coefficient Calculation Project Title: = _ Catchment ID: D9 LDS Illustration LEGEND: Flow Direction Catchment • Boundary Instructions: For each catchment subarea, enter values for A and C. Subarea Area Runoff Product ID acres Coeff. A C* CA input input input output . ....>?..<•..•...•••...•....••.•..•. ••.. ·····.. .·. 0.01 '. ...0:95 ' .·0 ···0..01; 02 ,,_i<0... .0.06.·· 0.25 i.:· .:\: .:'>... ':'. >:. ... I:·:··.·.... :.'.: ' . :.'. .' I " ....: ....'..: . '.:.:'. / }.. ,.. }., ... . ... .... ::.., I: <. .. .: .: ...:.... '. .?' ....... ;:: ..:.:... 'i . ". ;... ..' < :-:': .:.< ••• •·i··.·:·:··•..•i. .': : :'::. :.... : ;'" :'.: ,::.: .. .::.,( ... .· .·:i.·:.::····; : .... .' ..' I"..:·:i · Sum: " ;'';'0.02 :. Sum: Area-Weighted Runoff Coefficient (sum CAlsum A) = ·..}.:·'Oj35" ;i : *See sheet "Design Info" for in perviousness-based runoff coefficient values. 03-10YR, Weighted C 10/23/2012,5:13 PM ---------------------------- CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: -==-=-- _ Catchment 10: 09 LOS I. Catchment Hydrologic Data Catchment ID = D9 Area = ---0'--.0"""7-Acres Percent Imperviousness = 35.00 % t\lRCS Soil Type = D A, B, C, or D II. Rainfall Information I (inch/hr) = C1 * P1/(C2 + Td)"C3 Design Storm Return Period, Tr = ~----';""""""3tO:--·. years (input return period for design storm) C1 = .28.50 (input the value of C1) C2= to.OO (input the value of C2) C3= 0.786 (input the value of C3) P1= 1.40 inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = OAo Overide Runoff Coefficient, C = ",""""---=,"","",,,,-.,.o,.--(enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = ··0:33 Overide 5-yr. Runoff Coefficient, C = -...,;.----,;----,;_ (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration NRCS Land Type Heavy Meadow Tillage! Field Short Pasture! Lawns Nearly Bare Ground Grassed Swales! Waterways PavedAreas & ShallowPaved Swales Sheet Flow) Conveyance 2.5 5 7 10 II 15 II 20 Reach Slope Length 5-yr NRCS Flow Flow 10 S L Runoff Convey- Velocity Time Coeff ance V Tf ftlft ft C-5 fps minutes input input output input output output Overland ·O~06.QO 63 0.33·· N/t(··· ·0:17 6:14 1 . ': ... ..< ··· •. 20;00 .:.:..... ... , .:. I· 2 . ..............: ... >...: :7;00 : ..... : ...... .....•...... .··3. ..::.. ...... : . . 4 .. ... 5 Sum 63 Computed Tc - 6.14 2 l~ - - - - User-Regional Entered Tc Tc = = 10.6.14 35 LEGEND OBeginni.ng • •••••• • •••• • ••• Area-Weighting for Runoff Coefficient Calculation Project Title: -LDS ---=.~------------- Catchment ID: D10 ----------------'-----'----'-'---------- Illustration LEGEND: Flow Direction C•at:cbm.em: Boundary Instructions: Foreachcatchment subarea, entervaluesforAandC. Subarea Area Runoff Product ID acres Coeff. A C· CA input input input output } .•. " (liP$ } > O.rS.9 0.03 ....... ... .··/ 0'07 .···.·. 0.4$ 0.02 ...... ... ..•......... ; " ......... / .:......;,. .. < ••.. I...• .... )/ ..... '... ~ '" ' .. .: ... ...........) ........ ....•...... ' } '. '. '. ....\ ....... Sum: .. ··· ·· 0:109 Sum: 0.05 Area-Weighted Runoff Coefficient (sum CAlsum A) =. . J).~4§ ·See sheet "Design Info" for inperviousness-based runoff coefficient values. D1 0-1 OYR, Weighted C 10/23/2012,5:28PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: --LDS ::=:-=- _ Catchment fD: --D10 =-=- _ I. Catchment Hydrologic Data Catchment ID = .=D:...;1.=0_::-:-= Area = 0.10 Acres Percent Imperviousness = 46.00 % NRCS Soil Type = D A,B, C,or D II. Rainfall Information I (inch/hr) =C1 • P1 /(C2 + Td)"C3 Design Storm Return Period, Tr = _-,-=="-61.0 7, years (input return period for design storm) C1=28.50 (input the value of C1) C2=10,00 (input the value of C2) C3=0.786 (input the value of C3) P1= 1.40 inches (input one-hrprecipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = . 0.44 Overide Runoff Coefficient , C =~..,....-_+c-(enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient , C-5 ='. .0;38 Overide 5-yr. Runoff Coefficient, C =. (enter an overide C-5 value if desired , or leave blank to accept calculated C-5.) Illustration Conveyance 2.5 5 7 Calculations: Q'D -;::, 40 ( l( ~ ) ./C) o Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Cooff ance V Tf flit! t! C-5 fps minutes input input output input output output Overland 0.0200 ' 47 ' 0.38 .N1A ··..·· ·.O:1 t 7:12.;':" 1·.···.. . ..... '... . ... ..:., . : :... :.:.1 . ,' .2 .: ','. .... ' .. ...,..:.,.'..,. ·i'.· . 3 " . ,.' 4 .". . " .. .: 5 Sum 47 Com puted Tc = '7.12 Regional Tc = 10:26 ::;. ZO User-Entered Tc = 7.12 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, 1=4;28 inch/hr Peak Flowrate, Qp = Rainfall Intensity at Regional Tc, I = 3;75 inch/hr Peak Flowrate, Qp = Rainfall Intensity at User-Defined Tc, I = 4.28 inch/hr Peak Flowrate, Qp = .. T/O ~ 4ZJ 1='00::: ~ 75 . D6-10YR, Tc and PeakQ QPM 10052crS ';-IIL5(. .4~ )8~{'(O) :::;D 10/23/2012,5:04 --------------------------- Area"Weighting for Runoff Coefficient Calculation Project Title: ----:::-:--: _ Catchment 10: D11 Illustration LOS LEGEND: Flow Direction 4 Catcbm.eot Boundary Instructions: Foreachcatchmentsubarea,enter valuesforAandC. Subarea Area Runoff Product 10 Coeff. A acres C· CA input input input output 0;01 0~95 : > :-1 I'.! : [ ,,'8, :'" ' 1,.: :\, ;; 0;06 · 0.25 .' / ','.:,",.: .::\.:: .' ,." \,.. .,< .. I, . . '., :,. .... ..1"':.... ... . .':'.> . :'.:.: ) .' (i < ': .....: ',:.: '" .. :> .,.,/." .. '" '. :.,'.,:: <.... : -: '..:... .:', ...•:.•:•.•. < ': ....., . "'.' .. ...... . .',.:.-.:,.:" ,.:' : Sum: "0:07' Sum: 0.02 Area-Weighted Runoff Coefficient (sum CAisum A) = ; · · ; j } I()~~~!: : : ! :.•• ·See sheet "Design Info" for inperviousness-based runoff coefficient values. D10-10YR, Weighted C 10/23/2012, 5:06 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: --::-:-:- _ 011 LOS Catchment 10: ....:..:....~ _ I. Catchment Hydrologic Data Catchment10= 011 Area = --"""0:-.0':"':7::'" Acres Percent Imperviousness= 35.00 % NRCS Soil Type= 0 A, B, C, or D II. Rainfall Information I (inch/hr) = C1 * P1 I(C2 + Td)AC3 Design Storm Return Period,Tr = .......-.......-~""tO;;,.•.., years (input return period for design storm) C1 = zs.so (input the value of C1) C2= .Hl:OO (input the value of C2) C3= 0.786 (input the value of C3) P1= 1AO inches (input one-hr precipitation--seeSheet"Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = ..;;.;...;;.;..;.,0:;;;:4;.;;.0;;;.>. Overide Runoff Coefficient,C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0;33 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration NRCS Land Type Conveyance Heavy Meadow 2.5 Tillage! Field 5 Short Pasture! Lawns 7 Nearly Bare Ground 10 Grassed Swales! Waterways II 15 II o LEGEND Beginning Flow Directio <If--- Catchment Boundary NRCS Flow Flow Convey- Velocity Time ance V Tf fps minutes input output output Calculations: Reach Slope Length 10 S L ftfft ft input input Overland Q;020Q· 60 1 . :. .' -: .:.> . 2 --------------------------- Area-Weighting for Runoff Coefficient Calculation Project Title: ----:::-:-::: _ Catchment ID: D12 Illustration LDS LEGEND: Flow Direction 4 Ca1cbmeot BOUIlI1ary Instructions : For each catchment subarea, enter values for A and C. Subarea Area Runoff Product ID acres Coeff. A C* CA input input input output 0.04 0.95':<\':: 0.04' 0.07 " 0.25 :. 0.02 .':' . . Ii ..:....\ . . « ..... ::...... '. : .. :.<.. ' ; . : .. ' . 1: ) :··..:.·· . :.., ... .:.. >. : :\:/. .. .:, Sum: .· <· O ~ 1 1 · . : Sum: 0.06 Area-Weighted Runoff Coefficient (sum CAisum A) =: 0.50 *See sheet "Design Info" for inperviousness-based runoff coefficient values. D12-10YR, Weighted C 10/29/2012,4:41 PM ---- CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: LOS Catchment 10: --------------=-:012 :-=-------------- I. Catchment Hydrologic Data Catchment ID = D12 Area =__=-0::-,=-1::-1 Acres Percent Imperviousness= 50.00 % I\JRCS Soil Type = D A, B, C, or D II. Rainfall Information I (inch/hr) = C1 * P1 /(C2 + Td)II.C3 DesignStormReturnPeriod,Tr =_--,-==-10-:-years (input return period for design storm) C1 = 28;50 (input the value of C1) C2= 10;00 (input the value of C2) C3= 0786 (input the value of C3) P1= 1.40 inches (input one-hr precipitation--seeSheet"DesignInfo") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient,C =---.;.,---.;.,""'0:;.,;.04;,;;.6:,..· OverideRunoff Coefficient,C = (enteranoverideC value if desired, or leave blanktoacceptcalculatedC.) 5-yr.Runoff Coefficient,C-5 = 0040 Overide5-yr. Runoff Coefficient, C = (enteranoverideC-5 value if desired, or leave blanktoacceptcalculatedC-5.) Illustration NRCS Land Type Heavy Meadow Tillage! Field Short Pasture! Lawns Nearly Bare Ground Grassed Swales! Waterways Paved Areas & Shallow Paved Swales (Sheet Flow) Conveyance 2.5 5 7 10 II 15 II 20 LEGEND OBegiJming FlowDi:rectio «------ Catchment Bowulary Calculations: Length 5-yr NRCS Flow L Runoff Convey- Velocity Coeff ance V ft CoS fps input output input output Reach Slope 10 S tuft Overland input 1 0,0100 2 0.0200 3 4 Area-Weighting for Runoff Coefficient Calculation Project Title: LDS Catchment ID: ----------------:0-D13 -:-:------------ ------------_----:....:_----------- Illustration LEGEND: Flow Direction ~ Cat:cbm.em: Boundary Instructions: Foreachcatchment subarea, entervaluesforA andC. Subarea Area Runoff Product ID acres Coeff. A C* CA input input input output :"" .. 0.05 ' 0;95 .... . . . OJ05:(':: .". 0 . . .... :. 022 ' 0:25 .. . .: . >: ...:... '!: <:: .. :,:,.'. ,'.... ·1'·;·:;:'::;" ::::;..; i '" :..... . ,,'.' I"·:',. •..,.: '...:... ..... ./ :;:. .. . .. .. . I:.... ...... .,..... .:.: ....: I · " ,' ..: .•<.. ." I' " ......:< 1... < : ...,.:.... .,.: ?\ .'."' . .. :".: Sum: Sum: 0.10 Area-Weighted Runoff Coefficient (sum CAlsum A) = 0.38 *See sheet "Design Info" for inperviousness-based runoff coefficient values. D35-D36-10YR, Weighted C 10/23/2012,4:25 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: ~ -LDS ==~ _ CatchmentID: --D13 =-=- _ I. Catchment Hydrologic Data Catchment ID = D13 Area = ..=-c-'c--0::.-"27=" . - Acres PercentImperviousness =38.00 % NRCSSoilType= .. .. . :D A, B, C, or D II. Rainfall Information I (inch/hr) = C1 * P1/(C2 + Td)"C3 DesignStormReturnPeriod,Tr = .. :- : 10 years (input returnperiodfordesignstorm) C1 =·.< 2a-~ 50 (input the value of C1) C2= >HfOO (input the value of C2) C3= ··. :-: ·"0;786 (input the valueofC3) P1= ·:: » >1,40 inches (input one-hrprecipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment RunoffCoefficient, C=: It41. OverideRunoffCoefficient, C = ,... __,..,."..",.(enter an overideCvalueifdesired,or leave blank to accept calculated C.) 5-yr. RunoffCoefficient, C-5= ,". 0" 34 Overide 5-yr. RunoffCoefficient,C = .. (enteranoverideC-5 valueifdesired,or leave blank to accept calculated C-S.) Illustration NRCSland Type Heavy Meadow Tillage/ Field Short Pasture! Lawns Nearly Bare Ground Grassed Swales! Waterways F1uIv Directio ~ Catchment Boundary Paved Areas & Shallow Paved Swales Sheet Flow) Conveyance 2.5 5 7 10 II 15 II 20 71 Reach Slope Length 5.yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf tuft ft C·5 fps minutes input input output input output output Overland <1);0250 · . 140 ",: '," ..0.34 'N/A.. · ": .'0:19::: .':' 12;00.'· ' .:>'::J ::: ':: '.: .... ....,;... . .' -:... ."",.,'., :.," .::"?,:,.., /:':::{::':Z, ": :: .. .. .. . . " ~ ':,: ::::: .....:.. . .. .·c ... . c•. '" :.;i: : :i~ ~" .. . .. ......•...;:.::> ....., .. ·) >:?S·.: ······,· .",'--:: '.. .. ..: .' -..':. -:',' . : .... I: .. .'. .....:.:,.:. .. :/:·:::.) t ... •· .: .. '. + .... '. '. ' .: ":.' .·· ::S·· . .: SumI 140 ComputedTc = 12.00 - - 4 User-RegionalTc Entered Tc = = 10.10.78 78 ' Area-Weighting for Runoff Coefficient Calculation Project Title: ----=LDS ::.:::,...::....- _ Catchment ID: D14 -------------....;:.:..::....-_---------- Illustration LEGEND: Flow Direction 4 Catcb:meot Boundary Instructions: Foreachcatchment subarea,enter valuesforAandC. Subarea Area Runoff Product i ID acres Coeff. I A C* CA I input input input output .. , ·,c . 0;01 , . . "J: ~ : Q;~5 0.01 i 0;11 · ·. '· '. . . 0;. .. ..2'5 . .... 0.03 :, .'.. : .: })J ,. ::... ... ..:. . ··x : " " :':. ,:,.:,., ... ,:,.):, :.'.>: ,:' . :..... .: .) " '..:';: :,:.:::-;}:: : .',.' <:. :'.:' ., .: .: . :,. -:". ., . . ..., .':,' Sum: :·:"U~~~ · Sum: !O.O3 Area-Weighted Runoff Coefficient (sum CAisum A) =....0.29 *See sheet "Design Info" for inperviousness-based runoff coefficient values. D9-10YR, Weighted C 10/23/2012,5:15 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title:--,-- ~;LDS _7_------------- Catchment 10:' _ .; -D14 =-~ _ I. Catchment Hydrologic Data Catchment 10 = 014 Area = -=-':--'---:O=-,7. t 2=-Acres Percent Imperviousness = " ' 2!W O % NRCS Soil Type = >:' :' ·':"··0 A, B, C, or 0 II. Rainfall Information I (inchlhr) = C1 • P11(C2 + Td)AC3 Design Storm Return Period, Tr = :.' : 1 0.years (input return period for design storm) Cl =: : > 28;50 (input the value of Cl) C2= 'to~OO (input the value of C2) C3= { <0.;786 (input the value of C3) P1= '::-':·j A O inches (input one-hr preclpitafion-see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.38 Overide Runoff Coefficient, C =,......__-".:.(enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0.3(1' Overide 5-yr. Runoff Coefficient, C = . '. (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration Conveyance 2.5 5 FloIvDire<:1io « Catdunent Boundary Grassed Swales! Waterwa s 15 Calculations : 7 Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf tUft ft C-5 fps minutes input input output input output output Overland 0;0200 '.,· ' : 65 ' ." ' 0.30 NIA 0;12 ':9.21>:;:," " >:1 ....' .. i <>· .'" I>: . ... 20.00 '., .'. :.,',>. ::.;::.; ., 2:: ::: ,>."'>:.>.'",.' " 7 .00 ,..,..,. ... ····"'··\ 3>':·:'··' :"':" .' '0:'"": ,.' .',.,'" ...." ':.'" ,.' 4/ ' ,.".:. . > . :"",. 5' .,... Sum 65 Computed Tc= .9.26 ' - _. 95 User-Regional Entered Tc Tc = = 10.9.26 36 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, 1= · 3,90 inchlhr Rainfall Intensity at Regional Tc, I = __....;3~.7=-3:-inchlhr Rainfall Intensity at User-Defined Tc, 1= 3.90 inchlhr Peak Flowrate, Qp = Peak Flowrate, Qp = Peak Flowrate, Qp = QI6 ~.Zq(3~), 12-:;. 08 ~ 09-PM10YR, Te and PeakQ Q10{)=-1, 2.5 (,29) 79J5 (oIL) z; 032 CF~ 1012312012,5:15 ---------------------------- ---------------------------- Area-Weighting for Runoff Coefficient Calculation Project Title: LOS Catchment 10: 015 Illustration LEGEND: Flow Direction ~ Catcbmeot BotID.dal'y Instructions: For each catchment subarea, enter values for A and C. Subarea Area Runoff Product 10 acres Coeff. CA output A C* input input input 0.14 0.25 0.04 0.18 .'; :.:, .. :.> ..,.. .',. . 0.19 0.95 : ": .. Sum: 0.33 Sum: 0.22 Area-Weighted Runoff Coefficient (sum CAlsum A) =0.65 *See sheet "Design Info" for inperviousness-based runoff coefficient values. 02-100YR, Weighted C 10/23/2012,10:49 AM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: LOS _ Catchment 10: 015 _ I. Catchment Hydrologic Data CatchmentID = D15 Area =---0-..-3-3 Acres Percent Imperviousness = 65.00 % NRCS Soil Type = D A, B, C, or D II. Rainfall Information I (inch/hr) = C1 * P1 I(C2 + Td)I\C3 Design Storm Return Period, Tr = 10 years (input return period for design storm) C1 = -~2c::"8.-=50'6-· (input the value of C1) C2= 10.00 (input the value of C2) C3= 0.786 (input the value of C3) P1=1,40 inches (input one-hr precipitation-see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C =__--'0'-'.:_54_ Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0.49 Overide 5-yr. Runoff Coefficient, C = centeranoverideC-5 value if desired, or leave blank to acceptcalculated C-5.) Illustration Paved Areas & Shallow Paved Swales (Sheet Flow) Grassed Swales! Waterways Nearly Bare Ground Short Pasture! Lawns Tillage! Field Heavy Meadow NRCS Land Type Conveyance 2.5 5 7 10 II 15 II 20 Calculations: LEGEND o Beginning F10IvDirectie +----- Catchm.ent Boundary 770 Reach Slope Length 5-yr NRCS Flow Flow 10 S L Runoff Convey- Velocity Time Coeff ance V Tf ftIft ft C-5 fps minutes input input output input output output Overland 0.0256 195 0,49 N/A 0.29 11.25 1 2 3 4 5 Sum 195 Computed Tc 11.25 - - , User-Regional Entered Tc Tc = = 11.11.08 08 Area-Weighting for Runoff Coefficient Calculation Project Title: LDS ., Catchment ID:--------------=-D16 =-=------------- Illustration 4 CaJ:cbm. ear Boundary LEGEND: Flow Direction Instructions: For each catchment subarea, enter values for A and C. Subarea ID input Sum: Area acres A input 0.06 0.02 . -. O~O8 " Runoff Product I Coeff. C* CA input output 0.25 0.02 0:95 " 0.02 ., : " :;" :'" .:: "': .:":: ' ::.,:,'., .. •• . .,,";'. ': Sum: · 'o.()3 ·. .. Area-Weighted Runoff Coefficient (sum CAlsum A) = . 0;43 . *See sheet "Design Info" for inperviousness-based runoff coefficient values. 016-10YR, Weighted C 10/23/2012,10:57 AM ---------------------------- CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: LOS _ Catchment 10: 016 I. Catchment Hydrologic Oata Catchment10=016 Area =---0-.-08-Acres Percent Imperviousness =--4"":'"3=-.-=-00=- % NRCS Soil Type = 0 A, B, C, or 0 II. Rainfall Information I (inch/hr) = C1 • P1 I(C2 + Td)"C3 Design Storm Return Period, Tr =__~-::,10-7. years (input return period for design storm) C1 = 28.50 (input the value of C1) C2= 10.00 (input the value of C2) C3= 0.786 (input the value of C3) P1= 1.40 inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C =..,..-__0.:..· _43.:..· Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculatedC.) 5-yr. Runoff Coefficient,C-5 = 0.36 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration 20 Paved Areas & Shallow Paved Swales (Sheet Flow) 15 Grassed Swales! Waterwa s 10 Nearly Bare Ground 7 Short Pasture! lawns TIllage! Field 2.5 5 Heavy Meadow NRCS land Type Conveyance LEGEND OBegi:nning Flow Directie <If---- Catdunent Boundary ~ : Calculations: 5-yr NRCS Flow Flow .. ID Reach Slope length Runoff Convey- Velocity Time Coeff S l ance V Tf C-5 fps minutes --------------------------- Area-Weighting for Runoff Coefficient Calculation Project Title: ----::-:-::::-- _ Catchment ID: D17 Illustration LDS LEGEND: Flow Di1'ection ~ Instructions : For each catchment subarea, enter values for A and C. Subarea Area Runoff Product ID Coeff. A acres CA input C* input input output , ., .,' :: -: : 0.01 ' 0:95 ·'·:'·'0;·O,Ot 02:: :':' :· '··:0;06 . 0.25' . ' .'. : . .. ).:...... : .•. .': "' : :: ':: ::. :,:.:,.:,:.... ,: . ." :::.'::. .. . , :.'::'.. ..: .': '. ' .' .": :.. ..:"'. ::,., ;. .::". :. . ': ... :: :.:' ':::. .:;..' .:. , : ' .,.: :.: ., <:' .. '::."" "':..' ' .:.',..:..';' ':. : :,:,:;:::..:: "::'." :..", . .::: : . " : : '. ....: I'·: ..':...<: ::::,:::. .: Sum: :: ... ".' Sum: ":;'""; :;'' ::0''02' __~ . , : " : : ;:' '' ~ : i ; '' : Area-Weighted Runoff Coefficient (sum CAlsum A) = : :();~;f . *See sheet "Design Info" for inperviousness-based runoff coefficient values. D21-100YR, Weighted C 10/23/2012, 11:04AM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title : -LOS -==~------------- Catchment 10: --=017 -.:..:.- _ I. Catchment Hydrologic Data Catchment 10 = 017 Area = -'---0=-.-=-07=. - Acres Percent Imperviousness = 33.00 % NRCS Soil Type = . 0 A, B, C, or 0 II. Rainfall Information I (inch/hr) = C1 • P1/(C2 + Td)"C3 Design Storm Return Period, Tr = ~.,---=-=-..,:,1",,0 years (input return period for design storm) C1 = 28:50 (input the value of C1) C2= 10.00 (input the value of C2) C3= 0;786 (input the value of C3) P1=1AO inches (input one-hr precipitalion--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient , C = , .. '0:39 Overide Runoff Coefficient, C = .... :: (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = • :: ' < : :0 :3~ Overide 5-yr. Runoff Coefficient , C = .". (enter an overide C-5 value if desired,or leave blank to accept calculated C-5.) Illustration Flow Dire<fio <E- Catdunent Bounduy NRCSLand Heavy nllageJ Short Nearly Grassed Type Meadow Field Pasturel Bare Swales! Lawns Ground Waterwa s Conveyance 2.5 5 7 10 " 15 I Calculat ions: Reach Slope Length 5-yr NRCS Flow Flow 10 S L Runoff Convey- Velocity Time Coeff ance V Tf ftlft ft C-5 fps minutes input input output input output output Overland :':: 0;0150 " :::::":40 ' : ~ i J; i ~ ! - : l .. 0.32 ':,1: ':N!Ai: .81. " i ': 0.09' •..,'; 7: " :'.,1·." , ,:::: :.. :::,:,: ' .: >.'':<,...,y"" >,:", .' ,,: y. ··::,'::2 ' ;:;: }.:.: .,. :: .., :: >'.'. '.•. :." ·":·.·,·3" .. ..':,:,:': ... ::, ,'",'. ....,.. ":" .• 4 -.'. ., .. .. 5 Sum 40 Computed Tc = 7:81 -l---ta? - 11(, User-Regional Entered Tc Tc = = 10.7.81 22 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, 1=_·---,---,4::-.-:::15=·.inch/hr Peak Flowrate, Op = Rainfall Intensity at Regional Tc, I = 3..76 inch/hr Peak Flowrate, Op = Rainfall Intensity at User-Defined Tc, I = ; · .4.15 inch/hr Peak Flowrate, Op = ~ o ~ 0 33(~/q) ,D7;;- 0.10 CF~ D17-100YR,TCandPeakoQoo f,2?C~3)8~(07;:; o,zy CFS 10123/2012, 11:05 AM Area-Weighting for Runoff Coefficient Calculation Project Title: ----LDS :::.;:,..:;,.- - Catchment JD: ----------------":D18 ....-..;------------ Illustration LEGEND: Flow Direction 4 Instructions: For each catchment subarea, enter values for A and C. Subarea Area Runoff Product ID acres Coeff. A C* CA input input input output .. Sum: 0.05 0.04 0.09 .. .:: .. ..';<>.:..,: ........... .:.. .....: .: : .:. . : ..: . ::: :. ........ i ( .. Area-Weighted Runoff Coefficient (sum CAlsum A) =: 0.36 *See sheet "Design Info" for inperviousness-based runoff coefficient values. D13-10YR, Weighted C 10/23/2012, 4:27 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: -----------==LOS :~------------- Catchment 10: -=018 ...:-=-- _ I. Catchment Hydrologic Data Catchment 10=-,,=0:...:1c::8_== Area = '· 0:25 Acres Percent Imperviousness = . ' :. 36.00 % NRCSSoilType= < ,·' 0 A, 8, C, or D II. Rainfall Information I (inchlhr) = C1 • P11(C2+ Td)"C3 Design StormReturnPeriod, Tr= '.C: . < "":10 years (inputreturnperiodfordesignstorm) C1 = ' , :" .[28;50 (inputthevalueofC1) C2=. -JMO (input the valueofC2) C3=.·.· 0,786 (input the value of C3) P1= '< :' : ,':.« 1A O.inches (inputone-hr precipitation-see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = : 0040.' Overide RunoffCoefficient,C =,.;•_.. _---..;;:.;< ;.;; (enteranoverideCvalueif desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = ' 0.33 Overide 5-yr. Runoff Coefficient, C= "'.' " . ,(enteranoverideC-5value ifdesired, or leave blank to accept calculated C-5.) Illustration NRCS Land Type Heavy Meadow TiIIagel Field Short Pasturel Lawns Nearly Bare Ground Grassed Swales! Waterways Paved Areas & Shallow Paved Swales Sheet Flow) Conveyance 2.5 5 7 10 II 15 II 20 Flow Dil'edio <f-- Catchment Bowu\ar.y Calculations: Reach Slope Length 5-yr NRCS ID S L Runoff Convey- Coeff ance ftlft ft C-5 input input output input Overland -0;0250 ·... 0140'..·' ...'.. 0;33 N/A """:«<1>: ;><-">",,,:?_.:>: 1 ..., ,', ' -:0)[ ;2 ' : ~ : : : ' : . ,:}>:)a·..':""· ,. ,:,,,. ..,. :":: -': '::::;4,. :" ." . ':5 Sum 140,· ComputedTc = Flow Flow Velocity Time V Tf fps minutes output output --------------------------- Area-Weighting for Runoff Coefficient Calculation Project Title: ---::::"':"'::-- _ Catchment 10: 019 Illustration LOS LEGEND: Flow Direction ~ Catcbm.eot Boundaly Instructions: For each catchment subarea,entervaluesforAandC. Subarea Area Runoff Product 10 acres Coeff. A C· CA input input input output .•••. .:.•"..•.i / i O,tr1 ••..•• '••I··.·....• 0]25 .'..•• '., Oioa······· ,..>.........,.../ .... Sum: " ' O~09 Sum:0.08 •. ••••••• "; c. . . - ' L--"';;';;';;~--' Area-Weighted Runoff Coefficient (sum CAisum A) =: 0,81 ·See sheet "Design Info" for inperviousness-based runoff coefficient values. 029-10YR , Weighted C 10/23/2012, 12:04 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: __,...,-- --=lOS =::-=- _ Catchment 10: ~ __019 =_.:..::.... _ I. Catchment Hydrologic Oata Catchment 10=..:D:....1.: .::9_=-=-= Area = 0.09 Acres Percent Imperviousness = ' 87:00 % NRCS Soil Type =D.A, S, C, or 0 II. Rainfall Information I (inch/hr) = C1 • P1/(C2 + Td)"C3 Design Storm Return Period, Tr = . ." <:::10 years (input return period for design storm) C1=--'-'--,;:28;;;;:.;50 :e (input the value of C1) C2= ---''"''-'::10.:::-=00 e (input the value of C2) C3=---'-,~'7"0.':786 -= (input the value of C3) P1= . :.:. l AOinches (input one-hr precipitation-see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = ().74 Over ide Runoff Coefficient, C = (enter an overide C value if desired , or leave blank to accept calculated C.) S-yr. Runoff Coefficient, C-S = 0.71 Overide 5-yr. Runoff Coefficient, C = : ' : :.: (enter an overide C-S value if desired, or leave blank to accept calculated C-S.) Illustration NRCSLand Type Conve ance Heavy Meadow 2.5 Tillage! Field 5 Short Pasturel Lawns 7 Nearly Bare Ground 10 Flow Directio ~ .Ca tchmen t Boundary Grassed Swales! Waterwa s 15 II Calculations : Reach Slope Length 5-yr NRCS Flow Flow 10 S L Runoff Convey- Velocity Time Coeff ance V Tf ftIft It C-5 fps minutes input input output input output output Overland i . O.0200.: 1 ·48 -; .: 0.71 .··.···· N/A , .:0;20 : 3.92 . · :1 " . .: ". 0.0200 :.·: '.20 ' 20.00 .·.·. ...·2::83' :· 0.12 :"·-2.: ;.-..: :-: ::::':-:: '.::': .' : '" -. '" ..:-'" '. '. : .' ' :'-:'-:3:· ,"-:< .: :. .';:': . . , ' t. 'i'.. ''-'': " ,:':., .;-; .;:..: . ~f ' :: . 5 Sum 68 Computed Tc = 4.03 - 15 User-Regional Entered Tc= Tc = 10.S.OO 38 --------------------------- --------------------------- Area-Weighting for Runoff Coefficient Calculation Project Title: LOS Catchment 10: 020 Illustration LEGEND: Flow Direction Catcbmeot * Boundary Instructions: For each catchment subarea, enter values for A and C. Subarea Area Runoff Product ID acres Coeff. A C* CA input input input output 0.14 0.25 0.04 0.18 0.95 0.17 Sum: 0.32 Sum: O~21 Area-Weighted Runoff Coefficient (sum CAlsum A) = 0•.64 *See sheet "Design Info" for inperviousness-based runoff coefficient values. D15-10YR, Weighted C 10/23/2012,10:52 AM ---- CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: LOS _ Catchment 10: 020 _ I. Catchment Hydrologic Oata Catchment10= 020 Area = ---0-.-32-Acres Percent Imperviousness = 64.00 % NRCSSoilType= D A, S, C, or 0 II. Rainfall Information I (inch/hr) =C1 * P1/(C2 + Td)AC3 Design Storm Return Period,Tr = C1 = C2= C3= P1 = 10 years -----::2:"='8~.5~0 10.00 0.786 1.40 inches (input return period for design storm) (input the value of C1) (input the value of C2) (input the value of C3) (input one-hr precipitation--seeSheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0...•.;..;53.•. ;· .· Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient,C-5 = 0,48 Overide 5-yr. Runoff Coefficient, C = Paved Areas & Shallow Paved Swales (Sheet Flow) Grassed Swales! Waterways Nearly Bare Ground Short Pasture/ Lawns Tillage/ Field Heavy Meadow NRCS Land Type Conveyance 2.5 5 7 10 II 15 II 20 (enter an overideC-5 value if desired, or leave blank to accept calculatedC-5.) Illustration LEGEND o Beginning Flo\VDirectio +------ Catdunent Boundary Calculations: Reach Slope Length 5-yr NRCS Flow Flow 10 S L Runoff Convey- Velocity Time Coeff ance V Tf --------------------------- --------------------------- Area-Weighting for Runoff Coefficient Calculation Project Title: LDS Catchment ID: D21 Illustration LEGEND: Flow Direction ~ Catchment Boundary Instructions: For each catchment subarea, enter values for A and C. Subarea Area Runoff Product ID acres Coeff. A C* CA input input input output 0.06 0.25 0.02 0.02 0.95 0.02 .' Sum: 0;08 Sum: 0.03 to Area-Weighted Runoff Coefficient (sum CAlsum A) = OA3 *See sheet "Design Info" for inperviousness-based runoff coefficient values. D21-100YR, Weighted C 10/23/2012, 11:01 AM ---------------------------- CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: ..:.:.:.-,..:- _ Catchment ID: D21 LDS I. Catchment Hydrologic Data Catchment ID =...:...D...:...2....:.1_:--:-: Area = 0.08 Acres Percent Imperviousness= 43.00 % NRCS Soil Type = D A, S, C, or D II. Rainfall Information I (inch/hr) = C1 * P1 I(C2 + Td)"C3 Design Storm Return Period, Tr =_---,,~·'='10~· years (input return period for design storm) C1 = 26.,50 (input the value of C1) C2= 10,{)() (input the value of C2) C3= 0.786 (input the value of C3) P1 = 1;40 inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient,C = OA3 Overide Runoff Coefficient,C = __~~ (enter an overide C value if desired, or leave blankto accept calculatedC.) 5-yr. Runoff Coefficient, C-5 = 0.36 Overide 5-yr. Runoff Coefficient, C = -'--'-(enter anoverideC-5 value if desired, or leave blanktoacceptcalculatedC-5.) Illustration NRCS Land Type Heavy Meadow Tillage! Field Short Pasture! Lawns Nearly Bare Ground Grassed Swales! Waterways floI\' Directio ~ Catc:hment Bounclary Paved Areas & Shallow Paved Swales (Sheet Flow) Conveyance 2.5 5 7 10 II 15 II 20 ~ . Calculations: Reach NRCS Flow Flow ID Slope Length 5-yr Velocity Time Coeff S L Runoff Convey- ance V Tf minutes input ftIft ft C-5 fps input input output output Overland output N/A 7.75 Area-Weighting for Runoff Coefficient Calculation Project Title: --=:.=...: _ Catchment ID: D22 LDS --------------=-==-------------- Illustration LEGEND: Flow Direction 4 CatCbmmt Bouo.dary Instructions: For each catchment subarea, enter values for A and C. Subarea Area Runoff Product ID acres Coeff. A C* CA input input input output ·····.. m08 .··<I>..• ·· 0:02 ...:. .. .. .......:::...•.. 0: . ...: . :.: .. . . ..:..:..' ".<.'/ .... I ······ .'. .. : ..... .: . .. k .. .. ': I... . . .... 1 ·· / 1>< ) Sum: 0.08 Sum: 0.02 Area-Weighted Runoff Coefficient (sum CAisum A) = 0.25 *Seesheet "Design Info" for inperviousness-based runoff coefficient values. D17-10YR, Weighted C 10/23/2012,11:06AM --------------------------- Area-Weighting for Runoff Coefficient Calculation Project Title: ---::=-= _ Catchment 10: 023 Illustration LOS LEGEND: Flow Direction ~ Cat:dl:meDt Boundary Instructions: For each catchment subarea, enter values for A and C. Subarea Area Runoff Product 10 acres Coeff. A C" CA input .Cr···'·"·· •••• ••••••••• input / .i O;34···.······ input 0.25 <···· output 0.03 0.09 ...... ·.··.· c· .... .. .. ... . ...... ••.:.• •••):..•.:. ••..• ·.;x:· .· ....•••.\ Sum: 0.31 Sum: 0.11 Area-Weighted Runoff Coefficient (sum CAlsum A) =: .. 0.•31 " "See sheet "Design Info" for inperviousness-based runoff coefficient values. D18-10YR, Weighted C 10/23/2012,4:29 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: -===- _ Catchment 10: -=023 =- _ LOS I. Catchment Hydrologic Oata Catchment 10=-=D-=2-=3----,~=- Area = 0.37 Acres Percent Imperviousness= 31.00 % NRCSSoilType = · : 0 A, B,C, or 0 II. Rainfall Information I (inch/hr) = C1 • P1 /(C2 + Td)"C3 Design Storm Return Period, Tr = ----,----,,,,' , '-f-"'=10:;••years ,. (input return period for designstorm) C1 = . 28.50 (input the value of C1) C2=10;00 (input the value of C2) C3=0,786 (input the value of C3) P1=1A0 inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = ' ;:" ,Q.a!J: Overide Runoff Coefficient, C = ..' ''"::":. (enter an overideCvalueifdesired,or leave blank to accept calculatedC.) 5-yr. Runoff Coefficient, C-5 = ' :';'. ,:,q.:3'f Overide 5-yr. RunoffCoefficient,C = (enter an overideC-5 value if desired, or leaveblank to accept calculatedC-5.) IIIustration NRCS Land Type Conveyance Heavy Meadow 2. Tillage! Field Short Pasture! Lawns 7 Nearly Bare Ground 10 Calculations: 'IIO ::;;. 3 Reach Slope Length 5-yr NRCS Flow Flow 10 S L Runoff Convey- Velocity Time Coeff ance V Tf ftIft ft C-5 fps minutes input input output input outout output Overland ,::0.0200 ',. 153 .·,··..· 0 ~31 N/A::' ,.·····' ;0,18 104.05 :"" ,·1« ·,:'·' :: : " .': .... .: ,·,,:, '.":2:·","" :·''" :.':.:,' . ..,: .· ·.::::·3:,;: .,., ...:::...', .. :' : .::: 4 .. ." .«:.; , ',,;" : ., . ' ,. ,.... " 5 " . "-5- Sum -- 153 Computed Te = 14:.05 LIb RegionalTc = 10.85 User-EnteredTe= 10.85 IV. Peak Runoff Prediction Rainfall IntensityatComputedTc, I =_.·:_-::3:-:.2;::8:-ineh/hr PeakFlowrate,Qp = Area-Weighting for Runoff Coefficient Calculation Project Title: --.LDS ::~:_______;;:::__::=_==:__-------- Catchment ID: _____________D24 _'--- --"::.1.....>...25 l<= _ Illustration LEGEND: Flow Direction 4 Calc:bm.eat Bouo.dary Instruct ions: For each catchment subarea , enter values for A and C. Subarea Area Runoff Product ID acres Coeff. A C· CA input input input output 0.01 ·.• " 0;95 ,., .,' 0',0,1 '::" ' ,.•,>T. •..','" 0.05 · 0.25···..· .... l .Ud! ) "' . ,;( ' 0, ':"''',...,.' " ·cc··, .. . " ." . "... :'r.::, :," ., ". :'" ., " . ... ..: .'" . ... ,'. .,.,..'. ".; .',',.... . ',< ... :',.. ,.<, .' ,.,...,...:".•. 1 .' ', , " \1 >':: ... \ '.".. ,.,. .'..',.,...,' ...I:', ·: ',:," .·· C. ·C··. )" . ... >: ,':' Sum : ': :: Q~Q 6 Sum: 0.02 ·,,· Area-Weighted Runoff Coefficient (sum CAlsum A) =•• 0.36 » ' ·See sheet "Design Info" for inperviousness-based runoff coefficient values. UD-Rational v1 .02a, Weighted C 10/23/2012,4:14 PM length S-yr NRCS Flow Flow L Runoff Convey- Velocity Time Coeff ance V Tf It C-5 fps minutes input cutout input output output . ".' 40. .. 0 " " '0.33 : '(', 'NJA '· " <OJ O, (l.99 I .: "' .,' .'.' .,.'.< ' . . / "' .. ....'.. 1<',·' · :<:,0,:·· .."' ..:/.,. .o' " .: .... " . .:., . 40 ComputedTc = 6.99 Regional Tc = 10.22 User-Entered Tc = 6.99 00 · · · . CALCULATION OFA PEAK RUNOFF USINGRATIONALMETHOD Project Title: -LOS -::-::-:-_-=---;;;:;:-:::::- _ Catchment 10: --024 '---'-_- """""D "'---7,-">.<$ ='-- _ I. Catchment Hydrologic Oata Catchment 10= 024 - .D 25 Area = 0.06 Acres PercentImperviousness = 36;00 % NRCSSoilType = ..••0 A, B, C, or 0 II. Rainfall Information I (inch/hr) =C1 • P1/(C2 + Td)"C3 Design Storm Return Period, Tr =__= .~10=-· years (input returnperiodfor designstorm) C1 = 28;50 (input the value of C1) C2= 1(WO (input the value of C2) C3- . Oml6 (inputthe value of C3) P1= <1040 inches (input one-hrprecipitalion--see Sheet"Design Info") III. Analysis of Flow Time (TIme of Concentration) for a Catchment Runoff Coefficient, C = . ' o,'01ilO OverideRunoffCoefficient, C= ....;,....:...,.;,..~.;... (enter an overideCvalueifdesired,or leave blankto acceptcalculatedC.) 5-yr. RunoffCoefficient,C-5 = . ' ", >0.33 'Overtde 5-yr. RunoffCoefficient,C = . (enter an overide C-5value if desired, or leaveblanktoacceptcalculated C-5.) Illustration Conveyance 2.5 Cakhrnent Boundary Paved Areas & Shallow Paved Swales (Sheet Flow 20 -' Calculations: Slope S ftllt input 0.0200" . ... ...... .... , ...<'., .. ,. I Sum 8 - ---------------------------- Area-Weighting for Runoff Coefficient Calculation Project Title : LOS _ Catchment ID: D26 IIIustration LEGEND: Flow Direction 4 Catcbm.ent Boundaly Instructions: For each catchmentsubarea,enter values for A and C. Subarea Area Runoff Product ID acres Coeff. A C* CA input input input output 0.03 . 0.01 .,,<. .i\ < .... : . . .. ....., .. . . .... 1<,· ",., .:,. :.:,.:. .. , ,.,:. ,:, .:."'. -. i : , . "'. , ,.. .:.>. :" .,. .. .... .. .:, ...,: i . < .,< . . ,...,..., .,' :..".. ':': .,:. Sum: « (:);03 '" Sum: 0.01 Area-Weighted Runoff Coefficient (sum CAisum A) =: 0.25 *See sheet "Design Info" for inperviousness-based runoff coefficient values. D19-10YR, Weighted C 10/23/2012,12:06 PM ••••••• CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: --------------=-::LOS -7"""------------ Catchment 10: -=026 ---=-- _ I. Catchment Hydrologic Oata Catchment10= 026 Area =---0:"'"";"::'"03:"'"" Acres PercentImperviousness = 25~00 % NRCS Soil Type= D A, S, C, or 0 II. Rainfall Information I (inch/hr) =C1 * P1/(C2 + Td)AC3 DesignStorm Return Period, Tr =-,--....;...,;,.~&10;..,··· years (input return periodfordesignstorm) C1=28;50 (inputthevalueofC1) C2= 10.00 (input the value of C2) 'C3= 0.786 (inputthevalueofC3) P1 = 1,40 inches (inputone-hr precipitation--see Sheet"DesignInfo") III. Analysis of Flow Time (Time of Concentration) for a Catchment RunoffCoefficient, C =..;..,;,...;..,;,.,-,O=:;;;·;. :".36,:..· OverideRunoffCoefficient, C = (enter an overideC value if desired,or leaveblanktoaccept calculated C.) 5-yr. RunoffCoefficient,C-5 = ·0.28 Overide 5-yr. Runoff Coefficient, C = (enteranoverideC-5 value if desired,or leaveblanktoaccept calculated C-5.) Illustration 20 Paved Areas & Shallow Paved Swales Sheet Flow) Grassed Swales! Waterwa s 10 II 15 II Nearly Bare Ground 7 Short Pasturel Lawns 5 Tillagel Field 2.5 Heavy Meadow NRCS Land Type Conveyance o LEGEND Beginning Flow Directio ~ Catchment Boundary -. .. ... Calculations: NRCS Flow ID Reach Slope Length 5-yr Convey- Velocity Coeff S L Runoff ance V ftIft C-5 fps input Area-Weighting for Runoff Coefficient Calculation Project Title: LOS Catchment 10:----------------:::027 :-==------------- IIIustration LEGEND: Flow Direction ~ Catchment Boundar:y Instructions: For each catchment subarea, enter values for A and C, Subarea Area Runoff Product 10 acres Coeff. A C· CA input input input output ..'.'. .'. ..'.' , 0.05 " . O~ 2·5 ) 0.01 .... 0,00 ',·0,95 ( 0.00 ... ...,.. .<.'>,. ' :.: . :,".: ,.: , """ ...'. ".,. : ' "". .''':' .. :: ...:.,..., ... ••••• "" .:. .... ,... ,.... '. }}>1 '.:.' ... . ' .:' .' ...., '(: }} < ...........: :: ."'.' ..'.' ,...,': .. '.' '.' ,.:'. ' ." " " ,:: '.< ..,..: ".,. . ..., '" .,...:.....:'..", :.. Sum: .., ;() ~O5· · ·· Sum: 0.01 Area-Weighted Runoff Coefficient (sum CAlsum A) =., 0.29 ·See sheet "Design Info" for inperviousness-based runoff coefficient values. 026-10YR, Weighted C 10/23/2012, 12:08 PM ---------------------------- CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: LOS _ Catchment 10: 027 I. Catchment Hydrologic Data CatchmentID =...=D:...::2:..:...7_.,...--_ Area = 0.05 Acres Percent Imperviousness = 29,00 % NRCSSoilType= D A, B, C, or D II. Rainfall Information I (inch/hr) =C1 * P1 I(C2 + Td)J\C3 Design Storm ReturnPeriod,Tr = 10 years (input return period for designstorm) C1 =---,.2..,.,..8.....,..,.5=0 (input the value of C1) C2= 10;00 (input the value of C2) C3= 0.786 (input the value of C3) P1= 1;40 inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0;;.;:.·;;:;38.•.;• ;. Overide Runoff Coefficient, C = (enter an overideCvalueifdesired,or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = .0;·30 Overide 5-yr. RunoffCoefficient, C = ---'- (enter an overideC-5 value if desired, or leave blank to accept calculated C-5.) Illustration 20 Paved Areas & Shallow Paved Swales (Sheet Flow) Flow Directie ~ Ce:khment Bound.ery LEGEND QBeginning Grassed Swales! Waterways 10 II 15 II Nearly Bare Ground 7 Short Pasture! Lawns 5 Tillage! Field 2.5 Heavy Meadow NRCS Land Type Conveyance Calculations: Reach Slope Length 5-yr NRCS Flow Flow .. 10 S L Runoff Convey- Velocity Time Coeff ance V Tf C-5 fps minutes input ftIft ft input output input output output 54 :. Overland O~0200 -.' D;~O NlA ..• 0:11 .8.44 ---------------------------- Area-Weighting for Runoff Coefficient Calculation Project Title: --==-=- _ Catchment ID: D28 Illustration LDS l LEGEND: Flow Direction Catcbm.eot Bouo.dary Instructions : For each catchment subarea, enter values for A and C. Subarea Area Runoff Product ID acres Coeff. A C* CA input input input output .. ,.."::1/ ·n :n.,.·.:", ·, " 0;25 :<t u: ,:;: : .. ". .., " " " ,.. ; : "'>" ' . ., : < -. ., . . .:..: ......... .·x :: ····1\ I·:" : . " ..' ' . I: .; .:: . .: /i : . ' : :: ,;. I:,' ',,<; :'" :- .'....: ""-:' "::. ...." ,' ;' :: .:.:: 1-:" '" : ' ', .';> . : . '': ' .:." . " "'.:"",/ ..; . .. ; .;c, . ,:,: :,:":."" ".," "":. .':':" ,':', : .' Sum: : 0.02 Sum: 0.01 \ . Area-Weighted Runoff Coefficient (sum CAlsum A) =: 0.25 "See sheet "Design Info" for inperviousness-based runoff coefficient values. D27-10YR, Weighted C 10/23/2012, 12:10 PM ---------------------------- CALCULATION OF A PEAKRUNOFFUSING RATIONAL METHOD Project Title: ~-LOS =--------------- Catchment 10: 028 I. Catchment Hydrologic Oata Catchment10=_0....;2;..:.8_,..........,..._ Area = 0.02 Acres Percent Imperviousness =25.00 % NRCSSoilType= 0 A, 8, C, or 0 II. Rainfall Information I (inch/hr) = C1 * P1/(C2 + Td)J\C3 Design Storm Return Period,Tr =__,.,.,.,.".,;,;10,.,.· years (input return period for design storm) C1 = 28.50 (input the value of C1) C2= 10.00 (input the value of C2) C3= 0;786 (input the value of C3) P1= tAO inches (input one-hr precipitation--seeSheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C =O~3.6 Overide Runoff Coefficient, C =,;..;,...;.....,....~,.;""..,.(enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0.2.8 Overide 5-yr. Runoff Coefficient, C = ---.;..(enter an overideC-5 value if desired, or leave blank to accept calculatedC-5.) Illustration NRCS Land Type Conveyance FlO\vDirectio «-- Catdunent Boundary Heavy Tillage! Short Nearly Grassed Paved Areas & Meadow Field Pasturel Bare Swalesl Shallow Paved Swales Lawns Ground Waterwa s Sheet Flow) 2.5 5 7 10 II 15 20 ··1 • ~ Calculations: Reach 10 Overland 1 Slope S ftIft input Q,02.Qp···· ... I ..:.···· •• .: . 2 .....•. 1<:<······ ...• 3 . 4 . 5 Sum t:= .. 25 ~ 93 IV. Peak Runoff Prediction Length L ft input 33 . ... •.< ••:..••••.:< •.•• ...• 33 5-yr NRCS Area-Weighting for Runoff Coefficient Calculation Project Title: LDS Catchment 10: --------------------------=---=--D29 :.-.-::-.-.--_--------------------- - IIIustration lEGEND: Flow Direction ~ Instructions: For each catchment subarea, enter values for A and C. Subarea Area Runoff Product ID acres Coeff. A C* CA input input input output < .': ·····.•·.·0;01'· · Q.25 . .. " 'O~OO " <. · 0.36 ··0.95.·.···.: 0.34 . " I ···..... ... '. ...... . • . •. .< . ,': .. ....:.......••• . :>•. ....:.•c,. : .. . ' .:<:.' .. . . .:......::.:.; I .:••,:" ...:.. :", . "' : : :: .:. -: ....:.. ...:. ; x ', ·'' > ....: ...... ..... '.': . " : ... ..:::Sum: .'..:'.:. .:·':...a;. ~tw ........ .: ' •..:. ··; . '.>"'.Sum: '.:.:.:;" ' 0.34 Area-We ighted Runoff Coefficient (sum CAlsum A) = 0.93 *See sheet "Design Info" for inperviousness-based runoff coefficient values. t , D29-10YR, Weighted C 10/23/2012,12:00 PM ----------------------------- • • • •••••••• Area-Weighting for Runoff Coefficient Calculation Project Title: LDS Catchment ID: --------------=;.D30 ...:..:------------ Illustration LEGEND: Flow Direction 4 Catcbmeot Bouo.daI'y Instructions: For each catchment subarea , enter values for A and C. Subarea Area Runoff Product ID acres Coeff. A C* CA input input input output ........ .:,:.. 0.01 0.25> ····: 0.00 .,.. 0.37 0.95 " 0.35 :.: .,, ' .'. -.:.:.:. : . ..... :....,.{: . ,:, .,.: ..,:., ., :.. { '.<"".:': ., I'{ :::> '.'.'.: :.:':.: : :.,:' '. """'.:. ... :,': .,.,.:":.:,:, :.:.. :.::. , :.> ,.,. . .:" :' :, . .':..,.,..':..:'..'..:..:I · .., . .". Sum: · · :' · O~38 : · Sum: 0.35 Area-Weighted Runoff Coefficient (sum CAlsum A) =:.. Q.93 .. *See sheet "Design Info" for inperviousness-based runoff coefficient values. D22-10YR, Weighted C 1012312012,11 :56AM ---------------------------- CALCULATION OFAPEAK RUNOFF USINGRATIONALMETHOD Project Title: -LOS ---,'-- _ Catchment 10: 030 I. Catchment Hydrologic Data Catchment ID = ....:D....:3....:.0_~:- Area = 0.38 Acres Percent Imperviousness = 93.00 % NRCS SoilType = DA, B, C, or D II. Rainfall Information I (inch/hr) = C1 * P1/(C2 + Td)AC3 Design Storm Retum Period, Tr = 10 years (input return period for design storm) C1 =-----:2-8....;..,S.,.,...0 (input the value of C1) C2= 10.00 (input the value of C2) C3= 0.786 (input the value of C3) P1= 1.40 inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = ---.,._--'0:...;..=;.81,;.,. Overide Runoff Coefficient, C = 5-yr. Runoff Coefficient, C-5 = Overide 5-yr. Runoff Coefficient, C = Ito:;:.q NRCS Land Type Heavy Meadow Tillage! Field Short Pasture! Lawns Nearly Bare Ground Grassed Swales! Waterways Paved Areas & Shallow Paved Swales Sheet Flow) Conveyance 2.5 5 7 10 II 15 II 20 Calculations: (enter an overide C value if desired, or leave blank to accept calculated C.) 0.79 (enter an overide C-S value if desired,or leave blank to accept calculated C-S.) Illustration LEGEND OBeginni:ng Flow Directio ~ Catchment Boundary IV. Peak Runoff Prediction Rainfall Intensityat ComputedTc, I = ~_~S-:-,.-:-82_inch/hr 1.80 cfs Rainfall Intensityat RegionalTc, I = 3.64 inch/hr 1.12 cfs Rainfall IntensityatUser-Defined Tc, 1= 4.7S inch/hr 1.47 cfs Peak Flowrate, Qp = Peak Flowrate, Qp = Peak Flowrate, Qp = 9-- Reach Slope Length 5-yr NRCS Flow Flow ---------------------------- Area-Weighting for Runoff Coefficient Calculation Project Title: --=-:::-:- _ Catchment 10: 031 LOS Illustration LEGEND: Flow Direction 4 Ca:r:cbmem Boundary Instructions: Foreachcatchment subarea,entervaluesforAandC. , .. ; ''' <. c: ", .,.;, », .. .., (' ,. .: '.. Sum: O. ,t~ Sum: 0.06 Subarea Area Runoff Product 10 acres Coeff. A C* CA input input output . , input 0.08 .~ " 0.02' '. ., 0.04 .·.····.. 0:99; 0.04 " .'.. ... Area-Weighted Runoff Coefficient (sum CA/sum A) = . 0.48 *See sheet "Design Info" for inperviousness-based runoff coefficient values. D28-10YR, Weighted C 10/23/2012,12:12 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: -=LOS -:,....,....- _ Catchment 10: ..031 =..;.:..:..- _ I. Catchment Hydrologic Oata Catchment 10 =_0....;3_1_.,.........,..,::"," Area = 0.12 Acres Percent Imperviousness = 48,00 % NRCS Soil Type = 0 A, B, C, or 0 II. Rainfall Information I (inch/hr) = C1 * P1/(C2 + Td)"C3 Design Storm Return Period, Tr = to years (input return period for design storm) C1 =-~278,"=50'="·. (input the value of C1) C2= 10,00 (input the value of C2) C3= 0;186 (input the value of C3) P1= tAO inches (input one-hr precipitation--see Sheet "0esign Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = OA5 Overide Runoff Coefficient, C =~~~....... (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = D'!39 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration NRCS Land Type Heavy Meadow Tillage! Field Short Pasture! Lawns Nearly I Grassed Bare Swales! Ground Waterways Flo\VDirectio +---- Catchment Boundary Paved Areas& ShallowPavedSwales (SheetFlow) Conveyance 2.5 5 7 10 II 15 II 20 Calculations: IIO z-3Co9 Flow Flow ID Reach Slope Length 5-yr NRCS Convey- Velocity Time Coeff S L Runoff ance V Tf minutes input ftIft ft C-5 fps input output output Overland input output ·O:Q20Q ...:110 .·Q.39 .•.. N/A 0.17 10.74 :.... / ......., / :. ..: .:... : ...: .: -.:. . .. . / 1 •2·:· ..;. .:.../ ...:/ ../ ......::.: ... : .... .......... > Area-Weighting for Runoff Coefficient Calculation Project Title: LOS Catchment 10:---'--"'------------032 =-=-=-------------- -----------------------------.,-- Illustration LEGEND: Flow Direction 4 Instructions: For each catchment subarea, enter values for A and C. Subarea Area Runoff Product 10 acres Coeff. A C* CA input input input cutout :- .)... .::. . . . ." ." ." ,. ~ •..•.:..:. ..••..,. "<'..•...•.... . . ••••• .•...• i •• •. •• -". I ... ....... < ••.•••. ..•••..• ... i ...........c: ." " Sum : ·.,:5:0W53 ,·,' Sum: 0.16 '- ---' .: ..... . . .. . .. ..: " ": . Area-Weighted Runoff Coefficient (sum CAlsum A) =, .0.30 *See sheet "Design Info" for inperviousness-based runoff coefficient values. D55-10YR, Weighted C 10/26/2012, 4:03 PM CALCULATION OF A PEAKRUNOFF USINGRATIONAL METHOD Project Title: '--__-'-- -LOS -=::-=-_'--...,,- _ Catchment 10:__--'-'---'- ...032 .:::..:=-__--'- _ I. Catchment Hydrologic Data Catchment 10 =.=0:.3:.: .=2_;:-::,:: Area = . 0.53 Acres Percent Imperviousness = 30.00 % NRCS Soil Type =_'---'- · ....:D~. A, S, C, or 0 II. Rainfall Information I (inch/hr) = C1 • P1/(C2 + Td)"C3 Design Storm Return Period, Tr = j O:years (input return period for design storm) C1 =28;50 (input the value of C1) C2- .: . to.OO (input the value of C2) C3= ': . l:);7S$ (input the value of C3) P1= .;_-,-."t"" ,-4;:o.O inches (input one-hr precipitafion-see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = :' ':. "';';();38 Over ide Runoff Coefficient, C = : .. : ,. .. " (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = . •.' "::" 0.30: Overide 5-yr. Runoff Coefficient, C =: .' , (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration 5 Short Pasturel Lawns 7 Nearly Bare Ground 10 Grassed Swales! Waterwa 15 7 Reach Slope Length 5-yr NRCS Flow Flow 10 S L Runoff Convey- Velocity Time Coeff ance V Tf flIfl ft C-5 fps minutes inout inout outout inout output output Overland :,<0;027Q / ' · >,219\,:<' 0.30 NIA ····0.24 :·;;· :"i '15l3j . ···>:..:::1 ~:<>:: } ,::,.<.:,' . "." I ,' ''';;' ' ''. '..;' "' :,"''2' ::,'' \)\:/:::, t>r;, " , ' " . " "':L ," '. " :3< ;> ,:::1:' ::: ][ "';;.:-;..> : -;-.;..;...:.. . .-.•.• • ~ .:.: . :; : ::};:>.;;: : ',..: .'" "'" 4 , ,' : :;:;':':".,;:-:.: .-;:;::; , " ","",' ",,' .,., ". · ·."'·.·' h .' .....\; ' :. ,:' 5 .. . "."I ." '.'" .: " ' . ,".'.: : .. .. I"';: . , Sum 219 ' Computed Tc = :.' .:15,31 - - 3b - User-Regional Entered Tc Tc = '. ' 11.11.22 22 Calculat ions: IV. Peak Runoff Prediction Rainfall Intensity at Computed Te, I = ,: . ·: 3.15 inchlhr Peak Flowrate, Qp = . " ..~s Rainfall Intensity at Regional Tc, I =.'":':3'.62 inchlhr Peak Flowrate, Qp = .~ Rainfall Intensity at User-Defined Te, I e : · :.:3·.62 ' inchlhr Peak Flowrate , Qp = . .' .~ ~6~c30(3~),53 ::;.O=!.Z ifS Area-Weighting for Runoff Coefficient Calculation Project Title: ---LOS == _ Catchment 10:------------_...=...033 .::...::.-_----------- Illustration LEGEND: Flow Direction Cat:• chm. eor Boundaly Instructions: For each catchment subarea, enter values for A and C. Subarea Area Runoff Product 10 acres Coeff. A C* CA input input input out ut ..- ....'. '" -,····IY O.OW .···. 0.95 ·····' ,.,., . . . .,."..0.03 0.25 ._..-,. .... ./ .... ., I ,.';, ....' i i < ·c·· ... . ,....,. .,- ,.. '.' 'c-_ .,'.,' « _. ., ' <'. .,.:" / .'.' " ... .... • •••••• ."" .,.." .,_.-,", <} _.-•.-.. .' .' .',...... ' c. • ••••• . ,..,..} c..... "' .,. .. / . / Sum: ',',; P;05 Sum: 0.03 Area-Weighted Runoff Coefficient (sum CAisum A) = ; 0.53 *See sheet "Design Info" for inperviousness-based runoff coefficient values. 024-025-10YR, Weighted C 10/23/2012,4:20 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title : ~~-LOS ------------ Catchment ID: ""D33 "'-''-''- _ I. Catchment Hydrologic Data Catchment 10 = -=D:...:3-=3_~".. Area = 0.05 Acres Percent Imperviousness = 53.00 % NRCS Soil Type = 0 A, S, C, or 0 II. Rainfall Information I (inch/hr) = C1 • P1/(C2 + Td)"C3 Design Storm Return Period, Tr = __==-=10=·.-years (input return period for design storm) C1 = 28.50 (input the value of C1) C2= 10.00 (inpul the value of C2) C3= 0.786 (input the value of C3) P1= 1.40 inches (input one-hr precipitation-eee Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0;· :..;..:.47' Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank 10 accept calculated C.) 5-yr. Runoff Coefficient, C-5 = Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration Conveyance 2.5 5 Calculations: Length Flow ID Reach Slope 5-yr NRCS L Runoff Velocity Coeff S Convey ance V fps input flIft ft C-5 input output lnout output Overland ·.M200 · ... ··c:40·.:.... '::'. ·:" :0:41 ' NIA OtH ' . t .: ,,:c··· .:}.·...·I .::. " .... ,....: . : ..'. ': ': > 2 3 . : .: ... :........:........::. . : . , .:...:. :. ; . :...::<..::.:;..;.. :::::.,. .'.. ...,..: 4 . ..... 5 Computed Tc = Regional Tc = User-Entered Tc = Sum 40. Flow Time Tf minutes output ' 6.23 '.:", ' >:.:.'.:.... ,..:-:. .,. ., . ... . 6.23 ' 10.22 IV. Peak Runoff Prediction -' - -Iq 6.23 Rainfall Intensity at Computed Tc, I = _--,--:4;;-:;4=6=-. inch/hr Peak Flowrate, Qp = 0.11 cfs Rainfall Intensity at Regional Tc, I = 3,.76 inchlhr Peak Flowrate, Qp = . 0.09 cfs Rainfall Intensity at User-Defined Tc, I = 4.46 inch/hr Peak Flowrate, Qp = 0.11 cfs Q\O -:. y§3(~ ~) ~ 05::. 0 '1. CF.s D2'-D'S-IOYR, Tc and P"kQ Q10):: L2,5(.53) 1!J. (.6S) ;;...0 32 10/23/2012,4:20 PM CfS Area-Weighting for Runoff Coefficient Calculation Project Title: -LDS --,,~------------- ., r Catchment ID: -------------....D34 ;,...------------ Illustration LEGEND: Flow Direction ~ Instructions: For each catchment subarea , enter values for A and C. Subarea Area Runoff Product ID acres Coeff. A C* CA input input input output . . .. .. " 0.•01 0.9$ ' .. :; (W~ · .•·.. .'" · 0:03 0.25 ·:0:'01;········ ....; . .. .'.'.' ' . : .. ,-,: ..... ....;...·.1' ; ·; <· .0:: Sum: (U14.· . Sum: Area-Weighted Runoff Coefficient (sum CAisum A) = ; :.Q~#3. . : ; ; ; ' " *See sheet "Design Info" for inperviousness-based runoff coefficient values. D33-10YR, Weighted C . 10/23/2012,4:22 PM ---- CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: LOS Catchment 10:----------~---=-::034 "':'-------------- I. Catchment Hydrologic Data Catchment ID = D34 Area = 0.04 Acres PercentImperviousness =--....,...43:.:'- .~.700::'-· % NRCSSoilType = 0 A, S, C, or D II. Rainfall Information I (inch/hr) = C1 * P1/(C2 + Td)"C3 DesignStormReturnPeriod, Tr= __.".,:-,.,;to,"",." years (input return period for design storm) C1 = ,2~t50 (input the valueof C1) C2= 10.00 {input the valueof C2} C3= 0~786 {input the value of C3} P1= tAO inches {input one-hrprecipitation--see Sheet"DesignInfo"} III. Analysis of Flow Time (Time of Concentration) for a Catchment RunoffCoefficient, C=..,.;.;-..,.;.;-=0:;.;;;;=43= .•. OverideRunoffCoefficient, C = 5-yr. RunoffCoefficient, C-5 = 0:$6 Overide 5-yr. RunoffCoefficient, C = {enter an overide C value if desired,or leave blank to accept calculated C.} (enteran overide C-5 value if desired, or leave blankto accept calculated C-5.) Illustration NRCS Land Type Conveyance Heavy Meadow 2.5 Tillagel Field 5 Short Pasturel Lawns 7 Nearly Bare Ground 10 LEGEND o Beginning F1ol.v Direetio ~ Catchm.ent Boun.clary Calculations: RegionalTc = LID :::- Y3~ -rOO -- 95 User-Entered Te = ~ Reach Slope Length 5-yr NRCS Flow Flow 10 S L Runoff Convey- Velocity Time Coeff ance V Tf ftIft ft C-5 fps minutes input input output input output output Overland O;Q200:> «AO ..······:tl.36·· ··N/A.·••. OAO 6.70 1 .' ><. ......... .«< ...... .' .. ...... ." ' -. .<·2 ..... ..... '....... ....' ........ ....,...:: '< .. CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title : -====LOS ==-=-=c=- ~----- Catchment 10: --=035--=-=-..:036 :..::e.::..-__--'-- _ I. Catchment Hydrologic Data Catchment 10 = 035 - 036 Area = 0.02 Acres Percent Imperviousness = 25.00 % NRCS Soil Type = . 0 A, S, C, or 0 II. Rainfall Information I (inch/hr) = C1 • P1/(C2 + Td)"C3 Design Storm Retum Period, Tr = __~. ::7.10~years (input return period for design storm) C1 = 28.50 (input the value of C1) C2- ,10,00 (input the value of C2) C3= 0.786 (input the value of C3) P1= 1040 inches (input one-hr precipitation-see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = ". •0.36 Overide Runoff Coefficient, C = .,.,..........--'--__ (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = '. ' ' 0.28 Overide 5-yr. Runoff Coefficient, C = --'--(enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration NRCS Land Type Conveyance Heavy Meadow 2.5 Tillagel Field 5 Short Pasture! Lawns 7 Nearly Bare Ground 10 FwlV Direc:1io <E--- Cau"'-nt Boundary Calculations: C~O,l5 ~o~yl_ IV. Peak Runoff Prediction Slope Length 5-yr NRCS Flow Flow 10 S L Runoff Convey- Velocity Time Coeff ance V Tf flIft ft C-5 fps minutes input input output input output output .•0,0200 '· •.: 40 ····· ' ·' ;;' 0.28 ..• 'iN/A ' ·········0,09 "7A2 ...: .. .. . :.......; . ; .. .. ".':. : :.. :...... ..........:./ .: .... I.: .. ..: ::.:.:.:.:.: ' . :c. Sum 40 Computed Tc ",.7.42 ::: : - - 102 User-Regional Entered Tc= Tc = : :10;7;42 22 '·. Reach Overland ':1 .:".::::Z.. ...:.:3'.:••: Area-Weighting for Runoff Coefficient Calculation Project Title: --=LOS ==:-- _ Catchment 10:-------------'-D37 -------------- Illustration LEGEND: Flow Direction ~ Instructions: For each catchmentsubarea,entervaluesforAandC. Subarea Area Runoff Product 10 acres Coeff. A C" CA input input input output "",. / X);28' , .•...• ,:y:m4.p i:·': ',;, L :.::/:; 0:18 ";:;::.; < 0;95;< 0.17 ',',,,:. ..,':..':. ... I'.,.• .. ... I" .... - '" / i ",", ", ' :. " " """, r :o" ':·:: " E '········ : :":'. ',,',',',':; E o" ,." ".' }"" "." ",,: ,. . . .,'. Sum: 0.46 Sum: 0.24 Area-Weighted Runoff Coefficient (sum CA/sum A) =• 0.52 "See sheet "Design Info" for inperviousness-based runoff coefficient values. UD-Rational v1.02a, Weighted C 10/25/2012,7:21 PM •• CALCULATION OFA PEAK RUNOFF USINGRATIONAL METHOD Project Title: ---~----------:::::C:LOS =---------..,------ Catchment 10: -037 '="- _ I. Catchment Hydrologic Data Catchment 10 = ..=D:...:3:..:.7_."..-',-= Area = 0,46 Acres Percent Imperviousness = S2;00 % NRCS Soil Type =DA, B, C. or D II. Rainfall Information '(inch/hr) = C1 • P1/{C2 + Td)"C3 Design Storm Return Period. Tr =10 years (input return period for design storm) C1 - - . ---2:-::::8";S£=: '0 (input the value of C1) C2= . 10;00 (input the value of C2) C3= ' .. 0 ~1S6 (input the value of C3) P1= .1AO inches (input one-hr precipitation-see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient. C = •.' .:: ' ;0.'47 Overide Runoff Coefficient, C = .:.• . . : . / (enter an overide C value if desired. or leave blank to accept calculated C.) S-yr. Runoff Coefficient. C-5 = · ··· :· ·· ·0.41 Overide S-yr. Runoff Coefficient. C = (enter an overide C-S value if desired, or leave blank to accept calculated C-S.) Illustration Conveyance Short Pasturel Lawns 7 Nearly Bare Ground 10 Flaw Direc:tio ~ Cauhment Boundaq Calculations: Reach NRCS 10 Overland Slope S ftlfI input Length L II input 5-yr Runoff Coeff C-5 output 0.0200 30 ;.••.•:.. :1'·:·<:· 0;0159 230 : .·2 ··.·/: ... ;:.r:) ;..• ;· .i:;: ';:'::. 3 4 5 Sum 260 FIOYI FIOYI Velocity Time V Tf Area-Weighting for Runoff Coefficient Calculation Project Title: .......LOS ..:,::,;;,-.:,-- _ Catchment 10:--------------038 '------------- Illustration LEGEND: Flow Direction 4 Instructions: For each catchment subarea, enter values for A andC. Subarea Area Runoff Product 10 acres Coeff. A C* CA input input input output ,;;:?); <0;25; " 0.04 ",\';:;'.';, ,:;" '/0:9$/ ' 0.31 ; >\ ',,; ;;, ;' ,; ,;;': / ', :';.':' i X : ",' ;,., c; 1/ "" :' ; .:: ;} 1 ~TI :1i' 82 ,;,', '; ';', HC ~ ' 1i Sum: 0.49 Sum: 0.35 Area-Weighted Runoff Coefficient (sum CAlsum A) =: 0.72 *See sheet "Design Info" for inperviousness-based runoff coefficient values. D37-10YR, Weighted C 10/25/2012, 7:25 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title:. _ -:=LOS -::- ------- Catchment 10: 038 ~ __' _ I. Catchment Hydrologic Data Catchment 10 =..;;:0..;;:3..;;:8_::-:-::: Area = 0.49 Acres Percent Imperviousness = '. 72,00 % NRCS Soil Type =..0 ,A, S, C, or 0 II. Rainfall Information I (inch/hr) =C1 • P1/(C2 + Td)"C3 Design Storm Return Period, Tr = " ., 10 years (input return period for design storm) C1 = ' ···· 28:S0 (input the value of C1) C2=10:0Q (input the value of C2) C3=Q:186 (input the value of C3) P1= :. '. 1.40 inches (input one-hr precipltation-see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = .,. ' ::..· '0:59 Overide Runoff Coefficient. C =.:.... (enter an overide C value if desired, or leave blank to accept calculated C.) S-yr. Runoff Coefficient, C-S = : "" 0.55 Overide S-yr. Runoff Coefficient, C = (enter an overide C-S value if desired, or leave blank to accept calculated C-S.) Illustration NRCS land Type Conveyance Heavy Meadow 2.5 Tillage! Field 5 Short Pasture! lawns 7 Nearly Bare Ground 10 Grassed Swales! Waterwa s 15 Flow Dirtctio ~ Caidunent Boundary -' Calculations : Reach Slope length 5-yr NRCS Flow Flow ID S l Runoff Convey- Velocity Time Coeff ance V Tf ftIft ft C-5 rps minutes input input output input output Overland .:: .": ..".:.:. .. , - . : i': ! )",Qlii:: '·';N/A 0.00 :-- 1.': :' 0,0100 > 240 . . 20:00 2,00 . .. : 2 . " ' : ...' : : : :::,:.::, : ... : ..... .-::?:;:" :.::= :.:' ' 3. . .. "': .. 4· ., I:·"::··.·:: .:.. ::' :" S Sum 240 Computed Tc = 2.00 CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: ----:::-':'::':":-:: _ Catchment 10: ---039/='"-=-40 "~ _ LOS I. Catchment Hydrologic Oata Catchment ID = D39/40 Area = 0.13 Acres Percent Imperviousness = •.; ".84.00 % NRCS Soil Type = '. D A, B, C, or D II. Rainfall Information I (inchlhr) = C1 * P1/(C2 + Td)"C3 Design Storm Return Period, Tr = .••.. 10 years (input return period for design storm) C1 =' 28.50 (input the value of C1) C2= < · j ().(lO (input the value of C2) C3= • •··.'0,786 (input the value of C3) P1=> t40 inches (input one-hr precipitation-see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.70 Overide Runoff Coefficient, C = '. (enter an overide C value if desired, or leave blank to accept calculated C.) S-yr.Runoff Coefficient, C-S = 0.67 Overide 5-yr. Runoff Coefficient, C = / . : •...•• •••. .(enter an overideC-Svalueifdesired,or leave blank to accept calculatedC·S.) Illustration 5 Short Pasturel Lawns 7 10 Paved Areas & Shallow Paved Swales Sheet Flow) 20 Calculations: t::o·g4 XC) ~y~ q.. f lC, --- 5Cl: ) Reach Slope Length ID S L Wit It input input ········,Overland ·:t ·. ·· ··. 0.0150 ...:;:. '. 120 ••• .. ··,·<.•·.·2·····. ··· . . ....: . . , . ... . 3 .. .......... 4 5 Sum 120 7 hOD ::; 95' S·yr NRCS Row Flow Runoff Convey- Velocity Time Caeff ance V Tf C-S fps minutes output input output output 0.67 " ,NIA '<0;00 ' ;,:" .,. 0100 , · ·: 20.. 00'· ";:"'2:45:...' '''' , . O. 82~ c. , .' . .. c. L'::•.' ·:· '. .: ": . Computed Tc = 0:82 RegionalTc = 10.67 User-EnteredTc = 7.62 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = ..6014 inch/hr Peak Flowrate, Qp =~ Rainfall Intensity at Regional Tc, I = 3.69 inchlhr Peak Flowrate, Qp = ~ Area-Weighting for Runoff Coefficient Calculation Project Title: LOS Catchment 10: 041 . ---_----:._----'-------'-----'-----=:......:.;,.:.-..-----'----------- ------------'-----~----'------,--------- Illustration LEGEND: Flow Direction c Instructions: Foreachcatchment subarea, entervaluesforAandC. Subarea Area Runoff Product 10 acres Coeff. A C" CA input input input output ~ •..••. >}» .::: , -..(fl4 :....•;-.:·········Q;Z$i/'· .. '0:04' 0:33 Q;9,5:;; 0.31 .... .. :,.: ............. ....,. .., .... .(. :)- ...... ..;:.... .'.:: :c , " 1:./\':: ~ 1<: "- . .", , - , 1.·:<2:'· "" II::}: . Sum: .. Q.47... Sum : 0.35 Area-Weighted Runoff Coefficient (sum CAlsum A) =: 0.74 "See sheet "Design Info" for inperviousness-based runoff coefficient values. D46-10YR, Weighted C 10/25/2012,7:54 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: -=lOS ='-=- _ Catchment 10: ...041 .::....'-'- ~ _ I. Catchment Hydrologic Data Catchment 10 ".=0=--4=--1 __ Area" 0.47 Acres Percent Imperviousness = 74.00 % NRCS Soil Type = 0 A, B, C, or 0 II. Rainfall Information I (inch/hr) = C1 • P1/(C2 + Td)"C3 Design Storm Return Period, Tr = .10 years (input return period for design storm) C1 = ' .:2lk$0 (input the value of C1) C2= ' .10;00 (input the value of C2) C3= .: 0.786 (input the value of C3) P1=1AO inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = , '" ,. O:Q1: Overide Runoff Coefficient, C = . .. : (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = .. ···.0.57 Overide 5-yr. Runoff Coefficient, C = " ,' (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration Flow Direc:1iD +--- C..tduneni B0unduy Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf fIIft fl C-5 Ips minutes input input output input output output Overland . Q,0180 , 125/ .·0;S7 " ::I\1IA: 0.4'32:: :· :8;88::': . ... . 1 "" ' :- : .:: 0.0200 : ' .:: 80"-::.. :< 21).00 2.83 0.47 .:. ::.·.··:2 ::····.·::... .. .. '::"::-<:::;:'.:> .. .. ., :. .: ::: \ } " 3< '.'::::' I .. ' ./ : ') '.':: .:.... ..' ,.:;.: . 4 ":. .,. :;':'.-::'. .:;= :+:.... 5 ::'. ' := Sum 205 Computed Tc= 9.35 Regional Tc = 11.14 ~ - - User-Entered Tc 9.35 Calculations: t . IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, 1=3.89 inch/hr Rainfall Intensity at Regional Tc, I = 3.63 inch/hr Rainfall Intensity at User-Defined Tc, I =--"-'-~3.'::8::::-9 inch/hr Peak Flowrate, Qp = Peak Flowrate, Qp = . Peak Flowrate, Qp = . :J,.;:tcts • ....~s .. '~fs QIO <. 7q (38j. ) I 47 ~! 35eF~ D46·10YR, Tc and PeakQ,;?) _ /) 91/ ) .::. 3 4YCFS L>(tC/)-/,25(,7J{ 7_{,~7 - 10125/2012,7:54 PM --------------------------- Area-Weighting for Runoff Coefficient Calculation Project Title: ---;",.....,...,: _ Catchment ID: D42 IIIustration LDS LEGEND: Flow Direction CaJ:• Cbm. ear Boundary Instructions: For each catchment subarea, entervaluesforAandC. Subarea Area Runoff Product ID acres Coeff. A C* CA input input input output . ': ..... ,.'" . '·( 0;22 / :~ ! < O,?q/;.,· O:OS ···· .. ,.....-:: / • • : O~43 ,. " ' c" "" '.••i: ~ : >:.O:95..•r2 0.41 , I'" •• ../ . '.,/.> » ,: .,. -.,"'-::" , .., . ' '. :' ) ~; 1":. ,.,-:"• •> ,} ,'"'' '.",'>' ".>,., ",''''. ,.,., < , ..' "." <«. ... .:. Sum: Oifi.~ Sum: 0.46 Area-Weighted Runoff Coefficient (sum CAlsum A) =' 0.71 *See sheet "Design Info" for inperviousness-based runoff coefficient values. D51-10YR, Weighted C 10/25/2012,7:43 PM - -- CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: --==:7- _ 042 LOS Catchment 10:__--'- --=-=- _ I. Catchment Hydrologic Data CatchmentlD =-'-D..,4..,2----,::--=:-,=_ Area = 0.65 Acres Percent Imperviousness = ' . : 71.00 % NRCS Soil Type =..' 0 A, B, C, or D II. Rainfall Information I (inch/hr) = C1 • P1 I(C2 + Td)"C3 Design Storm Return Period,Tr =' ·: ' 10 years (input return periodfordesignstorm) C1 =,>·/ 28;50 (input the value of C1) C2=..' :; 1 (};OQ (input the value of C2) C3= ,:.: .':·:'.0;786 (input the value of C3) P1=/:,. .<1040 inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient,C = 0:$$ Overide Runoff Coefficient, C =__....;"....;,, (enter an overide C value if desired, or leaveblankto accept calculatedC.) 5-yr. Runoff Coefficient, C-5 = 0:94 Overide 5-yr. Runoff Coefficient,C = .;':' ,> (enter an overideC-5 value if desired, or leave blank to accept calculatedC-5.) Illustration Conveyance flow Directio +---- Catchment Boundary Grassed Swales! Waterways II 15 I Calculations: Reach ID Overland : ) 1::•. '<: 2:>,." ':':'·""""·3'·::' A" 5 Slope length S l ftIft It input input 0.0200 30 ' .:'.. 0;0170. . 1" .: 260 { {: .: . .: : . . .::.:> Sum 290 t~o~71 I;o~4>j T,oo 27 IV. Peak Runoff Prediction Rainfall IntensityatComputedTc, I = . 4.50 inchlhr Rainfall Intensityat RegionalTc, I =--"'3=-'.-=-56=-inch/hr Rainfall Intensityat User-DefinedTc, I = 4.50 inch/hr 5-yr Runoff Coeft C-5 CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: -------------"'=LOS "c7------------- Catchment 10: ....043 ::....:...0..... _ I. Catchment Hydrologic Data Catchment ID = -=D:...;4-=3_=-=-= Area = 0.32 Acres Percent Imperviousness = 75.00 % NRCS Soil Type = " D A, B, C, or D II. Rainfall Information I (inch/hr) = C1 • P1/(C2 + Td)"C3 Design Storm Return Period, Tr = ' . 10 years (input return period for design storm) C1 =---"::28;:~:$2 0 (input the value of C1) C2= '10 ;00 (input the value of.C2) C3=~'~~~ .·M86 (input the value of C3) P1= .".·. 1.40 inches (input one-hr precipitation-see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C =',:: "' / ' :0;62 Overide Runoff Coefficient, C = ••.. . . (enter an overide C value if desired , or leave blank to accept calculated C.) S-yr. Runoff Coefficient, C-S = ' > /' 0:58 Overide S-yr. Runoff Coefficient, C = (enter an overide C-S value if desired, or leave blank to accept calculated C-S.) Illustration Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey. Velocity Time Coeff ance V Tf fIIft ft C-5 fps minutes input input output input output output ····«t;Overland , · 0.0.0059 0200 ···· 350 9-: ./. : • .'. 0.58 ··' :':: N/A.·;:.. 0;07: 2.26 '; 20;00 ·,::; ,:," '1.54 ' 3,80 '::':':<:2::; " .;:::. ;. ; .. , :':>: 3:;";'· .:;..... .•.. ',':.; ;;.;';:;. .;.:'.:;'.:./ / \ .. ~~ ::1;/.'( :'.; < , ~ , :.." .. :f " . ; ;,.,' ';'4' ;" ', ., . .,' ....' , 5 Sum 359 Computed Tc = 6.06. L/ z: - - Z.- B User-Regional Entered Tc Tc = = 11.6.06 99 Calculations: IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = ---',,....-_4=,.::,50~inch/hr Peak Flowrate. Qp = ~. Rainfall Intensity at Regional Tc, 1=3:52 inch/hr Peak Flowrate. Qp = ~fs Rainfall Intensity at User-Defined Tc, 1= .4;50 inchlhr Peak Flowrate. Qp = ~s Q IO ~ ,75 C~5_~) /32.:=' IIJC( crs UD-Rationalv1.02a,TcandPeakQ Ole(? ~ {12.S~75)q28(;~32.);; 2- 78CF5> 10/29/2012,9:25 AM Area-Weighting for Runoff Coefficient Calculation Project Title: --LOS --::~:,-.------------ Catchment 10: 044 --------------'----'------------ Illustration LEGEND: Flow Direction 4 Catcbmem: BOWldary Instructions: Foreachcatchment subarea, entervaluesforAandC. Subarea Area Runoff Product 10 acres Coeff. A C* CA input input input output .... .'"., . .,.. ." •. , 0;08)( 0.02 .'.'. ,,'.:.:..' '.' ,1· m21')?;}'O{Q5 :': .. 0.20 .. .. '" " :. : . ,." ':"", , :. -. i ,..,"" >"-':::.","'.":"'" '" ":' .'" I ,. .'c.... &4 e-: ," . """ ''',.: . " '..':.:. ,: .. } } .{,.: ,:C'. , Sum: 0.29 Sum: 0.22 Area-Weighted Runoff Coefficient (sum CAlsum A) =! 0;76 *See sheet "Design Info" for inperviousness-based runoff coefficient values. D43-10YR, Weighted C 10/2912012,9:28AM -- CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: -=LOS ==-- _ Catchment 10: =044 --=-- _ I. Catchment Hydrologic Oata Catchment ID =-=D....:.44-,----== Area = 0.29 Acres Percent Imperviousness = 76.00 % NRCSSoilType = D A. B,C, or D II. Rainfall Information I (inch/hr) = C1 • P1/(C2 + Td)"C3 DesignStormRetum Period, Tr = ·. • ..10 years (input returnperiodfordesignstorm) C1 = .'. :< :28.50 (input the valueofC1) C2= ···. < lO:(JO (input the valueofC2) C3= .· i.L186 (input the valueofC3) P1=1AO inches (input one-hrprecipitation--see Sheet "DesignInfo") III. Analysis of Flow Time (Time of Concentration) for a Catchment RunoffCoefficient, C =,;, ·::0.62 Overide RunoffCoefficient, C =,.,, : '. (enteranoverideCvalueifdesired,or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = ,: : , < " g . $~ Overide 5-yr. RunoffCoefficient, C = " :..... . .. (enteranoverideC-5 valueifdesired,or leave blank to acceptcalculated C-5.) Illustration Calculations: 7;0;;- '1 € IV. Peak Runoff Prediction RainfallIntensityatComputedTc,l =-,-__4:..;..4-'.'O:..inch/hr Peak Flowrate,Qp = 0.80 cfs RainfallIntensityat Regional Tc, 1= " 3.50 inch/hr Peak Flowcate, Qp =. 0.63 cfs RainfallIntensityat User-Defined Tc, 1- . 4.40 inch/hr Peak Flowrate,Qp = 0.'80 cfs Reach Slope Length 5-yr NRCS Flow ID Flow Runoff Convey- Velocity Time Coetl S L ance V Tf C-5 fps minutes input ftIft ft inout output input outout outout Overland "''','·9'''·:'· ", ...',' '(J.5S..'.' . WAc .. " 2:22 ' ·/'.,··:':'·1<:.:··: 0.07'0200 0. 0······ ~OO53 378 ·.' I :', 20:00 1.46 4.33 ,:. ::::"::\ 2}:::: :.·>': ". , :.:.. ' . .. .: ::.':: ....:..:. .. ..:...:........ .::. " : :::::::.<3>: ":":" ": .. . · 4 ':... :':'., . .. .. 5 I'}':':' , :.' "': :'. " . ComputedTc= :• .6:55 - 63 User-RegionalTc Entered Tc= =::,,,,'12.15 " Sum 387 x; 6.55 0,0 :; •7& (~~ ) 0 Z1; 011 CF:5 10/29/2012,9:28AM D43-10YR, TcandPeakQ Q/tY) ~ 1,2S~ 7t..)1fd (21);: Z 4j ef3 Area-Weighting for Runoff Coefficient Calculation Project Title: LDS Catchment ID:--------------.;.--"--D45 '-:....:....._------------ ---------------::-------------- Illustration LEGEND: Flow Direction ~ Instructions: Foreachcatchment subarea, entervaluesforAandC. Subarea Area Runoff Product ID acres Coeff. A C* CA in ut in ut input \ O~ ~5 < ··· output 0.02 »)0:$$ >··.····· ....; ...t . .... :... .... . .....:.. ....... 0.30 ~ illill ii, '.: Sum: I'!· 0.38 ;j Sum: 0.32 Area-Weighted Runoff Coefficient (sum CAlsum A) =: 0.84 *Seesheet "Design Info" for inperviousness-based runoff coefficient values. ~ D38-10YR, Weighted C 10/25/2012,7:26 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: -------------~:lOS 7------------- Catchment 10: ....045 :::...c'-=--__--'- _ I. Catchment Hydrologic Data CatchmentID = ..:D,-,4:.=5_:::-=::: Area = . .0,38 Acres Percent Imperviousness = . .'.···. 84;00 % NRCSSoil Type =.······· · · 0 A, B, C, or D II. Rainfall Information 1(inchfhr) = C1 • Pi f(C2 + Td)I\C3 DesignStormReturn Period, Tr ='.· · ···::10 years (input returnperiodfordesignstorm) C1 = " 28;50 (input the value of C1) C2= «1ltOO (input the value of C2) C3=O~786 (input the value of C3) P1= ··· l AOinches (input one-hrprecipitation-see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment RunoffCoefficient, C =;; . 0.70 Overide RunoffCoefficient, C =.' . -, (enter an overideCvalueifdesired,or leave blanktoacceptcalculated C.) 5-yr. Runoff Coefficient, C-5 = .p.67 Overide5-yr.RunoffCoefficient,C = .: : '.: .•...(enteranoverideC-5 value if desired,or leaveblanktoacceptcalculated C-5.) Illustration Short Pasture! Lawns 5 7 Calculations: I;t> ~y?1 1 Reach Slope Length 5-yr NRCS Flow Flow 10 S L Runoff Convey- Velocity Time Coeff ance V Tf ftllt It C-5 fps minutes input input output input output output Overland ...... .:.....::... ....:.:.: ..·····. 0;67 . N/A ... 0.00 ··.··. 0.00 ·· ···· ···1·... "'0:0100 '.; :.2.37.-";'" '20W ' " 2.00. " :. 1.98 · ··· ···.:·2.:0. ··· ... :.. ..... '/ .: ..: ; . " :". • • ' ;0. . .. '.. :a".' .. .. .•.. .':" .... . " ..... '. :.:'" 4 . ;: 5 Sum 237 Computed Te = 1.98 q5 Regional Tc = 11.32 L'OD ~ .- .. User-Entered Tc = 5.86 IV. Peak Runoff Prediction RainfallIntensityat ComputedTc, 1= 5.67 inch/hr Peak Flowrate,Qp = Rainfall Intensityat Regional Tc, I =---'---'3~.~60=-inchlhr Peak Flowrate, Qp = RainfallIntensityatUser-Defined Te, 1= ' 4.55 inchlhr Peak Flowrate, Qp = o., ~ .Sf.{ (l1~ ),38;.. I G~ Cf5 D38-1OYR, TO'''' PeokQ Q,W =- f,1.$ (S~ W1£(. esy 3rr CF'~ 10/25f2012, 7:26 PM Area-Weighting for Runoff Coefficient Calculation Project Title: LDS Catchment ID: ----------------04.=:6 -· :=~~----------- Illustration LEGEND: Flow Direction 4 Carc1lm em: Boundary Instructions: Foreachcatchment subarea,entervaluesforAandC. Subarea Area Runoff Product ID acres Coeff. A C· CA input input input output •..,' •.,......... . ) ·.··'·· .0;07 .·.. )' <0.25 0.29 0.02 .' .•. .,...,..•.,. .,. .,.,., .......' ;: ) .<. ,.'.: ..•. •.,•.,';' .:.« ,. :.'...:". , Sum:1...-"0.;""';38 ''';''''';'-'1 Area-Weighted Runoff Coefficient (sum CAisum A) = 0.82 ·See sheet "Design Info" for inperviousness-based runoff coefficient values. D48-10YR, Weighted C 10/25/2012,7:47 PM i' I ' CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: LOS Catchment 10:--------------=046 -=~------------- I. Catchment Hydrologic Data Catchment 10= 046 Area = ---0.-3""'8 Acres Percent Imperviousness = 82:00 % NRCSSoilType = D A, B, C, or 0 II. Rainfall Information I (inch/hr) =C1 * P1/(C2 + Td)"C3 DesignStorm ReturnPeriod,Tr = ·10 years (inputreturnperiodfordesignstorm) C1 =-e- ~.""=27. a:."='SO"='":· (input the valueof C1) C2= 1ttoO (input the value of C2) C3= <t7S6 (input the value of C3) P1=t40 inches (input one-hr precipitation--see Sheet"DesignInfo") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = ~~,;,.,O:;,;;<6;;:;;.8::;;•.;•· . OverideRunoffCoefficient, C = :(enter an overideCvalueif desired, or leaveblanktoacceptcalculated C.) 5-yr. Runoff Coefficient, C-5 =QI~$ Overide5-yr. Runoff Coefficient, C = . (enter an overideC-5 value if desired,or leave blanktoacceptcalculated C-5.) Illustration NRCS Land Type Conveyance Heavy Meadow 2.5 Tillage! Field 5 Short Pasture! Lawns 7 Nearly Bare Ground 10 Grassed Swales! Waterways II 15 II Calculations: Reach Slope ID S ftIft input Overland O;02QO·· 1 <0.0180 .::2· <.</ 1>«. :.•.. 3 .. I . .>. 4 5 Sum Length L ft input 10 ·:···.::233 --------------------------- Area-Weighting for Runoff Coefficient Calculation Project Title: ---::-:-:::-- _ Catchment ID: D47 Illustration LDS LEGEND: Flow Direction • Instructions: For eachcatchment subarea,entervaluesforAandC. Subarea Area Runoff Product ID acres Coeff. A C* CA input input input output .' ) : ) '.' 0:06· , .' 0.25·'·.·.··'.·· ,. ",0;02'·· .. \ ./i . . : I::' 0.34/ 0.95 :()-.32'·':·· .... ....: .: . . J: " ... '•.•'i , '.' ,. ', . " ;." :< . ' .'" ',.:.', . ","' : , .. .:.,........: ':., .'.' > '.'. .i f :,: ·., 'c '.· : i i i .'.:" .:.:. ' .,' 1 ..'. :;:·,·.:'.·..··. / ;.: '.::. :'.'" :.",' I ,." ..'. :,. .'" .'« : I " ..: .,.< .: < " / .: .': :.•\ .. c :. Sum: " ,"'01\4([ ' ':'' Sum: ,:,':(jj34':;"",': Area-Weighted Runoff Coefficient (sum CAlsum A) =C, .: O~85" : ' *See sheet "Design Info" for inperviousness-based runoff coefficient values. D45-10YR, Weighted C 10/25/2012,7:28 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: --LOS ::::'-:-'- __""----- _ Catchment 10: -=047 -:....:....- _ I. Catchment Hydrologic Data Catchment ID = D47 Area = ---0""';-:-40"'" Acres Percent Imperviousness = 85~OO % NRCS Soil Type = D A, S, C, or D II. Rainfall Information I (inch/hr) =C1 * P1 /(C2 + Td)"C3 Design Storm Return Period, Tr = _,...-~,;.;tO,:;..,•••years . (input return period for design storm) C1 = 28JiO (input the value of C1) C2=· to:(}O (input the value of C2) C3=O.t86 (input the value of C3) P1= . fAO inches (input one-hr precipitation-see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C =-'-'''"---.;.;;'O;,;,.~:;,;,.71.;.;;: Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 =0;68 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration Flow DiJ:ectio +----- Catchment Boundary NRCSLand Type Heavy Meadow Tillage! Field Short Pasture! Lawns Nearly Bare Ground Grassed Swales! Waterways PavedAreas & ShallowPaved Swales Sheet Flow) Conveyance 2.5 5 7 10 II 15 II 20 Calculations: r., z: 4~ Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf ftIft ft C-5 fps minutes input input output input output output Overland ...: .....<..> 0.68 N/A 0:00 ·Q;OO 1 . (tOl0Q 237 20.00·.···· "····.:2,OQ··· :·'·<1198·': -. 2·" .•... .·.:···.·i.·.:.·:· .·:· .•:.......>.< .< ..... :-:: ,".'.':':::::./'.>I: .><' ".' .•. ' .. .3 .... <••••:: ........< ....... ......... ..' .: .... >1 ., ..,< be··"····· 4 -:': ..... .. .. 5 Sum 237 Computed Tc = t.98 ~ q§ Regional Tc = 11.32 Area-Weighting for Runoff Coefficient Calculation Project Title: ----=LOS .::;;:,...,:=----_=---- _ Catchment ID:-----------_----.:----048 .:=------"----------- "I ustration LEGEND: Flow Direction 4 Instructions: Foreachcatchmentsubarea,entervalues forAandC. Subarea Area Runoff Product 10 acres Coeff. A C* CA input output o.oa 0.24 0.26 ~ : ~ : Sum: ... 0.35 .1 Sum: L---__--' ' . Area-Weighted Runoff Coefficient (sum CAlsum A) = . 0.75 *See sheet "Design Info" for inperviousness-based runoff coefficient values. D42-10YR, Weighted C 10/25/2012, 7:45 PM ---------------------------- Area-Weighting for Runoff Coefficient Calculation Project Title: ----LDS ::::-:-:: _ Catchment ID: D49 Illustration LEGEND: Flow Direction 4 CalCbmeot: Boundary Instructions: For each catchment subarea, enter values for A and C. Subarea Area Runoff Product ID acres Coeff. A C* CA input input input output .',., ";" ,;.,. ",: 0;,14·. , . ' :.: 0.25 .' ~;: , .O . Q4 '.,.' ' OA9 ."":; 0;95 '.."':'.',:0.47 .: '.", ,"::": ' " -:. .'. ' . ':" ....... ',., ..';. '," . . . ., ",: : ,' .'.':;..' :" ..' . ,.;.' . ..' I : .'; \ <.;..• • .. ' ", "" :'" '" ...:,'.;> .,.: ,. , 1 , « ~ :," "'",",. '.:';"' " ., ,',, ;.' . .' '/ .:.,:,; :}, Sum : 0;63:: ": Sum: ~MIG ./ .. ,0.50 Area-Weighted Runoff Coefficient (sum CAlsum A) =-,,": :!O~l9 *See sheet "Design Info" for inperviousness-based runoff coefficient values. D47-10YR, Weighted C 10/25/2012,7:30 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: -3:7- _ Catchment 10: ~ 049 LOS ~____=_=_ _ I. Catchment Hydrolog ic Data CatchmentlD = ..oDc-4-,-9_::-=-= Area = 0.63 Acres Percent Imperviousness = . 7 9.00 % NRCSSoil Type = D A, B. C, or D II. Rainfall Information I (inch/hr) = C1 • P1 I(C2 + Td)"C3 Design StormReturnPeriod,Tr = .··· ·::JOyears (input returnperiodfordesignstorm) C1= . ·..28:50 (input the value of C1) C2= . 10;00 (inputthe value of C2) C3= . . 0,786 (input the value of C3) P1= ...: 1AOinches (input one-hr precipitation-see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C =": ,. ",; - .· "' ,·,--0 ::.:.~ 6",,5 ; OverideRunoffCoefficient,C = : (enteranoverideCvalueifdesired,or leave blanktoacceptcalculatedC.) 5-yr. RunoffCoefficient,C-5 = : . •.·.··:0,61 Overide5-yr. RunoffCoefficient, C = . . '.: ::(enter an overide C-5 value if desired, or leave blank 10accept calculated C-5.) Illustration Conveyance 2.5 5 7 Calculations: Reach Slope Length 5-yr NRCS Flow Flow 10 S L Runoff Convey- Velocity Time Coeff ance V Tf ftllt It C-5 fps minutes input input output input output output Overland .. .•. . . . .. .' 1·0.61 ··;.··. N/A.... ~ , . · O~ O O' 0.00 ::· ····.1 . .. . . .. . :0;0.100 . . :·:::·: :·235..-: ..•• :"-:20.00. .: .·,·.2;00: l: t96 · ·2·.·: :. :'::.: '.: 1" :.:::::.::;:.:..... .. : ...:...;.::. I··;·:':·.::.:···· I:. ":· 3 c'·:.' ..: :.. .: . .. ..... . 4 :c·' .-:c. . 5 - <Sum 1~ 235 Computed Tc 1.96 -31 ",. .,... User-Regional Entered Tc Tc = = 11.5.86 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = : 5.67 inch/hr Peak Flowrate, Qp = RainfallIntensityatRegional Tc, I = __.;.;3;:.;.60;. . inch/hr Peak Flowrate,Qp = Rainfall Intensity at User-Defined Tc, I = 4.55 inchlhr Peak Flowrate, Qp = Q r0 / 4 79( 4f!J), to:3 ::; L4.f. C-F$ D47-10YR, To and P"kO Q 10125/2012,7 :30 PM ,CO '"' I,25 (.71)qt£( 0,3) z: ~!J t.F£, Area-Weighting for Runoff Coefficient Calculation Project Title: ---LOS ==_---'-_--',- _ Catchment 10:----------------'-050 ------'--------- Illustration LEGEND: Flow Direction 4 Catchment: Boundary Instructions: Foreachcatchment subarea,entervaluesforAandC. Subarea Area Runoff Product 10 acres Coeff. A C· CA input input input output ' >. :....:<· 0125 . 0.02 .•....••• ..:> . ...,.: .'···.· .: •.•,•.O3~5 : > ~ > :,'.··..:O{Q5 ..•. .,:. , , ..... .c.,.:,. .......'.'. : ) >: .>• 0.24 . v. .... ::: . "':'.," ,:'....•.....\/ .: .• • i.i:··, .; ::" ': . I'..•... I> ... Ii :... ... . .':" . .... ...', Sum: ":Olli3-2,:::::::: Sum: 0.26 Area-Weighted Runoff Coefficient (sum CAlsum A) =.' .... 0.80 ·See sheet "Design Info" for inperviousness-based runoff coefficient values. 053-10YR , Weighted C 10/25/2012,7:39 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: -t-t- -LOS ===~------------- Catchment 10:__--'-- -=050 -='-=-- _ I. Catchment Hydrologic Oata Catchment10 =...::D...::5...::0-----:::-::c: AreaAcres =_---,-.~"0,32 "= PercentImperviousness = 80.00 % NRCSSoilType = •.'. < 0 A, B, C, or 0 II. Rainfall Information I (inchlhr) =C1 • P1 I(C2 + Td)AC3 DesignStormRetumPeriod,Tr = ,:',.>"".>10 years (input retum periodfordesignstorm) C1 =,·","·:,\:2lk5IJ (input the valueof C1) C2= " HtQO (input the valueofC2) C3= ·'," 0; 786 (input the valueofC3) P1=1AO inches (input one-hrprecipitation-see Sheet "Design Info") III. Analysis of Flow Tlmo [Time of Concentration) for a Catchment RunoffCoefficient, C = 0;66 OverideRunoffCoeffidenl,C = ,.}' / (enteranoverideCvalueifdesired,or leave blank to accept calculated C,) 5-yr, RunoffCoefficient, C-5 = Olt:l3 Overide 5-yr, RunoffCoefficient,C = '< ..,.,. . , (enteran overideC-5 valueif desired, or leaveblankto acceptcalculatedC-5.) Illustration FlOIvDiroc1io <f-- Cauhment Boundary NRCS land ~ Tillage! Short Nearly Grassed Type ~ Field Pasture! Bare Swales! lawns Ground Waterwa s Conveyance II 2.5 II 5 7 10 15 Calculations: Reach Slope length 5-yr NRCS Flow Flow 10 S l Runoff Convey- Velocity Time Coaff ance V Tf ftfft fl C-5 fps minutes input input output input output output Overland , ,Q'0200." ,9 .• :' .. ·· ..··· ·;.: 0.63. ,·:'. N/A:: ; ." .··•• m07,:·· "' '2.0\1:• "".,>.:1.,:... :,.·· '·:.'Q;()057·:" '. '..:415>,"':" ·,,·2.M O , .."4 :51':'''' ,·· .·'4,58.":,' .... "·2,::": >:=" .'. """"":"."':: ..... ••".". <...: ,,' W' . .:;/ :: "''' , /v.'.·.··. ·· :" .3:".:'''' .',;:;., ""':"" .' :" ''', ,''''','' . .; ;",: ',,;< ": .. 4 · "; .. ...: .. 5 Sum 424 ComputedTc 6.63 IV. Peak Runoff Prediction " - -- Cfl User-Regional Entered Tc Tc = = 12,6,63 36 Rainfall Intensityat Computed Tc, I =--'--_-,4"·';.;38:;.·inchfhr Peak Flowrate, Qp = Rainfall Intensityat Regional Tc, I = Rainfall Intensityat User-Defined Tc, I = 3;47 inchlhr ..'. 4,38 inchfhr Peak Flowrate, Qp = Peak Flowrate, Qp = Q10 ~ e~O (y 4.E.), 3Z:= 1!2 ifS 1012512012,7:39 PM O53-lOYR, T"",,P~kQ Q(ro~ /,Z5(.ro )&'f}. (,32) -:::: Z~ CF5 Area-Weighting for Runoff Coefficient Calculation Project Title : --------------'-=:LOS ""::"'7------------ Catchment 10:---------------051 -'------------- Illustration LEGEND: Flow Direction Catcbment • Boundary Instructions: For each catchmentsubarea,entervaluesforAandC. Subarea Area Runoff Product 10 acres Coeff. A C* CA input input input output : .:. : ..,...:.:.: . :.: /:: Oj$2:(.:·. :·.··:.·•••.••0:25 : -: 0.08 .:....:i" . : . : : : .. 0221 ... .: .: I ·/ '·: 0;95'::.::· ::.' < 0.20 :.. .. : . . :. r.. · ·::. :·: ... :.•::> I ;~ 1 .. \ ······,.. :::. :::>.::. ... .: ::. :.... .'.: : .:: .: '.: .:.',::. ..:..:..:. >• .. .:.).:...:...:..:.: ..:.. : » : Sum: 0.53 Sum: 0:28 Area-Weighted Runoff Coefficient (sum CAisum A) = 0.53 *See sheet "Design Info" for inperviousness-based runoff coefficient values. D50-10YR, Weighted C 10/25/2012,7:41 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: -LOS =-~------------- Catchment 10:_--'- ~_051 =__ _ I. Catchment Hydrologic Data Catchment 10 = -051 ---,....,.,... Area = 0.53 Acres Percent Imperviousness= ---'-5-::'-3::"":'-::'-00"""·,,% NRCS Soil Type = 0 A, B, C, or 0 II. Rainfall Information I (inch/hr) = C1 * P1 I(C2 + Td)AC3 Design Storm Return Period, Tr =10years (input return period for design storm) C1 =--'--,,-..,,;....;,,27e;~$0~·,·. (input the value of C1) C2= . 10;{)0 (input the value of C2) C3=0i786 (input the value of C3) P1= ..tAo inches (input one-hr precipitation--seeSheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient,C =()4~7 Overide Runoff Coefficient, C =~......~;,;;;.....(enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0:41 Overide 5-yr. Runoff Coefficient,C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration 20 Paved Areas & Shallow Paved Swales (Sheet Flow Grassed Swalesl Waterwa s 10 II 15 II Nearly Bare Ground 7 Short Pasturel Lawns Tillage! Field 2.5 5 Heavy Meadqw NRCS Land Type Conveyance Calculations: Reach Slope Length ID S L ftIft ft input input Overland ,:Q;Q400 .84 '. t 0;0080 • »390 2 .•. :::> :>.: •• 3 .: '. I· .:' .: ...: .... 4 > 5 Sum 474 5-yr Runoff Coeff C-5 output 0.41 Area-Weighting for Runoff Coefficient Calculation Project Title: -=.:::...;:'-- _ 052 LOS Catchment 10: --'------------=;,...;:.;,.'------------'--'-- Illustration LEGEND: Flow Direction ~ CatduneDI: Boundary Instructions: For eachcatchment subarea,entervaluesforA andC. Subarea Area Runoff Product ID acres Coeff. A C· CA input input input output ..... ' ....:.: 0.:.::.0047' •..• 1 , . • 0.2:5 ····· 0.12 I i :','··.···.• ' ·': .'\OAO' .•'••••:.•m95···: 0.38 I··" , . ., :.: ,.'., I····':.: : .'. .·.'0' / . " ..,...,./.. 10 . :': .,/: ,'. "" ".' ,. ', •••• ',. .,'.... '.,0 :. ',. ". ".''.' ',' ." '.."'. ."/.:,>,,,.," 0: :.' '.:." . .', .',..,.....< . ':" ",:. ''''·C ...,.: ..·,i . Sum: : ~ : \' 0.87 Sum: 0.50 Area-Weighted Runoff Coefficient (sum CAisum A) = ,Q.57 ·See sheet "Design Info" for inperviousness-based runoff coefficient values. D49-10YR, Weighted C 10/25/2012,7:32 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: --------------=LOS :7------------- Catchment 10: ----'_----'_-'-052 --' ----' _ I. Catchment Hydrologic Data Catchment ID = .::;D,-S.= =2----,=_"",= Area = 0.87 Acres PercentImperviousness= 57.00 % NRCS SoilType = D A. B, C. or D II. Rainfall Information I (inch/hr) = C1 • P1/(C2 + Td)"C3 Design StormReturnPeriod,Tr =_----:=. ,-:c10~ · . years (inputreturnperiodfordesignstorm) C1 = .:28;50 (inputthe valueof C1) C2= ' ' 10.00 (inputthe valueof C2) C3=0.7.86 (inputthevalueofC3) P1= tAO inches (inputone-hrprecipitation-see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment RunoffCoefficient. C = 0~49 OverideRunoff Coefficient, C= . . . (enter an overideCvalueifdesired.or leave blank to acceptcalculatedC. ------,.,-.". S-yr. Runoff Coefficient, C-S= 0.44 Overide 5-yr. RunoffCoefficient. C = " (enteranoverideC-5 valueifdesired.or leave blank to acceptcalculated C-S.) Illustration "T" - 7 0 5 J-..;2.. ~ e.- , ()z;; 'S7(Z~ ),~7' IoZ C,f'~ o LEGEND Beginning Flow Directio ~ Catchment Boundary 20 Paved Areas & Shallow Paved Swales Sheet Flow) 15 II Grassed 10 Swales! Waterwa 5 Nearly Bare Ground 7 Short Pasture! Lawns 2.5 5 Heavy Meadow NRCS Land Type Conve ance Calculations: t:.o,r57 Tio";- 2>,5 Reach Slope Length 5-yr NRCS Flow Flow Convey- Velocity Time Coeff 10 S L Runoff ance V Tf fps minutes input fVlI II C-5 --------------------------- Area-Weighting for Runoff Coefficient Calculation Project Title: --::=-=-= _ Catchment ID: D53 Illustration LDS LEGEND: Flow Direction ~ Catchment Bouo.dary Instructions: Foreachcatchment subarea, entervaluesforA andC. Subarea Area Runoff Product ID acres Coeff. A C* CA input input input output 0.33 "'.: . .:..:<:: .:; ... , . ,...<> ; } : .' .'.. ". :': :".::.)":. Sum: I'; (),57 Sum: 0.39 .. Area-Weighted Runoff Coefficient (sum CAisum A) = 0.68 *See sheet "Design Info" for inperviousness-based runoff coefficient values. D61-10YR, Weighted C 10/25/2012, 7:37 PM CALCULATION OFA PEAK RUNOFF USING RATIONAL METHOD Project Title: ""LOS '="=- _ Catchment 10:~. __-'-_-'- ---'----053 :'...:..:---' _ I. Catchment Hydrologic Data CatchmenllD =,.::D:...:5..:.3-'-,.....",~ Area = .0;57 Acres Percent Imperviousness = ·68;00 % NRCSSoil Type=•. '· · 0 A, B, C, or D II. Rainfall Information I (inch/hr) =C1 • P1/(C2 + Td)I\C3 DesignStormReturn Period, Tr=.. : ·:· 10 years (input returnperiodfordesignstorm) Cl = ·· ··.28;50 (input the value of Cl) C2= :·.:··· ·: 10;00 (input the valueof C2) C3= " : :oml6 (input the valueof C3) Pl =. :.•·..:··:·•.1:40 inches (input one-hrpreclpitatlon-see Sheet"DesignInfo") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C =•• ;:6.56 Overide Runoff Coefficient, C = ::. . (enteranoverideCvalueifdesired,or leaveblanktoacceptcalculated C.) S-yr. RunoffCoefficient,C-S= ' ~;q.'5 1 OverideS-yr. RunoffCoefficient,C = :.:. . .: :. (enteranoverideC-5 value if desired, or leave blanktoacceptcalculated C-S.) Illustration r 2.:::' t ~ CakJunent Boundary F1DIv Directio +--- 10 Nearly Bare Ground 7 Short PastureJ lawns Conveyance Qz.~'(£>(2f!)o 57:;, OG)~ CFS Calculations: Reach Slope length 5-yr NRCS Flow ID S l Runoff Convey- Velocity Coeff ance V ftlfl fl C-5 fps input inpu1 output input output Overland '0:0200 / .:..;::,9 :: .' ·'· 0.51 ····.···N/A:,. i' ·'.', 0,06.··· ····:...·:1:>:.:·.. ·• · 0;0057 : :. 445:' ·20:00 . . ; .1:51 .. "{':' ;:3 r >·· ··.·:. ....: .. .:...: .:..: ... : : . .': . :..:. . ...:;::<: .: : .... :····1··r-' :· :;.:.,'·.:/..: .··:.· 4 ... ... . -: 5 IV.8 Peak Runoff Prediction --Sum - bZ 454 Computed Tc RainfallIntensityat Computed Tc, I =_-,-_4.,:.,;.:.22==· - inch/hr RainfallIntensityatRegionalTc, 1= 3.45 inch/hr Rainfall Intensityat User-Defined Tc, 1= 4.22 inch/hr (XID ~'fo2(4 Z1- ),5"1;: /0 tPS D61-10YR, Tc and PeakQ Qroo ~ {, ZS (. b2) ~~ (.S7) ~ RegionalTc = User-Entered Tc = Peak Flowrate, Qp = PeakFlowrate, Qp = PeakFlowrate.Qp = 4~ if~ Flow Time Tf minutes CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: LOS Catchment 10:--------------=-=054 :-:-------------- I. Catchment Hydrologic Data Catchment ID =D54 Area =---0-.8-2-Acres Percent Imperviousness= 0.25 % NRCS Soil Type = D A, S, C, or D II. Rainfall Information I (inch/hr) = C1 * P1 I(C2 + Td)"C3 DesignStormReturnPeriod,Tr = 1-,-0 years (input return periodfordesignstorm) C1 = 28,50 (input the value of C1) C2= 10;00 (input the value of C2) C3= 0.786 (input the value of C3) P1 = 1040 inches (input one-hr precipitation--see Sheet "DesignInfo") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient,C = --"-'--'--...,0..,;.2..,;>5;.., Overide Runoff Coefficient,C = (enter an overide C value if desired, or leave blank to accept calculatedC.) 5-yr. Runoff Coefficient,C-5 = 0.15 Overide5-yr. Runoff Coefficient,C = (enter an overide C-5 value if desired,or leave blank to accept calculatedC-5.) Illustration Paved Areas & Shallow Paved Swales (Sheet Flow Grassed Swales! Waterways Nearly Bare Ground Short Pasture! Lawns Tillage! Field Heavy Meadow NRCS Land Type Conveyance 2.5 5 7 10 II 15 II 20 LEGEND QBeg:iJming Flmv Directio ~ Catcronent BoUJUlary Calculations: 7 IV. Peak Runoff Prediction Rainfall Intensityat ComputedTc, I = 3~.~54.."....inch/hr Peak Flowrate, Qp = Rainfall IntensityatRegionalTc, I = 3.60 inch/hr Peak Flowrate, Qp = Rainfall Intensity at User-DefinedTc, 1= 3.60 inch/hr Peak Flowrate, Qp = Reach 10 Slope S Length L 5-yr Runoff Coeff Area-Weighting for Runoff Coefficient Calculation Project Title: .,.... ----=LDS :::..=....;,---- _ Catchment ID: _·_____~ -----=D55 --=...c _ Illustration LEGEND: Flow Direction • Instructions: Foreach catchment subarea, entervaluesforAandC. Subarea ID Area acres A input ···· O.JH. ··O/l3p ········· Product Sum: 0.91 Area-Weighted Runoff Coefficient (sum CAfsum A) =. .. 0.66 . *See sheet "Design Info" for inperviousness-based runoff coefficient values. D63-10YR, .Weighted C 10/26/2012,4:00 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: ~~-LOS ------------ Catchment 10: -=055 =-- _ I. Catchment Hydrologic Oata Catchment 10=:...:0:...:5:...:5_.,.....,..".. Area = 1.37 Acres Percent Imperviousness = 66.00 % NRCSSoil Type = 0 A, B, C, or 0 II. Rainfall Information I (inch/hr) = C1 • P1/(C2 + Td)"C3 Design Storm Return Period, Tr =:. : 10 years (input returnperiodfordesignstorm) C1 = -: '- " ~""2K: '"""""5~ ' 0 (input the valueof C1) C2= ro.oo (input the valueof C2) C3=O.786 (input the valueofC3) P1= . 1.40 inches (input one-hrprecipltation-see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment RunoffCoefficient, C = .·<0.'55 Overide RunoffCoefficient, C ="'7':'-7-7",:--(enteranoverideCvalueifdesired,or leaveblanktoacceptcalculated C.) 5-yr. RunoffCoefficient, C-5 =' .., 0.50 Overide 5-yr. RunoffCoefficient, C =:' . .. (enter an overide C-5 value if desired,or leave blank to accept calculated C-5.) Illustration Tz. = l hJ 2.5 Q~~.t.,t.(Z'J)I~ =Z3'cFS LEGEND OBegiJming Calculations: 1;0 :;. ~ 4~ "E,oo :::-- 9 10 User-Entered Te= IV. Peak Runoff Prediction Slope NRCS Flow ID Reach Length 5-yr S Runoff Convey- Velocity Coeff L ance V ftIft C-5 fps input It input input output Overland output ···· 0:00 ·· ·. ·.:.: 1 ::::::"= ': ".:<:::: I: · '::::<. ;:" .:. ,.. .. 0.'50 NlK ' :::'·:0.0127.::' > J l67:·:·: :··':::'20,00::':': 2.25 .;::..:;: .. :.:":: " " ". •..:..... :. ::,:2 :, . :. ...: ::3 ' . : -. / .:. "".:.:. :' : " ) :'::: '.:::1·:<:':' :'::.=:. ''4 ..' ....: '. : '''. . :: . . 5 .. -. Computed Te= RegionalTe = Sum 867 Flow Time Tf minutes output ···· ();OQ;: :·· ---------------------------- Area-Weighting for Runoff Coefficient Calculation Project Title: -LDS ---::~------------- Catchment ID: D56 Illustration LEGEND: Flow Direction Catcb:• m eot BouodaI'y Instructions: Foreachcatchment subarea,entervaluesforA andC. Subarea Area Runoff Product ID acres Coeff. A C* CA ':<input ::.::' :' " :'. : :. (input Q,25 ) {: input Q,95: 6 1/ '::<: :.::'.:<.:":' 1, >0.16 .: :::·:······0(25 ,,:· : 0.04 ' :.' ," ' -:: '.: .., " ':"'" .. .: " : . \ ':. ::: :. ' : ~ ,:.':: ... . .:... ':':":':':'::'.'" :.=: . ... :X.' :::,,\.:, :.:: :': ',::=:: " :.., '.": Sum: .,.,..Q.4.1 Sum: 0.28 Area-Weighted Runoff Coefficient (sum CAisum A) :: 0.68 *See sheet "Design Info" for inperviousness-based runoff coefficient values. D54-10YR, Weighted C 10/26/2012,2:45 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: -=LOS :==- ~-------- Catchment 10: -=056 -'=-=-- _ I. Catchment Hydrologic Oata Catchment ID = ..=D:..:5..=6---,;:-:-.,. Area = 0.41 Acres Percent Imperviousness - 68,00 % NRCS Soil Type - D A, S, C, or D II. Rainfall Information I (inch/hr) = C1 * P1 I(C2 + Td)AC3 Design Storm Return Period, Tr = .'. ·'· :.1 0 years (input return period for design storm) C1 = ' 28,5.0 (input the value of C1) C2= ' ' 1 0;00 (input the value of C2) C3= " 0,786 (input the value of C3) P1= +.40 inches (input one-hr precipitation-see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = . • • i '0}56 Overide Runoff Coefficient, C = . ' ',: . (enter an overide C value if desired, or leave blank to accept calculatedC.) 5-yr. Runoff Coefficient, C-5 = , ,·.0:51 Overide 5-yr. Runoff Coefficient, C = ... . ,' (enter an overide C-S value if desired, or leave blank to accept calculated C-5.) Illustration NRCS Land Type Gonve ance Tillage! Field 5 Short Pasture! Lawns 7 F1Dw Directio -E--- Catduneni Boundary - ' 5-yr Runoff Caeff C-5 output ,., "':])]5,1 ~5 - NRCS Convey ance input '.iN/A. ";·: ' < 20.00,:: .. :-,:.::.:,:. .\ :( " )',{,::, .: . Flow Velocity V fps output '0:00 3.30 . ,. . ' Computed Tc = Area-Weighting for Runoff Coefficient Calculation Project Title: ----LDS :::-=,.....- _ Catchment ID: ----------------"----"D57 ----'----'----'--------- Illustration LEGEND: Flow Direction ~ Instructions: Foreach catchment subarea, entervalues for A andC. Subarea Area Runoff Product ID acres Coeff. A C* CA in ut input input output ,<'" 0.03 0.96 O~O3 0.83 0.25 0.21 0.04 0.50 0.02 :" . , I':' :': 'x . - . • '<. . } ; ~ Sum: L".• p .a~ . "' " Sum: . ~. Q. ~5 ... Area-Weighted Runoff Coefficient (sum CAlsum A) :: 0.28 *See sheet "Design Info" for inperviousness-based runoff coefficient values. D56-10YR, Weighted C 10/26/2012,2:55 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: Catchment 10: I. Catchment Hydrologic Data CatchmentID= ..=D.::.57,-----::-::-= Area = 0.89 Acres Percent Imperviousness = . 28.00 % --LOS :::;:=- _ --=D57 :..;::..:..- ---'-__ NRCSSoilType = : . .D A, B, C, or D II. Rainfall Information I (inchlhr) = C1 • P1I(C2 + Td)"C3 Design Storm Return Period, Tr = . .·. 10. years (inputreturnperiodfordesignstorm) C1 =:: 2lk50 (input the value of C1) C2= ::' :.•: 10~OO (input the value of C2) C3= .: '.' ··:· 0;786 (input the value of C3) P1= . ' JAo inches (inputone-hr precipitation-see Sheet "Desiqn lnfo") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient. C= ;::: : ::0:·31': Overide Runoff Coefficient, C = .0' (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = ~ . : : · : · :·O :30 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to acceptcalculated C-5.) Illustration Conveyance 2.5 5 Short Pasture! Lawns 7 Ground 10 Paved Areas & Shallow Paved Swales Sheet FI 20 Calculations: Reach 10 Overland :": :••1'<0"" .":::::'. ::2. .. . :.: :::: ••:3:::::::=:·.. :'::-::'::;'4':.::·"" Slope Length S-yr NRCS Flow Flow ~ . S L Runoff Convey- Velocity Time Coeff ance V Tf flit! ft C-S fps minutes input input output input output output . : ··:. O ~023a , .' ••0:30 " 15;00'.::'. 335 : " ·'·'··.N/A;:j: 0.28 19.96 4.74 .... ":" :\:"::< 1' ....::::<::}{::: ..:::.: : : 5 :., 0;1000' ··· · 39 , " ' . .. '., ,:.:': . : .. . ...I.:,:·" .' .. Sum 374 Area-Weighting for Runoff Coefficient Calculation Project Title: -LDS --:~------------- Catchment ID: 058 ---------------'-'---'--'---'------- Illustration LEGEND: Flow Direction 4 Instructions: Foreachcatchmentsubarea,entervaluesforAandC. Subarea Area Runoff Product ID acres Coeff. A C" CA input input input output .... ..-;::..:.<':• }' OJ)9 \ ~ Q}&O . 0.05 } ......:: . ········0:05< · >·.·· P:95< 0.05 ...::' « · ··· · . Q ; ~a>·: : " 0.06 <.:.: : } .11A37:It .)/ ::.•,,{O,4R·· 2.97 E:' L .·/ ··..: I·.·;.·-:·.··' •...., sum :l: 12.09 Sum: 3.14 Area-Weighted Runoff Coefficient (sum CAisum A) = 0.26 "See sheet "Design Info" for inperviousness-based runoff coefficient values. ~ . H4-2YR, Weighted C 10/26/2012,4:11 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title:-,----_-,---- -LOS :::::=-__-' _ Catchment 10: _.'---_-' --=:058 ..::.:: _ I. Catchment Hydrologic Data Catchment 10 =-=D~58=----;~:;:- Area = •. .. 12.09 Acres Percent Imperviousness =.' 26.00 % NRCSSoilType = ". 0 A, S, C, or 0 II. Rainfall Information I (inch/hr) =C1 * P1/(C2 + Td)"C3 Design Storm Return Period, Tr = :. · .••• ••.10 years (input return periodfordesignstorm) C1 =••··.·· ·· 28;50 (input the value of C1) C2= >tO.OO (input the value of C2) C3= :"':':'..' ":',.0;786 (input the value of C3) P1=.....>]AOinches (input one-hr precipitafion-see Sheet "Design Info") III. Analys is of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 6;37: Overide Runoff Coefficient, C = ::;.: (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0:29 Overide 5-yr. Runoff Coefficient, C =: ... .: .:(enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration Conv ance 2.5 5 Short Pasturel Lawns 7 Nearly Bare Ground 10 Calculations: Slope Length 10 Reach S L ft/ft It inout input Overtand '·· 0:0200' ····::.45(1: .. ·· .>8'1n:...··· ' /::>:1 ' ::': :~ ::0;0070.: :".;.;. ,":2 :::}: •.•: ••: c:' . ::.?:a :·:·:·:· :····: : ..;:.:: .;...::-:;-:.:;:;:; .. . •••.•.•.•.•;4>........ .:. .....:.•........ .:: . :'. . : 5 Sum 1,290 :Z;;::::. 2 - 97 - 07 I/tJo IV. Peak Runoff Prediction Rainfall Intensity at ComputedTc, 1=. >: 1.63 inchlhr Rainfall Intensityat Regional Tc, 1= . 2.98 inch/hr Rainfall IntensityatUser-Defined Tc, I = . 2.98 inchlhr Qw";-6 Zh(Z9j ) l2.oct ~ q~ C.FS '" . 5-yr Runoff Coeff C-5 CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: -'---'- '=LOS '=:=,-_----------- Catchment 10: -059 =-=-=--'- _ I. Catchment Hydrologic Data Catchment 10 =..:D;.::5.::,.9---::"~ Area = 6.69 Acres Percent Imperviousness- ' . .. 25;00 % NRCSSoilType =..'. .•• 0 A, B, C, or 0 II. Rainfall Information f (inch/hr) =C1 • P1/(C2 + Td)"C3 Design Storm ReturnPeriod,Tr =.. 10 years (input return period for designstorm) C1 = :(:':;';" 28.50 (input thevalueofC1) C2- ::/:"'1Q,00 (inputthevalueofC2) C3- :}: ::: .0.7:66 (input the valueofC3) P1- ··: ·:::·1AO inches (input one-hr precipitation--see Sheet"Design Info") III, Analysis of Flow Time (Time of Concentration) for a Catchment RunoffCoefficient, C =· 0;36' Overide RunoffCoefficient, C = '.' (enteran overide C valueifdesired,or leaveblanktoacceptcalculated C.) 5-yr. RunoffCoefficient, C-5 = (,};~8 Overide5-yr. RunoffCoefficient,C =:'/ ' :•.. .:: : (enter an overide C-5 value if desired, or leave blankto acceptcalculatedC-5.) Illustration F1uwDirectio <E---- Caidu.... .d BowuLuy NRCS Land Heavy Tillagel Short Nearly Type II Me,ld'ow Field Pasture! Bare Lawns Ground Conv ance 2.5 5 7 10 Calculations: Reach Slope Length 5-yr NRCS Flow 10 S L Runoff Convey- Velocity Coeff ance V fVlt It C-5 fps input input output input output Overland ···: 0.0200} : ':".:~':: 259: :'" 0.28 :MIA! ~ [ ... ' 0;23 . .. ·...>::.:.1:/·' .. . :·.··:· 1).(l132 ... ; : 604 >··.· ·····:.·:1"5,00:::·· 1.72 :.::>:2:::: :. .. :~: ;}. <: :;:} : ' :': ':" . :;.. .;: ::.::;: .. ...' . ::;:}$ {,(.: ..:}:.::,. .:::.::,. .. : .::.::: ::::::. '4 ' :', . ... .. ;:-.. : .. ...:. 1',, : :':' ::';. . ..•.. .:.:,' . : 5 .: ,.... Sum < "863 Computed Tc = I - - ~b User-Regional Entered Tc Tc = = Flow Time Tf minutes output 18:89 5.84 ' :'; : . ",',. ·:24;13 ... 14;79. 14;19 IV. Peak Runoff Prediction Rainfall Intensityat Computed Tc, I =.;_7-'2:O:'.,:.45=,,' inchlhr PeakFlowrate, Qp = : . ' ~ RainfallIntensityat Regional Tc, 1= ' :3e20 inch/hr PeakFlowrate, Qp = .'.' ~s Rainfall Intensityat User-DefinedTc, I =. " .3.20 inch/hr PeakFlowrate, Qp ~ 10/2612012,4:06 PM ---------------------------- CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: LOS _ Catchment 10: 060 I. Catchment Hydrologic Oata Catchment ID = ..::D..::6..:.0 o: Area = 2.59 Acres Percent Imperviousness = 25.00 % NRCS Soil Type = D A, 8, C, or D II. Rainfall Information I (inch/hr) = C1 * P1/(C2 + Td)AC3 Design Storm Return Period, Tr =--'-...,....,.,;,....,....,.,;,.10;;;,.· years (input return period for design storm) C1 = 28.50 (input the value of C 1) C2= 10;00 (input the value of C2) C3= 0.786 (input the value of C3) P1= 1.40 inches (input one-hr precipitatlon-see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = _--,-"",0:;;;;,'<;;:..36;•.;;. , Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = .0.28 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration 20 Paved Areas& Shallow Paved Swales SheetFlow) Grassed Swales! Waterwa s 10 II 15 II Nearly Bare Ground 7 Short Pasture! Lawns 5 Tillage! Field 2.5 Heavy Meadow NRCS Land Type Conveyance LEGEND OBegi.nning FlowDirectio «-- Catchment Bounclary Calculations: Flow Time Tf Reach Slope Length 5-yr NRCS Flow 10 S L Runoff Convey- Velocity Coeff ance V ftIft ft C-5 fps input input output input output Overland 0.0100 400 0.28 N/A 0.23, -." . CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: ____,_--------,----,LOS --~:_=__-------------,-- Catchment 10: -=061 =-=-- ----' _ I. Catchment Hydrologic Data Catchment lD =-=D:..:6:..:1_.,...",~ Area = 0,07 Acres PercentImperviousness= . . " 95.00 % NRCSSoilType = ' 0 A, B, C, or D II. Rainfall Information I (inch/hr) =C1 • P1 I(C2 + Td)"C3 Design Storm Return Period,Tr = •· ...10 years (inputretum period for design storm) C1 ='" •••..·...·•••28~50 . (inputthe value of C1) C2= ••• •" '-.10;00. (inputthe value of C2) C3= .. .· ··. OH66 (inputthe value of C3) P1= ,.'. . <AAO.inches (inputone-hr preclpltatlon-see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment RunoffCoefficient, C = '0,84' OverideRunoffCoefficient, C = "' ;: ".c (enteranoverideCvalueif desired, or leaveblanktoacceptcalculated C,) 5-yr. RunoffCoefficient, C-5 = -0:'82 Overide 5-yr. RunoffCoefficient, C = '. ... ..: .: (enteranoverideC-5 value if desired, or leaveblanktoacceptcalculated C-5,) Illustration .... ': •. 1 "'" .'. "' 0,0100 ; ' ···.· 40 fI input Length L flIft input Slope S Reach 10 Calculations: Sum 40 5 '.' 5-yr Runoff Coeff C-5 output ;- ' 0.82 NRCS Flow Flow Convey Velocity Time ance V Tf fps minutes input output output .20.00. 2:00 ' " ' i 'i ' '0,33; :,.•••i ••••.• ,. ' '•.' " .' ComputedTc= Regional Tc = 10,0,33 22 -Ie.-.-.--"- sot: ' User-Entered Tc = 7.57 IV. Peak Runoff Prediction Rainfall Intensityat ComputedTc, I =6.37 inchlhr RainfallIntensityat Regional Tc, I = . 3.76 inch/hr Rainfall Intensity at User-Defined Tc, I =----'----'_4.:.:...:.19=-inch/hr Peak Flowrate,Qp = Peak Flowrate,Qp = Peak Flowrate,Qp = 10125/2012,7:35 PM Area-Weighting for Runoff Coefficient Calculation Project Title: ---=:-::-:: _ D62 LDS Catchment ID: ----'----------------------- Illustration LEGEND: Flow Direction 4 Instructions: For each catchment subarea, enter values for A and C. Subarea Area Runoff Product 10 acres Coeff. A C* CA input input input output .·.·<:.·.0;5.0 ••· ·•• O~95? .. 0.48 I·· .... .... •ir OU34 .•·.:· ···••· '0:25: 0.09 ... .....< .:., .: . .. .: •. ;:-. ;:.': .. ;..'.', :............•...: .;... : :.. /: .....;:. ...., ... . :.< .,....::\ :,,:..;::...::::. .::".: . ..... ...;..•.. ...... Sum: 0.84 Sum: 0.56 Area-Weighted Runoff Coefficient (sum CA/sum A) =. 0.67 *See sheet "Design Info" for inperviousness-based runoff coefficient values. o · H02-2YR, Weighted C 10/26/2012,2:59 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: ~:LOS 7_------------- Catchment ID: -=D62 -==-- _ I. Catchment Hydrologic Data Catchment 10 = .=0..:::62=----::-;:--: Area = 0.84 Acres Percent Imperviousness =67:00 % NRCS Soil Type - .0 A, S, C, or 0 II. Rainfall Information I (inch/hr) =C1 • P1 I(C2 + Td)"C3 Design Storm Return Period, Tr = . .t o years (input return period for design storm) C1 = ··' 2Ik50 (input the value of C1) C2= .••..' 10;00 (input the value of C2) C3= •.•. ' 0;186 (input the value of C3) P1= .•. • . +.40 inches (input one-hr precipitation --see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient. C =.: "';0.'55 Overide Runoff Coefficient, C = ' . .• (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = . .. '.':O.(j·1 Overide 5-yr. Runoff Coefficient, C es . • • (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration Conve ance 12= 2°~ o~ .~7(Z) ,24;: 1 13 CF'S 2. ~ . Calculations: Reach Slope Length 5-yr NRCS Flow Flow ID S L Runoff Convey- Velocity Time Coeff ance V Tf flIft ft C-S fps minutes input input output input output output Overland .... ........ :..::. .. .... '··:...· ·0;'51 NJA 0.00 0.00 ........ .1'.••• .. . >0;0100 . ····,·'s;r ······ .. .. .:·· 2··:<.·.·· ' 0:0174 •• ' 20.00 2.00 0.44 •..··:.680······· 7.00 0.92 12.27 ;.;, . <l >····· 1··. « .. ...::.:,., . :"" :-:,:','" '::, :,':". ...•...::,'.. ··•....4·..•••···· .. .... ... ,.:.. ..'...... ... .. 5 .. ·. ...•. . . : " :"'. Sum ·733 , Computed Tc = :-: 12.72 :40:;3 4_ Z -- C; User-Regional Entered Tc Tc == 14.07 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I =3.43'inch/hr Peak Flowrate, Qp = .~fs Rainfall Intensity at Regional Tc, I =_..----"'-3.;;,.....,27.",inch/hr Peak Flowrate, Qp = <.;.Mif;cfs Rainfall Intensity at User-Defined Tc, I = -dnch/hr Peak Flowrate, Qp =~, .: -~-:..:.-:..:._ - cfs H02-2YR, Tc and PeakQ 10/26/2012, 2:59PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: _ . ~__LOS __==':_------------ Catchment 10:_ ' _-"---~__~ __'____~__=062A _=='_'_ _ I. Catchment Hydrologic Data Catchment 10= D62A Area =. 0.49 Acres Percent Imperviousness = . ' ..,95.00 % NRCS Soil Type = · D .A, B, C, or 0 II. Rainfall Information I (inch/hr) =C1 * P1/(C2 + Td)"C3 Design Storm Return Period, Tr = . """ :2 years (input return period for design storm) C1 = / / :2lt$O (input the value of C1) C2= :10,()() (input the value of C2) C3= ':::': ':::0;786 (input the value of C3) P1= .::.: : : : 0:82 inches (input one-hr precipitatlon-see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C= .".. __0::,.:.:,80",:.,' Overide Runoff Coefficient, C = : :, (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 =:0.82: Overide 5-yr. Runoff Coefficient, C = : : (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration Conveyance 2.5 5 Calculations: L..-.-2;- : z- ~ Reach Slope Length 5-yr NRCS Flow Flow 10 S L Runoff Convey- Velocity Time Coeff ance V Tf flirt ft C-5 fps minutes input input output input outout outout Overland ~\t~ ",-,- .:1'.' • .'. :' <;'-::-: ;:, .;<.-:..; ..::--.::.;.-:.;. :;:: ... . 0182 ... ',·J'l1A.. ... 0.00....... 0.00 . I ,.. 1 :JM)1 24- .7-33':::::'· ,; : ;:-2 0~OO : ·· :.·'''·2:23··..·.. ......"5:49' .·• .3 2 . ;... ....:...; ·~:.::r~:::}:; :}:: :g:):;.:.: ;:· - >g ....-...... .-."-...' -4 ; ?':: ;: :'/ :."::':.::.,: ,:":Y .::.:":>::: ; ::- '=::':::5 <i: .:.i:.:.,... ,"', .. :'. Sum .. 733 : : Computed Tc = 5.49 ~¥ User-Entered Te = IV. Peak Runoff Prediction - -·····- Regional Tc = :<,:14.07- Rainfall Intensity at Computed Tc, I = > ' .2;71inchlhr Rainfall Intensity at Regional Tc, I = : ., 1,92 inchlhr Rainfall Intensity at User-Defined Tc,l =-';· : -, .· "' "·~""":':=·inch/hr Qz=/15(Z&) OJlj ~/@CF5 D62A-2YR, Te and PeakQ Ll,oo ~/,25 (.15 )9§!!( 111) z:50.fJ3 11/212012, 3:10 PM ---------------------------- CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: -==:....=- _ Catchment 10: 0628 LOS I. Catchment Hydrologic Oata Catchment ID =_D...:6.=2.:.B ____ Area = 0.35 Acres Percent Imperviousness = 25.00 % NRCS Soil Type = D A,B, C, or D II. Rainfall Information I (inch/hr) =C1 * P1/(C2 + Td)"C3 DesignStormReturnPeriod,Tr = 2 years (input return period for design storm) C1 =...,.....-........--::2=8.~5':-0 (input the value of C1) C2= 10:00 (input the value of C2) C3= 0;786 (input the value of C3) P1= 0.82 inches (inputone-hr precipitation--seeSheet"DesignInfo") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient,C =-'--...;.,......".;Q'""';=20=. OverideRunoffCoefficient,C = (enter an overideCvalueifdesired,or leave blank to accept calculatedC.) 5-yr. RunoffCoefficient,C-5 = 028 Overide5-yr. Runoff Coefficient, C = (enter an overideC-5 value if desired, or leave blanktoacceptcalculatedC-5.) Illustration NRCS Land Type Heavy Meadow Tillagel Field Short Pasture! Lawns Nearly Bare Ground Grassed Swales! Waterwa s LEGEND OBegiJming FloIvDirectio ~ Catchment Boundary Paved Areas & Shallow Paved Swales (Sheet Flow) Conveyance 2.5 5 7 10 15 20 Calculations: Reach Slope Length 5-yr Flow ID S L ftIft ft input input Overland .' .' .... .... 1 0.0200 ;28 2 .. 0.015$< 'e65 '.' .3 ...... . 4 :. 5 Sum 693 \~\ 1 \\ \ \ I ~~J -JIII - I I I I I JI I "- o II I,I o I I ..II.- .... . u I' I I I 1 ! I ; I I I : II , s:p- -1 --- t~fI .~l'!!7!!'l!_:~; : ~ ~.~ •: ~~·:~_-!I'!!!!!I!'!!'~ ~!!! !.!!'. ~ - __ __ . _ . . _ _ _. -' U tJ I nn n I .:: H I \ III II _ _ t~ ' • -; -::;I ;.~ . ~=." -----til.-----3:-----=-=--:-=-----T-, ~-===-==--=-~:-= -~-===-==~Z-==-;9!-~;L-liJ ~~~~~I~=--..-=~=:-~~~~£ - ---... A\ I I ------- ,-- .",..---- --------- --------------- -- ! ! CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: -.:::.::,..=. _ Catchment 10: ---=063 ....:...:.. _ LOS I. Catchment Hydrologic Data Catchment10= 063 Area = "::"::''::''''-"1"7 '"";".4""9 Acres Percent Imperviousness=. 48;00 % NRCSSoilType = .D A, B, C, or 0 II. Rainfall Information I (inchlhr) = C1 • P1/(C2 + Td)"C3 DesignStonm Return Period,Tr = . . 10y ears (input returnperiodfordesignstorm) C1 =~~'"" '=2'=a;'-SO == (input thevalueofC1) C2- 10100 (input the value of C2) C3= '0.786 (input the valueofC3) P1= ""W inches (inputone-hrprecipitation--seeSheet"Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C =.· :.<t45 OverideRunoffCoefficient,C = ... <'i,: (enter an overideCvalueifdesired,or leaveblanktoacceptcalculated C.) 5-yr. Runoff Coefficient, C-5 = , ' lf 39 Overide5-yr. RunoffCoefficient,C = ", (enter an overideC-5 value if desired, or leaveblanktoacceptcalculated C-5.) Illustration T z...:: Z. ':L Pasturel Short ~ - : Lawns Conveyance 5 7 T.-----,{)t. :: I 48 (].~ ) 1'~ ~" /7 ZCf5 Calculations: :r;; ~l/~ Reach Slope Length 5-yr NRCS Flow Flow 10 S L Runoff Convey- Velocity Time Coeff ance V Tf ftllt It C-5 fps minutes inout inout output input outout outout Overland ...: :. : ':/:.':: .. >.0.39 ·::·:,!:.NIA 0.00 0.00 .;.:-: ''1' :: 0,0200 ,: ::··.:, 47:,···· 1: :.20;00 2.83 0.28 >:' :}..2<,:/ ' · ',·'/ 0;036B':.,· " ::' 625 \ ' : J&:OO 2.88 3.62 '.;:',,>'::,'·3.',·::," """ < .0,0460 \ :.. : ..':,,, ): '·370',.> :.·::::.7:00 1.50 4.11 . A 5 · ' : ··: . .: .': : . : • :.,.: :'. '. ::' >.,::.,. :>\,.,:.:,.",.':. " ':':" ::' :. Sum .'. 1,042 .. Computed Te = 8.00 :, 38 User-Entered Tc= r::: .: :, I;60 -- - Regional Tc= 15.79 > IV. Peak Runoff Prediction Rainfall Intensityat Computed Tc, 1= .. ' .. 4.11 inch/hr Peak Flowrate, Qp =.: ··.·:.:. 2;7S efs Rainfall Intensityat Regional Te, I = 3.10 inch/hr PeakFlowrale,Qp = ,.. :. 2,07·efs Rainfall Intensityat User-Defined Tc, I =.........;_..:.·:.,;:. .· ~,·inehlhr PeakFlowrate, Qp =.,. .. cfs Q,o -=:: ~ 4B (4 IE-)1, ~9 ~ Z-9~ cr~ 10/26/2012,3:57 PM H03-2YR, Te and PeakQ Q,CO z-/, 25 ~ 18)R3:3-(;.'19) ~ 7'19 c;=:s Area-Weighting for Runoff Coefficient Calculation Project Title: ----==::=:-:::...,....__--,- _ 064 · LOS Catchment 10:----------------"'-'"------------ Illustration LEGEND: Flow Direction 4 Cal:Cbm. em Boundary Instructions: Foreachcatchmentsubarea, entervaluesforAandC. Subarea Area Runoff Product 10 acres Coeff. A C* CA input input output i .'..".' .}: 0;:4$::) .:. 0.95 ' 0.47 input 0.25 0.03 I.. . .:'; >,.•'.» .'••• .,. I·':·.·: >, >," • .',' , . '" Sum: £[61 ··· Sum: '0.50 Area-Weighted Runoff Coefficient (sum CAisum A) = 0.81 *See sheet "Design Info" for inperviousness-based runoff coefficient values. D64-10YR, Weighted C 10/2612012, 3:05 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: __'-- -LOS =::7"- _ Catchment 10: -=064 -..:'-'-- _ I. Catchment Hydrologic Oata CatchmentID = D64 Area =-='-'--':'.-0=- .'""'67"1 Acres PercentImperviousness= -." " ,8U 10 % NRCSSoilType = / :.. ' ""',<:U A, S,C, or D II. Rainfall Information I (inchfhr) = C1 • P1 f(C2 + Td)"C3 DesignStormReturnPeriod, Tr= '.",:. :){10. years (input returnperiodfordesignstorm) C1 = .',:>,,::;,:'Zll:;50 (input the valueofC1) C2= , ":,::oo:J OiQO (inputthevalueof C2) C3= " :A);'t86 (inputthe valueof C3) P1= ·'·:: :::::1AOinches (inputone-hrprecipitation-see Sheet"DesignInfo") III. Analysis of Flow Time (Time of Concentration) for a Catchment RunoffCoefficient, C = 0.67 OverideRunoffCoefficient, C = (enteranoverideCvalueifdesired,or leave blank to acceptcalculated C.) 5-yr. RunoffCoefficient, C-5 = . P.l)4 Overide 5-yr. RunoffCoefficient, C = ,'F:,>":'<,/) :, (enteranoverideC-5 value if desired, or leave blank to acceptcalculated C-5.) Illustration IL~23~ Qz.~.8( (233) I "I ;; Conve nee 2.5 5 Calculations: Length 5-yr L ft input 45 ::: . } 20···· :'1'., 593 658 "Ito z: 49!?- Reach Slope 10 S ftIft input Overland ;",.'..,:., ' . > : ~ :':1') :f :0,0200 ' I:: 2>f } : :\ m1900.. 3 } } :: , 0.0.094 "':,'}jf \ 5 : ':.: Sum 1iro -- /7 IV. Peak Runoff Prediction Rainfall IntensityatComputedTc, I = -' ,, ,--,--4=,~::::0-=-nnchfhr Rainfall Intensityat RegionalTc, I -e , .' ·3.32;inchfhr Rainfall Intensityat User-Defined Tc, I - / ,."'· 4;75.inchfhr QIO ;:(). 91 (4 0P) ,bl ~ /1£ CF~ Runoff Coeff C-5 output <., ':.0164 NRCS Convey anee input Flow Velocity Area-Weighting for Runoff Coefficient Calculation Project Title: -LDS ---:~------------- Catchment ID: -------------'-IN1 '-------------- Illustration LEGEND: Flow Direction 4 Instructions: Foreachcatchment subarea, entervaluesforAandC. Subarea Area Runoff Product ID acres Coeff. A C· CA input input input output .. :> ()i05 ....I '· m9.5 .< ······O·. /)$ .... .. ·' >0.08 ' ···· 0:25 >: 0.02 ." I ···· . .., ..' .. . ., /) <> <> .: .' ....., ' .': .: .. ' . . > • ' .. ) } >< 1·.·••.····.:··· ><.. 1 ': .:": ... I . •.•. :. : •• :. .......... .> > •. " ...:.:" ..,. . .. ."':: .',' I>"'.' ," i',: Sum: ;,;'; ()~13 Sum: 0.0;:,'" ... Area·Weighted Runoff Coefficient (sum CAisum A) = 0. 5~ : , J : : i : ·See sheet "Design Info" for inperviousness-based runoff coefficient values. UD-Rational v1.02a, Weighted C 10/29/2012,9:51 AM ---- CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: ...,.,..,..,...-_ IN1 LOS Catchment 10: ..:.:..:..:..- _ I. Catchment Hydrologic Data Catchment 10= IN1 Area = __="0:,.-.,..13,:-.Acres Percent Imperviousness=52:00 % NRCS Soil Type = 0 A, S, C, or 0 II. Rainfall Information I (inch/hr) = C1 * P1/(C2 + Td)AC3 Design Storm ReturnPeriod,Tr = __~=,,10,:-.· years (input return period for design storm) C1 = ~l3;50 (input the value of C1) C2= 10;00 (input the value of C2) C3= O~786 (input the value of C3) P1=1AO inches (input one-hr precipitation--seeSheet"Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient,C = __..;.;0..;.;4_7_ Overide Runoff Coefficient,C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient,C-5 = 0;41 Overide 5-yr. Runoff Coefficient,C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration NRCS Land Type Conveyance Heavy Meadow 2.5 Tillage! Field 5 Short Pasture! Lawns 7 Nearly Bare Ground 10 Grassed Swales! Waterways II 15 II o LEGEND Beginning FIoIv Directio «------ Catdunent Bounclary Calculations: Reach ID Slope S Length L 5-yr Runoff Coeff NRCS Convey Concrete Pipe Division Reinforced Concrete Box Culvert v . 4 v .. .v ?.v .. 4 .. .. 4 H Joint Depth 4 H Rise (R) 4 V. : V Span (S) <i ~ v .. ,v. . . 4 • . .: '4 4" '.4' Section thru Box Culvert Section thru Box Joint Span (S) .. 3 Standard Box Culvert Weights (Ibs.) per Foot Ii 2 4 5 6 7 8 9 10 11 12 3 605 705 905 1025 1425 1885 2410 4 1155 1575 2060 2600 2800 4880 5700 5 1725 2235 2800 3000 3655 4375 6 2410 3000 3200 3885 4625 5430 6300 7 3200 3400 4105 4875 8 3600 4335 5125 5980 6900 9 4555 5375 10 5625 6530 7500 11 6810 12 8100 Wall (T) 4 5 6 7 8 8 9 10 11 12 Haunch (H) 7 7,8 7.8 7,8,12 8,12 8,12 12 12 12 12 Notes: Box dimensions may vary depending upon equipment availability. 1. Produced to meet ASTM Specifications. 2. Contact aConcrete Pipe Division representative for details not listed on this sheet. 3. Walls, Slabs and Haunches are designed to meet ASTM / AASHTO standards and project specifications. Rinker 013 TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION November 2, 2012 DESCRIPTION PROGRAM INPUT DATA VALUE Flow Rate (cfs) Channel Bottom Slope (ft/ ft) Manning's Roughness Coefficient (n-value) Channel Left Side Slope (horizontal/vertical) Channel Right Side Slope (horizontal/vertical) Channel Bottom Width (ft) . . . . . . 186.26 0.01 0.12 4.0 4.0 20.0 COMPUTATION RESULTS DESCRIPTION VALUE Normal Depth (ft)··········································· 2.91 Flow Velocity (fps)········································· 2.02 Froude Number··············································· 0.245 Velocity Head (ft)·········································· 0.06 Energy Head (ft)············································ 2.97 Cross-Sectional Area of Flow (sq ft)··· . 92.0 Top Width of Flow (ft)······································ 43.27 HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright (c) 1996-2010 Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com. All Rights Reserved. TRAPEZOIDAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION November 2, 2012 PROGRAM INPUT DATA DESCRIPTION VALUE Flow Rate (cfs) Channel Bottom Slope (ft/ft) Manning's Roughness Coefficient (n-value) Channel Left Side Slope (horizontal/vertical) Channel Right Side Slope (horizontal/vertical) Channel Bottom Width (ft) . . . . . . 186.26 0.01 0.12 4.0 4.0 40.0 COMPUTATION RESULTS DESCRIPTION VALUE Normal Depth (ft)··········································· 2.11 Flow Velocity (fps)········································· 1. 82 Froude Number··············································· 0.239 Velocity Head (ft)·········································· 0.05 Energy Head (ft)············································ 2.16 Cross-Sectional Area of Flow (sq ft) . 102.35 Top Width of Flow (ftr)······································ 56.9 HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright (c) 1996-2010 Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Email:software@dodson-hydro.com. All Rights Reserved. BOX CULVERT ANALYSIS COMPUTATION OF CULVERT PERFORMANCE CURVE November 2, 2012 PROGRAM INPUT DATA DESCRIPTION VALUE CuI vert Span (ft) . 4.0 Culvert Rise (ft) . 3.0 FHWA Chart Number . 10 FHWA Scale Number (Type of Culvert Entrance) . 1 Manning's Roughness Coefficient (n-value) . 0.013 Entrance Loss Coefficient of Culvert Opening . 0.5 Culvert Length (ft) . 117.75 Invert Elevation at Downstream end of Culvert (ft) . 4,899.7 Invert Elevation at Upstream end of Culvert (ft) . 4,900.88 Culvert Slope (ft/ft) . 0.01 Starting Flow Rate (cfs) . 62.08 Incremental Flow Rate (cfs) . 0.0 Ending Flow Rate (cfs) . 62.08 Starting Tailwater Depth (ft) . 2.0 Incremental Tailwater Depth (ft) . 0.0 Ending Tailwater Depth (ft) . 2.0 COMPUTATION RESULTS Flow Tailwater Headwater (ft) Normal Critical Depth at Outlet Rate Depth Inlet Outlet Depth Depth Outlet Velocity (cfs) (ft) Control Control (ft) (ft) (ft) (fps) 62.08 2.0 3.21 0.0 1.5 1. 96 1.5 10.33 HYDROCALC Hydraulics for Windows, Version 2.0.1, Copyright (c) 1996-2010 Dodson & Associates, Inc., 5629 FM 1960 West, Suite 314, Houston, TX 77069 Ernail:software@dodson-hydro.com, All Rights Reserved. HISTORIC CONDITION HYDROLOGY -------------------------- -------------------------- Area-Weighting for Runoff Coefficient Calculation Project Title: LDS Catchment ID: BR Illustration LEGEND: Flow Direction C:• d:cbmeot Boundary Instructions: For each catchment subarea , enter values for A and C. Subarea Area Runoff Product I ID acres Coeff. A C* CA input input input output O ~08 . 0.11 3.51 '. .. ......:.. ....• .<:;.::.. Area-Weighted Runoff Coefficient (sum CAisum A) =" ~,~iiP,Z' : . *See sheet "Design Info" for inperviousness-based runoff coefficient values. UD-Rational v1.02a, Weighted C 10/22/2012,8:47 AM \ . . v : : I I I U I I I I ':d I I I.F ~ \\ I! I II Iii I ! -s, '1 \\\ \ ~ \nt'll l l l - r~~- ~.,i .-! ._..__._ .~~__..~.••••••• _~. _---- .:-==- .-_ ~-.••_--.--..=-. . .= --.~:~_"-:..= --,.--.. ~.-- ..-.=. - =~ .'.._.t ' _ .. .~_t: ,__ ."._."-- "..="-.=."-.,". .,.":.,.- ~ _."..:",..11, "" "= "11 ' " _..'''''' ~=;;;." ' ~--':" '" u cO -P ~ JJ.T j:~ ~ d',' " ... ~] 0 I TIT ' ~' § " " 3 ~ I I i ~ ' ' ~ ~ ' . ~' ''I- <>;t ~ 0 \ I _if' p , . _ •••••_ __ _._ . ••••_ __._____--.',. ••••• =' _" ...-.=u :_:-_ -_ , -_ ,.._ UUlIJL' __\_..L- " "'T'•••__ ..J'U) ." .. __" . ' · ---" " d, -' -::::..- . . I I " ,' ' • ~ .. ..., n ---"'-- --- __.. .._ ~ ---. J . -- ' ' ' -- -_....:: -:::;:,::.'" :: :::. ~;:;------ ---_-._ -- --. --- -~ -- - -_.-" ' ...~ ' ;:: : -. -'- I 1 I 1 I J I '"I .I '- .1 .I ,I ,-I ''',' .,'' 'CI .. -- -- . ,-.= = --- _._.J ---=:::~ .2 ""'t:-----~;s:..~r-, -:r~--f{:../-------====== ,, " i ' ".---. \ " , CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: ---LDS -==:..=... _ Catchment ID: BR ---------------,.---/-(-dea5e -----:,,TD; r -----/ 9d -{)11 -----/ I} ,..----- /\ I. Catchment Hydrologic Data 16r/)~r Catchment 10= _B_R _ Area = 4.16 Acres PercentImperviousness = 35.07 % I\JRCS SoilType= 0 A, B, C, or 0 II. Rainfall Information I (inch/hr) = C1 * P1/(C2 + Td)/lC3 Design StormReturnPeriod, Tr = 2 years (inputreturnperiodfordesignstorm) C1 =""""-----C:2=: 8-:;5-=0 :-" (inputthe value ofC1) C2= tOcOo (input the value of C2) C3= 0;786 (input the value of C3) P1= 0.82 inches (inputone-hrprecipitation-see Sheet "DesignInfo") III. Analysis of Flow Time (Time of Concentration) for a Catchment RunoffCoefficient, C =~---,-....;;O....;;·...;25_·· OverideRunoffCoefficient, C = (enteranoverideCvalueifdesired,or leave blank to accept calculated C.) 5-yr. RunoffCoefficient, C-5 = 0;33 Overide 5-yr. Runoff Coefficient, C = ~ (enteranoverideC-5 value jf desired,or leave blank to accept calculated C-5.) Illustration NRCS Land Type Heavy Meadow Tillagel Field Short Pasture! Lawns Nearly Bare Ground Grassed Swalesl Waterways Paved Areas & Shallow Paved Swales (Sheet Flow) Conveyance 2.5 S 7 10 II 1S II 20 LEGEND OBeginnin.g Flew Directio ~ Catchment Boundary Calculations: Reach ID Overland Slope S ftIft input Length L ft input 5-yr Runoff Area-Weighting for Runoff Coefficient Calculation Catchment Project Title 10: : - - - - - - - - - - - - - - - - - - - - - H01 LDS - - - - - - - - - - - - - - - - - - - - - - - - Illustration LEGEND: Flow Direction l CatChment Boun~ Instructions: For each catchment subarea, enter values for A and C. Subarea Area Runoff Product ID acres Coeff. I A C* CA I input input input output 0.$3 95.00 '..·31..35 0;28 25.00 7<@@:· . . ;, ,". .' :•.. ...:........... .... .':.'':.' i':• : ". . ,. ./ Sum : -.: . 0;61 Sum : ;" . ' 3$~~~ ··) Area-Weighted Runoff Coefficient (sum CAlsum A) = . , ~2~An: . *See sheet "Design Info" for inperviousness-based runoff coefficient values. H01-2YR, Weighted C 10/20/2012, 4:22 PM ---- CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: .LOS ...,....,..,~------------- Catchment 10: H01 _ I. Catchment Hydrologic Data Catchment 10 = H01 Area = 0.61 Acres Percent Imperviousness = --6-=-2=-.-=-87=-% NRCS Soil Type = D A, B,C, or 0 II. Rainfall Information I (inch/hr) = C1 * P1/(C2 + Td}I\C3 Design Storm Return Period, Tr = 2 years (input return period for design storm) C1 =------c-:2 : c=a -;5 ::-O ::-" (input the value of C 1) C2=10,00 (input the value of C2) C3= 0;7$'0 (input the value of C3) P1= {J.8"2 inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = _.,...,...:.,0;.;,.·);.;,.43;;•.;· .· Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 =0;48 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired. or leave blank to accept calculated C-5.) Illustration Calculations: IV. Peak Runoff Prediction RainfaJllntensity at Computed Tc, I = Rainfall Intensity at Regional Tc, 1= Rainfall Intensity at User-Defined Tc, 1= C- -; ·0,3 I:;. 2, 3y H01-2YR, Tc and PeakQ NRCSLand Type Heavy Meadow Tillagel Field Short Pasturel Lawns Nearly Bare Ground Grassed Swales! Waterways Paved Areas& Shallow Paved Swales (SheetFlow) Conveyance 2.5 5 7 10 II 15 II 20 I:' LEGEJ'ID OBeg.inning FlalV Directie «-- Catchment Boun.d.ary Reach 10 Overland Slope S flIft CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: LDS Catchment ID:----------------:-HOl '-="':------------- I. Catchment Hydrologic Data Catchment 10=-,H.- :.O=.: --1,:-=-=--,- Area = 0.61 Acres Percent Imperviousness = 62.87 % NRCSSoilType=0A, S, C, or 0 II. Rainfall Information I (inch/hr) =Cl * P1/(C2 + Td)"C3 DesignStorm Return Period, Tr = 100 years (inputreturnperiodfordesignstorm) C1 = • •. 28$0 (inputthe valueof Cl) C2= ·. ·' 1.0.00 (inputthevalueof C2) C3= < O:y.8g (inputthevalueofC3) P1= ..2:8$ inches (inputone-hrprecipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment RunoffCoefficienl,C =. d.,~4 OverideRunoffCoefficient, C= ,·r· .(enteranoverideCvalueifdesired, or leave blank to acceptcalculated C.) ±'-- --;,;,,'6B 5-yr. RunoffCoefficient, C-5 =.:> ~l,4.~ Overide5-yr. RunoffCoefficient, C =(.'/ (enteranoverideC-5 valueifdesired,or leave blanktoacceptcalculated C-5.) Illustration F10Iv Directio ~ Catchment Boundary NRCS land ~ Tillage! Short Nearly Grassed Type ~ Field Pasture! Bare Swales! lawns Ground Waterwa Conveyance II 2.5 II 5 7 10 15 Calculations: 5-yr Runoff Coeff C-5 output I," 'OA8 Reach 10 Overland Slope S fVlt input length L It .. .. ' .: input .·">.• t · . . .···.·.O'i0200 45 ····..>...:2·. .. . .··M900 · 20 ·<':3 ',c. ·····mOWf 593 4 5 Sum 658 IV. Peak Runoff Prediction NRCS Convey ance input ····N1A ..... •·••·· · . · . 2Q~QO :., ······.,;!)l)' ..: Area-Weighting for Runoff Coefficient Calculation Project Title: LOS Catchment 10:-------------H02 ------------- Illustration LEGEND: Flow Direction Catchment • Bound~'Y Instructions: Foreachcatchment subarea,enter valuesforAandC. Subarea 10 input Area acres A input 0.38 oAe Runoff Coeff. C* input 95.00 25:00 .: Product CA output 36.10 11.50 . < :,.. .: .:.. '.<. .: ..,:" -: :, ..' . . . . ' . ., -". .... . Sum: . ~~~4 .'. 1< I' Sum: ...... ... ~7~$J) ,. Area-Weighted Runoff Coefficient (sum CAlsum A) =.,.,.$6~6.7 *See sheet "Design Info" for in perviousness-based runoff coefficient values. H02-2YR, Weighted C 10/20/2012, 4:29 PM ---------------------------- ---- CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: LOS _ Catchment 10: H02 I. Catchment Hydrologic Data Catchment ID = H02 Area =---0-.-84-Acres Percent Imperviousness = 56.67 % NRCS Soil Type = D A, B, C, or D II. Rainfall Information I (inch/hr) = C1 * P1/(C2 + Td)AC3 Design Storm Return Period, Tr = 2 years (input return period for design storm) C1 =--2-8-.5-0 (input the value of C1) C2= 10:00 (input the value of C2) C3= 0.786 (input the value of C3) P1= 0.82 inches (input one-hr precipitation--seeSheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient,C = 0.:...:.;:.:.38;.:,.: Overide Runoff Coefficient,C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0;44 Overide 5-yr. Runoff Coefficient,C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration floI\' Directio +----- NRCS Land Type Heavy Meadow Tillagel Field Short Pasture! Lawns Nearly Bare Ground Grassed Swalesl Waterways Catchment Boundary Paved Areas & Shallow Paved Swales Sheet Flow) Conveyance 2.5 5 7 10 II 15 II 20 Calculations: Reach ID Overland Slope S tuft input Length L ft input 5-yr Runoff Coeff C-5 ---------------------------- ---- ---- CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: LOS _ Catchment 10: H02 I. Catchment Hydrologic Data Catchment 10= H02 Area = 0.84 Acres Percent Imperviousness = 56.67 % NRCS Soil Type = 0 A, S, C, or 0 II. Rainfall Information I (inch/hr) =C1 * P1 I(C2 + Td)AC3 Design Storm Return Period, Tr = 1...,.0o_· years (input return period for design storm) C1 = 28.50 (input the value of C1) C2= 10.00 (input the value of C2) C3= 0.786 (input the value of C3) P1= 2.86 inches (input one-hr precipltation-see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0.62 Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0.44 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration NRCS Land Type Heavy Meadow Tillage! Field Short Pasture! Lawns Nearly Bare Ground Grassed Swales! Waterways Paved Areas & Shallow Paved Swales (Sheet Flow Conveyance 2.5 5 7 10 II 15 II 20 o LEGEND Beginning Flow Directio «- Catchment Boundary Calculations: Reach 10 Overland Slope S ftIft input Length L ft input 5-yr Runoff --------------------------- --------------------------- Area-Weighting for Runoff Coefficient Calculation Project Title: LOS Catchment 10: H03 - HISTORIC Illustration LEGEND: Flow Direction. 4 Instructions: For each catchment subarea, enter values for A and C. Subarea Area Runoff Product 10 acres Coeff. A C* CA input input input output 0.36 95;00 34.20 1.13 25.00 28.25 Sum: 1~49 Sum: 62~45 Area-Weighted Runoff Coefficient (sum CAlsum A) = 41;91 *See sheet "Design Info" for inperviousness-based runoffcoefficient values. H03-2YR, Weighted C 10/20/2012,4:33 PM ---- ---- CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: -------------:-:-::-:-LOS ----:-:c:=~~----------- Catchment 10: --H03 '--.:..::..:- ...HISTORIC :..:...-=---"--- _ I. Catchment Hydrologic Data Catchment 10 ::: H03 Area::: 1.49 Acres Percent Imperviousness ::: 41.91 % NRCSSoil Type > 0 A, B, C, or 0 II. Rainfall Information I (inch/hr) = C1 * P1 I(C2 + Td)"C3 DesignStormReturn period'CT1r _::_ : __.,-,-...".2...".. years (input return period for design storm) 28.50 (input the value of C1) C2= 10.00 (input the value of C2) C3= 0.786 (input the value of C3) P1= 0.82 inches (inputone-hr precipitation-see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0_._29,, OverideRunoffCoefficient, C = (enter an overideCvaluejfdesired,or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0.36 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration NRCS Land Type Heavy Meadow Tillagel Field Short Pasturel Lawns Nearly Bare Ground I Grassed Swalesl Waterways Paved Areas & Shallow Paved Swales (Sheet Flow) Conveyance 2.5 5 7 10 II 15 II 20 LEGEND OBeg:iJming Flow Directio ~ Catchment Bowulary Calculations: Reach 10 Overland Slope S ftIft input Length L ft input 5-yr Runoff ---------------------------- CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: ~ LOS _ Catchment 10: H03 - HISTORIC I. Catchment Hydrologic Data Catchment ID= H03 Area =---1-.4-9 Acres Percent Imperviousness = 41.91 % NRCS Soil Type = D A, S,C, or D II. Rainfall Information I (inch/hr) = Ci * Pi /(C2 + Td)I\C3 Design Storm Return Period, Tr = 100 years (input return period for design storm) C1 = --2"'-"8"""".5"--0 (input the value of C1) C2= 10:00 (input the value of C2) C3=O:786 (input the value of C3) P1= 2.86 inches (input one-hr precipitation-see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = -,-__0_._59_ Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-S = 0.36 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-S.) Illustration NRCS Land Type Conveyance Heavy Meadow 2.5 Tillage! Field 5 Short Pasture! Lawns 7 Nearly Bare Ground 10 Grassed Swales! Waterways II 15 II o LEGEND Beginning FlolVDirectio ~ Catchment Bound.a.ry Calculations: Flow Velocity V fps output 0.00 .~ .. 2,8~ '2:il~8 1,~Q Regional Tc = User-Entered Tc = NRCS Area-Weighting for Runoff Coefficient Calculation Project Title: LOS Catchment 10: ---------------:-:-:--:-:-:-:::-==:-:=----------- H1 -HISTORIC Illustration LEGEND: Flow Direction l Catchment Boundary Instructions: For each catchment subarea, enter values for A and C. Subarea Area Runoff Product 10 acres Coeff. A C· CA input input 0.64 0.10 O.11 6.12 input 95;0:0 95,00 50;00 25.00 output ;: 6J:mao;· _ "' ~1'!50 " ' ~; gO · lg~;OP .. .: .': " " .:':0 ... .) , ;<..• : . '.:> .. ...... .' .: .' f::::' '":.'':''' .:..... :. I·;.... ··· . ·:. ·,..' :... Sum : · ~. ~t. : Sum: .; 2,~~;~~ Area-Weighted Runoff Coefficient (sum CAlsum A) = L :3~~1l3Y ·See sheet "Design Info" for inperviousness-based runoff coefficient values. H1-2YR,Weighted C 10/20/2012,4:40 PM ---------------------------- CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: ,....,----LOS ,----=-=-=--=-:--:-- _ Catchment 10: H1-HISTORIC I. Catchment Hydrologic Data Catchment 10= H1 Area =---6-='".-=-97=- Acres Percent Imperviousness = 32.83 % NRCS Soil Type = 0 A, S, C, or 0 II. Rainfall Information I (inch/hr) = C1 * P1 I(C2 + Td)"'C3 Design Storm Return Period, Tr = 2 years (input return period for design storm) C1 =-----,.,.2.,.,...8..,.,..50.,...(input the value of C1) C2= 10.00 (input the value of C2) C3= 0:186 (input the value of C3) P1= 0.82 inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = '--.:....,.,.,...;,;0"•.-' ..;,;24..;,;. Overide Runoff Coefficient, C = (enter an overide C value if desired, or leave blank to accept calculatedC.) 5-yr. Runoff Coefficient, C-5 = 0.32 Overide 5-yr. Runoff Coefficient. C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration NRCS Land Type Heavy Meadow Tillage! Field Short Pasture! Lawns Nearly Bare Ground Grassed Swales! Waterways Paved Areas & Shallow Paved Swales (Sheet Flow) Conveyance 2.5 5 7 10 II 15 II 20 LEGEND o Beginning FlolV Directio +- Catchment Boundary Calculations: Reach 10 Overland Slope S tUft input Length L ft input 5-yr Runoff Coeff ---------------------------- CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: .,....,--,--LDS :-::-=-=....",....,.-=-- _ Catchment ID: H1-HISTORIC I. Catchment Hydrologic Data Catchment 10= H1 Area = ---6:-."'-97- Acres Percent Imperviousness = 32.83 % NRCS Soil Type = D A, B, C, or 0 II. Rainfall Information I (inch/hr) = C1 * P1 I(C2 + Td)hC3 DesignStormReturnPeriod,Tr = _----,-.,.,;..,;..1,.,.,00.,.,.- years (input return period for design storm) C1 = 28.50 (input the value of C1) C2= 10;00 (input the value of C2) C3= 0.186 (input the value of C3) P1= Z86 ~ches (input one-hr precipitation--seeSheet"Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient,C = 0_;' --'-.57_ OverideRunoffCoefficient,C = (enter an overideCvalueifdesired,or leave blank to acceptcalculatedC.) 5-yr. Runoff Coefficient, C-5 = 0:32 Overide 5-yr. Runoff Coefficient,C = (enter an overideC-5 value if desired, or leave blank to accept calculatedC-5.) Illustration NRCS Land Type Heavy Meadow Tillage! Field Short Pasture! Lawns Nearly Bare Ground Grassed Swales! Waterways floI\' Directi.o ~ Catchment Boundary Paved Areas & Shallow Paved Swales (Sheet Flow) Conveyance 2.5 5 7 10 II 15 II 20 {,: Calculations: to. Reach 10 Overland Slope S tUft input Length L ft input 5-yr Runoff --------------------------- --------------------------- Area-Weighting for Runoff Coefficient Calculation Project Title: LDS Catchment 10: H2-HISTORIC Illustration LEGEND: Flow Direction Catchment • BoundaQ" Instructions: Foreachcatchment subarea,enter values for A and C. Subarea Area Runoff Product ID acres Coeff. A C* CA input input input output 0.05 95.00 4.75 0.04 50.00 1.75 0.01 95.00 0;95 1.22 25.00 30.38 1:< Sum: 1.31 Sum: 37UJa ,.. Area-Weighted Runoff Coefficient (sum CAlsum A) = 28.87 *See sheet "Design Info" for in perviousness-based runoff coefficient values. H2-2YR, Weighted C 10/20/2012, 4:42 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: LOS _ Catchment 10: H2-HISTORIC _ I. Catchment Hydrologic Data Catchment 10= H2 Area = ---1.-3-1Acres Percent Imperviousness = 28.87 % NRCS Soil Type = D A, B, C, or D II. Rainfall Information I (inch/hr) = C1 * P1 I(C2 + Td)"C3 Design Storm Return Period, Tr = 2 years (input return period for design storm) C1 = --2-8-.5-0 (input the value of C1) C2= 10.00 (input the value of C2) C3= 0.786 (input the value of C3) P1= 0.82 inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient,C = 0_-, ...;22...;·· Overide Runoff Coefficient,C = (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0.30 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration Paved Areas & Shallow Paved Swales Sheet Flow) Grassed Swales! Waterwa s Nearly Bare Ground Short Pasturel Lawns Tillagel Field Heavy Meadow NRCS Land Type Conveyance 2.5 5 7 10 " 15 II 20 o LEGEJ'lD Beginning Flow Directio ~ Catchment Boundary Calculations: Reach fD Overland Slope S ftlft input Length L ft input 5-yr Runoff Coeff C-5 ---------------------------- ---- CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: -----,__LOS ,,-,-_,------ _ Catchment 10: H2-HISTORIC I. Catchment Hydrologic Data Catchment 10= H2 Area = __."..1::.-..:..,31,.,.. Acres Percent Imperviousness = 28.87 % NRCSSoil Type = 0 A, S, C, or 0 II. Rainfall Information I (inch/hr) = C1 * P1 I(C2 + Td)"C3 Design Storm Return Period, Tr =---'-----,.,.,..,;-1'-'OO~· years (input returnperiodfordesignstorm) C1 = 28.50 (inputthe valueof C1) C2=HtOO (inputthevalueofC2) C3=O)'86 (inputthevalueofC3) P1= 2.86 inches (inputone-hr precipitation-see Sheet "DesignInfo") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C =-'-,-~,..;;O;;;,;.;5i-'-7,-,·· Overide Runoff Coefficient, C = (enter an overideCvalueif desired, or leave blanktoacceptcalculated C.) 5-yr. RunoffCoefficient,C-5 =~):~O Overide 5-yr.Runoff Coefficient, C = (enter an overideC-5 value if desired,or leaveblanktoaccept calculated C-5.) Illustration NRCS land Type Heavy Meadow Tillagel Field Short Pasture! lawns Nearly Bare Ground Grassed Swalesl Waterways Flaw Directio -(--- Catchment Bound.ary Paved Areas & Shallow Paved Swales (Sheet Flow) Conveyance 2.S 5 7 10 " 15 II 20 Calculations: Reach 10 Overland Slope S ftlfl input length l fl input 5-yr Runoff Coeff C-S --------------------------- --------------------------- Area-Weighting for Runoff Coefficient Calculation Project Title: LOS Catchment 10: H3-HISTORIC Illustration LEGEND: Flow Direction 4 Catchment Boundcuy Instructions: For each catchment subarea, enter values for A and C. Subarea Area Runoff Product 10 acres Coeff. CA output 40725 A C* input input input .16.29 25.00 . .:. , -.' .. :" ..... I::" ..' ':' '. .' .' Sum: .,: ;1·$.~~~::: Sum: 4P7~~~ Area-Weighted Runoff Coefficient (sum CAlsum A) = 25.QO *See sheet "Design Info" for inperviousness-based runoff coefficient values. H3-2YR, Weighted C 10/21/2012, 10:02 PM ---------------------------- ---- CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: --=LOS -=--=-- _ Catchment 10: H3-HISTORIC I. Catchment Hydrologic Data Catchment ID =H3 Area = 16.29 Acres Percent Imperviousness = 25.00 % NRCS Soil Type= D_A,B, C, or D II. Rainfall Information I (inch/hr) =C1 * P1 I(C2 + Td)"C3 DesignStorm Return Period, Tr = 2 years (input return period for design storm) C1 =----..,..~....,..8.,.....5-0 (input the value of C1) C2= 10;00 (input the value of C2) C3= 0.786 (input the value of C3) P1= 0.82 inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient,C = __,..;0:.;.:2=.0:.. Overide Runoff Coefficient,C = (enter an overideC value if desired, or leave blank to accept calculatedC.) 5-yr. Runoff Coefficient,C-5 = 0.28 Overide 5-yr. Runoff Coefficient,C = (enter an overideC-5 value if desired, or leave blank to accept calculatedC-5.) Illustration NRCS Land Type Heavy Meadow Tillage! Field Short Pasture! Lawns Nearly Bare Ground Grassed Swales! Waterways o LEGEND Beginning Flow Directio ~ Catdunent BouncLuy Paved Areas & Shallow Paved Swales (Sheet Flow) Conveyance 2.5 5 10 II 15 II 20 Calculations: Reach 10 Overland Slope S ftlft input Length L ft input 5-yr Runoff Coeff ---- CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: ---------------:-:-:-:-:-:LOS -=-=-=-:-c::------------ Catchment 10: H3-HISTORIC -----------~~-'---'--..:....:.:.....:..-_---------- I. Catchment Hydrologic Data Catchment 10= H3 Area = 16.29 Acres Percent Imperviousness =-------025---=-.-0.,-0 .:..% NRCSSoil Type= D A, B, C, or 0 II. Rainfall Information I (inch/hr) = C1 * P1 I(C2 + Td)/lC3 Design Storm ReturnPeriod,Tr = 100 years (input return period for design storm) C1 =--2-8-.5-0 (input the value of C1) C2= 10.00 (input the value of C2) C3= 0.786 (input the value of C3) P1= 2.86 inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = 0_._56_ averideRunoffCoefficient. C= (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = 0.28 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration NRCS Land Type Heavy Meadow Tillagel Field Short Pasturel Lawns Nearly Bare Ground Grassed Swales! Waterways Flow Directio ~ Catchment Boundary Paved Areas & Shallow Paved Swales (Sheet Flow) Conveyance 2.5 5 7 10 20 II 15 " Calculations: Reach 10 Overland Slope S ftIft input Length L ft input 5-yr Runoff Coeff ---------------------------- ---- CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: LDS _ Catchment ID: H4-HISTORIC I. Catchment Hydrologic Data Catchment 10= H4 Area = 14.0SAcres Percent Imperviousness= ---=-2S-=-.-=-8-'--1 % NRCS Soil Type = 0 A, S, C, or 0 II. Rainfall Information I (inch/hr) =C1 * P1 I(C2 + Td)"C3 Design Storm Return Period, Tr = 2 years (input return period for design storm) C1 =--2-8-.S'="0 (input the value of C1) C2= 10.00 (input the value of C2) C3= 0.786 (input the value of C3) P1= 0.82 inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient,C = 0:..:.=· .20=.. Overide Runoff Coefficient,C = (enter an overide C value if desired, or leave blank to acceptcalculatedC.) S-yr.RunoffCoefficient,C-S = . 0.29 Overide S-yr.RunoffCoefficient,C = (enter an overide C-S value if desired, or leave blank to acceptcalculatedC-S.) Illustration NRCS land Type Heavy Meadow Tillage! Field Short Pasture! lawns Nearly Bare Ground Grassed Swalesl Waterways Paved Areas & Shallow Paved Swales (Sheet Flow) Conveyance 2.5 5 7 10 II 15 I 20 LEGEND OBegi.nning F10Iv Directio ~ Catchment Bo'Undary Calculations: Reach ID Overland Slope S ftfft input length l ft input 5-yr Runoff CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: LOS _ Catchment 10: -----------------=-H4---HISTORIC -=----=-=------------ I. Catchment Hydrologic Data Catchment 10=H4 Area =---:-14-:-.0-=-5=-Acres Percent Imperviousness = 25.81 % NRCS Soil Type = D_ A, B, C, or 0 II. Rainfall Information 1(inch/hr) =C1 * P1/(C2 + Td)I\C3 Design Storm Return Period, Tr =__--=1""00,...· years (input return period for design storm) C1 = 28.$0 (input the value of C1) C2= ntoo (input the value of C2) C3= 0~186 (input the value of C3) P1= 2,86 inches (input one-hr precipitation--see Sheet "Design Info") III. Analysis of Flow Time (Time of Concentration) for a Catchment Runoff Coefficient, C = .0;56 Overide Runoff Coefficient, C =~.-'+~~"'" (enter an overide C value if desired, or leave blank to accept calculated C.) 5-yr. Runoff Coefficient, C-5 = Q;;49 Overide 5-yr. Runoff Coefficient, C = (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.) Illustration NRCS Land Type Heavy Meadow Tillagel Field Short Pasture! Lawns Nearly Bare Ground Grassed Swalesl Waterways Paved Areas & Shallow Paved Swales (Sheet Flow) Conveyance 2.5 5 7 10 II 15 II 20 o LEGEND Beginning Flow Directie ~ Catchment Boundary Calculations: Reach .. 10 Slope S Length L 5-yr Runoff Coeff NRCS Convey ance Flow Velocity V Flow Area-Weighting for Runoff Coefficient Calculation Project Title: LDS --------------,...,....,.-----,-,-,=-=-=-:-::---------- Catchment ID:__________ ~~.:.H04 ..._:....:- ..:HISTORIC ....~::....:....c:....: _ - Illustration LEGEND: Flow Direction 4 C::Itcbmeot Bouo.daJ:y Instructions: For each catchment subarea, enter values for A and C. Subarea Area Runoff Product 10 acres Coeff. A C* CA input input input output .t. ":.' : : I:: ": ...: ..:: .: . . v .:.: : , :. : . ::::.,:: . : : .: :~ Sum: oJ31 Sum: Area-Weighted Runoff Coefficient (sum CAlsum A) =. 0.82 *Seesheet "Design Info" for inperviousness-based runoff coefficient values. H03-2YR, Weighted C 10/31/2012,6:55 PM CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD Project Title: - - - - - - - - - - ----,.=-.,....;LDS =:=-:''=:=c::--- - - - - - - -- Catchment 10: ---=H04 --'-=--'------'''-HISTORIC '-=...:....=-'-''-'-----' _ I. Catchment Hydrologic Data Catchment 10 = H0 4 Area =':"':"::'-'--::0-.8::: -:-1 Acres Percent Imperviousness = 82.00 % NRCS Soil Type= D A, S, C, or D II. Rainfall Information I (inchlhr) = C1*P1I(C2 + Td)"C3 DesignStorm ReturnPeriod, Tr = ...,2 years (inputreturnperiodfordesignstorm) C1 = ' ' 2B;$Q (input the value of C1) C2= · < AIUm (input the value of C2) C3= ' >M'$$ (inputthevalueof C3) P1= ; 0;82 inches (input one-hrprecipitation-see Sheet "Design Info") III, Analysis of Flow Time (Time of Concentration) for a Catchment RunoffCoefficient, C =: '."":,:',0;62' Overide RunoffCoefficient. C =.;.'. <, (enteranoverideCvalueif desired, or leaveblanktoacceptcalculatedC.) S-yr. RunoffCoefficient,C-S=)" : : g ;~$ OverideS-yr. RunoffCoefficient,C =.'.;...::.': ':':' :(enter an overideC-5 value if desired, or leave blank to accept calculated C-S.) Illustration 20 Paved Areas & Shallow Paved Swales (Sheet Flow) Catchment Boundary BolV Directio ~ Grassed Swalesf WatelWaYS 10 II 15 II Nearly Bare Ground Heavy Tillage! Meadow Field Conveyance 2.5 5 NRCS Land Type II Calculations: Reach Slope Length Sum 960 .S·. ·, .."'.'< :' ' ;. ' ';;J)"~2QQ : '; '?···· , : .<; .0' : · ." 5-yr ID S L Runoff Coeff ftJft It C-5 iooot input cutout NRCS Convey ance 20:00· input '<'N/A:..,.. .1;95,' Flow Velocity V fps FLOWMASTER STREET & RIGHT-OF-WAY CALCULATIONS (AT FINAL) STORM CAD PIPE & INLET RUN CALCULATIONS Scenario: Base I-54 ~.:\ C\J I 0.. I-56 J-OB \ \ J-57 C'J I 0.. I-57 O-OB Title: ROCK CASTLE LANE PIPES Project Engineer: JEFF OLHAUSEN f:\ ...\drainage\rock castle lane pipes.stm Landmark Engineering Ltd StormCAD v5.5 [5.5003] 11/01112 05:25:27 PM © Haestad Methods. Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Scenario: Base Combined Pipe\Node Report Label Upstream Node Downstream Node Length (ft) Section Size Total System Flow (cfs) Full Capacity (cfs) Average Velocity (tus) Upstream Invert Elevation (ft) Downstream Invert Elevation (ft) Constructed Slope (tuft) Upstream Ground Elevation (ft) Hydrauiic Grade Line In (ft) Hydraulic Grade Line Out (ft) Energy Grade Line In (ft) Energy Grade Line Out (ft) Downstream Cover (ft) P-1 I-54 J-56 118.36 24 inch 20.10 22.68 8.15 4,906.08 4,904.89 0.010 4,909.08 4,907.69 4,907.01 ~,908.54 ~,907.65 2.16 P-2 J-56 J-OB 237.16 24 inch 20.10 40.47 12.86 4,904.89 4,897.30 0.032 4,909.05 4,906.50 4,899.95 ~,907.35 ~,900.59 2.51 P-3 I-57 J-57 7.76 15 inch 2.22 6.56 1.81 4,897.93 4,897.85 0.010 4,900.48 4,900.41 4,900.40 L900.46 ~,900.45 4.40 P-4 J-57 I-56 40.50 15 inch 2.22 6.50 1.81 4,897.85 4,897.44 0.010 4,903.50 4,900.37 4,900.33 ~,900.42 ~,900.38 2.85 P-5 I-56 J-OB 13.90 15 inch 6.27 6.48 5.11 4,897.44 4,897.30 0.010 4,901.54 4,900.08 4,899.95 ~,900.49 1,900.36 3.26 P-6 J-OB O-OB 165.49 24 inch 26.37 31.94 11.36 4,897.30 4,894.00 0.020 . 4,901.81 4,899.09 4,895.39 ~,900.32 ~,897.39 0.00 Profile Scenario: Base Profile: 154-008 r------------------,--+-----------...,----------------~----------I----- HYDRAULIC GRADE LINE -----+------------- -------------------1---- 11 P-1 8.36 ft 24 in en Concrete @ S::: 0.010 ftlft ---------;:;:-:---------.:===t-~.Io::l;;;::_------==""-<;;;;::_.-...-...= .;;::_----==~o;;;;;;::c--------.::::::"."""""=_------+_---- ·-------1---·-··--·----·----- -.---...----------- 165 P·6 .49 ft 2 . 4 inch @ S ::: 0 0 Co . 20 ftlft 0+00 1+00 2+00 3+00 4+00 Statio n (ft) Title: ROCK CASTLE LANE PIPES Project Engineer: ~IEFF OLHAUSEN f:\... \drainage\rock castle lane pipes.stm Landmark Engineering Ltd StormCAD v5.5 [5.5003] 11/01/12 05:32:51 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 . , - -- - -- Profile Scenario: Base Profile: 157'-JOB 4,905.00 ENERGY P-5 Concrete 13. 90ft 15 15 . @ S - 0 0 Inch - . 1 GRADE LINE 4,900.00 Elevation (ft) 7.76 ft 15 inCh C P-3 @ S == 0 oncrete .010 ftlft . Inch ftlft p-4 40.50 ft @ S == 0.01 0 ftlft -CO-A-erete--- -- ------ -- .----- ------------- 4, 895 .0 0 0+00 1+00 Statio n (ft) Title: ROCK CASTLE LANE PIPES Project Engineer: JEFF OLHAUSEN f:\... \drainage\rock castle lane pipes.stm Landmark Engineering Ltd StormCAD v5.5 (5.5003] 11/01/12 05:30:13 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Profile Scenario: Base Profile: 154-00B --..-.---- =r........;:::------=~:::::_------_+_--------_I_-----+_--------------_+---_l_---------~-------- 'DRAULIC GRADE LINE ENERGY GRADE LINE ----------------------~·------_+_---------.-....= ....=__--=:::..k-_F_=~-_I:__+==~---=_-/-+~:::__-----------+_-__l---------- ..----------~ HYDRAULIC GRADE LINE-.! -------------------- --..-~ ....- --.. -- --------.--_.. ------------------1-------------- ---j----------==--=-----+---I+------------------- 16 5.4 9 f P-6 t 24 inch @ S - 0 Co - .020 ftlft flcrete ____L... ~ .____'___ ----"--------- 4,910.00 4.905.00 4.900.00 Elevatio n (tt) 4,895.00 4,890.00 2+00 3+00 4+00 5+00 6+00 Statio n (tt) Title: ROCK CASTLE LANE PIPES Project Engineer: ~IEFF OLHAUSEN f:\... \drainage\rock castle lane pipes.stm Landmark Engineering Ltd StormCAD v5.5 [5.5003] 11/01/12 05:35:06 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Scenario: Base IN1-A ~. V-I "\" a.I . IN 1-8 P-3 IN2 N a.I . IN1-C t. Title: 042 SUBBASIN IN1 /IN2 Project Engineer: JEFF OLHAUSEN untitled.stm Landmark Engineering Ltd StormCAO v5.5 [5.5003] 10/31112 05:13:57 PM © Haestad Methods, Inc. 37 Brookside Ro·ad Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Scenario: Base Combined Pipe\Node Report Label Upstream Node Downstream Node Length (ft) Section Size Total System Flow (cfs) Full Capacity (cfs) Average Velocity (ftls) Upstream Invert Elevation (ft) Downstream Invert Elevation (ft) Constructed Slope (ftlft) Upstream Ground Elevation (ft) Hydraulic Grade Line In (ft) Hydraulic Grade Line Out (ft) Energy Grade Line In (ft) Energy Grade Line Out (ft) Downstream Cover (ft) P-1 IN1-A IN1-B 30.00 6 inch 0.24 0.56 1.22 4,917.85 4,917.55 0.010000 4,919.35 4,918.68 4,918.62 ~,918.70 ~,918.65 1.20 P-2 IN1-C IN1-B 25.00 6 inch 0.24 0.61 1.22 4,917.85 4,917.55 0.012000 4,919.35 4,918.67 4,918.62 ~,918.69 ~,918.65 1.20 P-3 IN1-B IN2 28.79 6 inch 0.72 0.56 3.67 4,917.55 4,917.26 0.010073 4,919.25 4,918.50 4,918.02 ~.918.71 ~,918.23 1.24 P-4 IN2 0-1 106.67 8 inch 1.31 1.20 3.75 4,917.26 4,916.20 0.009937 4,919.00 4,917.91 4,916.74 ~,918.13 ~,917.03 0.13 Title: 042 SUBBASIN IN1 IIN2 Project Engineer: ~IEFF OLHAUSEN untitled.stm Landmark Engineering Ltd StormCAO v5.5 [5.5003] Profile Scenario: Base Profile: IN 1A-O 1 Elevation (ft) 4,920.00 ,-----+-ENERGY G ADE LINE P-4 106.67 ft . 30.00 ft 6· P-1 @ Inch H PE S == o. a10000 ftlf P-3 28.79 ft 6 inch 0+00 .010073 ftlft E 1+00 @ s == 0.009937 ftlft Station (ft) Title: 042 SUBBASIN IN1 /IN2 Project Engineer: JEFF OLHAUSEN untitled.stm Landmark Engineering ltd StormCAO v5.5 [5.5003] 10/31/12 05:16:04 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Profile Scenario: Base Profile: IN1 C-IN1 B 4,920.00 .>: ENERGY GRADE LIN --------~HYDRAULIC GRADE INE P-2 25.00 ft 6 inch PVC IElevation (ft) @ s =:: o. 12000 tv« 4,915.00 0+00 1+00 Station (ft) Title: D42 SUBBASIN IN1 /IN2 Project Engineer: JEFF OLHAUSEN untitled.stm Landmark Engineering Ltd StormCAD v5.5 [5.5003] 10/31/12 05:17:41 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 . " ,'.. l\Io,937(311E Eng inc E"; r .s Com pII 1:rlt ion i';::rj . \ Scenario: Base 1-628 P-1 LJ 1-62A ~ .... ~m6Iflo.J',~n ~p~l3 1J I I\) 0-62 Title: 064 Project Engineer: JEFF OLHAUSEN f:\projeets\lds-temple\drainage\d62 pipes.stm Landmark Engineering ltd StormCAO v5.5 [5.5003] 11/02/12 03:13:17 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Scenario: Base Combined Pipe\Node Report Label Upstream Node Downstream Node Length (ft) Section Size Total System Flow (cfs) Full Capacity (cfs) Average Velocity (ftls) Upstream Invert Elevation (ft) Downstream Invert Elevation (tt) Constructed Slope (ftltt) Upstream Ground Elevation (ft) Hydraulic Grade Line In (ft) Hydraulid Grade Line Out (ft) Energy Grade Line In (ft) Energy Grade Line Out (ft) Downstream Cover (tt) P-1 1-62A 1-628 13.07 15 inch 5.85 22.24 15.28 4,912.00 4,910.45 0.118592 4,915.23 4,912.98 4,912.47 ~,913.48 ~,912.82 1.30 P-2 1-628 0-62 300.46 15 inch 6.87 6.24 5.60 4,910.45 4,907.65 0.009319 4,913.00 4,912.08 4,908.70 L912.57 ~,909.31 0.35 Title: 064 Project Engineer: ~IEFF OLHAUSEN f:\projects\lds-temple\drainage\d62 pipes.stm 11/02/12 03: 13:46 PM © Haestad Methods, Inc. Landmark Engineering Ltd Scenario: Base P-4 LO P-1 I (L [j---~~--[]-. 1-61 C 1-61 B 1-61A CD I (L I-53 r-, I (L P-9 / 1- 5 5 [3-------p-------E-'-+---------------+=;;;~- ~ J-54 B P-8 J-54A o T I (L 0-54 Title: SOUTH PIPES Project Engineer: JEFF OLHAUSEN untitled.stm Landmark Engineering Ltd StormCAO v5.5 [5.5003] 11/01/12 01:31:23 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Scenario: Base Combined Pipe\Node Report Label Upstream Node Downstream Node Length (ft) Section Size Total System Flow (cfs) Full Capacity (cfs) Average Velocity (ftls) Upstream Invert Elevation (ft) Downstream Invert Elevation (ft) Constructed Slope (ftlft) !Upstream Ground Elevation (ft) Hydraulic Grade Line In (ft) Hydraulic Grade Line Out (ft) Energy Grade Line In (ft) Energy Grade Line Out (ft) Downstream Cover (ft) P-4 1-37 J-52 78.83 12 inch 2.64 4.24 5.69 4,913.45 4,912.50 0.012051 4,916.70 4,914.15 4,913.61 ~,914.46 ~,913.78 3.30 P-5 J-52 I-52 71.75 12 inch 2.64 5.66 7.08 4,912.50 4,910.69 0.025226 4,916.80 4,913.47 4,913.08 ~,913.64 ~,913.25 3.14 P-6 I-52 I-53 90.00 18 inch 6.62 10.50 3.75 4,910.69 4,909.79 0.010000 4,914.83 4,912.97 4,912.61 ~,913.18 ~,912.83 2.19 P-7 I-53 J-54A 27.18 21 inch 10.19 15.79 4.24 4,909.79 4,909.52 0.009934 4,913.48 4,912.47 4,912.36 ~,912.75 ~,912.64 2.03 P-8 I-55 J-54A 35.36 18 inch 9.35 10.60 5.29 4,909.88 4,909.52 0.010181 4,913.88 4,912.64 4,912.36 ~,913.07 ~,912.79 2.28 P-9 J-54A J-548 164.50 24 inch 19.54 19.24 6.22 4,909.52 4,908.33 0.007234 4,913.30 4,911.94 4,910.71 ~,912.54 ~,911.31 4.14 - - - - - --- -- - - Profile Scenario: Base Profile: 161 C-J54B \ -- ·-T----- -~--- \\1· \ / / ENERGY GRADE LIN E ___------------- --------- .: - - _._--- ---_._------ .i.->:" -~- - -LINE: ~HYDRAULIC GRADE - /' - ~ - P-1 P-2 34.18 ft 6inch 39.62 ft 6inch P-3 @ S =0.006 729 ftlft @ S = 0.006562 ftlft 157.01 ft 10 inch HOP E HOPEftlft @ s = 0.006560 I CONCRETE '------ 0+00 1+00 2+00 Station (ft) 4,915.00 4,910.00 Elevation (ft) 4,905.00 3+00 Title: SOUTH PIPES Project Engineer: JEFF OLHAUSEN untitled.stm Landmark Engineering Ltd StormCAD v5.5 [5.5003] 11/01/12 01:30:27 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 ---- Profile Scenario: Base Profile: 155-054 ....- .. \ - \ J 4,915.00 1--------, '" / ENERGY GRADE LINE ' I- - " I--- / '------ HYDRAULIC GRADE LINE - ~ --... 4,910.00 P-8 35.36 ft ~ 8 inch p 9 @ s::: 0 .( 10181 ftlft Concrete 164.50 ft 24 ncn Concrete - Elevation (ft) @s::: 0.00 P-10 7234 ftlft 24. a1 ft 24 inch C @ s::: oncrete o.0 104 12 ftlft L---___ I - -~-_. __. 4,905.00 0+00 1+00 2+00 3+00 Station (ft) Title: SOUTH PIPES Project Engineer: JEFF OLHAUSEN untitled.stm Landmark Engineering Ltd StormCAD v5.5 [5.5003] 11/01/12 01 :30:03 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Profile Scenario: Base Profile: 137-J54A Elevatio n (ft) .- --------.---- S _-~in ch ------- .. 9--··--~P:6- ----~. --=~=t=--::..:-=--------.-- --..._-.__.-------. 4,910.00 0.00 ft 18I'nc @ 27 P-7 S ::: 0.0 10r0 fUft .18ft 2 1 . 4,920.00 ----HYD RAU IC GRADE LIN E - -----T\------------~-~--·-·-·-··-- I I ------------------ -------,--------- ----------.--- --~-_________ r----- -EN ER GY GRAD ---_.._-_._----+---_._~----~ 78 83 ft 12 P'-Inch 4 @ S::: 0.012051 71 P HOP E fUft .75 tt -5 - 0. 02 52 CONCRETE 26 ttltt CONCRETE @ Inch S ::: 0.009934 fUft CONCRETE -_..._--~--~_.- .---'----------- ------------- -------- -------- -------~------------------------ 4,905.00 0+00 1+00 2+00 3+00 Sta tio n (ft) Title: SOUTH PIPES Project Engineer: ~IEFF OLHAUSEN untitled.stm Landmark Engineering Ltd StormCAD v5.5 [5.5003] 11/01/12 01:30:15 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 ------------- "-_ ....__._------~---_._-- , ~ (\ Scenario: Base 1-2 P-5 1-3 P-8 1-4 P-10 l" N ~ 1-8 o, I I a, o, co I ~ ~ o, I N o, I 1-23 co ~1 1-5 P-13 1-6 P-15 1-7 P-23 0-1 j) 6 ~ ~ o, I 1-11 N N o, I 1-30 1-15 1-16 1-17 P-21 0 N Q. ~ cl. 1-22 1-20 1-21 (j) ~ o, I 1-32 Title: LOS - INLETS NORTH Project Engineer: JEFF OLHAUSEN untitled.stm Landmark Engineering Ltd StormCAO v5.5 [5.5003] 10/28/12 07:40:04 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Scenario: Base Combined Pipe\Node Report Label Upstream Node Downstream Node Length (ft) Section Size Total Flow (cfs) System Full (cfs) Capacity Average (ftls) Velocity Upstream Invert Elevation (ft) Downstream Invert Elevation (ft) Constructed Slope (ftlft) lJpstream Ground Elevation (ft) Hydraulic Grade Line In (ft) Hydraulic Grade Line Out (ft) Energy Grade Line In (ft) Energy Grade Line Out (ft) Downstream Cover (ft) P-1 P-2 P-3 P-4 P-5 P-6 Profile Scenario: Base Profile: 123-13 'U5=~~ \ - - .......................................................... .....\ , 1':" "r \ I r ENERGY GRADE LINE /HYD~AULIC GRADE LINE \ .....c-.:.c P-3 - - \ - 4,920.00 : :; _._---- ....... I ._- ...".~--_ ..", ". __ 0. r : \ 4.915.00 I ! 1: P-4 Elevation (ftl P-5i P-1 P-2 105.p7 fl 15 inch HOPE 74.31 ft, 15 inch HOPE 95.42 ft 15 rn~h HDPE 109.31 ft 10 inch HOPE 57.08ft 12 inch HOPE @s= 0.005425 flfft @ S :I:: 0.005517 ftfft @ S = 0.005!'l50 ftfft @ s = 0.005489 flfft @s = O.005431 flfft 4,910.0 0 5+00 4+00 3+00 2+00 1+00 0+00 Station (ft) Project Engineer: JEFF OLHAUSEN StormCAO v5.5 [5.5003 1 page 1 of 1 Landmark Engineering Ltd 6 Title: LOS _INLETS NORTH © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1_203-755-166 untitled.stm 10f28f12 07:20:32 PM • I " °.... c-; .... ,:J ....:_ = . /: 1-14 1\);:+ co Sta: 0+00 ft ~~~ 1\)' 0 Inv Out: 4,919.00 ft !!l.CIl ~3~ I\) Z o .... r 6 m + w -; o l) CIl o 5 Z o ;:0 -; I @ I Ql CO 00 Iii c. 5 :CO r + c. 0 o o :; .00 ~ W "-.J a o tn r ~ _. III :J c.a. co 3 (j) ;o :0 III ... or Ql " .-+ c.m ::J o' :::J ~ lC :;' ..... Ql (I) .co .... .(1) .. .2 a- c lC :;' ~ . et r a -; ° m f\+ .) "-.J o ° co C CIl » o + ° ~ w ~ Profile Scenario: Base Profile: 110-15 I·.. ···········································································1····························· , -/ 4,925.00 ENERGY GRADE ~INE ~& , (§> .~& ! ~ ? ,() ~0 l···§.'/.,·······~········ ~0~T9==::::===::~~~~~;;;;;;;:;;~~~··································............................................................................... .~ ~C' :~ ? : >6' 'Y() 4,920.00 Eleva tio n (ft) .. 4,915.00 <9"e.; ~ ~ " P-10 85.38 ft 18 inch HOPE @ S =0.005505 fUft 4,910.00 0+00 1+00 2+00 Station (ft) Title: LOS - INLETS NORTH Project Engineer: JEFF OLHAUSEN untitled. stm Landmark Engineering Ltd StormCAD v5.5 [5.5003] 10/28/12 07:21:26 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 .' .,..", Profile Scenario: Base Profile: 130-16 4,920.00 ENERGY GRADE L NE Elevation (ft) 4,915.00 I 1+00 Station (ft) Title: LDS INLETS NORTH Project Engineer: JEFF OLHAUSEN f:\projects\lds-temple\drainage\north pipes.stm Landmark Engineering Ltd StormCAD v5.5 [5.5003] 10/30/12 02:05: 19 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 .. ',. Profile Scenario: Base 183.63 ft Profile: 112-17 4,925.00 4,920.0 0 Elevation (ft) HYDRAULIC GRADE LINE 4,915.00 P-15 24 inch HOPE @ S =0.005446 ftlft 2+00 1+00 0+00 Statio n (ft) Project Engineer: JEFF OLHAUSEN StormCAO v5.5 [5.5003 1 Page 1 of 1 Landmark Engineering Ltd Title: LOS - INLETS NORTH © Haestad MethodS, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1_203-755-1666 untitled.10128112 stm 07:26:37 PM . , Profile Scenario: Base Profile: 120-116 4,920.00 HOP E 10 16:6 fVtt 0+00 ,-------,--.----ENERGY RADE LINE HYDRAULIC GRADE LINE 4,915.00 4 P... 16 i 3.28 ft 10· i Inch! @S==OO : Elevation (ft) . 4,910.00 1+00 Statio n (ft) Title: LOS - INLETS NORTH Project Engineer: JEFF OLHAUSEN untitled.stm Landmark Engineering Ltd StormCAO v5.5 [5.5003] 10/28/12 07:31 :05 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 - -- -- --------- Profile Scenario: Base Profile: 132-116 - vENERGY GRADE LINE -: P-20 43.28 ft P-2 1 12 inch HOPE 59.51 ft 12 in @ s = o.0 0 53 14 fUft @ ch S =O.OO~ ~3 77 fUft -._~--- P-19 00. ~ 4 ft 12 inch HOPE @ s =0.00 5449 ft/ft HOPE 4,920.00 4,915.00 Elevatio n (ft) 4,910.00 0+00 1+00 2+00 3+00 Statio n (ft) Title: LOS INLETS NORTH Project Engineer: JEFF OLHAUSEN f:\projects\lds-temple\drainage\north pipes.stm Landmark Engineering Ltd StormCAO v5.5 [5.5003] 10/30/12 02:04:42 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Profile Scenario: Base 4,9200 0 P-23 271.96 ft 27 inch HOPE @ S =0.005552 ftlft 4,915.00 HYDRAULIC GRAIJE LIN E ENERGY GRADE LINE Elevation (ft) 4,910.00 P-22 5+00 156.29ft 18inch 4+00 3+00 2+00 1+00 0+00 Station (ft) Project Engineer: JEFF OLHAUSEN StormCAD v5.5 [5.5003] Page 1 of 1 Landmark Engineering Ltd Title: LOS - INLETS NORTH © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1_203-755-1666 untitled.stm 10/28/12 07:39:27 PM ,,' ,-' I 1£23 //cxzcJ z: ;e; QICO _ /07 - - IZII brtlit :;,ItdJcJ~ __ : 1~,pt- ~ gil @ 1 o~ UVL+ {foB NO/?Tft 1'1 - 4 3'1 7f Z. -= 6 78 L><IOO'- - 0 l:f' JflklL:__ J-., - =- 13Ji- rsrt: ,./ I :Call1nS /;: ) o.,/ reo, '"j) I lc-c.-+ r4.I !. Lc,! 1 l/.CJ 1-I>; . -013 G~*'t ! =- in5fa]I ro,,/ -f (/J, ) {I'll ~ I::t:fri! ( D-~ I i G i I Areo. ~:= 2 ~ if.5 b; -=- It ~ FT z. i ! Area Bo--r-? = ~ ~ oo~.L ~. z7J ~ 2- i i . rr t /~ 1\o°E- Ir Z-Cf1. 1f Z :=: _191 FT'Z W C r: 11rt::a. Open:: I(, ~ - 5 '!J ::;!2 ".1 FTC. e-e v -~====---~ r-..() fy-j G) Q ~ C--It Jl..fJh -;: .c 5 (\ 2.b..~ ) J2 (31.,Z) D,[6 z: 20/8 CFS m .~ z.c) w ~i '50 % ~ ID.4 CF:E ! Scenario: Base 1-29 [1=1 i O? ~, O-! i 1-26 P-4 [J- -- -1~~17" cl: l'_28 P-2 P-10 _ --I~J~ _~~~_____ : 3 ~ !/_~ t~~~4 _ ---[] 1-31 1-24 CD ~' cL ' '7 i 0-' LJ ' 1-35 iii 1-36 N 1-38 1-41 II 1-39 P-13 I' [1 I:! 1-40 1-42 II ",,"I """I T'" '.1 1-43/51 , J-45 P-16 0..: P-20 ~ 'I' -n J-44 '('~ -----------~.--------.---.-----.----- -- .1- --- ·f·J 4 2 P-<8 J-46 ll? N : i 1-44/50 en \I .0.. .... 1\ cL '. 1-46 P-23 1 P-26 j Li =:--J~4'iA- --- -t-Il J-51 ..I\.N 1-48 P-21 I 0.. [}-----;~-,J-,J -42 B 0-1 Title: LOS-MIDDLE Project Engineer: JEFF OLHAUSEN f:\projects\lds-temple\drainage\middle pipes.stm Landmark Engineering Ltd StormCAD v5.5 [5.5003] 10/31/12 03:20:26 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Scenario: Base Cornblned Pipe\Node Report Label Upstream Node Downstream Node Length (ft) Section Size Total Flow (cfs) System Full (cfs) Capacity Average (ftls) Velocity Upstream Invert Elevation (ft) Downstream Invert Elevation (ft) Constructed Slope (ftlft) Upstream Ground Elevation (ft) Hydraulic Grade Line In (ft) Hydraulic Grade Line Out (ft) Energy Grade Line In (ft) Energy Grade Line Out (ft) Downstream Cover (ft) P-21 1-48 J-428 16.00 12 inch 3.26 5.12 4.15 4,913.50 4,913.17 0.020625 4,917.00 4,915.35 4,915.21 ~,915.61 ~,915.48 3.19 P-22 P-23 P-1 P-2 Profile Scenario: Base Profile: 119-133 HYDRAULIC GRADE LINE P-1 66.75 ft @S = a inch HOPE 6 P-2 --------------- --- \ .0 10037 fUft 0+00 4,925.00 GY GRADE LINE 4,920.00 Elevation (ft) 0.00 ft . P '3 @s- 10 t nphHOPE 54 42 -, - 0.0 10qOO fUft @S f~ 1a inch HOPE! ! - o. a10 107 fUft ' 4,915.00 1+00 2+00 Station (ft) Title: LDS-MIDDLE Project Engineer: JEFF OLHAUSEN f:\projects\lds-temple\drainage\middle plpes.strn Landmark Engineering Ltd StormCAD v5.5 [5.5003] 10/31/12 03:22:58 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Profile Scenario: Base Profile: 126-133 \ ENERGY GRADE LINE --HYDRAULIC GRADE LINE 70.04 ft @ S 1P-4 4 inch r0. 0 PVC 10 13 7 fUft I I i I i 0+00 - 4,925.00 4,920.00 Elevation (ft) ; 14,915.00 2+00 Title: LDS-MIDDLE Project Engineer: JEFF OLHAUSEN f:\projects\lds-temple\drainage\middle pipes.stm Landmark Engineering Ltd StormCAD v5.5 [5.5003] 10/31/12 03:24:46 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Profile Scenario: Base Profile: 135-1 34 4,925.00 -------·ENERGY GRADE LINE ~7 ~1F~~--~---~1-----'--------"'-_ _._ -. 4,920.00 @ .~~ \S' ~ "It ,() o sr , '& - HYDRAULIC GRADE LIN E Elevation (ft) ·0 0 <9& 0~ 7~ ~ P V"~ 7 -7 A ~ 9.33 ft 10' z- ,... @ s Inch HOPE ......... __... . 4,915.00 0+00 1+00 2+00 Statio n (ft) Title: LOS-MIDDLE Project Engineer: JEFF OLHAUSEN f:\projects\lds-temple\drainage\middle pipes.stm Landmark Engineering Ltd StormCAD v5.5 [5.5003] 10/31/12 03:26:08 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 .' '.' ~ == 0.01.90 84_ftlft--.... .1 Profile Scenario: Base Profile: 129-134 4,925.00 ~ 0+00 i i I I ENE~GY GRADE LINE I 4,920.00 Elevation (ft) HYD AULIC GRADE LINE Title: LOS-MIDDLE Project Engineer: JEFF OLHAUSEN f:\projects\lds-temple\drainage\middle pipes.stm Landmark Engineering Ltd StormCAD v5.5 [5.5003] 10/31/12 03:27:37 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 .... :-!'-! 0---· -.."0 ~ Vl .., Cll ....a.~ •.. ~~ r 1\) .... 0 (J) (J) 0:::::: 1 Vlo.S: .• (J) 1\CDro )1 0 0 63 r .... u m /- 1-31 "UCD s:fto: Sta: 0+00 S· Ql Inv Out: 4,919.75 ft Ol (Cllft 0 Rim: 4,921.75 3" Sump: 4,919.75 ft u 0. CD u '0" Cll !Jl (J) 1-34 3 Sta: 0+51 ft e Inv In: 4,916.56 ft I Ol Inv In: 4,916.56 ft Cll (J) Inv In: 4,916.56 ft OJ 0. Inv Out: 4,916.56 ft s s: Cll Rim: 4,921 .65 ft 0. 0 Sump: 4,916.56 ft _3" (J) 1) o -- --t- 1-36 1 a OJ "Vl " (J) . Sta:0+73ft o _--h . 0.oft ~ _. 0. :Ol r J Q) r-+ i i i Inv Inv Out: In: 4,4,916.916.34 34 ft CD ~. + ;ftCll :OOl 3 0 o o Ii Rim: 4,921.25 0 ~ ::J o.rn Ol i I Sump: 4,916.34 ft :J ...... I Ol ~ lC III So ...r-"..".."+ ..t\ . I I .... III I Cll ::!o glC .., :J <0 i r @ 0 ~ 0: "'J I 0 -! (j) 0) en 0 11 ;:p "0 co " o c Profile Scenario: Base Profile: 139-J46 4,925.00 .- .... _-.. _-. :';9~t~~~:~Ho_p_----~-__~ ~+_~- .02 71 ~ 22 ftlft <109 '7 @& "<o 1/fl,s t:). '7 <1 ·0e. 1/)01) 4,920.00 ,----------- ENERGY GRADE LINE Elevation (ft) I_~_I_---------------~- -I 4,915.00 HYDRAULIC GRADE LINE 0&<1,> I Z:>,t:) ~ ~ ----~--------------------~ r"! . _ 4,910.00 0+00 1+00 2+00 Statio n (ft) Title: LOS-MIDDLE Project Engineer: JEFF OLHAUSEN f:\projects\lds-temple\drainage\middle pipes.stm Landmark Engineering Ltd StormCAD v5.5 [5.5003] 10/31/12 03:30:16 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Profile Scenario: Base Profile: 149-J45 +-' '+ 4,920.00 -- .-- -------ENER.Gy GRADE LINE r-......... .--~_--1 I- ..... --------HyD AULIC GRADE LINE " - 4 ,9 15 .0 0 P-18 P-19 Elevation (ft) @ s=r·006000_fUft~ __?:o~ =o~~oi~::O~~f~=:: __ ~.~0=~~~~~;o~7~:~:::.00 -_._-- _.-_..---- ,. - -- .•._- - --~ ------ - _._. - - nl============fi:===========t=============:::t \ ----------------------.----.-----[f-----====-=t==:==::=:::-::dl---r==-_=i 70.00 ft 24 P-inch 17 Concrete 0+00 1+00 2+00 Sta tio n (ft) Title: LOS-MIDDLE f:\projects\lds-temple\drainage\middle pipes.stm 10/31/12 03:31 :33 PM © Haestad Methods, Inc. Landmark Engineering Ltd 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Project Engineer: JEFF OLHAUSEN StormCAD v5.5 [5.5003] Page 1 of 1 Profile Scenario: Base Profile: 138-J42 4,920.00 I ·ENERGY RADE LINE 1 --------.. --. r----_:--/-'-::--::- =-HYDRAULIC .=::-._.-::::-.--.,GRADIE .,.,.,.......-_.LINE -t._._-""'""~ .-'-'-."'-...~-_ ._ ._ .._ .... 4,915.00 P-20 236.77ft 3 . Eleva tio n (ft) o Inch Concre te @ S = 0.005997 ft/ft 78.58 ft 30 inch C oncrete I I @ S =0.0 5981 fUft _I. 4,910.00 0+00 1+00 2+00 3+00 4+00 P 16 Sta tio n (ft) Title: LOS-MIDDLE Project Engineer: JEFF OLHAUSEN f:\projects\lds-temple\drainage\middle pipes.stm Landmark Engineering Ltd StormCAD v5.5 [5.5003] 10/31/12 03:32:41 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Profile Scenario: Base Profile: 141-J42A --._----~_.-.-- ..~ <1 CI) ,I::) <10 Vo 4,920.00 4,915.00 -7/J Ft P-25 ---·--·-----2-S-:2{j-~fr···3-0-;·-------...---- 0+00 @ Inch Concrete S == 0.006164 fUft Sta tic n (ft) Title: LDS-MIDDLE ENERGY GRADE LINE Elevation (ft) HYDRAULIC GRADE LINE 4,910.00 1+00 Project Engineer: JEFF OLHAUSEN f:\projects\lds-temple\drainage\middle pipes.stm Landmark Engineering Ltd StormCAD v5.5 [5.5003] 10/31/12 03:34:07 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 eU" ... ~-:I :!: (,) ., CD -~~.CDr .. @: ~n.O (j)f\) l/l (J) (0:,):a.:::s: ' /I ~ "l/l (,),!..o ~3~ O~ "-.'Oro .j"O m Of\) .o~ /1-48 s:C: ~ 5' ~ I\) Sta: 0+00 ft ill 3' tv g. 0 S· Inv Out: 4,913.50 ft 0) lQ CDft ~ RJ g. / Rim: 4,917.00 3" ~ I -0 c; (1) ::r: /I Sump: 4,913.50 ft a. c: ro'I428 ~ ~ N s 11 ~O"11/ / f'{ 1\ 1 J "0 mI\) \ 1 m i Z \ m I ::0 ,-< 9 I 0 """' 1::0 G) @ o 6 '4 GJ ,b ~ C) J' u· ::t> J! i, ~ - ~ Sta: 0+16 ft CD l/l Inv In: 4,913.17 ft ~ 3ft Inv Out: 4,913.17 Rim: 4,917.36 ft @ Sump: 4,913.17 ft I 0) CD .C) I S O)C) a. s: V !zr 2. ~C) S. 1-46 o Sta: 0+20 ft .l/l a. ~ro ;g 5' ~ ~ Inv In: 4,913.12 ft P (,) §5 In.Rim: v Out: 4,916.4,913.62 ft 12 ft -n v a7\a OJ -..j r /» Sump:4,913.12ft o .., c:l/l g, 01 ~ _. en o CD 3 ~ (1) a ;001 ... sa o + a.0) m ~ m J-42A CD .-~ ., ·0 .".'C , :J ro+ o ~ :!! ~~. o' Sta: 0+54 ft ,0) ....CD CD ::l IN.. co -0 Inv In: 4,910.84ft [DCD a- CD :..;. . -~ -.. \t9 co I Inv In: 4,910.84 ft ~ (D) IJ Profile Scenario: Base Profile: 142-J44 0+00 @ s ::: 0.010000 w« 4,920.00 ENERGY GRADE LINE 4,915.00 Elevation (ft) HYDRAU ic GRADE LINE 39.00 ft 15 Inch . P-27 C @ s :: 0.0 10000 ~tI ~rete e 4,910.00 1+00 Station (ft) Title: LOS-MIDDLE Project Engineer: JEFF OLHAUSEN f:\projects\lds-temple\drainage\middle pipes.stm Landmark Engineering Ltd StormCAD v5.5 [5.5003] 10/31/12 03:36:53 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury. CT 06708 USA +1-203-755-1666 Page 1 of 1 . \ Pro'file Scenario: Base Profile: 144/50-01 --- -.."".~j Co P <9 nCr 33~ 1 4 ,9 20.0 0 H---Hf----t-+---------=::~;:::____--_j_-------+__----4,- 915.00 - ENERGY GRADE LINE 18 .00 +- J . Elevation (ft) ft @ e ; 15 inch 0. 0 183 HYDRAULIC GRADE LINE ~~~~~~~~==~-4==~~~~~-------4,910.00 P-31 10 .51 ft 42 inch C on crete @ S = 0.006027 ft/ft 4,905.00 0+00 1+00 2+00 Station (ft) Title: LOS-MIDDLE Project Engineer: JEFF OLHAUSEN f:\projects\lds-temple\drainage\middle pipes.stm Landmark Engineering Ltd StormCAD v5.5 [5.5003] 10/31/12 03:38:13 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-166Ei Page 1 of 1 .. --- L,,~t- TiPe.. ~ Depth @ QUJJ =0 YO If Ar-( ~-~~- "" .-~ 5 ~ 0 ~ -= z., S F,,!l L:H:=- 03.0.230 l: Q ~ ~ ~ ,/ 2 -~) . j'4rL)( 0.3~) ~ 9~ e,PS ();: 7CJ.! CPS n. Q ~ 'k,-e CFS E LJ c) r-e u I i.iI'7f'"l- ;:YO 'J _ "'1 113'1 .- Lr:f) r-;L' ;; i 11. i--- L-{ / -= I I I I I I I Tor ~ttC-~ to tr£;:, ~ 1/ Su.""p e, 022 :: oZ-5 FroM "lop -= ;::'\A\ lor; hc.e ~Iow ~ (J l.\.Q ¥h ~ D~ ,:rom tv? ~ r~\ I 6n'+;~t: ~)o H~OZ:? Q:: 4cg(~§ ') ~-= ~o~ 5/ CJ~ "-8'0 % -"7 700 ifS ! {,: ". :' ,s cr, , c" . , L:., l..!.-' [( [U !JrE-tL o.\- cur b ope.f)/og :; 51t. ():l z I. Z FT Z -=11 · ~ '''-!~ It-::o! C-::-Dy'$ .Q~cI1J2ah ~g(I!:)j~~)';(6?:') z: 5,SCf GC'S · (j · t)~ -r 3~ 59 ~ 86 % ~ L??crs Or..n '4-ret>- o~· (i ~ro.-( re =:. / teo «rL ..,., -. u 'Q;:, i 7 (I§.) ~"""'-~t(----'j 4-G-ti-..-{)--- ::: b /2 (F~ ft/f.I / 5D Q'l1" -::: 5 E CF~ I u <f5 '!) L /ef C1t=uc.;-f--.j [ifj/5/ Q/oo:: 5'-10 Cfe; flo w doe-~ ",,+ overt-oro e-rov..-) n D~ ~+n=..e:t-- / De,~t~ ~ tw-b < ol1Q ~e.e..t ... Gro..-l-e z- ! S /1 .5T 'f " " [~ ~ l-f I/G ( LQ ~ f.t; f1 ~':C-- ;z~ GroA-e ~ 5 ( TYpe- f) ()rJ r-;:::' 15 11 :"!.J c .J, r-U .-- if, C:'jD~ :' \-... 1-~ -'i I, -/ , Q~ 4~ Gr~~ 5/ 7i~ .e C:l .== . C', ~:tf31 r L~ s Q=~3'1] 5/ 7Ype~ f~! mil Prpc- oJ- ~ 24 11 _~.-I • -?:-1>5§ (V) tt Ove+ ~ Z4 1 / s- LU ~¥( Q~J4-1 51 'YfX- ){ liJlef 17.." O\.t\ ltt 5 ~o.:l5 42 Q~'3~K~' ~fg ~- :5 / lYre-~ Q'--L1- :=- I Z. I i/0 Q ;:}~g8 :5 1 ~pc~ OuJ-:: /8 1 / r~( Q~3~ '51 TYpe.- x Ouf:: / z" I loll rfllf Z1~ OlAf" -;.- 3D'J 3&)i:. n1 if o\.At ~ :30 II J:~Z- s~ Cf5 5'/ TYle-1< /0" ou.l o 7'5 t: ~ 3!5r s42CE5 Fe Dek~1 D'-43 eJur;:;. 10 ,0 1/ J- Lfl.( ! 50 ;5'3J LF5 Fe- be-fa:, ( D- 43 !Ju.t: /5 1 / /ltJlf. ifill 2/ 1 / 041 52-- mH 3~1/ oct: __ ;7j OLAf"= /5/ 1 Ou..+ s: 10 II OUf=t(I/ Gro..-k:.- '"; to/I' ?f GroJe.~ /0 1/ t?T G(ole.~ /0;1 a;,i "7 .. 07 r: 12 :> GrO-+e ~8" sT UD – INLET & NYOPLAST INLET CALCULATIONS DESIGN PEAKFLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD LOS 1-62A Design Flow = Gutter Flow + Carry-over Flow r- l§I~GUTT[P INLET rLO\) GI_-,= ,t ~.e-::·F?Y-O'iC:F F"LO';} ~ '---------------------" I I: il ~ GUTTER rLD\./ IhlLET - Design Flow: ONLY Ifalreadydetermmed throughother -methods: 1/2' -or STREET MinorStorm MajorStorm - (local peak flowfor1/2ofstreet,plusflow bypassing upstream subcatchments): *Q=I 1.281 5.611cfs * If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow) Geographic Information: (Enterdata In thebluecells): Percent Subcatchrnent Imperviousness Area == E~t"es % NRCSSoilType= . . A, B, C, or 0 Site: (CheckOneBoxOnly) Slope(ftlft) Length (ft) Site is urban:1 X Overland Flow=1 Site Is Non-Urban: I GutterFlow= I I Ramtallintormation: mtensny I (mcn/nr) c,' 1-',I ( \';2 + I c) \';3 MinorStorm MajorStorm Design StormReturn Period. T, 0.00 years Return PeriodOne-Hour Precipitation, P1 = inches C1 = C2 = C3= User-Defined StormRunoffCoefficient(leavethisblanktoaccepta calculated value), C = User-Defined 5-yr.RunoffCoefficient(leavethis blankto accepta calculated value),Cs- Bypass (Carry-Over) Flow from upstream Subcatchments, Qb = 0.82 cfs Analysis of Flow Time (Time of Concentration) for a Catchment: Minor Storm MajorStorm N/A N/A NfA N/A N/A N/A NfA N/A N/A N/A N/A N/A 1.28 Calculated DesignStorm RunoffCoefficient, C = N/A Calculated 5-yr. RunoffCoefficient, C5 = N/A Overland FlowVelocity, Vo = NfA fps GutterFlowVelocity, VG = NfAfps OverlandFlowTime,to = N/A minutes GutterFlowTime,~ = N/A minutes Calculated Time of Concentration, r, = NfA minutes Timeof Concentration byRegional Formula, Te= NfA minutes Recommended Tc = N/A minutes Time of Concentration Selected by User, Tc = N/A minutes DesignRainfall Intensity, I = NfA inch/hr Calculated LocalPeakFlow,Qp = N/A cts Totalcfs Design Peak Flow, Q = 6.43 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: LDS Inlet ID: ---------------------:--1-=62A -:-------------------- T, TMAX Gutter Geometry (Enter data in the blue cells) MaximumP-.Ilowabie WidthforSpreadBehindCurt SideSlopeBehind Curb(leaveblankfor no conveyance creditbehind curb) Manning'sRoughness Behind Curb Heightof CurbatGutterFlowLine DistancefromCurbFaceto StreetCrown GutterDepression GutterWidth StreetTransverse Slope Street Longitudinal Slope- Enter0forsumpcondition Manning's Roughness for StreetSection Max.Allowable WaterSpread for Minor& MajorStorm Max.Allowable DepthatGutterFlowLineforMinor&Major Storm AllowFlow Depth atStreetCrown(leaveblankforno) Ow "'- W - ..------------ Tx ----------- t--e----,--._._£-,-.---,- --.- a.olf! 0.0200 ft. vert.I ft. horiz 0.0130 6.00 inches 26.0 ft 2.00 inches 2.00 ft 0.0200 ft. vert.1ft. horiz 0.0132 ft. vert. I ft. honz Maximum Gutter Capacity Based On Allowable Water Soread GutterCross Slope(Eq. ST-8) Water Depthwithout GutterDepression (Eq. ST-2) Water Depthwitha GutterDepression Allowable Spread for Discharge outsidethe GutterSection W (T - W) GutterFlowto DesignFlowRatioby FHWAHEC-22method(Eq. ST-7) Dischargeoutside theGutterSectionW, carriedin SectionTx Dischargewithin the GutterSectionW (QT- AX> Discharge Behind the Curb(e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Water Spread FlowVelocityWithinthe GutterSection V*d Product:FlowVelocityTimesGutterFlowline Depth Maximum Gutter Capacity Based on Allowable Gutter Depth Theoretical WaterSpread TheoreticalSpread for Discharge outsidetheGutterSectionW(T - W) GutterFlowtoDesignFlowRatiobyFHWAHEC-22method(Eq. ST-7) Theoretical Discharge outsidethe GutterSectionW, carried in SectionTx TH ~ctual Discharge outsidetheGutterSectionW,(limitedbydistanceTCROWN) DischargewithintheGutterSectionW(ad - ox> DischargeBehind theCurb(e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm FlowVelocityWithinthe GutterSection ~rd Product:FlowVelocityTimesGutter Flowline Depth Slope-Based DepthSafetyReduction FactorforMajor & Minor(d ~ 6") Storm Max Flow Based on Allow. Gutter Depth (Safety Factor Applied) Resultant FlowDepthatGutterFlowline(SafetyFactorApplied) ResultantFlowDepthat StreetCrown(SafetyFactorApplied) Max. Allowable Gutter Caoacitv Based on Minimum of QTor 0.. ---------------------------------------------- INLET ON A CONTINUOUS GRADE Project: LOS ~ _ Inlet 10: 1-62A -'-~-Lo (C)·_- Design Infonnation (Input) MINOR MAJOR Typeof Inlet Type= COOT/Denver 13 Combination Local Depression(additionalto conlinuousgut1erdepression 'a' from'O-Allow) aL<x:Al = 1.0 1.0 inches Total Number of Unitsin theInlet(Grateor Curb Opening) No= 4 4' Length of a SingleUnit Inlet(Grateor Curb Opening) La= 3.00 3.00 ft Width of a Unit Grate(cannotbe greaterthan W from O-Allow) Wo= 1.73 1.73 ft CloggingFactor for a SingleUnitGrate(typicalmin.value = 0.5) CrG= 0.50 0.50 CloggingFactor for a SingleUnitCurb Opening(typicalmin.value = 0.1) CrC= 0.10 0.10 Street Hvdraulics: OK ·0 < maximum allowable from sheet 'a·Allow' MINOR MAJOR Design Discharge for Half of Street (from Sheet Q·Peak) 00 = 1.28 6.43 cfs Water Spread Width T= 4.9 12.3 ft Water Depth at Flowfine (outsideof local depression) d= 3.2 4.9 inches Water Depth at StreetCrown(or at TMAX) dCRoWN = 0.0 0.0 inches Ratio of Gutter Flowto DesignFlow Eo= 0.917 0.512 Dischargeoutside the Gutter SectionW, carriedin SectionT, Ox= 0.11 3.14 cfs Dischargewithin the GutterSectionW Ow= 1.18 3.29 cfs DischargeBehind the Curb Face OBACK = 0.00 0.00 cfs Street FlowArea As= 0.41 1.67 sq ft Street FlowVelocity V.= 3.16 3.85 fps Water Depth for DesignCondition dl OCAl = 4.2 5.9 inches Grate Analvsis (Calculatedl MINOR MAJOR Total Length of InletGrate Opening L =1 12.001 12'oolft Ratio of Grate Flowto DesignFlow Eo-GRAlO = 0.869 0.467 Under No.Clogging Condition MINOR MAJOR MinimumVelocity Where GrateSpash-OverBegins v,» 25.70 25.70 fps InterceptionRate of FrontalFlow R,= 1.00 1.00 InterceptionRateof Side Flow Rx= 0.84 0.78 InterceptionCapacity .OJ= 1.25 5.68 cfs Under Clogging Condition MINOR MAJOR CloggingCoefficientfor Multiple-unit Grate Inlet GrateCoef= 1.88 1.88 CloggingFactor for MUltiple-unit GrateInlet GrateClog= 0.24 0.24 Effective(undogged) Lengthof Multiple·unit GrateInlet 4= 9.18 9.18 ft MinimumVelocityWhere GrateSpash-DverBegins Vo= 15.86 15.86 fps InterceptionRate of FrontalFlow R,= 1.00 1.00 InterceptionRate of Side Flow Rx= 0.73 0.66 l4ctuallnterceptlon Capacity 0.= 1.24 5,26 cfs Carry-Over Flow = 00.0. (to be appliedto curb opening or next dIs inlet) Ob= 0.04 1.17 cfs Curb or Slotted Inlet Qoenino Analvsis (Calculatedl MINOR MAJOR EquivalentSlope So(basedon gratecarry-over) So=1 O'~~I 0.08391ft1ft RequiredLength Lr to Have 100% Interception L r= 9.61 It Under No.Clogging Condition MINOR MAJOR EffectiveLength of Curb Openingor SlottedInlet (minimumof L, Lr ) L=I :::1 9'60lfl InterceptionCapacity 0;= 0,58 cfs Under Clogging Condition MINOR MAJOR CloggingCoefficient CurbCoef= 1.33 1.33 CloggingFactor for Multiple-unit CurbOpeningor SlottedInlet CurbClog= 0.03 0.03 Effective(Unclogged)Length 4= 1.83 9.60 ft Actual Interception Capacity 0.= 0.02 0.58 cfs Carry.Qver Flow = Ob(GRATerO. Ob= 0.02 0.58 cfs DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD LDS I-55 Design Flow =Gutter Flow + Carry-over Flow , i If :1 ~ GUT TEP FLO'",'! Pl..-U::' Ci\RRY -OVER FLO,.' ~ "_ - '1 1i ~i II'JLET INLE T -Desiqn Flow: ONLYif alreadydetermined through other methods: 1/2 or STREET (localpeak flow for 1/2 of street, plusflowbypassing upstream subcatchments): * If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow} Geographic Information: (EnterdataInthebluecells): Site: (Check One BoxOnly) Site is urban:' X , Overland Flow==1 Site Is Non-Urban: GutterFlow== xamrau mrorrnauon: intensny I (mctvnr) - l,;1 • 1-'1' { l,;2 + Ie)" l,;3 Design Storm Return Period,T, Return Period One-HourPrecipitation, P1 C1 == C2 C3 User-Defined StormRunoffCoefficient (leavethis blankto accepta calculated value), C == User-Defined 5-yr. RunoffCoefficient (leavethis blanktoaccepta calculated value), Cs Bypass (Carry-Over)Flow from upstreamSubeatehments,Qb - Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated Design StormRunoffCoefficient, C = Calculated 5-yr.RunoffCoefficient, C5 == Overland FlowVelocity, Vo = GutterFlowVelocity, VG - OverlandFlowTime, to = GutterFlowTime, te; Calculated Time of Concentration, Tc = Timeof Concentration by Regional Formula, Tc - Recommended Tc = TImeof Concentration Selected by User, Tc = Design Rainfall Intensity, I = Calculated local PeakFlow,Qp = Total Design PeakFlow, Q = MinorStorm MajorStorm - *Q=I 2.361 10.281cfs Subcatchment Area=F==~~rCleS PercentImperviousness == ... .... ..... % NRCSSoil Type==. . ... A, B, C, or D Slope(ftIft) I Length (ft) , 0.00 MinorStorm MajorStorm years inches MinorStorm MajorStorm N/A fps N/A fps N/A minutes N/A minutes N/A minutes N/A minutes N/A minutes NJA minutes N/A inchlhr N/A cfs N/A ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: LOS Inlet 10: -------------------~~:I-55 --------------------- TCROWN --------- ---- T, TM~_X ,-<-.-w _C-.-_ -- Tx ----- ,-- -.Q~. :;:-<ci ,~ ;:- ~;/< ~ I . i Gutter Geometry (Enter data in the blue cells) MaximumAiiowabie Vvidih for Spread BehindCurb SideSlope Behind Curb(leaveblankfor no conveyance creditbehind curb) Manning's Roughness BehindCurb Heightof Curbat GutterFlowLine DistancefromCurbFaceto StreetCrown GutterDepression GutterWidth StreetTransverseSlope StreetLongitudinal Slope- Enter0forsump condition r.'1anning's Roughness fer Street Section Max.Allowable WaterSpreadforMinor& MajorStorm Max.AllowableDepthat GutterFlowLineforMinor& MajorStorm AllowFlowDepthat StreetCrown(leaveblankforno) Maximum Gutter Caoacitv Based On Allowable Water Soread GutterCross Slope(Eq. ST-8) WaterDepthwithoutGutterDepression (Eq. ST-2) Water Depthwitha GutterDepression Allowable Spreadfor Dischargeoutside the GutterSectionW (T - W) GutterFlow to DesignFlowRatioby FHWAHEC-22method(Eq. ST-7) DischargeoutsidetheGutterSection W, carriedin SectionTx DischargewithintheGutterSection W(OT- Ox) DischargeBehind theCurb(e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Water Spread FlowVelocityWithinthe GutterSection V*d Product:FlowVelocityTimesGutterFlowline Depth Maximum Gutter Caoacitv Based on Allowable Gutter Depth TheoreticalWater Spread TheoreticalSpreadfor Dischargeoutside theGutterSectionW(T - W) GutterFlow to DesignFlowRatioby FHWAHEC-22method(Eq.ST-7) TheoreticalDischarge outsidetheGutterSectionW, carriedinSectionTxTH ActualDischargeoutsidetheGutterSectionW,(limitedby distance TCROWN) Dischargewithinthe GutterSectionW (Qd - ax) DischargeBehindtheCurb(e.g., sidewalk, driveways, & fawns) Irotal Discharge for Major & Minor Storm FlowVelocityWithinthe GutterSection rv-dProduct:FlowVelocityTImesGutterFlowlineDepth Slope-Based DepthSafetyReduction FactorforMajor & Minor(d ~ 6") Storm MaxFlow Based on Allow. Gutter Depth (Safety Factor Applied) ResultantFlowDepthat GutterFlowline (SafetyFactorApplied) ResultantFlowDepthat StreetCrown(SafetyFactorApplied) Max.Allowable Gutter Capacity Basedon Minimum of QT or a.. TSACK - 0.0 ft SBACK - 0,0200 ft. vert / ft. horiz nBACK = 0.0130 HCURB 6.00 inches TCROWN = 26,0 ft a= 2.00 inches W= 2,00 ft INLET ON A CONTINUOUS GRADE Project: ~;.;lDS ;",,; _ InletlD: I-55 _ --Lo(C)--. Desion Infonnation Iinoull MINOR MAJOR Typeof Inlet Type= CDOTlDenver 13 Combination LocalDepression(adoitionaltocontinuous gutter depression 'a'from 'Q-Allow') aLOCAL = 1.0 1.0 inches TotalNumberof Unitsin the Inlet(Grateor Curb Opening) No= 4 4 Length01a SingleUnitInlet(Grateor Curb Opening) l.,,= 3.00 3.00 fl Widthof a UnitGrate (cannotbe greaterthan W froma-Allow) Wo= 1.73 1.73 fl CloggingFactor for a SingleUnitGrate(typicalmin.value = 0.5) CrG = 0.50 0.50 CloggingFactorfor a SingleUnitCurb Opening(typicalmin. value= 0.1) CrG= 0.10 0.10 Street Hydraulics: OK - a < maximum allowable from sheet 'a-Allow' MINOR MAJOR Design Discharge for Half of Street (from Sheet Q·Peak) 00= 2.36 11.10 cts WaterSpreadWidth T= 6.5 14.2 ft Water Depthat Flowline (outside of localdepression) d= 3.6 5.4 inches WaterDepthat StreetCrown(or at TMAX) dCROWN= 0.0 0.0 inches Ratioof GutterFlowto DesignFlow E.= 0.818 0.446 DischargeoutsidetheGutterSectionW, carriedin SectionTx Ox= 0.43 6.16 cfs DischargewithintheGutterSectionW Ow= 1.93 4.95 cfs DischargeBehindtheCurb Face aBACK = 0.00 0.00 cfs StreetFlowArea A., = 0.59 2.17 sqIt StreetFlowVelocity V.= 4.03 5.12 fps WaterDepthfor DesignCondition dLOCAL = 4.6 6.4 inches Grate Analysis (CalculatedI MINOR MAJOR TotalLengthof InletGrateOpening L =1 12.001 12,001fl Ratioof GrateFlowto DesignFlow Eo-GRATE = 0.767 0.405 Under No-Clogging Condition MINOR MAJOR Minimum Velocity WhereGrateSpash-OverBegins V. = 2570 25.70 fps Interception Rate of FrontalFlow Rf= 1.00 1.00 Interception Rate of SideFlow Rx= 0.77 0.68 Interception Capacity Q1= 2.23 9.00 cfs Under Clogging Condition MINOR MAJOR CloggingCoefficientfor Multiple-unit GrateInlet GrateCoef= 1.88 1.88 CloggingFactorfor Multiple-unit GrateInlet GrateClog= 0.24 0.24 Effective(unclogged) Lengthof Multiple-unit GrateInlet L.= 9.18 9.18 ft Minimum Velocity WhereGrateSpash-OverBegins V.= 15.86 15.86 fps Interception Rate of FrontalFlow R,= 1.00 1.00 Interception Rateof Side Flow Rx= 0.64 0.54 Actual Interception Capacity Q.= 2.16 8.04 cfs Carry-Over Flow = Oo·Q. (to be appliedto curb opening or next dIs inlet) Qb= 0.20 3.06 cfs Curb or Slotted Inlet ODeninaAnalvsls (calculatedl MINOR MAJOR EquivalentSlopeSo(basedon grate carry-over) So=1 0. 12231 0.0757 IflIft RequiredLengthIT to Have100% Interception LT= 4.15 17.49 ft Under No·Clogglng Condition MINOR MAJOR EffectiveLengthof Curb Openingor SlottedInlet (minimumof L, LT) L=I 4. 141 12.001It Interception Capacity 0;= 0.10 1.34 cfs Under Clogging Condition MINOR MAJOR CloggingCoefficient CurbCoef= 1.33 1.33 CloggingFactorfor Multiple-unit Curb Openingor SlottedInlet CurbClog = 0.03 0.03 Effective(Unclogged) Length 4= 4.14 11.60 It Actual Interception Capacity Q.= 0.10 1.32 ds Carry-Over Flow = Qb(GRATE)-Q. Qb= 0.10 1.75 ds - - DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD LOS I-56 Design Flow =Gutter Flow + Carry-over Flow ~ ='1 :~ aJ~GJTTER FLO'v/ ~ GUTTER FLO\-,! INLET 1/2 [iF :::TREET DesignFlow: ONLYIfalready determined through othermethods: MinorStorm MajorStorm (local peakflowfor 1/2 of street, plusflowbypassing upstream subcatchments): *Q=I 0.791 3.47Icfs * If you enteredavaluehere,skip the rest of this sheet andproceedto sheet Q-AIIow) Geographic Information: (EnterdataIn thebluecells): Site:(CheckOneBoxOnly) Site is Urban:1 X SiteIs Non-Urban: I Ramtallintormatlon: Intensity I (mch/nr) - (.;1 • t-'1 I { (.;2 + Ie) (.;3 Design StormReturn Period, T, = Return Period One-Hour Precipitation, P1= C1 = Cr C3 = User-Defined Storm RunoffCoefficient (leave thisblanktoaccepta calculated value), C = User-Defined 5-yr. RunoffCoefficient (leavethisblanktoaccepta calculated value), Cs Bypass(Carry-Over) Flowfrom upstreamSubcatchrnents,Qb = Analysis of FlowTime (Timeof Concentration)for aCatchment: Calculated Design StormRunoffCoefficient, C = Calculated 5-yr. RunoffCoefficient, C5 = Overtand FlowVelocity, Vo = GutterFlowVelocity, VG = Overland FlowTime,to GutterFlowTime,1<; = Calculated Timeof Concentration, r, = Timeof Concentration by Regional Formula, Te - Recommended Te= Timeof Concentration Selected by User, r, = Design Rainfall Intensity, I = Calculated LocalPeakFlow, Qp= Total Design PeakFlow, Q = Percent SubcatchmentArea Imperviousness "= §AcreS % NRCS SoilType= A, B,C, or D Overland Flow=1 GutterFlow= Slope(fVft) I Length (tt) I MinorStorm MajorStorm years inches 0.10 1.75 cfs N/A fps N/A fps N/A minutes N/A minutes N/A minutes MinorStorm MajorStorm N/A N/A N/A N/A N/A NJA 5.22 ---- ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: LOS Inlet 10: ---------------------:-I--56 =::------------------- i a . •.1.1 -, TC ROWN:--------------o' ------ T. TMAX -----~ - W --'-------- Tx --.--.. -~.~-,--,--,-~-- :>·O·~· '." -,- /,>:>" I. -'.---'.--. . Gutter Geometry (Enter data in the blue cellsI MaximumAllowable Widthfor SpreadBehindCurb SideSlopeBehindCurb(leaveblankfor no conveyance creditbehindcurb) Manning'sRoughness Behind Curb Heightof Curbat GutterFlowLine DistancefromCurbFaceto StreetCrown GutterDepression GutterWidth Street TransverseSlope StreetLongitudinal Slope- Enter0 for sump condition ivianning's Roughness forStreetSection Max.AllowableWaterSpreadfor Minor& Major Storm Max.AllowableDepthatGutterFlowLinefor Minor& Major Storm AllowFlowDepthat StreetCrown(leaveblankfor no) Maximum Gutter Capacity Based On Allowable Water Spread GutterCross Slope (Eq.ST-8) WaterDepthwithoutGutterDepression (Eq. STo2) Water Depth with a GutterDepression AllowableSpreadfor Discharge outsidetheGutterSectionW (T - W) GutterFlowto DesignFlowRatiobyFHWAHEC-22method(Eq. ST-7) DischargeoutsidetheGutterSectionW, carriedinSectionTx DischargewithintheGutterSectionW(aT - ax) DischargeBehindthe Curb(e.q., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Water Spread FlowVelocityWithin the GutterSection ~·d Product:FlowVelocityTimesGutter Flowline Depth Maximum Gutter Capacity Based on Allowable Gutter Depth TheoreticalWater Spread TheoreticalSpreadfor Discharge outsidethe GutterSectionW (T - W) GutterFlowto DesignFlowRatiobyFHWA HEC-22method(Eq. ST-7) TheoreticalDischargeoutsidethe GutterSectionW. carriedinSectionTx TH ActualDischargeoutsidethe Gutter SectionW, (limited by distance TCROWN) DischargewithintheGutterSectionW (Od- OX> DischargeBehindtheCurb(e.g., sidewalk, driveways,& lawns) Total Discharge for Major & Minor Storm FlowVelocityWithin the GutterSection V·d Product:FlowVelocityTimesGutterFlowlineDepth Slope-BasedDepthSafetyReduction Factor for Major & Minor(d ~ 6") Storm Max Flow Based on Allow. Gutter Depth (Safety Factor Applied) ResultantFlowDepthatGutterFlowline (SafetyFactorApplied) ResultantFlowDepthat StreetCrown(Safety FactorApplied) Max. Allowable Gutter Caoacitv Based on Minimum of aT or Q. TSACK= SSACK nBACK = ---------------------------------------------- INLET ON A CONTINUOUS GRADE Project: LOS ---.; _ Inlet 10: I-56 -~lo (C)-----, H-Curb W Desion Information (Input) MINOR MAJOR Typeof Inlet Type= COOT/Denver 13 Combination local Depression(additional 10continuous gutter depression 'a'from 'Q-Allow') aLOCAL = 1_0 1_0 inches TotalNumberof Unitsin the Inlet (Grateor Curb Opening) No = 2 2 length of a SingleUnit Inlet(Grateor Curb Opening) L,,= 3.00 3.00 ft Widthof a Unit Grate (cannotbe greaterthan W from a-Allow) Wo= 1.73 1.73 ft CloggingFactor for a SingleUnit Grate(typicalmin.value = 0.5) CrG= 0.50 0.50 CloggingFactorfor a SingleUnitCurbOpening(typicalmin. value= 0.1) CrC= 0.10 0.10 Street Hvdraulics: OK - 0 < maximum allowable from sheet 'q-Allow' MINOR MAJOR Design Discharge for Half of Street (from Sheet Q-Peak) 0.= 0.89 5.22 cfs WaterSpread Width T= 1.9 8.7 ft WaterDepth at Flowline (outsideof localdepression) d= 2.4 4.1 inches WaterDepth at StreetCrown(or at TMAX) dCROWN= 0.0 0.0 inches Ratioof Gutter Flowto DesignFlow E 0 = 1.000 0.685 Dischargeoutside the GutterSectionW, carriedin SectionT, a,= 0.00 1.65 cfs Dischargewithinthe GutterSectionW a w= 0,89 3.58 cfs DischargeBehind theCurb Face aBACK = 0.00 0.00 cfs StreetFlowArea As= 0.19 0.91 sqft StreetFlowVelocity V $ = 4.78 5.72 Ips WaterDepth for DesignCondition dLOCAL = 3.4 5.1 inches Grate Analvsls (Calculated) MINOR MAJOR Total length of InletGrateOpening l =1 6.001 6,001ft Ratioof Grate Flow to DesignFlow EO-GRATE = 0.991 0.634 Under No-Clogging Condition MINOR MAJOR Minimum VelocityWhere GrateSpash-OverBegins Vo = 9.98 9.98 fps Interception Rate of FrontalFlow R,= 1.00 1.00 Interception Rate of Side Flow R,= 0.33 0.26 Interception Capacity Qi = 0.88 3.81 cfs Under Clogging Condition MINOR MAJOR CloggingCoefficientfor Multiple-unit Grate Inlet GrateCoef= 1.50 1.50 CloggingFactorfor Multiple-unit GrateInlet GrateClog = 0.38 0.38 Effective(undogged) Lengthof Multiple-unit GrateInlet L..= 3.75 3.75 ft Minimum VelocityWhere GrateSpash-OverBegins v,» 7.15 7,15 fps Interception Rateof FrontalFlow R,= 1.00 1.00 Interception Rateof Side Row R,= 0.14 0.11 Actual Interception Capacity 0.= 0.88 3.52 cfs Carry-Over Flow = a.·O. (tobe applied to curb openingor nextdIs inlet) Qb= 0.01 1.70 crs Curb or Slotted Inlet ODeninaAnalvsis (Calculated) MINOR MAJOR EquivalentSlope S. (basedon gratecarry-over) S =1 0, 14501 O. 1056IMt RequiredLength lrto Have 100%Interception l:= 1.10 13.37II Under No-Clogging Condition MINOR MAJOR EffectiveLengthof CurbOpeningor SlottedInlet(minimumof l, lr) L=I ~::I 6'oolft Interception Capacity Q1 = 0.56 cfs Under Clogging Condition MINOR MAJOR CloggingCoefficient CurbCoef= 1.25 1.25 I DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD LOS I-53 Design Flow = Gutter Flow + Carry-over Flow ~ "-""_."~"------"._--"_._---- ~ ---;==='"""" _._--~-~ ,;~=--_.:--=- uesiqn How: UNLY It alreadydeterminedthroughothermethods: (local peak flowfor 1/2 of street, plus flow bypassingupstreamsubcatchments): * If you entered a value here, skip the rest of this sheet and proceed to sheet a-Allow) Geographic lntormation: (tnter data In the blue cells): Site: (Check One Box Only) Site is urban:1 X Site Is Non-Urban: I Overland Flow =1 Gutter Flow = xarnrau rnrormauon: IntensityI (incnmr)- (;, 1-', I ( (;2 + Ie) ~ (;3 DesignStormReturnPeriod,T, Return Period One-HourPrecipitation,P, C, C2 = C3 User-DefinedStormRunoffCoefficient(leave this blank to accepta calculated value), C = User-Defined5-yr. Runoff Coefficient (leave this blank to accepta calculatedvalue), Cs - Bypass (Carry-Over) Flow from upstream Subcatchments, a b Analysis of Flow Time (Time of Concentration) for a Catchment: Calculated DesignStorm RunoffCoefficient,C = Calculated 5-yr.Runoff Coefficient, C5 = OverlandFlowVelocity, Vo - GutterFlow Velocity, VG = OverlandFlow Time, to Gutter FlowTime, ~ = Calculated Time of Concentration,r, Time of ConcentrationbyRegionalFormula, Te- RecommendedT, = Time of Concentration Selected by User, Tc = DesignRainfall Intensity, I = CalculatedLocalPeakFlow, Qp Total Design Peak Flow, a = Minor Storm Major Storm *Q =1 0.961 4.181cfs Suocatchrnent Area ~RAc,es Percent Imperviousness = % NRCS Soil Type = A, B, C, or D Slope (ftlft) I Length(tt) I Minor Storm Major Storm years inches 0.00 0.00 cfs N/A fps N/A fps N/A minutes N/A minutes N/A minutes N/A minutes N/A minutes N/A minutes Minor Storm Major Storm N/A N/A ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: LOS Inlet 10: -------------------~~~-I-53 ------------------ TCROWN--- ------------. - T. w -r-·----·------- Ow: Gutter Geometrv (Enter data in the blue cells) Maximum AllowableVvidth for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Depression Gutter Width Street Transverse Slope Street Longitudinal Slope· Enter 0 for sump condition Manning's Roughness for Street Section Max. Allowable Water Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flow Line for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) Maximum Gutter Capacity Based On Allowable Water Soread Gutter Cross Slope (Eq. ST-8) Water Deplh without Gutter Depression (Eq. ST-2) Water Depth with a Gutter Depression Allowable Spread for Discharge outside the Gutter Section W (T -W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-?) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Guller Section W (OT - Ox) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Water Spread Flow Velocity Within the Gutter Section V*d Product: Flow Velocity Times Guller Flowline Depth Maximum Gutter Capacity Based on Allowable Gutter Depth TheoreticalWater Spread Theoretical Spread for Discharge outside the Guller Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section Tx TH Actual Discharge outside the Gutter Section W, (limited by distance TCROWN) Discharge within the Gutter Section W (ad - Ox> Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm Flow Velocity Within the Gutter Section V*dProduct: Flow Velocity Times Gutter Flowline Depth Slope-Based Depth Safety Reduction Factor for Major & Minor (d ~ 6") Storm Max Flow Based on Allow. Gutter Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) Max. Allowable Gutter Capacity Based on Minimum of aT or a.. TSACK =1 SSACK = nSACK = = TCROWN = a= W= Sx = So= ----------------------------------------------- INLET ON A CONTINUOUS GRADE Project: _ Inlet 10: I-53 -----Lo (C) --- LOS H-Curb W Wo Desion Information /Inoutl MINOR MAJOR Type of Inlet Type= COOTType R Curb Opening Local Depression(addilionallo continuous gutter depression 'a'from 'Q-Allow1 aLOCAL = 10 1.0 inches Total Numberof Unitsin the Inlet (Grateor Curb Opening) No= 2 2 Length of a SingleUnit Inlet(Grate or CurbOpening) L.,= 5.00 5.00 It Width of a Unit Grate(cannotbe greaterthan W from a-Allow) Wo= N/A N/A It CloggingFactor for a SingleUnit Grate(typicalmin. value = 0.5) C,-G= N/A N/A CloggingFactorfor a SingleUnit CurbOpening(typicalmin. value = 0.1) CrC= 0.10 0.10 Street Hydraulics: OK - a < maximum allowable from sheet 'a-Allow' MINOR MAJOR Design Discharge for Half of Street (from Sheet Q.Peak) a o= 0.96 4,18 cfs Water Spread Widtr, T= 4.3 10.7 It Water Depth at Flowline (outsideof localdepression) d= 3.0 4.6 inches Water Depthat StreetCrown(or at TMAX) dCROWN = 0.0 0.0 inches Ratio of Gutter Flowto DesignFlow Eo= 0.948 0.577 Dischargeoutside the GutterSectionW, carriedin Section T, 0,= 0.05 1.77 cts Dischargewithinthe GutterSectionW Ow= 0.91 2.41 cts DischargeBehind the Curb Face QSACK = 000 0.00 cfs Street FlowArea A,= 0.35 1.32 sq It Street FlowVelocity V, = 2.74 3.18 fps Water Depthfor DesignCondition dLOCAL= 4.0 5.6 inches Grate Analysis (Calculated) MINOR MAJOR Total Lengthof InletGrateOpening Ratio of Grate Flowto DesignFlow L =1 EO.GRATE = I 1 ft Under No-Clogging Condition MINOR MAJOR MinimumVelocityWhereGrate Spash-OverBegins Interception Rate of FrontalFlow Interception Rate of Side Flow InterceptionCapacity VOl ~: I I:: Under Clogging Condition MINOR MAJOR CloggingCoefficienttor Multiple-unit GrateInlet GrateCoef= CloggingFactorfor Multiple-unitGrateInlet GrateClog= Effective(undogged) Lengthof Multiple-unit Grate Inlet 4= ft MinimumVelocityWhere Grate Spasn-OverBegins Vo= fps InterceptionRate of FrontalFlow Rt= InterceptionRate of Side Flow R,= Actual Interception Capacity ~= NIA NIA cfs Carry-Over Flow = ao·a. (to be appliedto curb opening or next dIs inlet) a b= N/A NIA cfs Curb or Slotted Inlet ODeninaAnalvsis (Calculated) MINOR MAJOR EquivalentSlope S. (basedon grate carry-over) s·=1 0. 13851 0.0921!ftIft RequiredLength LTto Have 100% Interception LT = 6.03 14.28 ft Under No-Clogging Condition MINOR MAJOR EffectiveLengthof Curb Openingor SlottedInlet (minimumof L, LT) InterceptionCapacity ~:I :::1 lo,oolft 3.70 cts Under Clogging Condition MINOR MAJOR INLET ON A CONTINUOUS GRADE Project: LOS _ Inlet 10: ---I-:52 .~ _ La (C) H-Curb w Wo Desion Information (lnoutl MINOR MAJOR Typeof Inlet Type= COOTTypeR Curb Opening LocalDepression(addilionalto continuous gulterdepression 'a'(rom ·O·Allow') alOCAL = 1.0 1.0 inches "Total NumberofUnitsintheinlet (Grate orCurb Opening) No=' 2 II 2 LengthofaSingleUnillnlet(GrateorCurbOpening) Lo= 5.00 5.00 ft Widthofa UnitGrate(cannotbe greaterthanWfroma-Allow) Wo= N/A NIA ft CloggingFactor for a Single UnitGrate(typicalmin.value = 05) CrG = NIA NIA CloggingFactorfor a SingleUnitCurbOpening(typicalmin.value=0.1) CrC= 0.10 0.10 Street Hydraulics: OK • Q < maximum allowable from sheet 'Q-Allow' MINOR MAJOR Design Discharge for Half of Street (from Sheet Q-Peak) ao= 1.02 4.44 cfs Water SpreadWidth T= 127 ft Water Depthat Flowline (outsideoflocaldepression) d= 5.7 5.0 inches Water Depth at StreetCrown(or at TMAX) dCROWN= 0.0 3.4 0.0 inches IRatio of GutterFlowtoDesignFlow Eo=1 0.866 0.497 I DischargeoutsidetheGutterSectionW. carriedin SectionT, a,= 2.23 cts DischargewithintheGutterSectionW a w= 0.14 0.88 2.21 cfs DischargeBehindtheCurbFace aBACK = 0.00 0.00 cts StreetFlowArea As = 0.50 1.76 sq ft Street FlowVelocity v,» fps Water DepthforDesignCondition dLQCAl = 2.06 2.52 6.0 inches Grate Analvsls fCalculated} MINOR MAJOR TotalLengthof InletGrateOpening ft 4.4 L =1 RatioofGrateFlowtoDesignFlow Eo-GRATE = I 1 Under No-Clogging Condition MINOR MAJOR MinimumVelocityWhereGrate Spash-Over Begins Interception Rate of Frontal Flow vo'i InterceptionRateof SideFlow Interception Under Clogging Capacily Condition ~: MINOR I MAJOR I: CloggingCoefficientforMultiple-unil GrateInlet GrateCoef= CloggingFaclor for Multiple-unit GrateInlet GrateClog = Effective(undogged) Lengthof Multiple-unit GrateInlet L.= ft MinimumVelocityWhereGrate Spash-Over Begins V.= fps InterceptionRate of Frontal Flow R,= InterceptionRate of SideFlow R,= Actual Interception Capacity Q.= N/A N/A cfs Carry-Over Flow = ao·a. (to be applied to curbopeningornextdIsinlet) a b= N/A N/A cfs Curb or Slotted Inlet ODeninoAnalvsis (Calculated) MINOR MAJOR EquivalentSlope S. (basedon gratecarry-over) 12831 0821 1 f11ft DESIGN PEAK FLOW FOR ONE-HALF OF STREET BY THE RATIONAL METHOD LOS I-52 Design Flow =Gutter Flow + Carry-over Flow ~======::.-::: ---E--- --:: -_ -- - -:::--- ~------------- ~ Design FlOw: ONLY It alreadydeterminedthroughother methods: Minor Storm MajorStorm (local peak flow for 1/2 of street,plus flow bypassingupstreamsubcatchments): *Q =1 1.021 4.441cfs • If you entered a value here, skip the rest of this sheet and proceed to sheet Q-Allow) Geographic lnforrnation: (Enter datamtheblueceus): SubcatchrnentArea =RAcre, Percent Imperviousness = % NRCS Soil Type = .A, B, C, or D Site: (Check One Box Only) Slope (ft/ft) Length (tt) Site is urban:~::3 Overland Flow =1 Site Is Non-Urban: Gutter Flow = xamrau mrorrnanon: IntensityI (mcn/nr)- c, t-'1 I ( c2 + I c) c3 Design Storm Return Period, T, ReturnPeriodOne-Hour Precipitation,P, C,= C2 C3 User-DefinedStormRunoffCoefficient(leave this blanktoaccepta calculated value),C = User-Defined5-yr.RunoffCoefficient(leave this blanktoaccepta calculated value), C5 Bypass (Carry-Over) Flow from upstream Subcatchments, Qb = Analysis of Flow Time (Time of Concentration) for a Catchment: CalculatedDesignStorm Runoff Coefficient,C = Calculated5-yr.Runoff Coefficient, C5 = Overland Flow Velocity, Vo Gutter Flow Velocity, VG - Overland Flow Time, to Gutter Flow Time, ~ - CalculatedTime of Concentration,r, - Time of Concentration byRegionalFormula,Tc - RecommendedTc = Time of Concentration Selected by User, Tc = Design Rainfall Intensity,I = Calculated Local Peak Flow, Qp - Total Design Peak Flow, Q = I I Minor Storm Major Storm 0.00 years inches 0.00 cfs NfA fps NfA fps NfA minutes NfA minutes NfA minutes N/A minutes N/A minutes N/A minutes Minor Storm Major Storm NfA NfA NfA NfA NfA NfA NfA ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: LOS Inlet ID: ---------------------...,..I-.52 ."..,.-------------------- T CROWN ---~----- -..------~ T TMA>. - Ow .. Tx .Y.- Gutter Geometry (Enter data in the blue cells) 'Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Guller Depression GulterWidth Street Transverse Slope Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section Max. Allowable Water Spread for Minor & Major Storm Max. Allowable Depth at Gulter Flow Line for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) Maximum Gutter Capacity Based On Allowable Water Spread Gutter Cross Slope (Eq. ST-8) Water Depth without Guller Depression (Eq. ST-2) Water Depth wilh a Guller Depression A!Iowable Spread for Discharge outside the Gutter Section W (T -W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-?) Discharge outside the Gutter Section W, carried in Section Tx Discharge within the Guller Section W (OT - Ox) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Water Spread Flow Velocity Within the Gutter Section rv*d Product: Flow Velocity Times Gulter Flowline Depth Maximum Gutter Capacity Based on Allowable Gutter Deoth Theoretical Water Spread Theoretical Spread for Discharge outside the Guller Section W (T - W) Gulter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section Tx TH Actual Discharge outside the Gutter Section W, (limited by distance TCROWN) Discharge within the Gutter Section W (ad - ax) Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm Flow Velocity Within the Gulter Section V*d Product: Flow Veloci1y Times Gulter Flowline Depth Slope-Based Depth Safety Reduction Factor for Major & Minor (d ~ 6") Storm Max Flow Based on Allow. Gutter Depth (Safety Factor Applied) Resultant Flow Depth at Gulter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied) Max. Allowable Gutter Capacity Based on Minimum of ar or ad TGACK =j SBACK nBACK = = TCROWN = a= W= Sx = Nyloplast 8" Standard Grate Inlet Capacity Chart O.BO 0.70 0.60 0.50 J!! ~ ' ~ (3 0.40 C'CI 0 C'CI u 0.30 0.20 0.10 0.00 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 O.BO 0.B5 0.90 0.95 1.00 1.05 1,10 Head(It) -,I I I I I-----f------+-.-. -++ I I T I I T I r-i r- Nyloplast ~. . @ 3130 VeronaAvenue' Buford, GA 30518 (866) 888-84791(770) 932-2443· Fax: (770)932·2490 © Nyloplast InletCapacity Charts June 2012 Nyloplast10" Standard Grate InletCapacity Chart. 1.20 1.10 1.00 --1 0,90 I 0.80 j- \ 0.70 ~ ~ .~ <.> 0.60 '" a. u'" 0.50 0.40 0.30 0.20 0.10 0,00 -f---1----t-- I -+---+--- --+=--=+---- ~-;-----t-- __T___; - . ~~~~~~~~~~ -~---T~ ~ I ...- - - - -- -+--t---t----1,---i-- -j---I-- -- -t----j-----i-- ---t --_. ._.. --- - - . ._---_.__._- -t----+--+----I-t---t----+----l ._- -- - -- 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 Head (It) @ Nyloplast0 3130VeronaAvenue · Buford, GA30518 (866) 888-8479/ (770)932-2443' Fax: (770) 932-2490 © Nyloplast InletCapacity Charts June 2012 Nyloplast 12" Standard Grate Inlet Capacity Chart 2.50 2.25 -t----t--- --j----t-- .- ._.-_...._ 2.00 -----f----t-----j----+---+-------t--+---\---+---+------t--+----\---f-----t------j--+----I__-'F=--------+---I t-------+-----------+-- +-~ II \ ' _~~ j 0.00 0.25 0.50 0.75 1.50 1.75 :E 1.25 - --....,----+----r--+----t---+--=-""9--------t--t----t---t----t----t--t-----I----t----t----j---t ro 0 ro U 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1,10 Head(tt) ~ . Nyloplast 3130Verona Avenue' Buford, GA30518 (866)888-8479/ (770)932-2443 • Fax: (770)932-2490 ©Nyloplast InletCapacity Charts june 2012 .:.. Nyloplast 15" Standard Grate Inlet Capacity Chart 4.00 3.50 3.00 2.50 :0' ~ Z' 2.00 'w n) c.. u n) 1.50 1.00 0.50 0.00 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 (J.85 0.90 0.95 1.00 1.05 1.10 Head(ft) r- -------- -- I --- - ___,_M ..._.. _----t-- ± --- --- --tl -----_._._- @ . Nyloplast 3130 Verona Avenue' Buford, GA30518 (866) 888-8479/ (770) 932-2443' Fax: (770) 932·2490 © Nyloplast InletCapacity Charts June2012 Nyloplast 18"Standard Grate InletCapacity Chart 4.00 3.50 3.00 .J!! ~ ~ 2~ ~ 2.00 1.50 1.00 0.50 0,00 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 a,50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1,10 - ---.---- ,- - +---:I'- -+- -j- -\- - + --j - l-- +- +- -+- --i- _\_ ----~~~~~~~. -~-- _ .. - ----i -...;---t--+-i-- Head (ttl @ Nyloplast @ 3130Verona Avenue' Buford, GA 30518 (866)888-8479 / (770)932-2443' Fax: (770)932-2490 ©Nyloplast InletCapacity Charts June 2012 - \ Nyloplast 24" Standard GrateInletCapacityChart 8.00 - ---,-- ---,-- -,------,- - ,--- ,--- --,--- --,-- ---,-- --,- --,- ----,- - ,--- , - - --,--- --,-- ---,-- - , - ----,- -- - _._--. 7.00 lI -· --.. .. ... 6.00 -1I l-I I 5.00 ~--_· _ --·--- I " or I ~ ~ 2: 4.00 -+---t- -- - · ·1-I - .. 'w U a. '" '" I -l-----_-l-----_~ o _ _ \ L __.._.._ 3.00 2.00 1.00 0.00 ~L.......... -,I - ~---'--~---'-~--'-~~.... I - + - - --I - -;-----I--- +---r-----· I· I-------\--r----~--\~I-1- -----l-II-I --T---+--- -- ---- --~ 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 Head (tt) ~ ~ Nyloplast 3130VeronaAvenue ' Buford, GA 30518 (866) 888-8479 1(770) 932-2443 ' Fax: (770) 932·2490 © Nyloplasllnlel Capacity Charts June 2012 Nyloplast 30" Standard Grate InletCapacity Chart 14.00 -I - '--'--1 12.00 10.00 ---r---- l -----r 0.00 2.00 4.00 6.00 - ·-- - - -.-,. -r---+- -t- -+-- -''---i-- t----+----+---+- -+--I-----I -I 8.00 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 Head (tt) ~ - ~ Nyloplast 3130 Verona Avenue' Buford,GA 30518 (866) 888-8479/ (770)932-2443 • Fax: (770)932-2490 © Nyloplast Inlet Capacity ChartsJune 2012 20.00 -- - 18.00 -- 16.00 _ ._ .._ 14.00 12.00 V> I , i:;o ~ 'u 10.00 - -~ J '" 0 re u 8.00 6.00 4.00 2.00 0.00 -1 -- - -----\-- --t--f-- -- - I" ~=t --r I 0.00 0.05 Nyloplast 2'x 3' CurbInletHighFlowGrate Inlet Capacity Chart HighHood Selling (8.47' Curb Selling) Mid Hood Setting (647' Curb Selling) Low Hood Setting (44 7" Curb Setting) 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 Head (ttl @ Nyloplast" 3130 Verona Avenue · Buford. GA 30518 (866)888-8479/ (770) 932-2443•Fax:(770)932-2490 © Nyloplast Inlet Capacity Charts June 2012 WATER QUALITY OUTLET STRUCTURE & OVERFLOW WEIR CALCULATIONS (AT FINAL) OUTLET & SWALE PROTECTION CALCULATIONS NORTH AMERICA GREEN' Erosion Control Materials Design Software Version 5.0 Project Name: LDS Project Number: 14714 Project Location: FORT COLLINS, Colorado Outlet Name: MIDDLE PIPES OUILEf Tensar International Corporation 5401 St. Wendel-Cynthiana Road Poseyville, Indiana 47633 Tel. 800.772.2040 Fax 812.867.0247 www .nagreen.com lAnalysis Parameters Type of Pipe: Concrete or Asbestos-Cemet Pipe lPipeDiameter: 42 Discharge Rate: 54.31 cfs Pipe Slope Grade: 0.01 ftlft Hydraulic Estimations I Manning's N Utilized 0.013 lEst. Initial Flow Depth 3.06 ft Flow Area 7.34 ftl Est. Initial Velocity 7.4 ftls System Recommendations I Design Shear Stress 2.29 1bs/ft2 I System Recommendation ShoreMax & SC250 Underlayment Permissible Shear Stress 7.51bs/ft2 System Safety Factor 3.28 Suggested Anchor Pattern F ShoreMax Transition Area Minimum Dimensions Minimum Transverse Dimension 14 ft Minimum Longitudinal Dimensions 17.5 ft NORTH AMERICAN (iREE Erosion Control Materials Design Software Version 5.0 Outlet mI JJle.Computations . PIPe;6 Tensar International Corporation 5401 S1. Wendel-Cynthiana Road Poseyville, Indiana 47633 Tel. 800.772.2040 Fax 812.867.0247 www.nagreen.com Project Parameters Type ofPipe: Type ofDesign Flow: Pipe Diameter: Flow Event: Slope ofPipe: Concrete or Asbestos-Cernet Pipe ull Flow Condition 2 4.31 cfs .006ft/ft Hydraulic Estimations \1anning's N Utilized: $1. InitialFlow Depth: low Area: $1. Initial Velocity: 0.013 3.06 ft 7.34 ft2 7.4 ft/s I System Recommendation Desisn Shear Stress == 2 * flow depth * manning's n * 52.4=7.34Ibs/ft2 Svs tern Recommendation ShoreMax & SC250 Underlavrnen Permissible Shear ofSvstem .291bs/ft2 Svstem Safetv Factor =Permissible Shear / Design Shear = 12.29 ShoreMaxProtective Dimensions MinimumTransverse Dimension =4 * Pipe Diameter /12 = 14 ft Minimum Longitudinal Dimension =5 * Pipe Diameter /12 =H7.5ft ORTH MERICA (iREEN ~ Erosion Control Materials Design Software Version 5.0 Project Name: LDS Project Number: 14714 Project Location: FORT COLLINS, Colorado Outlet Name: 0-62 Tensar International Corporation 5401 St. Wendel-Cynthiana Road Poseyville, Indiana 47633 Tel. 800.772.2040 Fax 812.867.0247 www .nagreen.com 1 V\nalysis Parameters Type of Pipe: Concrete or Asbestos-Cemet Pipe Pipe Diameter: 15 Discharge Rate: 6.87 cfs lPipe Slope Grade : 0.01 ftlft [Hydraulic Estimations Manning's N Utilized 0.013 Est. Initial Flow Depth 1.3 ft !Flow Area 1.32 ft2 lEst. Initial Velocity 5.2 ftls System Recormnendations Design Shear Stress 1.51 Ibs/ft2 System Recommendation ShoreMax & SC250 Underlayment Permissible Shear Stress 7.5 lbs/ft2 System Safety Factor 4.98 Suggested Anchor Pattern F ShoreMax Transition AreaMinimum Dimensions Minimum Transverse Dimension 5 ft Minimum Longitudinal Dimensions 6.25 ft ORTH MERICA GREE Erosion Control Materials Design Software Version 5.0 Outlet Computations 0-0~ Tensar International Corporation 5401 St. Wendel-Cynthiana Road Poseyville, Indiana 47633 Tel. 800.772.2040 Fax 812.867.0247 www .nagreen.com Project Parameters rvoe ofPioe : Concrete or Asbestos-Cemet Pine rvoe ofDesizn Flow: IFull FlowCondition 'ineDiameter: 15 lowEvent: 6.87 cfs Sloneof Pine: .0093 ft/ft Hydraulic Estimations I Vfanning's N Utilized: 0.013 :<'st. Initial FlowDeoth: 1.3ft lowArea: 1.32 ft2 :<'st. InitialVelocitv: 5.2ft/s System Recommendation Design Shear Stress =2 * flow depth * manning's n * 52.4 = 1.321bs/ft2 SystemRecommendation ShoreMax& SC250 Underlavrren Permissible Shear ofSvstem 1.51 Ibs/ft2 System Safety Factor =Pennissible ShearI Design Shear = 1.51 I ShoreMax Protective Dimensions Minimum Transverse Dimension =4 * Pioe Diameter I 12= 5 ft Minimum LongitudinalDimension = 5 * PioeDiameter I 12=16.25 ft NORTH AMER ICA GREEN:>' Erosion Control Materials Design Software Version 5.0 Project Name: LDS Project Number: 14714 Project Location: FORT COLLINS, Colorado Outlet Name: O-OB Tensar International Corporation 5401 St. Wendel-Cynthiana Road Poseyville, Indiana 47633 Tel. 800.772.2040 Fax 812.867.0247 www .nagreen.com Analysis Parameters Type of Pipe: Concrete or Asbestos-Cemet Pipe Pipe Diameter : 24 Discharge Rate: 26.37 cfs Pipe Slope Grade: 0.02 ftlft Hydraulic Estimations Manning's N Utilized 0.013 Est. Initial Flow Depth 1.86 ft IFlow Area 2.72 ft2 ~st. Initial Velocity 9.7 ftls System Recommendations Design Shear Stress 4.64 Ibs/ft2 System Recommendation ShoreMax & SC250 Underlayment Permissible Shear Stress 7.5 lbs/ft2 System Safety Factor 1.61 Suggested Anchor Pattern F ShoreMax Transition Area Minirmun Dimensions Minimum Transverse Dimension 8 ft Minimum Longitudinal Dimensions 10 ft NOR H AMERICAN E Erosion Control Materials Design Software Version 5.0 Outlet O-Computations oB Tensar International Corporation 5401 St. Wendel-Cynthiana Road Poseyville, Indiana 47633 Tel. 800.772.2040 Fax 812 .867.0247 www.nagreen.com Project Parameters lvne of Pipe: Concrete or Asbestos-Cemet Pipe lvoe ofDesign Flow: ull Flow Condition 'ine Diameter: 4 low Event: 6.37cfs Slone ofPine: .02 ft/ft Hydraulic Estimations vlannina's N Utilized: 0.013 ~t. Initial Flow Depth: 1.86ft low Area: 2.72ft2 ~t. Initial Velocity : 9.7ft/s System Recommendation Desizn Shear Stress =2 * flow depth * manning's n * 52.4=12.72 Ibs/ft2 Svs tern Reconnnendation ShoreMax& SC250 Underlavmen Permissible Shear ofSvstern 14.64 Ibs/ft2 SvsternSafetv Factor =Permissible Shear I Design Shear = 4.64 ShoreMax Protective Dimensions Minimum Transverse Dimension =4 * Pipe Diameter I 12= 8 ft Minimum Longitudinal Dimension =5 * Pipe Diameter I 12=110 ft NORTH MERICAN EE ~ Erosion Control Materials Design Software Version 5.0 Project Name: LDS Project Number: 14714 Project Location: FORT COLLINS, Colorado Outlet Name: NORm PIPES Tensar International Corporation 5401 St. Wendel-Cynthiana Road Poseyville, Indiana 47633 Tel. 800.772.2040 Fax 812.867.0247 www.nagreen.com [Analysis Parameters Type of Pipe: Concrete or Asbestos-Cemet Pipe Pipe Diameter : 27 Discharge Rate: 20.57 cfs Pipe Slope Grade: 0.01 ftlft Hydraulic Estimations I I Manning's N Utilized 0.013 Est. Initial Flow Depth 2.16 ft Flow Area 3.66 ft2 Est. Initial Velocity 5.62 ftls System Recommendations I Design Shear Stress 1.48 Ibs/ft2 I System Recommendation ShoreMax & 8C250 Underlayment Permissible Shear Stress 7.5 Ibs/ft2 System Safety Factor 5.06 Suggested Anchor Pattern F ShoreMax Transition Area Minirmnn Dimensions Minimum Transverse Dimension 9ft lMinimum Longitudinal Dimensions 11.25 ft Project Parameters rvoe ofPioe: Concrete or Asbestos-Cemet Pine lvne ofDesign Flow: ull Flow Condition ioe Diameter: 7 low Event: 0.57cfs Slone of Pine: .0055 ft/ft Hydraulic Estimations vianning's N Utilized: 0.013 :'.st. mitial FlowDeoth: 12.16 ft low Area: 3.66ft2 :'.st. InitialVelocity: 5.62fils System Recommendation Design Shear Stress = 2 * flowdepth * manning's n * 52.4=3.66Ibs/ft2 System Recommendation ShoreMax& SC250 Underlavment Permssible Shear ofSvstem 1.48lbs/ft2 System Safety Factor =Permissible Shear / Design Shear = 1.48 ShoreMax Protective Dimensions MinimumTransverse Dimension =4 * Pine Diameter / 12= 9 ft MinimumLongitudinal Dimension =5 * Pine Diameter/ 12=11 1.25 ft NOR H AME IC N REEN'" Erosion Control Materials Design Software Version 5.0 Outlet Ntorl-ComputationsJ., Roe-e:; Tensar International Corporation 5401 St. Wendel-Cynthiana Road Poseyville, Indiana 47633 Tel. 800 .772.2040 Fax 812.867.0247 www.nagreen.com NORTH MERICAN REE :t. Erosion Control Materials Design Software Version 5.0 Project Name: LDS Project Number: 14714 Project Location: FORT COLLINS, Colorado Outlet Name: SOUTH PIPES Tensar International Corporation 5401 St. Wendel-Cynthiana Road Poseyville, Indiana 47633 TeL 800.772.2040 Fax 812.867.0247 www.nagreen.com Analysis Parameters Type of Pipe: Pipe Diameter: !Discharge Rate: Pipe Slope Grade: Hydraulic Estimations Concrete or Asbestos-Cemet Pipe 24 20.1 cfs 0.01 ftlft Manning's N Utilized Est. Initial Flow Depth IFlow Area 0.013 1.9 ft 2.83 ft2 I lEst. Initial Velocity System Recommendations lDesign Shear Stress System Recommendation Permissible Shear Stress System Safety Factor Suggested Anchor Pattern ShoreMax Transition Area Minirmnn Dimensions 7.09 ftls I I 2.4 7 lbs/ft2 ShoreMax & SC250 Underlayment 7.5 lbs/ft2 3.04 F -' Minimum Transverse Dimension 8 ft Minimum Longitudinal Dimensions 10 ft NORTH AMERICAN GREEN' Erosion Control Materials Design Software Version 5.0 Outlet Computations SouJ-J, !1. f;::>e--~ Tensar International Corporation 5401 St. Wendel-Cynthiana Road Poseyville, Indiana 47633 Tel 800.772.2040 Fax 812.867.0247 www.nagreen.com Project Parameters lvoe ofPioe: Concrete or Asbestos-Cemet Pioe Ivoe ofDesizn Flow: ull Flow Condition Pipe Diameter: 4 low Event: 0.1 cfs Slope of Pipe : .0104 ft/ft Hydraulic Estimations vfanninl.!'s N Utilized: 0.013 :!8t. Initial Flow Denth: 1.9 ft low Area: J.83 ft2 :!8t. Initial Velocitv: 7.09 ft/s System Recommendation Design Shear Stress = 2 * flow denth * manning's n * 52.4 = .83 1bs/ft2 Svs tern Recommendation ShoreMax & SC250 Underlavment Permissible ShearofSvstem .47lbs/ft2 SvstemSafetv Factor = Permissible Shear I Design Shear= .47 ShoreMax Protective Dimensions Minimum Transverse Dimension = 4 * Pipe Diameter112 = 8 ft Minimum Longitudinal Dimension = 5 * Pipe Diameter I 12910 ft NORTH Tensar 5401 International St. Wendel-Cynthiana Corporation Road CiREE AMERICAN47633 Poseyville, Tel. Fax Ind 800.812.iana 867.772.0247 2040 www .nagreen.com Material and :~~ efb"Ta n ce Specification ShoreMax™ Soft Re~E!t~erit / Scour Protection Mat 20.7% 79.3% Elongation - TO ASTM 06818 ...:. Thickness Oensity ASTM 0792 Mass/Unit Area ASTM 6566 UV Stability ASTM 04355 11000 hr Ground Cover ASTM 06567 Light Penetration ASTM 06567 Hardness ASTM 02240 Specific Gravity ASTM 0297 Flexural Rigidity ASTM 06575 Tensile Strength -MD ASTM 06818 Elongation - MO ASTM 06818 Tensile Strength - TD ASTM 06818 560 Ibs/ft ! _______ .______ ___ __ ____ _ ____ .J~. c~_!$.f::J /fJ)) .J 96% i Maximum Permissible -----------T- f_Shear St!~S_~ ._. i Unvegetated i 7.5 Ibs/ft 2 18 ft/s ..SC250 _ _ ...._.I 1-.L Vegetated -.------- - - i L --10.--0 -Ibs/--tt2 -..- -. _ .-.. .18 ... --ft/.- .s ......._.-...-.. ......-.-_- ... . I I Unvegetated ! I 8.0 Ibs/ft2 19 ft/s _ ._C350 _•_ _ . v-r-r-rV~~~t;' . t~d-.__---+ t 12.0 Ibsift2-M_-.. . .. -'20'ft/~ . -~ ;'" .__.__._ .__. P550 U:~~ v e g e ta te d i 8.5 Ibs/ft 2 _~~~ ft/: _ I Vegetated I 14.0 Ibs/ft2 25 ft/s 6.1 Ibs/ft 2 50 mm (2 in)/ hr-30 min 100mm (4 In)/ hr-30 min 150 mm (6 in)/ hr-30 min Shear at 0.50 inch soil loss " ASTM D7322 Top Soil, Fescue, 21 day 243% improvement Germination incubation I of biomass t .. Bench Scale tests shol ifd not be usedfordesign purposes - - l ** 5011 Loss Ratio = Soil Loss Bare Soil/Soil Loss with RECP *** ASTM 07101, 07207, and 07322 conducted with ShoreMax placed over P550 TRM . . : ..';,Description - '.'- - ';:. ;;,.: The ShoreMax soft revetment scour protection mat shall be a resilient rubber mat with surface texture and multi-nib backing . It shall have a large hole drainage system with aperture openings aporoxirnatelv 0.88 in (2.24 em) in diameter. ShoreMax mat is a transition mat used as biotechnical replacement for hard armor. ShoreMax mat is mechanically NORTHCorporation Tensar 5401 International St. Wendel-Cynthiana Road AMERICA47633 Poseyville, Tel. Indiana 800.772.2040 GREEN Fax 812.867.0247 www .nagreen.com Material and Perfql"in atl ~e - $p'ecifi~iltion SC250 Turf Reinforcement Mat .. .' . Description • The composite turf reinforcement mat (C-TRM) shall be a machine-produced mat of 70% straw and 30% coconut fiber matrix incorporated into permanent three-dimensional turf reinforcement matting. The matrix shall be evenly distributed across the entire width of the matting and stitch bonded between a heavy duty UV stabilized nettings with 0.50 x 0.50 inch (1.27 x 1.27 em) openings, an ultra heavy UV stabilized, dramatically corrugated (crimped) intermediate netting with 0.5 x 0.5 inch (1.27 x 1.27 em) openings, and covered by an heavy duty UV stabilized nettings with 0.50 x 0.50 inch (1.27 x 1.27 em) openings. The middle corrugated netting shall form prominent closely spaced ridges across the entire width of the mat. The three nettings shall be stitched together on 1.50 inch (3.81cm) centers with UV stabilized polypropylene thread to form permanent three-d imensional turf reinforcement matting. All mats shall be manufactured with a colored thread stitched along both outer edges as an overlap guide for adjacent mats. The SC250 shall meet Type 5A, B, and C specif ication requirements established by the Erosion Control Technology Council (ECTC) and Federal Highway Administration's (FHWA) FP-03 Section 713.18 \--..c,~"",l""'I'I~s;ta ,;; b l ei!!'l"''''!'''!~'''''''' 70% Straw Fiber 30% Coconut Fiber Top and Bottom, UV stabilized Polypropylene Middle, Corrugated UV stab ilized Polypropylene Polypropylene, UV Material Content . '''''-',.,l..,_ _ .....-.,...._~......~~ ii. ~" Index Property , Test Method Typical ! 0.72 in Thickness , I ASTM D6525 i (18 .3 mm) Resiliency I ASTM 6524 1 95.2% Density I ASTM 0792 i 0.530Z/in J I i 17.880z/yd 2 Mass/Unit Area !ASTM 6566 ! ' (606 Q/m2 ) i ASTM 04355 UV Stability I /1000 hr ! I 100% Porosity I, ECTC Guidelines I 99% I Stiffness i ASTM 01388 II 222.65 oz-ln ! r Light Penetration ECTC Guidelines 1 8.9% , -- Tensile Strength - MO ASTM 06818 I 6201bs/ft Max. IS staples/panel FiaureType 1 Minimum Anchor Pattern Figure 2. Minimum Anchor Maximum Design Conditions Anchor ShearPattern Stre ss Velodty W""" HelRth <=6lb s/ft2 <=14ft/s 61n, F :>6-81bs/ ft2 > 14-18 ft/s 121n, G :>Blbs/tt2 :>18 ft/s 18 1n, H Soil Type Anchor Typl!: ShoreMa;c Clay-Cl3y l oam 10 in \Alire:Sta ple Silt Loam . Learn 10 in Wire Step te Sandy l oom U in Wire:Staple Sand I Muck <=6 in 12;0 Roba r Sta pl. Sand I Muc k 6-12 In Hl in Rebar Stacl.e Sand I Mu d e12-18 In 24 in Earth Anchor + 121n Reba r Staple San d I Muck> 1B in 36 i n carti-.Anchor =18 in Re bar Sta ple: ANC H O R IN G GU I D E 1, When installing ShoreMax mat, the anchor pattern (figure 3 or 4) should be selected base d on the expected maximum design conditions (shear stress, velocity, or wave impact) (figure 1), F Pattern G Pattern H Pattern Figure 3. Anchor Patterns for use with Wire/Rebar Staples ..-based-.-._ ....., ...- ..... , . . ............... .... .....' ....... . 2. on Anchor the selection soil type should and be pull-out .::. ::~ ::.::~ ::~~ :::::: _ ':::::::::::::::~:; :.::~ :::::::::::. : ;~;~~EE; ,~;~EE~;;!~~g;;;; strength soft, highly required erodible (figure 2)soils . In .::..:.:.:.:.:.:..:.:.:.:.:.:.:: .:' :::::::. : ~~~HH~ ~~~H~·~~r·~;~~-~~~ percussion earth anchors may be :rebar~H~;:::·:~H f:-: :H~HE;:::.::':: fHHHH :-:"::-::-:: .g;..;.~g; .....ggg~~ggg~g ......~ . necessary. installed in conjunction Earth ancho with rs can be nl~~~~; ·~;n~i~~ ;n~~H·~1 staples (figure 4), .;.~~g~~~ ......'~~ ...~~ggig~E ..........E~ ..~~ . ::::::::::::::::l:::::::: ..each....~: .............:......:.-......:......:.....:.. . . . : . ...:.:.:.: ..:.:.:: ..:.:.:.:.:.:.:.: . . . . ::::::::::::::; : ::::::: :-::::: ::~~~:;:::::::::::: : 3, anchors, When using position percussion anchors in earth -- . ggg~] ;;gg;;ltEgg; comer and the center of the , ..the:.....:.....:.....:.....:....:......:..... : . . . ..:.:.:.:.:.::.:..':, .:.:.:.:.:.:. . . . : . . .through.HHHH ................... . ..H~HH~;......f~~~~I~1 ., .' ....... .. .. panel. remainder appropriate Place of mat. pattern stap Staples les in can be Max. 9 staples/panel M ax. 1] staples/panel shared between two adjacent panel s, Figure 4. Anchor Patterns for use with Combination of Earth Ancho rs and Staples F Pattern G Pattern H Pattern i'".panel.'=gggg "..• ..• ..••• .....• .. • ..• ~~ggg .• .•:..: ..•••••••• .:..ggg~~ .....•-. . :1 1~~~~m ~~~~~~~~ - ~~~~~~~I *Note: Number can be reduced of stapl es by used 30-40% per when :::::::: ::::::::':::::::: ~';;~;;~~ ;;;~;~;; r;~ ~;~; -~ •J •••••• • • • • • • • .! •••••••• sharing staples between panels, ...:.:...:...:....:...:...:.. . : ..:.:.:.:.:.:.:.:.':.:.:.:.:.:.:. . . : ~~~!HH HHHH:~;H~H~ i~~~~·~~ ~ .~~~~~~l~~~~~~i~ ~~ ':~gng ~E;~gg;H~mg· ~~iE~~~~ ·~~~ ~~~~~ IE~~; ;~~~ ~ggg~ ~g~;g~1~;g~g .".7.....-..•;';,;,.".;;-;-... :E:::::: :':::::::::-::-::::: ;~ ~~;~; ~ ~ ~;~; ~~~~!; ~~; ~~~; ............... .................. . .Staple:.:" !*.~~: -:.!!!.~!.~=~~:::.:-:':. : ......:........:......:.......:.......:.......:........:.. . . . : .. . .:.:.:.:.:.:.:._:.: ..:._ :.:..::..:.: . . . . . . . n -Wire/Rebar ~~;~~~~~~ :~.~~~~~~~1~~~~~~~1 C:Anchor:::::: :: :::::::::::: ~;) ® -Percussion Earth SEA+Max.. 4 staples/panel SEA+ Max. 8 staples/panel .sEA + Max, 10 staples/panel Disclaimer: AMERICAN NORTH The information presented herein is general design information only. For specific applications, GREEN" consult an independent professional for further design guidance, 2"·5" [ID •...•.......••.. (S-12.5cm) I I (O.9m) 3' (1.8m) 6' I (1.8m) 6' I I I I lL. --u 0 .7 Staples per SO.YD. 1.15 Staples per SO.YD . CD:] 2"-S" [::::EJ 2" -5" -.•..• ~',: 2'=, -@"~, ".•. "111-, ;" ' •. ',." ," 10" (5-12.5cm (O.o 6m) 0 ~ . (o®m) e ~ (25cm) <j?, ;;, !I ~-, ~ r-@ 20"((0.1j9 5m) otb II i -10"(2Scm) II ° (~) <D, ° p€---.2.-JP Ii ' (~ .::, II o CHO 0 d 1mbfP e 4 -® e ~ 1.7 Staples per SO.YD. 3.4 Staples per SO.YD. 3 .75 Staples per SO.YD. NORTH Disclaimer: ar. AMERICAN The infonnatlon presented herein is general design information only. For specific applications. «:iREEN'" consult an independent professional for further design guidance. 5401 St. Wendel - Cynthiana Rd. PH: 800·722-2040 Poseyville, IN 47633 www.nagreen.com Drawn on: 3-16-11 e o o ~--f--20"(0.5m) ..,....-i~-+-+-r2+'-+-_e~S-12.SCm) 2"-S" 4' (l.2m) 2"_5" • 3' (O.9m) • ····_···_··_········-0·· STAPLE PATTERN GUIDE • 4:1 Slopes (A) • 3:1 Slope s (B) 0 2:1 Slopes (C) 0 1:1 & Steeper Slopes (D) 0 Medium/High Flow Channel (D) C> High Flow Channel And Shor eline (E) NOTES: • Use ECMDSI!) for more accurate staple pattern selection. Drawing Not To Scale Tensar InternationalCorporation 5401 St. Wendel-Cynthiana Road Poseyville, Indiana 47633 Tel. 800.772.2040 Fax 812.867.0247 www .nagreen.com Erosion Control Materials Design Software Version 5.0 Project Name: LDS Project Number: 14714 Project Location: FORT COLLINS, Colorado Channel Name: NORm EAST POND Discharge 94 Peak Flow Period 2 Channel Slope .0365 Channel Bottom Width 28 Left Side Slope 4 Right Side Slope 4 Low Flow Liner Retardance Class Vegtation Type Bunch Type Vegetation Density Poor < 50% Soil Type Clay glArjQ~1) P550 - Class - Bunch Type - Poor < 50% Phase Reach lD ischargelVelocit) Normal Depth Mannings N Permissible Shear Stress Calculated Shear Stress Safety Factor Remarks S taple lPattern P550 Unvegetated Straigh 94 cfs 5.01 ftls 0.62 ft 0.039 4 Ibs/ft2 1.4 Ibs/ft2 2.85 STABLE E P550 Reinforced Vezetation Straigh 94 cfs 5.72 ftiS 0.54 ft 0.032 14 Ibs/ft2 1.24 Ibs/ft2 11.28 STABLE E Underlying Substrate Straigh 94 cfs 5.72 ftls 0.54 ft - 3.25 Ibs/ft2 1.511 Ibs/ft2 2.15 STABLE - 11/5/12 Computations IErosion Control Materials Design Software ANALYSIS COMPUTATIONS I-bme (I I > View Projects (lprojects l > Project (lproject/ 147141 > NORTH EAST POND (l£h;m!J~.V1 4736L> View Computation Project Parameters Spec ify r'1anning's n: 0.03 Discharge : 94 Peak Flow Period: 2 Channel Slope: .0365 Bottom Width : 28 Left Side Slope; 4 Right Side Slope: 4 Exist ing Channel Bend: 0 Bend Coefficient (Kb): 1.00 Reta rdanc e Class (A - E): Vegetation Type: Bunch Type Vegetation Density: Poor < 50% Soil Type: Clay Channel Lining Options Protection Type Permanent Material Type Matt ing Type P550 Manning's N value for selected Product 0.04 Cross-Sectional Area (A) A = At + As + AR =. 18.77 At = (1/2) .. Dept h2 .. ZL = 0.76 AB = Bott om Width" Depth = 17.25 AR = (1/2) ..Depth 2 ., ZR = 0.76 Wetted Perimeter (P) P =Pt + PB + PR = 33.08 PL = Depth * (Z L2 + 1)° ·5 = 2.54 PB = Channel Bot t om Width = 28 PR = Dept h" (ZR2 + 1)° ·5 2.54 Hydraulic Rad ius (R) R= A/ P = 0 .5 7 Flow (Q) Q = 1.486 / n ,. A .. R2!3 •• 5 1/ 2 = 94 .01 Velocity (V) V =Q /A = 5.01 Channel Shear Stress (Te) Td = 62.4' Dept h " Slope = 1.4 lfMW.ecmds.comlcompulations/projecU14714/14 736 (javascript:history.gof-1 ); 1 (lprint/corroutation/14714/147361 1/3 11/5/12 Computations IErosion Control Materials Design Software Channel Safety Factor" (Tpi Td) Effective Stress on Blanket(Tdb) if: == T(j .' (l-CF) '. (nJn)L == CF= Soil Safety Factor Allowable Soil Shear (Ta) == SoH Safety Factor == Ta ! r, == Conclusion: Stability of i'-'1at Concfusion: Stability of Underlying soit Material Type ~""atting Type Manning's N value for selected Product Cross-Sectional Area (A) A =AL. + As + AR = At. "" (1/2) -1< Oepth/ '" ZI.. -x: As :::: Bottom Width'" Depth "" AR = (1/2) ~, Depth2 '" ZF/. == Wetted Perimeter (P) P -= PI.. + Pg +PR = PI.. ..t: Deeth * (ZL2 + 1)0.5;::. Pe == Channel Bottom Width ::: PR == Depth * (ZR 2 + 1)0.5 Hydraulic Radius (R) R=A/P= Flow (Q) Q ::: 1.486 I n * A *' R2!3 S1!2 -x: *' Velocity (V) V==Q/A= Channel Shear Stress (Te) Td =62.4 * Depth * Slope = Channel Safety Factor = (T piToj Effective Stress on Blanket(Tdb) Te ==Td oj< (l-CF) * (ns/nj2 == CF == Soil Safety Factor Allowable Soil Shear (Ta) = Soil Safety Factor =T3 / Te = Conclusion: Stability of Mat Conclusion: StabHity of Underlying soil Side Slope Liner Results HOME CONTACT US TUTORIALS Tensar International Corporation OOCUMENTS 2500 Northwlnds Parkway PHOTOS Suite 500 ACCOUNT ,o.Jpharet',a, GA30009, U.SA 2.85 1.4 o 0.04 o o STABLE STABLE P550 0.03 Discharge 94 Peak Flow Period 2 ChannelSlope .0365 ChannelBottom Width 28 Left Side Slope 4 Right Side Slope 4 Low Flow Liner I Retardance Class Vegtation Type Bunch Type Vegetation Density Poor < 50% Soil Type Clay NORTH AMERICA GREE N ~' Erosion Control Materials Design Software Version 5.0 Project Name: LDS Project Number: 14714 Project Location: FORT COLLINS, Colorado Channel Name: NORm FAST POND Ru.nJt/Wn P300 - Class - Bunch Type - Poor < 50% Phas e Reach Discharge'Velocity Nonnal Depth lMannings N Pennissible Shear Stress Calculated Shear Stress S afety Factor Remarks Staple Pattern P300 Unvegetated Straight 94 cfs 5.51 ftls 0.56 ft 0.033 3 Ibs/ft2 1.28 Ibs/ft2 2.34 STABLE E P300 Reinforced Vezetation Straigh 94 cfs 5.72 ftls 0.54 ft 0.032 8 lbs/ft2 1.24lbs/ft2 6.45 STABLE E Underlying Substrate Straigh 94 cfs 5.72 ftls 0.54 ft - 2 lbs/ft2 1.056 Ibs /ft2 1.89 STABLE -- ShoreMax - Class - Bunch Type - Poor < 50% Tensar International Corporation 5401 S1. Wendel-Cynthiana Road Poseyville, Indiana 47633 Tel 800.772.2040 Fax 812.867.0247 www .nagreen.corn Phase Reach lDischarge'Velocity Nonnal Depth Mannings N PennissibJe NORTH AMERIC (j E Erosion Control Materials Design Software Version 5.0 Channel Computations Tensar International Corporation 540 I St. Wendel-Cynthiana Road Poseyville, Indiana 47633 Tel. 800.772.2040 Fax 812.867.0247 www.nagre en.com Project Parameters Specify Manning's n: 0.03 Discharge : 94 Peak Flow Period : 12 Channel Slope: .0365 Bottom Width : 8 .eftSide Slope: tizht Side Slope: xistinz Channel Bend: end Coefficient (Kb): 1.00 etardance Class (A - E): ezetation Tvoe: Bunch Tvoe ezetation Densitv: lPoor< 50% Soil Tvoe: Clav Channel Lining Options ProtectionPermanent Tvne ! Material Type I Matting Tvne P300 Manning's N value for selected Product 0.03 Cross-Sectional Area (A) A=AL+AB+AR= 17.05 AL = (1/2) * Depthz * ZL = 0.64 AB=BottomWidth * Depth = 15.78 AR = (1/2) * Depth2 * ZR = 0.64 Wetted Perimeter (P) P=PL+ PB+ PR= 32.65 PL = Depth * (Z12 + 1)0.5= 2.32 PB= Channel Bottom Width = 28 PR = Deoth * (ZR2 + 1)0.5 2.32 Hydraulic Radius (R) R=A/P= 0.52 Flow(Q) 0= 1.486/ n * A * R213 * S1/2 = 94.01 Velocity (V) V =Q /A= 5.51 Channel Shear Stress (Te) Td = 62.4 * Depth * Slope = 1.28 I Channel Safety Factor = (To lTd) I 2.34 Effective Stress on Blanket(Tdb) Te = Td * (l-CF) * (ns/n)? = 1.28 CF= 0 ns = 0.03 Soil Safety Factor Allowable Soil Shear (Ta) = 0 Soil Safety Factor = Ta I Te = 0 Conclusion: Stability ofMat STABLE Conclusion: Stability ofUnderlying soil STABLE Mate rial Type Matting Type P300 Manning's N value for selected Product 0.03 Cross-Sectional Area (A) A=AL+AB+AR= AL= (1/2) * Depth2 * ZL= AB = Bottom Width * Depth = AR = (1/2) * Deoth2 * ZR = Wetted Perimeter (P) P=PL+ PB+ PR= PL= Depth * (Z12 + 1)0.5= PB = Channel Bottom Width = PR = Denth *(ZR2 + 1)0.5 Hydraulic Radius (R) R=A/P= Flow (Q) 0= 1.486In * A * R2/3 * S1/2 = Velocity (V) V=O/A= Channel Shear Stress (Te) Td = 62.4 * Depth * Slope = Channel Safety Factor = (To /Td) Effective Stress on Blanket(Tdb) Te =Td * O-CF) * (ns/n)2 = CF= 16.44 0.59 15.25 0.59 32.49 2.25 28 2.25 0.51 94.03 5.72 1.24 6.45 1.06 to. 0.25 0.03 Soil Safety Factor Allowable Soil Shear (Ta) = ns = 2 Soil Safety Factor = Ta I Te = 1.89 Conclusion: Stability ofMat STABLE Conclusion: Stability ofUnderlying soil STABLE Material Type Matting Type IShoreMax AB = Bottom Width * Depth = I 17.01 AR = 0/2) * Deoth2 * ZR = 0.74 Wetted Perimeter (P) P=PL+ PB+ PR= 33.01 PL = Depth *(ZU + 1)0.5 = 2.5 PB = Channel Bottom Width = 28 PR = Depth * (ZR2 + 1)0.5 2.5 Hydraulic Radius (R) R=A/P= 0.56 Flow (Q) Q = 1.486/ n * A * R2/3 * S1/2 = 94.03 Velocity (V) V=O/ A = Channel Shear Stress (Te) Td = 62.4 * Depth * Slone = 1.38 Channel Safety Factor = (Tp / Td) 5.42 Effective Stress on Blanket(Tdb) Te =Td * (I-CF) * (ns/n)2= 1.1 CF= 0.25 ns = 0.04 Soil Safety Factor Allowable Soil Shear (Ta) = 0 Soil Safety Factor = Ta / Te = 0 Conclusion: Stability ofMat STABLE Conclusion: Stability ofUnderlying soil STABLE Material Type Matting Tvne ShoreMax Manning's N value for selected Product 0.03 Cross-Sectional Area (A) A=AL+AB+AR= 16.44 AL = (1/2) * Denthz * ZL = 0.59 AB = BottomWidth * Depth = 15.25 AR = 0/2) * Denthz * ZR = 0.59 Wetted Perimeter (P) P=PL+ PB+ PR= 32.49 PL = Depth * (Z12 + 1)0.5= 2.25 PB = Channel Bottom Width = 28 PR = Depth * (ZR2 + 1)0.5 2.25 Hydraulic Radius (R) R=A/P= 0.51 F1ow(Q) 0= 1.486/ n * A * R2/3 * S1/2 = 94.03 Velocity (V) V=O/A= 5.72 Channel Shear Stress (Te) Td = 62.4 * Depth * Slope = 1.24 Channel Safety Factor = (Tn / Td) 6.45 5.09 Effective Stress on Blanket(Tdb) I Te =Td * (l-CF) * (ns/n)2 = 1.51 CF= 0.25 ns = 0.04 Soil Safety Factor Allowable Soil Shear (Ta) = 3.25 Soil Safety Factor = Ta / Te = 2.15 Conclusion: Stability ofMat STABLE Conclusion: Stability ofUnderlying soil STABLE Side Slope Liner Results 11/5/12 Computations IErosion Control Materials Design Software COST SAVING EST. (800) 772-2040 - Inside U.S. slopes. embankments, shorelines. and channels HB..P (812)867-6632 -Outside the U.S exposed to extreme water flow. LOGOUT Email Us Read More ~) 2011 Tens ar lnternational Corporation - All dghts reserved ~.ecmds.comlcomputations/projectl14 714/14736 3/3 Manning's N value for selected Product I 0.04 Cross-Sectional Area (A) A=AL+AB+AR= I 18.49 AL= (1/2) * Depth2 * ZL = I 0.74 I Shear Stress Calculated Shear Stress Safety Factor Remarks Staple lPattern ShoreMaxwI SC250 Unvezetated Straigh 94 cfs 5.09 ftls 0.61 ft 0.038 7.5lbs/ft2 1.38 lbslft2 5.42 STABLE F ShoreMaxwi SC250 Reinforced Vezetation Straigh 94 cfs 5.72 ftls 0.54 ft 0.032 8 Ibs/ft2 1.24 lbs/ft2 6.45 STABLE F Underlying Substrate Straigh 94 cfs 5.72 ftls 0.54 ft - 3.25 Ibs/ft2 1.511 lbs/ft2 2.15 STABLE - 16.44 0.59 15.25 0.59 32.49 2.25 28 2.25 0.51 94.03 5.72 1.24 11.28 1.51 0.25 0.04 3.25 2.15 STABLE STABLE ABOUTTENSAR INTERNATIONAL CORPORATION We proudly manufacture a complete line of extensi\."e!y tested products that control soil erosion, filter sediment, assist with vegetation establishment, reinforce turf, and ensure proper installation on projects that include steep MW.ecmds.com/computations/project/14714/14736 2/3 5401 St. Wend el· Cynthiana Rd. PH : 800-722-2040 Poseyville, IN 47633 www.nagreen.eom Drawing Not To Scale .. . ' ' I · (9.05 kN/m) Elongation - MO ASTM D6818 / 35% , i 737 Ibs/ft Tensile Strength - TO i ASTM 06818 I 10.75 kN m ------.------------------t ---------------r-1 - -- -- L L Elongation - TO ASTM 06818 16% 50 mm (2 in)/hr-30 min 100mm (4 in)/hr-30 min 150 mm (6 in)/hr-30 min Shear at 0.50 inch soil 7.7 Ibs/ft 2 loss Top Soil, Fescue, 21 day 523% improvement Germination incubation of biomass * Bench Scale tests shouldnot be used for design purposes ** SoilLoss Ratio= SoilLoss BareSoil/Soil Loss with REep -, Tensar InternationalCorporation warrants that at the time of deliverytheproduct furnished hereunder shall conform to the specification stated herein. Anyotherwarranty including merchantability andfitnessfor a particular purpose, arehereby executed. If the productdoes not meetspecifications on this page andTensaris notified prior to installation, Tensarwill replace the product at no costto the customer. This product specification supersedes all prior specifications for the product described above is and is not applicable to any products shipped prior to January 1, 2011. anchored and Is a flexible matting that can be linked together. ShoreMax mat can provide erosion control in highly erosive areas, including shorelines, and can be used in conjunction with rolled erosion control products. . r Tensar International Corporation warrants that at the time of delivery the product furnished hereunder shall conform to the specification stated herein. Any other warranty including merchantability and fitness for a particular purpose, are hereby executed. If the product does not meet specifications on this page and Tensar is notified prior to installation, Tensar will replace the product at no cost to the customer. This product specification supersedes ail prior specifications for the product described above is and is not applicable to any products shipped prior to January 1, 2011. So = "STREET = HCURB 0.0 ft 0.0200 ft. vert. ! ft. horiz 0.0130 6.00 inches 27.0 ft 2.00 inches 2.00 ft 0.0200 ft. vert.! ft. horiz 0.0055 ft. vert.! ft. horiz 0.0150 Minor Storm TMAX = 26.5 dMAX = 4.00 Minor Storm Sw= 0.1033 y= 6.36 d= Tx = Eo = Ox= Ow= OBACK = a T= V= V·d= TTH = TXTH = Eo = OXTH = OX = a w= aBACK = a= V= V·d = R= ~= d= dCROWN = a.now=l 8.36 24.5 0.231 20.7 6.2 0.0 26.9 5.2 3.7 Minor Storm 8.3 6.3 0.702 0.6 0.6 1.3 0.0 1.9 2.9 1.0 1.00 1.9 4.00 0.00 Minor Storm 1.91 Major Storm 26.5 ft inches X = yes 5.50 Major Storm 0.1033 ftlft 6.36 inches 8.36 inches 24.5 ft 0.231 20.7 6.2 0.0 26.9 5.2 3.7 cis cts cis efs fps Major Storm 14.6 ft 12.6 ft 0.433 3.5 cis 3.5 cis 2.7 cfs 0.0 cfs 6.2 cts 3.8 fps 1.7 1.00 6.2 cfs 5.50 inches 0.00 inches Major Storm 6.2lcfs MINOR STORM max. allowable capacity OK - greater than flow given on sheet 'a_Peak' MAJOR STORM max. allowable capacity OK - greater than flow given on sheet 'a-Peak' UD-Inlet_v2.14c, Q-AIIow 11/1/2012,8:52AM NfA NfA N/A 4.44 N/A N/A N/A NfA 1.02 N/A inch/hr NfA cfs cfs UD-Inlet_v2.14c,Q-Peak 11/1/2012,8:52 AM RequiredLengthLT to Have100%Interception s·:LT- 1 0. 5.41 0. 13.11 tt Under No-Clogglng Condition MINOR MAJOR EffectiveLengthofCurbOpeningorSlottedInlet(minimum of L.LT) 4 L=l 10.ooltt Interceptioncapacity°1 aj= 5. 1.02 4.11 cfs Under Clogging Condition MINOR MAJOR !cloggingCoefficient CurbCoef= CloggingFactorfor Multiple-unit CurbOpeningor SlottedInlet CurbClog= Effective(Undogged) Length L.= 1.25 0.06 1.25 0.06 5.40 1.02 0.00 0.46 9.38 ft Actual Interception Capacity Q.= 3.98 cfs Carry-Over Flow = ab(GRATE)-Q. Qb = cfs ~ MINOR MAJOR Total Inlet Interception Capacity Q= 1.02 3.98 cfs Total Inlet Carry-Over Flow (flow bypassing inlet) Qb= 0.00 0.46 cfs Capture Percentage =O;a., = C%= 100.0 89.6 % )-lnlet_v2.14C, Inlet On Grade 11/1/2012, 8:52 AM CloggingCoefficient CUrbCoef= 1.25 1.25 Clogging Factorfor Multiple-unit Curb Openingor SlottedInlet CurbClog= 0.06 0.06 Effective(Unclogged)Length L. = 602 9.38 ft Actual Interception Capacity a.= 0.96 3.57 cfs Carry-Over Flow = Qb(GRATE)"Q. a b= 0.00 0.61 cfs fu!m!!!m MINOR MAJOR Total Inlet Interception Capacity a= 0.96 3.57 cfs Total Inlet Carry-Over Flow (now bypassing inlet) a b= 0.00 0.61 cfs Capture Percentage = aja., = C%= 100.0 85.4 % 153 INLET, Inlet On Grade 11/1/2012,9:07 AM nSTREET = HCURS o.olft 0.0200 ft. vert. I ft. horiz 0.0130 6.00 inches 27.0 ft 2.00 inches 2.00 ft 0.0200 ft. vert.I ft. horiz 0.horiz0100 ft. vert.1ft. 0.0150 Minor Storm TMAX = 26.5 dMAX - 4.00 Minor Storm Sw= 0.1033 y= 6.36 d= 8.36 r, = 24.5 Eo = 0.231 0.231 Ox= 27.9 27.9 Ow= 8.4 8.4 OSACK = 0.0 0.0 a T- 36.2 36.2 V= 7.1 7.1 V*d= 4.9 Minor Storm Tnt = TXTH - Eo = Q XTH = a x- a w= QBACK = a= V= V*d= R= ~= d= dCROWN = 8.3 6.3 0.702 0.8 0.8 1.8 0.0 2.5 3.9 1.3 1.00 2.5 4.00 0.00 Minor Storm aoflow=1 2.51 Major Storm 26.5 ft inches X = yes 5.50 Major Storm 0.1033 ftlft 6.36 inches 8.36 inches 24.5 ft cfs cfs cfs cfs fps 4.9 Major Storm 14.6 ft 12.6 ft 0.433 4.7 cts 4.7 cfs 3.6 cfs 0.0 cts 8.3 cts 5.1 fps 2.3 1.00 8.3 cfs 5.50 inches 0.00 inches Major Storm 8.3!CfS I] MINOR STORM max. allowable capacity OK - greater than flow given on sheet 'a-Peak' MAJOR STORM max. allowable capacity OK • grEiater than flow given on sheet 'Q-Peak' 153 INLET, Q-AIIow 11/112012,9:07 AM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 4.18 N/A 0.96 N/A inch/hr N/A cfs cfs 152 INLET,Q-Peak 11/1/2012,8:56AM CloggingFactorfor Multiple-unit CurbOpeningor SlottedInlet CurbClog = 0.06 0.06 Effective(Undogged) length L..= 1.09 5.63 ft Actual Interception Capacity a.. = 0.00 0.53 cfs Carry-Over Flow = QI>(GRATE)"Q. ~= 0.00 1.17 cfs ~ MINOR MAJOR Total Inlet Interception Capacity Q= 0.89 4.05 cfs Total Inlet Carry-Over Flow (flow bypassing inlet) Qb= 0.00 1.17 crs Capture Percentage = Qla. = C%= 99.6 77.6 % 156INLET, Inlet On Grade 11/112012,10:00 AM = TCROWN- a= W= Sx So HCUR6 i1STREET -[ 0.0 ft 0.0200 ft. vert. f ft. horiz 0.0130 6.00 inches 26.0 ft 2.00 inches 2.00 ft 0.0200 ft. vert. f ft. horiz 0.0370 ft. vert. f ft. horiz 0.0150, MinorStorm Major Storm TMAX = 12.0 24.0 ft dMAX = 4.00 5.50 inches I MinorStorm 0.1033 2.88 4.88 10.0 0.522 4.9 5.4 0.0 a T 10.3 V= 8.8 V*d = 3.6 Minor Storm TTH 8.3 14.6 ft TXTH= 6.3 12.6 ft 0.702 0.433 1.5 9.1 cfs 1.5 9.1 cfs 3.4 6.9 cfs 0.0 0.0 cfs 4.9 16.0 efs V= 7.5 9.8 fps V*d = 2.5 4.5 R= 1.00 0.70 a.cfs. 4.9 11.2 d= 4.00 5.00 inches dCRowN 0.00 0.00 inches Minor Storm MajorStonn a.now=1 4.91 11.21cfs Eo= OXTH = Ox= Ow= OBACK = a= MINORSTORMmax.allowable capacity OK - greater than flowgiven on sheet 'a-Peak' MAJORSTORMmax.aJlowablecapacity OK-greater than flow given on sheet 'a-Peak' X = yes Major Storm 0.1033 ftIft 5.76 inches 7.76 inches 22.0 ft 0.258 40.2 cfs 13.9 cfs 0.0 cfs 54.2 cfs 12.8 fps 8.3 Major Storm Sw y= d= Tx = Eo = Ox= Ow= OSACK ~. 156 INLET, Q-Allow 1111/2012,10:00AM NIA N/A NIA N/A N/A N/A NlA N/A NIA 0.89 N/A minutes N/A minutes minutes N/A inch/hr N/A cfs cfs 156 INLET, Q-Peak 1111/2012, 10:00 AM ~ MINOR MAJOR Total Inlet Interception Capacity Q= 2.26 9.35 cfs Total Inlet carry-over Flow (flOW bypassing inlet) Qb = 0.10 1.75 cfs Capture Percentage = QlOo = C%= 95.8 84.3 % 153 INLET, Inlet On Grade 111112012,9:44 AM s, = 0.0200 ft. vert./ ft. horiz So= 0.0205 ft. vert. / ft. horiz nSTREET =I 0.0150, MinorStorm MajorStorm TMA)( = 12.0 dMAX - 4.00 MinorStorm Sw- 0.1033 y= 2.88 d= 4.88 Tx= 10.0 Eo= 0.522 Ox- 3.7 Qw = 4.0 OBACK = 0.0 QT= 7.6 V= 6.6 V*d= 2.7 24.0 ft 5.50 inches X= yes Major Storm 0.1033 ftlft 5.76 inches 7.76 inches 22.0 ft 0.258 29.9 cfs 10.4 cfs 0.0 cfs 40.3 cfs 9.6 fps 6.2 Qx - Qw= QBACK = Q= V= V*d = R- a.s= d= dCROWN = Qa1low-1 MinorStonn Major Storm TTH - 8.3 14.6 ft TXTH= 6.3 12.6 ft Eo= 0.702 QXTH= 1.1 0.433 6.7 cfs 6.7 cfs 5.2 cfs 0.0 cfs 11.9 cts 7.3 fps 3.3 1.00 11.9 cfs 5.50 inches 0.00 inches MajorStorm 11.91cfS 1.1 2.6 0.0 3.6 5.6 1.9 1.00 3.6 4.00 0.00 MinorStorm 3.61 MINORSTORMmax.allowable capacity OK- greater than flow given on sheet 'Q-Peak' MAJORSTORMmax.allowable capacity OK - greater than flow given on sheet 'Q-Peak' 153 INLET, Q-Allow 1111/2012,9:44AM 0.82 efs N/A N/A 11.10 N/A NlA N/A N/A N/A N/A N/A N/A NJA N/A N/A 2.36 cfs 153 INLET. Q-Peak 11/1/2012,9:44AM ~ MINOR MAJOR Total Inlet Interception Capacity 0= 1.26 5.85 cfs Total Inlet Carry-Over Flow (now bypassing inlet) 0.= 0.02 0.58 cfs Capture Percentage = OJOo = C%= 98.3 90.9 % t. I64A INLET, Inlet On Grade 111212012,3:25 PM T!!ACK -I SBACK nBACK HCURB= TCROWN a= W= Sx= So= nSTREET ::::. 0.0150 MinorStorm TMAX - 12.0 dMAX - 4.00 Major Storm 24.0 ft 5.50 inches X= yes Major Storm TTH = 8.3 14.6 ft TXTH= 6.3 12.6 ft Eo= 0.702 0.433 QXTH= 0.9 5.4 cfs Ox= cfs Ow= 0.9 5.4 cfs aBACK = 0.0 2.0 4.1 0.0 cfs 9.6 cfs 5.8 fps 2.7 1.00 9.6 cfs 5.50 inches 0.00 inches MajorStorm 9.61cfS MinorStorm Sw= 0.1033 0.1033 ftlft y= 2.88 5.76 inches d= 4.88 7.76 inches Tx 10.0 22.0 ft Eo= 0.522 0.258 Ox= 2.9 24.0 cfs Ow= 3.2 8.3 cfs aBACK 0.0 0.0 cfs QT 6.1 32.4 cts 5.3 7.7 fps V·d = 2.1 5.0 V= MinorStorm Major Storm 0= V= V*d= R= 0..= d dCROWN = QoIlow=1 2.9 4.5 1.5 1.00 2.9 4.00 0.00 MinorStorm 2.91 II " MINORSTORMmax. allowable capacity OK· greater than flow given on sheet 'a-Peak' MAJOR STORMmax. allowable capacity OK - greater than flow given on sheet 'Q-Peak' I64A INLET, Q-Allow 11/212012, 3:24 PM 164A INLET, Q-Peak 11/212012, 3:24 PM ':c: :'2 lQ !; -.- (j)~~ Inv Out: 4,910.84 ft CO CD 00. " <0 Rim: 4,916.32 ft I -I 0;:P Sump: 4,910.84 ft L. ° ~ Ow ° ce 0) (]I 00) _. (c » J) 0(~::') J ~ ~ t\):J J-51 ~ ceJ: Sta: 1+43 ft (° ,) ;:Po Inv In: 4,910.30 ft .!.J -0 c.n m Inv In: 4,910.30 ft (~ J) Inv Out: 4,910.30 ft ((ftJ) J) I» TI I" Rim: 4,915.76 I ~ C'" Ift '- I .P I Sump: 4,910.30 N +1 I riO 0 m g~ G) ~r ~ <0 ::0 <0 Z <0 "'0 ~ » ~m N ~. o 0 01 0 CD n. o moo m OrO 0 ::J (J) lQ 3' z glR m m 3 :: CD oc.... »m < 011 < 11 m ro+ O)"'O~O c.n r o' ::J cgo;~ --.. ... o,c oo(J) ~ ..... om -. ... ~ Z (l> J) ~ 6 ~ 17 , o 5'~: + 0(")1\) 1-40 0ft ~ 1\):;- I I Sta: 1+64 Vl ~ O):r Inv In: 4,915.43 ft 01 ~o Z Inv In: 4,915.43 ft ~ I enft en en ~17 m -< ;m U Inv Out: 4,915.43 0 UJ r'\ft Rim: 4:920.35 ;U Sump: 4,915.43 ft I\.) » -< + c G) o o~ <.0 0 I » 0 ::0 <~ .0 <~ .0 (~ J'1 ;G) U m 0 I\.) (I\J'1 ) o » m r 0 o o 0 CD Z 0 o m < m Q) r ~ Z 0 m ..:.:.J .. """t\ ...r-....+ ... rn P-3 P-4 P-5 J-428 1-46 1-19 1-24 1-25 1-26 1-27 1-46 J-42A 1-24 1-25 1-33 1-27 1-33 4.42 34.00 66.75 60.00 54.42 70.04 36.11 12 inch 15 inch 10 inch 10 inch 10 inch 4 inch 4 inch 3.26 7.14 0.97 1.21 1.45 0.08 0.23 3.79 16.73 2.19 2.19 2.20 0.19 0.42 4.15 5.82 1.78 2.22 2.66 0.92 2.64 4,913.17 4,913.12 4,919.18 4,918.51 4,917.91 4,919.80 4,919.09 4,913.12 4,910.84 4,918.51 4,917.91 4,917.36 4,919.09 4,917.36 0.011312 0.067059 0.010037 0.010000 0.010107 0.010137 0.047909 4,917.36 4,916.62 4,921.35 4,921.10 4,921.80 4,921.80 4,922.50 4,915.00 4,914.54 4,920.65 4,920.45 4,920.22 4,920.72 4,920.51 4,914.96 4,914.12 4,920.52 4,920.27 4,919.98 4,920.59 4,919.98 ~,915.27 ~,915.07 ~,920.70 ~,920.53 ~,920.33 ~,920.73 ~,920.61 ~,915.23 ~,914.65 ~,920.56 ~,920.35 ~,920.09 ~.920.60 ~,920.09 2.50 4.23 1.76 3.06 3.46 3.08 3.96 P-6 1-35 1-33 21.93 4 inch 0.05 0.56 0.57 4,919.25 4,917.36 0.086183 4,924.25 4,919.99 4,919.98 ~,920.00 ~,919.98 3.96 P-7 1-33 1-34 79.33 10 inch 2.03 2.20 3.72 4,917.36 4,916.56 0.010084 4,921.65 4,919.76 4,919.08 ~,919.98 ~,91 9.30 4.26 P-8 1-29 1-28 40.43 12 inch 4.28 7.13 9.49 4,919.90 4,918.28 0.040069 4,922.65 4,920.77 4,919.82 ~,921.31 ~,920.28 3.22 P-9 1-28 1-34 33.61 12 inch 4.34 8.06 5.53 4,918.28 4,916.56 0.051175 4,922.50 4,919.58 4,919.08 ~,920.05 ~,919.56 4.09 P-10 1-31 1-34 50.91 6 inch 0.54 1.40 6.68 4,919.75 4,916.56 0.062660 4,921.75 4,920.12 4,919.08 ~,920.31 ~,919.20 4.59 P-11 1-34 1-36 21.93 18 inch 7.10 10.52 4.02 4,916.56 4,916.34 0.010032 4,921.65 4,918.08 4,917.98 ~,918.33 ~,918.23 3.41 P-12 1-36 1-40 90.76 18 inch 7.15 10.52 4.05 4,916.34 4,915.43 0.010026 4,921.25 4,917.85 4,917.43 ~,918.11 ~,917.69 3.42 P-13 1-39 1-40 70.79 8 inch 0.84 1.99 5.46 4,917.35 4,915.43 0.027122 4,920.35 4,917.78 4,917.43 ~,917.97 ~,917.52 4.25 P-14 1-40 J-46 49.14 15 inch 8.83 15.93 7.20 4,915.43 4,912.44 0.060847 4,920.35 4,916.95 4,916.03 ~,917.76 ~,916.84 5.96 P-15 1-38 J-45 62.71 12 inch 4.39 7.91 5.59 4,916.00 4,912.91 0.049274 4,919.50 4,917.35 4,916.40 ~,917.84 ~,916.89 5.52 P-16 J-45 J-46 78.58 30 inch 18.78 31.72 3.83 4,912.91 4,912.44 0.005981 4,919.43 4,916.20 4,916.03 ~,916.42 ~,916.26 4.71 P-17 1-49 1-47 70.00 24 inch 6.19 17.52 1.97 4,913.92 4,913.50 0.006000 4,917.17 4,916.96 4,916.91 ~,917.02 ~,916.97 2.25 P-18 1-47 1-45 70.00 24 inch 10.42 17.52 3.32 4,913.50 4,913.08 0.006000 4,917.75 4,916.82 4,916.68 ~,916.99 1,916.85 3.37 P-19 1-45 J-45 27.20 24 inch 14.39 17.88 4.58 4,913.08 4,912.91 0.006250 4,918.45 4,916.51 4,916.40 ~,916.84 1,916.73 4.52 P-20 J-46 J-42 236.77 30 inch 27.61 31.76 5.62 4,912.44 4,911.02 0.005997 4,919.65 4,915.74 4,914.66 ~,916.23 ~,915.16 3.30 P-24 1-41 J-42 50.96 10 inch 3.44 5.39 6.31 4,914.10 4,911.02 0.060440 4,917.10 4,915.92 4,914.66 ~,916.54 ~,915.28 4.97 P-25 J-42 J-42A 29.20 30 inch 31.05 32.20 6.33 4,911.02 4,910.84 0.006164 4,916.82 4,914.29 4,914.12 1,914.91 ~,914.75 2.98 P-26 J-42A J-51 88.49 36 inch 38.19 52.10 8.05 4,910.84 4,910.30 0.006102 4,916.32 4,913.81 4,913.52 ~,914.26 ~,913.97 2.46 P-27 1-42 1-43/51 39.00 15 inch 5.35 6.46 4.36 4,912.32 4,911.93 0.010000 4,915.57 4,914.67 4,914.40 ~,914.97 ~,914.70 2.15 P-28 1-43/51 J-44 18.00 21 inch 10.75 15.84 4.47 4,911.93 4,911.75 0.010000 4,915.33 4,914.25 4,914.17 ~,914.56 ~,914.48 2.25 P-29 1-44/50 J-44 18.00 15 inch 5.37 8.75 4.38 4,912.08 4,911.75 0.018333 4,915.33 4,914.29 4,914.17 ~,914.59 1,914.46 2.75 P-30 J-44 J-51 22.13 21 inch 16.12 40.56 6.70 4,911.75 4,910.30 0.065522 4,915.75 4,913.75 4,913.52 1,914.45 1,914.22 3.71 P-31 J-51 0-1 109.51 42 inch 54.31 78.10 8.77 4,910.30 4,909.64 0.006027 4,915.76 4,912.61 4,911.79 ~,913.62 ~.912.98 -0.14 Title: LOS-MIDDLE Project Engineer: JEFF OLHAUSEN f:\projects\lds-temple\drainage\middle pipes.stm Landmark Engineering Ltd StormCAD v5.5 [5.5003] 10/31/12 03:21 :00 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 . \ 01 T. m m m 1) .Q. co n. w (rn :Q :J 0 + @ft?d Sump: Rim: 4,921.4,919.35 00 ft C/) e.v q,~ ~~ ~.#-... /» I : If'\~ ci.: "ji·--a:r " .0 ~ /o Iv _ 0:> -.l. ::;,. 17 0) () , /Iv ::r 0:> o ;:::.::r .:::;.0 ...... 17 In ,c:>@.O)..o. .<)~ : ~ 0)..0. ~ i"" Co s- OJ ~ ~ ~ I \t:9 W . cn i» ~; m " ~ c , z ~ -" 1) C ~ ~ o~Co OJ G) o:::J G): -< c.n o i .p..:T ::Oi G) .p.. » : "'T'I .p.. I 0 : ,AI _ ~ 0 m :i »0 ~ '1J .. r+ ·m . m ~ 1/11 ; m .J::>. .J::>. .J::>. 1-9 Sta: 0+69 ft Inv In: 4,917.50 ft Inv Out: 4,917.50 ft Rim: 4,919.25 ft Sump: 4,917.50 ft -u 1-3 ., Sta: 1+16ft 0 en Invln:4,914.10ft Inv In: 4,9 14 .10ft InvOut:4,914.10ft Rim: 4,918.90 ft --+, CD • • 0 ~ Do) ~. a "lJ Sump: 4,914.10 ft - ~ ~ ~ aJ CD "" ~ Do) en CD I ~ - "" 1-4 Sta: 2+24 ft Inv In: 4,913.51 ft Inv In: 4,913.51 ft Inv Out: 4,913.51 ft Rim: 4, 91 9. 35ft Sump: 4,913.51 ft (j) S' o_.p.. ..... CO <.D <.D <.D <.D 3 ~ :co ; ->. ->. f\.) f\.) ()l »m a L 6 0 (6 )l CD m 6 ° 6 011 < 0 0 11 0 0 Q) 1)~O .-+ Qli.n r o' <go;~ :::J .... i.nC ooCll ~ ... om ........ .... ~Z P-7 P-8 1-23 1-18 1-13 1-8 1-2 1-14 1-9 1-3 1-18 1-13 1-8 1-2 1-3 1-9 1-3 1-4 109.31 57.08 105.07 74.31 95.42 69.38 46.46 108.38 10 inch 12 inch 15 inch 15 inch 15 inch 6 Inch 6 inch 18 inch 1.07 1.91 2.87 3.68 4.19 0.35 0.63 5.41 1.62 2.63 4.76 4.80 4.77 0.82 1.52 7.75 3.18 3.65 4.06 4.31 3.41 4.03 7.37 4.74 4,916.51 4,915.91 4,915.60 4,915.03 4,914.62 4,919.00 4,917.50 4,914.10 4,915.91 4,915.60 4,915.03 4,914.62 4,914.10 4,917.50 4,914.10 4,913.51 0.005489 0.005431 0.005425 0.005517 0.005450 0.021620 0.073181 0.005444 4,918.85 4,919.00 4,919.00 4,919.00 4,918.85 4,921.35 4,919.25 4,918.90 4,917.00 4,916.67 4,916.48 4,916.25 4,915.90 4,919.30 4,917.90 4,915.40 4,916.74 4,916.55 4,916.33 4,916.0'1 4,915.50 4,918.01 4,915.50 4,915.15 ~,917.16 ~,916.81 ~,916.63 l.916.39 ~,916.08 ~,91 9.43 ~,918.12 ~,915.57 ~,916.80 ~,916.65 ~,916.42 J,916.15 ~,915.68 ~,918.06 ~,915.66 ~,915.29 2.26 2.40 2.72 2.98 3.55 1.25 4.30 4.34 P-9 1-10 1-4 46.46 6 inch 0.50 1.71 7.56 4,917.82 4,913.51 0.092768 4,920.32 4,918.18 4,915.15 ~,918.35 ~,915.25 5.34 P-10 P-11 1-4 1-30 1-5 1-11 85.38 76.67 18 inch 12 inch 6.45 4.39 7.79 7.24 3.65 9.66 4,913.51 4,919.90 4,913.04 4,916.73 0.005505 0.041346 4,919.35 4,922.65 4,915.03 4,920.78 4,914.70 4,917.93 l,915.23 ~,921.34 ~,914.91 l,918.42 3.96 3.77 P-12 1-11 1-5 46.46 12 inch 4.64 10.04 12.53 4,916.73 4,913.04 0.079423 4,921.50 4,917.63 4,914.70 l,918.23 ~,915.25 4.46 P-13 1-5 1-6 49.42 24 inch 11.29 16.72 5.71 4,913.04 4,912.77 0.005463 4,918.50 4,914.51 4,914.45 ~,914.83 ~,914.70 3.23 P-14 1-12 1-6 46.46 6 inch 0.68 1.95 9.05 4,918.40 4,912.77 0.121180 4,920.90 4,918.82 4,914.45 ~,919.05 ~,914.63 4.73 P-15 1-6 1-7 183.63 24 inch 12.29 16.69 5.81 4,912.77 4,911.77 0.005446 4,918.00 4,914.21 4,913.83 ~,914.61 ~,914.06 2.48 P-16 1-20 1-15 43.28 10 inch 1.97 2.21 3.61 4,914.90 4,914.46 0.010166 4,917.65 4,916.53 4,916.18 ~,916.73 ~,916.38 2.36 P-17 1-15 1-16 24.44 10 inch 4.03 6.01 7.39 4,914.46 4,912.62 0.075286 4,917.65 4,915.50 4,914.67 ~,916.35 ~,915.52 4.20 P-18 1-21 1-16 43.28 6 inch 0.36 1.36 5.84 4,915.15 4,912.62 0.058457 4,917.65 4,915.45 4,914.67 ~,915.58 ~,914.73 4.53 P-19 1-32 1-22 100.94 12 inch 1.46 2.63 1.86 4,913.72 4,913.17 0.005449 4,915.75 4,915.21 4,915.04 ~,915.27 ~,915.10 3.03 P-20 1-22 1-17 43.28 12 inch 1.66 2.60 2.11 4,913.17 4,912.94 0.005314 4,917.20 4,915.01 4,914.92 ~,915.08 ~,914.98 3.26 P-21 1-17 1-16 59.51 12 inch 1.90 2.61 2.42 4,912.94 4,912.62 0.005377 4,917.20 4,914.84 4,914.67 ~,914.93 ~,914.76 4.03 P-22 1-16 1-7 156.29 18 inch 6.65 7.75 3.76 4,912.62 4,911.77 0.005439 4,917.65 4,914.45 4,913.83 ~,914.67 ~,914.05 2.98 P-23 1-7 0-1 271.96 27 inch 20.57 23.08 6.56 4,911.77 4,910.26 0.005552 4,916.25 4,913.43 4,911.85 ~,914.09 ~,912.58 -0.25 Title: LOS - INLETS NORTH Project Engineer: ~IEFF OLHAUSEN f:\projects\lds-temple\drainage\north pipes.stm Landmark Engineering Ltd StormCAD v5.5 [5.5003] 10/30/12 02:08:33 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 . , P-10 J-548 0-54 24.01 24 inch 20.10 23.08 8.28 4,908.33 4,908.08 0.010412 4,914.47 4,909.94 4,909.75 ~,91 0.79 ~,91 0.55 0.00 P-1 1-61C 1-6'18 34.18 6 inch 0.28 0.50 1.43 4,909.85 4,909.62 0.006729 4,911.85 4,911.30 4,911.22 ~,911.33 ~,911.26 1.63 P-2 1-618 1-61A 39.62 6 inch 0.56 0.49 2.85 4,909.62 4,909.36 0.006562 4,911.75 4,911.16 4,910.82 ~,911.29 ~,91 0.95 1.89 P-3 1-61A J-548 157.01 10 inch 0.56 1.77 1.03 4,909.36 4,908.33 0.006560 4,911.75 4,910.81 4,910.71 ~,910.83 ~,91 0.73 5.31 Title: SOUTH PIPES Project Engineer: JEFF OLHAUSEN untitled.stm Landmark Engineering Ltd StormCAD v5.5 [5.5003] 11/01/12 01:31:05 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 StormCAD v5.5 [5.5003] Page 1 of 1 10/31/12 05:14:14 PM © Haestad Methods. Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Project Engineer: JEFF OLHAUSEN Title: ROCK CASTLE LANE PIPES Landmark Engineering Ltd StormCAD v5.5 (5.5003] f:\... \drainage\rock castle lane pipes.stm © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 11/01/12 05:25:58 PM . \ outout l):tlJt Flow Time Tf minutes output :1;45, ·..'.· "/ i ' I : : " " -. Computed Tc - RegionalTc = User-EnteredTc = 9.62 .15.33 i--'-~'=9.62 -':?---i 1 I ''' ;;." .oss -r- - ZZL{ ~ ./-z -- IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = .:..•.: . . :Z:2S inchlhr Peak Flowrate, Qp = Rainfall Intensityat Regional Tc, I = " :1;84inchlhr Peak Flowrate, Qp = Rainfall Intensityat User-Defined Tc, I = ·2:25 inchlhr Peak Flowrate. Qp = Qz:: o~Z(Z0),~I :=, /41 ~ H03 -2YR, Tc and PeakQ DIeD ~(,25(.&l) 7~ (p~) ='0 fi.! cr5 1013112012,6:55 PM Time Tf Overland tUft input ft input C-5 output input fps output minutes output O~018Q 500 0.29 N/A 0:31 27.06 1 0:0155 3&7 7.00 0:87 7.40 2 o,oon 554 15.00 1.27 7.25 3 4 5 Sum 1,441 Computed Tc 41.71 Regional Tc = 18.01 User-Entered Tc = 18.01 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, 1= 3.:,..; ..,..67_inch/hr Peak Flowrate, Qp = Rainfall Intensity at Regional Tc, 1= 5.94 inch/hr Peak Flowrate, Qp = Rainfall Intensity at User-Defined Tc, 1= 5.94 inch/hr Peak Flowrate, Qp = u=- r.25(.Zl,)5,qZ(I~,05)/Z7~ CF~ H4-100YR, Tc and PeakQ 10/20/2012,4:54 PM Coeff C-5 output NRCS Convey ance input Flow Velocity V fps output Flow Time Tf minutes output 0.0180 500 0.29 NlA· ... 0.31 27~06 1 0.0155 387 7.00 0.87 7AO 2 0.0072 554 15.00 1.27 7.25 3 4 5 Sum 1,441 Computed Tc = 41.71 Regional Tc = 18.01 User-Entered Tc = 18.01 IV. Peak Runoff Prediction Rainfall Intensityat Computed Tc, I =__---,-1._0S.,.....inch/hr Peak Flowrate, Qp = ~ Rainfall Intensity at RegionalTc, I = 1.70 ineh/hr Peak Flowrate,Qp = ?" ~s c:: Rainfall O. n. Intensityat User-DefinedTc, I = 1.70 ineh/hr Peak Flowrate, Qp = ~. Q-= ~ (/.7 )14rD5 z: ~~2-l (FS H4-2YR, Tc and PeakQ 10/20/2012,4:53 PM C-5 output NRCS Convey ance input Flow Velocity V fps output Flow Time Tf minutes output 0.0134 500 Q~2a N/A ·0.2S· 29.96 1 0.0193 533 '7,00 0.97 9.13 2 0.0098 305 1$J'O 1048 3.42 3 4 5 Sum 1,338 ComputedTc 42.51 RegionalTc = 17.43 User-EnteredTc = 17.43 ~ IV. Peak Runoff Prediction Rainfall Intensityat Computed Tc, l = 3..-...:.6_2 inch/hr Peak Flowrate,Qp = 33.07 cfs Rainfall Intensityat Regional Tc, I = 6.04 inch/hr Peak Flowrate,Qp = 55.09 cfs Rainfall Intensityat User-Defined Tc,I = 6.04 inch/hr Peak Flowrate,Qp = 55.09 cfs U(JtZ S i- ~,OZ H3-100YR,Tc and PeakQ 10/21/2012,10:02 PM c-s output 0.0134 500 0.28 1 0.0193 533 2 0;0098 305 3 4 5 Sum 1,338 Flow Convey- NRCS Velocity ance V fps input output N/A .:,' Q.2~r· 7.00 Q~97 15.00 1.4a Computed Te = Regional Te = User-Entered Te = Flow Time Tf minutes output 29.96 .. 9.13 3.42 42.51 17:43 17.43 IV. Peak Runoff Prediction Rainfall Intensityat ComputedTe, I = 1._04_inch/hr Rainfall Intensity at RegionalTe, I = 1.73 inch/hr Rainfall Intensity at User-Defined Tc, I = 1.73 inch/hr Peak Flowrate, Qp = Peak Flowrate, Qp = Peak Flowrate, Qp = H3-2YR, Tc and PeakQ 10/21/2012,10:02 PM output NRCS Convey ance input Flow Velocity V fps output Flow Time Tf minutes output 0.0300 300 0.30 N/A 0.29. 17.42: 1 0.0065 153 7.00 O:S6 4;52 2 : ;3 4 5 Sum 453 ComputedTc 21.93 Regional Tc = 12.52 User-Entered Tc = 12.52 IV. Peak Runoff Prediction RainfallIntensityat Computed Te, 1= 5_._36_inch/hr Peak Flowrate, Qp = Rainfall Intensityat Regional Tc, 1= 7.05 inch/hr Peak Flowrate, Qp = Rainfall Intensityat User-Defined Te, I = 7.05 inch/hr Peak Flowrate, Qp = Q~/,Z5(.2Cj)7.0Lf(/,3f)=: 3,34 (FS H2-100YR.Tc andPeakQ 10/20/2012,4:43 PM output NRCS Convey ance input Flow Velocity V fps output Flow Time n minutes output 0.0300 30Q O.aQ N/A O.,z9 17.42 1 0.0065 153 7.00 0.56 4.52 2 3 4 5 Sum 453 Computed Tc 21.93 Regional Tc = 12.52 User-Entered Tc = 12.52 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = 1_._54_ inch/hr Peak Flowrate, Qp = ~ Rainfall Intensity at Regional Tc, 1= 2.02 inch/hr Peak Flowrate, Qp = ~ Rainfall Intensity at User-Defined Tc, 1= 2.02 inch/hr Peak Flowrate, Qp = .D.ae efs ::- 0074 CfS H2-2YR, Tc and PeakQ 10/20/2012,4:42PM Coeff C-5 output NRCS Convey ance input Flow Velocity V fps output Flow Time Tf minutes output 0.0197 406 Q:$4 N/A 0.30 22.78 1 0.0180 944 15.00 2.01 7.82 2 3 4 5 Sum 1,350 Computed Tc = 30.59 Regional Tc = 17.50 User-Entered Tc = 17.50 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = 4:-'.,,-44:-inch/hr Peak Flowrate, Qp = Rainfall Intensity at RegionalTc, I = 6.02 inch/hr Peak Flowrate, Qp = Rainfall Intensity at User-Defined Tc, I = 6.02 inch/hr Peak Flowrate, Qp = C::Q,33 r;='&',OI Q;o'. 25 (.33)~,O\ (o,'17 ) ==- 17. z7 tFS H1-100YR,Tc and PeakQ 10/20/2012,4:41 PM C-5 output NRCS Convey ance input Flow Velocity V fps output Flow Time Tf minutes output 0.0197 406 0.32 N/A 0.30 22,7,8 1 . 0.0180 944 15.00 2.01 7.82 .4 .. 3 4 5 Sum 1,350 ComputedTe = 30.59 RegionalTe = 17.50 User-Entered Te = 17.50 IV. Peak Runoff Prediction Rainfall Intensity at Computed Te, I = 1_._27-_ ineh/hr Peak Flowrate,Qp = Rainfall Intensity at Regional Te, 1= 1.73 inch/hr Peak Flowrate,Qp = Rainfall Intensity at User-Defined Te, 1= 1.73 ineh/hr Peak Flowrate,Qp = H1-2YR, Tc and PeakQ ID Reach Slope Length 5-yr L Convey- Coeff S Runoff ance ft C-5 input ftIft input Overland input output 0.36 NIP\.. 47 20.00 2 1 0.0200 625 15.00 3 0.0398 0.0460 370 7.00 4 5 Sum 1,042 Computed Tc = IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, 1= 8_.4_1_inch!hr Peak Flowrate, Qp = Rainfall Intensity at Regional Tc, 1= 6.34 inch/hr Peak Flowrate, Qp = Rainfall Intensity at User-Defined Tc, I = inch/hr Peak Flowrate, Qp = Flow Time Tf minutes output ·0])0 . 0:28 ~,t)Z 4~11 .~ KQO 15.79 ~- ~ cfs Q =/·25(.4 z)g,.3B (1.lf1) ~ ~.5b CfS .H03-100YR, Tc and PeakQ 100 10/20/2012,4:35 PM Coeff C-5 output NRCS Convey ance input Flow Velocity V fps output Flow Time Tf minutes output -. 0;36 N/A tMlO .(.).00 1 0.02Qp 47 20.00 2:83 0,28 2 .O.03t>a 6.2$ 10,QO 2.88 ,;H~2 3 0.0460 370 7.00 1.50 4.11 4 5 Sum 1,042 Computed Te = 8.00 Regional Te = 15.79 User-Entered Te = IV. Peak Runoff Prediction Rainfall Intensityat ComputedTc. I = 2_._4_1 inch/hr Peak Flowrate, Qp = .~ Rainfall Intensityat Regional Tc. I = 1.82 inch/hr Peak Flowrate, Qp = .-fJ78 efs Rainfall Intensityat User-Defined Tc, I = inch/hr Peak Flowrate, Qp = cfs Q z: , 4Z(Z (Y ) I(Y9:::- {, 5D cFS H03-2YR, Tc and PeakQ 1. 10/20/2012,4:34 PM Coeff C-5 output NRCS Convey ance input Flow Velocity V fps output Flow Time Tf minutes output 0.44 N/A 0.00 0:00 1 0.0100 S3 20.00 2.00 OA4 2 0.0174 680 7.00 0.92 12.27 3 4 5 Sum 733 Computed Tc = 12.72 RegionalTc = 14.07 User-Entered Tc = IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = 7_'.;:..00.:..inch/hr Peak Flowrate, Qp = ~s Rainfall Intensity at Regional Tc, I = 6.69 inch/hr Peak Flowrate.Qp = ~s Rainfall Intensity at User-Defined Tc, I = inch/hr Peak Flowrate.Qp = cfs r=-&..98 Q -0 .r'"7( ')5') I Qe) (011) ::- 4·/& CFs H02-100YR. Tc and PeakQ I~ • ? J-c: ~, I 0 \.' c '1 10120/2012,4:29 PM output NRCS Convey ance input Flow Velocity V fps output Flow Time Tf minutes output 0.44 N/A 0;00 U;OQ 1 0.0100 53 20.:00 2,00 Q.44 2 0.0174 680 7;00 ·>0,92 1'2.27 3 4 5 Sum 733 Computed Tc 12.72 Regional Tc = 14.07 User-Entered Tc = IV. Peak Runoff Prediction Rainfa/llntensity at Computed Te, 1= 2_._0_1 inch/hr Peak Flowrate, Qp = -081 cfs Rainfall Intensity at Regional Te, I = 1.92 inch/hr Peak Flowrate, Qp = ~ Rainfall Intensityat User-DefinedTc, I = inch/hr Peak Flowrate, Qp = cfs O~97 CFS H02-2YR, Tc and PeakQ 10/20/2012,4:29 PM H);QO ' Flow Velocity V Ips output ····O.IXE 2.83 3.05 1.20 I ' : " : " ' /. ~ : : ' : . Row Time Tf minutes output 'OlQQ';"" (l'I21l ' OI:tt' : 8;24' . " ,' .. !kq1 13.66 5~00 ... , = ComputedTc = Regional Tc = User-Entered Tc Rainfall Intensity at ComputedTc, I = 8"".:-19=- inch/hr Peak Flowrate, Qp = Rainfall Intensityat RegionalTc, I = 6.78 inch/hr Peak Flowrate, Qp= Rainfall Intensity at User-Defined Te, I = 9.70 inchlhr Peak Flowrate, Qp = Q;: 1.2-5 (.~> )8,/7 ($ ~l )::. 3·<1 Z. C-F5 H01-l00YR, TeandPeakQ IDO : 10/20/2012,4:23 PM input Length L ft input 5-yr Runoff Coeff C-5 output OA6' 1 0.0200. 45 2 .... 0.19QO 20 3 0:0064 593 4 5 Sum 658 NRCS Convey '. ance input MIA 20:00. :'hoO '15;00 Flow Flow Velocity Time V Tf fps minutes output output :0[00 0.00 2A~:3 0.27 ~,O5 0.11 ··1~20 8.,24 Com puted Tc = 8.61 Re gional Tc = 13.66 User-Entered Tc = 5.00 2_._35_inch/hr Peak Flowrate, Qp = ~crs 1.94 inch/hr Peak Flowrate, Qp = ~ 2.78 inch/hr Peak Flowrate, Qp = ~ads ." Coeff C-5 output NRCS Convey ance input Flow Velocity V fps output Flow Time Tf minutes output '·m33 WA QiQO (»OO 1 o.;Q~QQ 30 20.00 ~,a3. .Q,18 2 (flO?Q ~2.··.'. 7.00 2..29' .0;23 ;3 ·0.:0129 930 15;00 1:70 9..l0 4 5 Sum 992 Computed Tc = 9.51 Regional Tc = 15.51 User-Entered Tc = IV. Peak Runoff Prediction Rainfall Intensityat Computed Tc, I =__....;2::..:..=..26=-inch/hr Peak Flowrate. Qp = ~ Rainfall Intensityat Regional Tc. I = 1.83 inch/hr Peak Flowrate, Qp = ~ Rainfall Intensityat User-Defined Tc, 1= inch/hr Peak Flowrate, Qp = cfs C~O,35 cy.35(j.Z5 )4·fb=- 3.28 C£6 UD-Rational v1.02a, Tc and PeakQ 10/22/201.2,8:47 AM ance Flow Velocity V Flow Time Tf Overland tuft input ft input C-5 output input fps output minutes output 0.0200 55 .......·QA1 N/A 0.12 7.37 1 .:.' 2 ....: ..::. 3 . 4 5 - -::= Sum gt:,~ 55 ComputedTc RegionalTe = = 7.37 User-Entered Te = 10.31 7.37 IV. Peak Runoff Prediction Rainfall Intensityat Computed Tc, I = 4~.~23~ineh/hr Peak Flowrate,Qp = ~ Rainfall Intensityat RegionalTc, 1= 3.74 ineh/hr Peak Flowrate,Qp = t ~s Rainfall Intensity at User-Defined Tc, I = 4.23 ineh/hr Peak Flowrate,Qp = ~s ao~#5Z (4~ ).13::'O~ lfS ~7~i£JS-::-()zt{~;itd- 10/29/2012,9:51 AM UD-Ralional v1.02a, Tc and PeakQ Q/tIO= 1,2.5 (.C;2YZbj (tl~) z:(/}. CF5 V fps outDut Flow Time Tf minutes output 'N/Ai>'" 20~()0 } 0.00 2.83 0.00 0.27 •. '. : 7 ~ OO } : · . : · 3.05 0.11 ', 15;00':,;,· 1.20 8.24 .. .. ... .... .. .:....'. ComputedTc = ', ..8.61 RegionalTc= " .13:66'" User-Entered Tc = 5.00 Peak Flowrate,Qp=1164 cfs PeakFlowrate,Qp = 1.36 cts Peak Flowrate,Qp = ..··· ·· '1.94 cts 10/26/2012, 3:05 PM 064-lOYR, roo", """'Q Q ~/.z5 (.8/)lS IJ(, (,( ') - 5°1crs 1C6 NRCS Flow Convey- Velocity ance V fps input output NIA QkOO. 20:00 2~83 •. 1$.00 <..];8~t : . .: .' ':.. :". ••.. ' ,". '.".'.. ,' ' .. Time Coeff Runoff Tf C-5 minutes output output f' 0.00 0.16' O~2.a 5;86' '. -. ". Computed Tc -I 6.02 L -- 3/ User-RegionalTc Entered Tc = = 13.85 IV. Peak Runoff Prediction RainfallIntensityatComputedTc, I = 2_._64"""'·.inch/hr Peak Flowrate,Qp = 0.18 cfs Rainfall IntensityatRegionalTc, I = 1.93 inch/hr Peak Flowrate,Qp = 0.13 cfs RainfallIntensityat User-Defined Tc, 1= inch/hr Peak Flowrate,Qp = cfs 7 Qz;o IZ~ (z.t<>.?), 35 ::: ()~ ~ D62B-2YR, Tc and PeakQ Q(I:) ::: /.25 ~25) 9l.f 11/212012, 3:11 PM (.35 ) -z:led (T3 1 ..··O~0100 572 15.00 LSO 2 3 4 5 Sum 972 Computed Tc '5 43 Regional Tc = minutes output 2~t51 'I .'· 6.36 = 35.87 - 15.40 ~ s: User-Entered Tc = 15.40 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I =__---::-1.~97~ inch/hr Peak Flowrate, Qp =7ld Rainfall Intensity at Regional Tc, 1= 3.14 inch/hr Peak Flowrate, Qp = . . 5 cf~_ ao -:: o25(Rainfall 3'.Intensity E) at User-2 5J Defined ~ Tc, ZCl~ 1= 3.Cf5 14 inch/hr Peak Flowrate, Qp = cfs UD-Ralional v1.02a, Tc and PeakQ aco ~ 1.25(. 25 ),II} (2 '!!) ;:. :5Z6tFS 1012712012, 5:10PM outout .. :,:(};29 NRCS Flow Flow Convey- Velocity Time ance V Tt fps minutes input outout outout NJA 0.30 24~!::7 . : : · : ···:: :·7;OP·:' ···: "' 0:59 23.90 . . ::-::.:-: . : ComputedTc = ":::'48.67:•.:. RegionalTc :17;;17'.: : User-EnteredTc = 17.17 Peak Flowrate, Qp =.:.: : (~. :::~ ~:~:~::: : ~~ :••.:: .:J=;' H4-2YR, TcandPeakQ Q .( ) 07 I '? ~) ... Z385CF5 10/26/2012,4:11 PM IDO ~ [.25 02£ 0"- ( It.·u, ~;7-341 T;C(J - - ILl IV. Peak Runoff Prediction 7- Rainfall IntensityatComputedTc, I = -,'.-..' ;; ---,-~2~;f:-75=-. - inchlhr Rainfall Intensityat Regional Tc, I = 3;50 inchlhr Rainfall IntensityatUser-Defined Tc, 1= 3:50 inchlhr 0.14 Computed Tc = ;} 20.1O: Regional Tc = 12.08..·.. User-EnteredTc = "' 12.08 Peak Flowrate, Qp =---'--'-i""~~ ' c::.:.fs .... Peak Flowrate, Qp = ---'-..,....,.~;;.;· .·;;.cf:='s Peak Flowrate, Qp = ' ce':: ...;;c.:.......::..:..:.::..cfs 10/26/2012,2:55 PM Regional Tc = User-Entered Tc = Calculations: Reach ID Overland ... ,./ .::1/ ' :" .....'.. 2- . .. , :3:. :: 4 5 Slope S 111ft input Length L II input .". ,". : 438:"" : ,' .'," ::". '. ... .. :: .,., ' 0.02.73 ·,'. .:,::...: ,:, .., :::, .. .'.' ."",' Sum 438 - 95 9 -- :.,. Flow Time Tf minutes output ·· Q.(lO ,2.21, '· .:.:,.,.;.:..... ... ... '" 2.21 : 12.43 7.86 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, 1=....:..._...,5:-.'."58,,· .inch/hr Rainfall Intensity at Regional Tc, 1= -. 3.46 inchlhr Rainfall Intensity at User-Defined Tc, 1=4;14 inch/hr D54-10YR, Tc and PeakQ Peak Flowrate, Qp = . Peak Flowrate, Qp = Peak Flowrate, Qp = 10/2612012,2:45 PM ..6.41 . ,' '.,. .- :· ;.6A 1.: . :""14:81· Rainfall Intensityat ComputedTe, I = _...,...-_4~'.,;;42~ineh/hr Peak Flowrate,Qp =~i Rainfall Intensity at Regional Te, I = 3.20 ineh/hr PeakFlowrate,Qp =' . : ~s RainfallIntensityatUser-Defined Te, I =inehlhr Peak Flowrate, Qp = :. cfs 10/2612012,4:00 PM NRCS Convey ance Flow Velocity V Flow Time Tf ftIft input ft input C-S output input fps output minutes output Overland 0.0281 71 0.15 N/IA 0.12 ". " jO;2G 1 0.2500 20 7.00 3JpO 0;10 ,', 2 0~0134 149 15.00 '1.74 1,43 ... 3 4 5 Sum 240 Computed Tc = 11.78 --:- - 33 ~ Regional Tc = User-Entered Tc = 11.33 11.33 0 10 -:= • 2 5 (3 ?1 )/2Z~D7J crs> UD-42PMRationalv1.02a, Tcand PeakQ I/'") I Zc. /zc )733 I 02) 'l ~e I' a' 10/26/2012,2: LX(OO;:' /( .. '/ .,,-- {~o, - - U ,/ outpu1 ;::'2152:,:::;' ····'·-4191::. :.. .::' ....:..' :.......::.,. .' 7.43 12,52 7:43 10/25/2012,7:37 PM input output output Overland input output '····7;16 1 0.0290 .. ·'>85:/ ·" ' LJ.: :JM:iI NlA' 'OA8> 0~OO57 > ··:' 385 .··· 20.00 1~5t ,"." ..;" -'04....25 . .2 '.'. < ,..' '::'...: >..'.::.:,.: '., ..... "' :';i :' 3 .'. :'::::':" .: ...'.', ." '" . ....:.; ("..,' . 4 " " . ':.:,.' I..·"·" .. ·•· S Sum 470 ComputedTc = 12m Regional Tc = 12.61 I;oo -- It., User-Entered Tc = 12.01 IV. Peak Runoff Prediction Rainfall Intensityat ComputedTc, I =__--=-3...,.5~1 inch/hr Peak Flowrate.Qp = Rainfall Intensityat Regional Tc, I = 3.44 inch/hr Peak Flowrate,Qp = Rainfallintensily at User-Defined Tc, I = . 3.51 inch/hr Peak Flowrate.Qp = Q/O =-, ?7{3/3) /67;;: / 7j u=s 10/25/2012.7:32 PM D49-lOYR,Too" .."a Q'DO ::: I, 25(57 ) 7J!: (.e7) z: 41/!l 03 LEGEND OBegiJming Flow Directio <If--- Catchment Boundary NRCS Convey ance input N/A···· .. 2Q;OO -. .. :.::.: . Flow Flow Velocity Time V Tf fps minutes output output .••·0,'(9 7:18 ····.1.79 a~63 . ........ ': ...., .......• I . .... .< ..•. -. .. ComputedTc- 10.82 RegionalTc = 12.63 User-EnteredTc = 10.82 Peak Flowrate,Qp = :...D:91cf --s Peak Flowrate, Qp = ;I' ~cfs Peak Flowrate, Qp = ~s IV. Peak Runoff Prediction U - ~ 7 '17 Rainfall Intensity at Computed Tc, I = 3;;..; ..;67 ..... inch/hr Rainfall IntensityatRegionalTc, I = 3.44 inch/hr Rainfall IntensityatUser-DefinedTc,I =3.67 inch/hr Q10 :::..~ $3(3t;f),§3 :;;'/~ C-FS 10/25/2012,7:41 PM DSO-10YR,TcandPeakQ oIto =' (.Z5(,§'3)1t£Z(,53) =Zt!: CFS lIt¥:> z: 1 - User-Entered Tc = 5.86 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc. I = 5.67 inch/hr Peak Flowrate, Qp = ~/. Rainfall Intensity at Regional Te, 1= 3.60 inch/hr Peak Flowrate, Qp = '~s o /0::; ,Rainfall 8S{Intensity L{~)at User-,yO Defined ~ Tc, tt4.I = ? er~ 4~55 inch/hr Peak Flowrate, Qp = ~s D45-10YR,Tc and PeakQ Q,ot> :::: 1,25(.gs )!f~ (. ~C» z, 4l;}. cr~ 10/25/2012, 7:28 PM .-. : :: < 243 7 - 'IS - IV. Peak Runoff Prediction Rainfall Intensityat Computed Tc, I =--'-.....o-~5.-:::"1-::-6inch/hr Rainfall Intensityat Regional Te, I=3.60 inch/hr Rainfall Intensityat User-Defined Tc, 1= 4.75 inch/hr 5-yr Runoff Coeff C-5 output Flow Flow Velocity Time V Tf fps minutes output output 0,08 ··.2,06. . l 2:68 ·i/·.. ··•·· 1.45 <L . .. .. .: .:. >. puted Tc = ....... Com 3.50 Re gional Tc = 11.35 5.00 Q:pSI< NIls 2Q,OO : ...: .. .::. ', :. User-Entered Tc = Peak Flowrate, Qp = 1.34 cfs Peak Flowrate, Qp = 0.93 cfs Peak Flowrate, Qp = 1.23 cfs o LEGEND Beginning Flow Directio <!E-------- Caichrnent Boun.d.uy NRCS Convey ance input -... Q10 :0,8Z (t.f~).3~;;; / 52 if> D48-PM10YR,TcandPeakQ l)1"(1 IOD -::{,2,.C:l; /,82) 992 (o~) =3~CFS 10/25/2012,7:47 output .:.0;54 NRCS Convey ance input .N/A . . : , 20.00 Flow Flow Velocity Time V Tf fps minutes output output · ' 0;11:·: . :':,:4141:'+·" ., 2.61 1.66 '': :.•.'>';'::. ":' :':. ': mputedTc 6.07 Re Co gional Tc = 11.61 User-Entered Tc = 6.07 Peak Flowrate,Qp = Peak Flowrate,Qp = Peak Flowrate,Qp = Q10 ~. 7/ (~=0)O~ ~. z,o Cf'S 10/25/2012,7:44 PM 051-10YR, Too" P""kQ ~r:.o-::: I,Z§(.71) 9?J(o~ ) ""5 ~ eFS Rainfall Intensity at User-DefinedTc,l =4.18 inch/hr Peak Flowrate,Qp = ~ 10/25/2012,7:56PM - -1.5 User-Regional Entered Tc Tc = = 11,S.86 33 -/c..,~ 5 00 (=0172 IV. Peak Runoff Prediction R~i~~~~~lnl~t~~~;~;:~~~~~:: :---;=-':-=-:=-':~:~~ Peak Peak Flowrate Flowrate, , Qp Qp = = Rainfall Intensity at User-Defined Tc, I = 4.S5 inchlhr Peak Flowrate, Qp = Q ID ~.72 (Ll~ )141 z ] ?!:tFS D37-10YR,TcandPeakQ Q'DD:;/,t-5 ('7l)9~?4~) ;-43) C,F5 10/2512012, 7:2S PM fps minutes output output ':: 5.44. · " '2;S2'::: :.:·1.52·.. ': ..:,:0,09:', : . .;::: .,.:; " .: .... .. ;' ;:" . :. ... . ':. :. Computed Tc = 6.96 Regional Tc = 11.44 User-Entered Tc = 6.96 Convey ance input O:M .;·· N1A,:· ),' "20:00::·: .. ....:-.- :: -; ',::, " :;'.: ' :; .: ., .". , ' -rr: -43L ::. J-ID - - IV. Peak Runoff Prediction €l. Rainfall Intensity at Computed Tc, I = 4.31 inch/hr Peak Flowrate. Qp = Rainfall Intensity at Regional Tc, 1= 3.59 inchlhr Peak Flowrate, Qp = Rainfall Intensity at User-Defined Tc, I = 4.31 inch/hr Peak Flowrate. Qp = Q'D~ . 5Z(~ ~ )o4.f' ... f~l.FS Uo-Ratlo",' " .02., Tc and Pe.kQ Q,PMI'.O;=' 1,75(,?z)g?5- &~b) -; Zbj tP> 10/25/2012,7:21 " 4 5 L Rainfall Intensity at Computed Tc, I =---',--,--_4=,.~=22=· - inch/hr Rainfall Intensity at Regional Tc, 1= 3,76 inch/hr Rainfall Intensity at User-Defined Tc, I =4;22 inch/hr Q10 ::. ~ Z.5 (u., 'J. ) .<1 Z- ~ 0°Z c..pS D34-10YR, TcandPeakQ Q ~ [,Z5(25 )?fl (oz.) :;.005 10/23/2012,4:23 PM trS 1tO 3 ....... ,..<.<•....•...••...<.' .«< .•... ........... ' . I . ". .... .. 4 -. .......... '.'<. '." . 5 .' <. Sum 40 Computed Tc - 6.70 10.22 6.70 IV. Peak Runoff Prediction Rainfall Intensityat ComputedTc, 1= .4;36 ineh/hr Peak FJowrate, Qp = Rainfall Intensity at RegionalTe, I =_..,.;.;-=3':"c,-:::-76::-,"··ineh/hr Peak Flowrate,Qp = Rainfall Intensity at User-Defined Te, 1= 4.36 ineh/hr Peak Flowrate, Qp = Q lO ~ ~L{ 3 (y ~) .oy ~O()J- t~ D33-PM10YR, Tc and PeakQ 0,DO :0 1.2.5(,4'3)2~(D4 ) ;;'0 let CF5 10/23/2012,4:22 ," 1012612012,4:03PM D55-1OYR, T,,""Peaka Dlcoe: I. Z5(.30) 75 (.53) z: I ~ CFS 3 -:". ..:..::....... .:: .. 4 -. 5 Sum Computed Tc = 10.74 Regional Tc = 10.61 -;::;- User-Entered Tc = 110 IV. Peak Runoff Prediction T,CO 7-5tf - 10.61 Rainfall Intensity at Computed Tc, I = __~3~.6~8:-·. inch/hr Peak Flowrate, Qp = Rainfall Intensity at Regional Tc, I = .3~70 inch/hr Peak Flowrate, Qp = Rainfall Intensity at User-Defined Tc, I =370 inch/hr Peak Flowrate, Qp = 0/1) ::: •4~ (3§1) ,12 :;..021 CFS D28-10YR,TcandPeakQ Q ~ (.Z5(7~ ),¥g ~1~)~05~ CFS 10/23/2012, 12:12 PM roo l' 10 S L Runoff Convey- Velocity Time Coeff ance V Tf ftIft ft C-5 fps minutes input input output input output output Overland ........: ~t79··. .·'N/A I·· ..·0.00 0.00 1 .. .' "0.0100': ·.•····J90 20;00 I···· 2.00 t5B' 2 ............ ....., - '. ..... ..' .< .• :: ..,......... ... f ••:.... : 3 '.' .' I " ..... .'.' 4 5 Sum 190 Computed Tc - 1.S8 &7 - - 95 User-RegionalTc EnteredTc = = 11.S.OO 06 Q10 -;;.- ,93('1 V ) ,38·:: I?!:: CFS 10/23/2012,11:56 AM D22-10YR, TcandPeakQ Q,OO ;;'/,ZS (.93) 9?J (.3S) z: 4~ crS Runoff Convey- Coeff ance C-5 output input 0.28 N/A ..... .. ..:.: . . Flow Flow Velocity Time V Tf fps minutes output output 0.08 6.74 > .• .': . I, , .. ComputedTc = 6.74 Re gionalTc = 10.18 User-EnteredTc = 6.74 Peak Flowrate, Qp = Peak Flowrate, Qp = Peak Flowrate,Qp = Q,oO' .Z5('-(3.1 ) .01- o=-Do.l: cr~ D27-10YR, TcandPeakQ D -;. (,2.5 (.25 )gtJ(Ol): O.tJb Cf> 10/23/2012,12:10 PM fOD Rainfall Intensityat Computed Tc, 1= 4:-.",.36"..· inch/hr Rainfall Intensityat Regional Tc,1=3.76 inch/hr Rainfall IntensityatUser-Defined Tc, 1= 4.36 inch/hr -. 2 1 .... :: ....: -:. .-:. .I». ..•.....•.. •.•'-:< ,..:--: :,.•.. . I.·'·:·.· .-: 3 ...... ..::.. :: !:-: .. :: ..:,'.. 4 5 Sum 54 Computed Tc = 8.44 L 100 - - gl3 .....".User-Regional EnteredTc Tc = = 10.8.44 30 IV. Peak Runoff Prediction Rainfall Intensityat ComputedTc, I = ~-,--_4=-.~04~ .. inch/hr Peak Flowrate, Qp =~ Rainfall Intensityat RegionalTc, I = 3.74 inch/hr Peak Flowrate, Qp = ~ Rainfall Intensityat User-Defined Tc, 1= 4.04 inch/hr Peak Flowrate, Qp = ~ QID ~ · Zfl(~bJ ),05 -o.oc. Cf5 D26-10YR, Tcand PeakQ 008PM 1 0{) -:-/,2'5>(.2'1)2 z](05) ;;: 0,15 CB 10/23/2012, 12: ft input output input output Overland ]):0200·. r. ••. 0.28 •••. NlA· 0.J1 •.•••···..·60.• ·· .. 1 . ...•.. <.> •.............•<< ..>.< .•. .......•. ... .:.". I··.. :. .:... : ··2 3 < .••••• ..>< Ii ••.•......... • ... 5 4 I. ComputedTc- Regional Tc = 60 User-Entered Tc = Sum 60 :00 ~3!l ~{Jt> - IV. Peak Runoff Prediction Rainfall Intensityat Computed Tc, I = 3:",""~=93,":-inch/hr Peak Flowrate,Qp = RainfallIntensityat Regional Tc, 1= 3.74 inch/hr Peak Flowrate,Qp = RainfallIntensityatUser-Defined Tc, 1= 3.93 inch/hr Peak Flowrate,Qp = Flow Time Tf minutes output ··· •. :9.09 ...... < . .. . .... 9.09 10.33 9.09 !~ ~fs AA'tCfs QIO =,2.5(39.1 ),03 ;(j~crS D19-10YR, Tc and PeakQ Q,CD;: /,25(.2.5)2 (oJ)::= O~tFS 10/23/2012, 12:06PM Reach 10 Overland . 1 . ..' ' ,,2.\ '" , "'3"":·'·" 4 :'. 5 -- IV. Peak Runoff Prediction Rainfall Intensityat Computed Tc, 1= . . 4.31 inch/hr Peak Flowrate, Qp = 0.10 cfs Rainfall Intensityat Regional Tc, I 3.76 inch/hr Peak Flowrate, Qp = 0.09 cfs Rainfall Intensityat User-Defined Tc, I =-'--~47.:';'371 inch/hr Peak Flowrate, Qp = 0.10 cfs 01Dt: .36 (41!) ,~ z: oeti CFS UD-Rationalv1.02a, TcandPeakQ O'C() ~ '1z&0% )g~ .(,r>£) ~D0 ~S 10/23/2012,4:14 PM Rainfall Intensityat Regional Te, 1- '3.67 ineh/hr PeakFlowrale,Qp = Rainfall Intensityat User-Defined Te, 1- ' , 3.67 inch/hr PeakFlowrale,Qp = .. Ow:: -3{ (30 ),37 ;:;O~ CfS . D18-10YR, TeandPeakQ QtQ? ~ (tl.S(, 31) 7tili( 37) "! 07 lfS 10/23/2012,4:29 PM 1 .: 0.0180 50 0.36 0.11 2 3 4 5 Sum 50 ComputedTc = 7.75 Regional Tc = 10.28 .-" c- 4~ - User-Entered Tc = 7.75 IV. Peak Runoff Prediction Rainfall Intensity at ComputedTc, I = 4_._16_inch/hr Peak Flowrate,Qp = ~s Rainfall Intensityat RegionalTc, 1= 3.75 inch/hr Peak Flowrate, Qp = ~ Rainfall Intensity at User-DefinedTc,l = 4.16 inch/hr Peak Flowrate,Qp = nAT ~ --.I"~=-- Q(0 ': I Lf 3(l.{ /5 ) 1 0<6 "/0, /tI CPS D16-10YR, Tcand PeakQ ~roD (,Z?(. '{ 3)'3~ ( 8) ""0. 3(" (Fe; 10/23/2012, 10:59AM ftIft ft C-5 fps minutes input input output input output output Overland 0.0256 195 0.48 N/A 0.29 11.38 1 -. 2 3 : 4 5 Sum 195 Computed Tc - 11.38 r,oo - - User-Regional Entered Tc Tc = = 11.11.08 08 X,O; 3,b 2 k- IV. Peak Runoff Prediction Rainfall Intensityat ComputedTc, 1= __---:-3,-:'5::-9 inch/hr Peak Flowrate, Qp = ~ Rainfall Intensityat RegionalTc, 1= 3.63 inch/hr Peak Flowrate, Qp = ~s Rainfall IntensityatUser-Defined Tc, 1= 3.63 inch/hr Peak Flowrate, Qp = '~"""""-_ Q(Q ::: o~~ (3 /foZ) .32 ~ D,71{ cF~ D15-10YR, Tcand PeakQ 0 100 -:, I.2..S(,fo4) 7,70 (.3Z) ~ /. ~ 7 tFS 10/23/2012, 10:53AM IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = 5:':',=00::-inch/hr Peak Flowrate, Qp = .~' Rainfall Intensity at Regional Tc, I - 3.73 inch/hr Peak Flowrate, Qp = . cfs Rainfall Intensity at User-Defined Tc, I = 4.75 inch/hr Peak Flowrate , Qp = ~s 0/ 0 -;'/~l{~?J )~D~ ~D~ CYS D29-PM10YR,TcandPeakQ . QIDD~/.25 rlg7 )9~ {(1)=-O97 CfS 10/23/2012, 12:04 0;19 : ::12.'14> ' . .-::: -c ~ . '. ".":, 1"<::; " ,:,:;::;' I" ' 1,-:':"."" ,',..;,; ,: ,,.",-, :.",:.. .. " 12.14 RegionalTe = 10.78 User-Entered Te 10.78 IV. Peak Runoff Prediction :-..L'CD - ~ 7tf1 Rainfall Intensityat Computed Tc. I = .:'. ,",.3;50 inchlhr Peak Flowrate, Qp = Rainfall Intensityat Regional Tc.I = ,- : _.-3.68 inehlhr Peak Flowrate, Qp = Rainfall Intensityat User-Defined Te, I =,': ,' - -: ,':3;68 inchlhr Peak Flowrate,Qp = Q\o~o3~(3~),Z5~633 CFS 10/2312012,4:27PM D13-lOYR, T, and Pe'kQ Q,Cb =" /,25(. Yo) til- (.ZS) :=.0 '8J CF5 input ftIft ft input output input output output Overland 0.0180 0.36 N/A 0.11 8.13 1 55 2 3 4 5 Sum 55ComputedTc 8.13 - 33 User-Regional EnteredTc Tc = = 10.8.13 31 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = 4_._09_inch/hr Peak Flowrate,Qp = Rainfall Intensityat RegionalTc, 1= 3.74 inch/hr Peak Flowrate, Qp = Rainfall Intensity at User-Defined Tc, I = 4.09 inch/hr Peak Flowrate,Qp = _---:~- ~,Q l O ~3(4b'6 ),08::. O./~ CfS D16-100YR, Tc and PeakQ 0.0(/ '.2..5 (. 4:3 ) ~~ 0(2)-;. o. % cY5 10123/2012,10:57 AM IV. Peak Runoff Prediction RainfallIntensityatComputedTc, I = 3:-.67,1:-inch/hr Peak Flowrate, Qp = ~ Rainfall IntensityatRegionalTc, I = 3.63 inch/hr Peak Flowrate, Qp = ~ 0 10 := ,b~(Rainfall 3,roZ-IntensityatUser-).)3 ~(DefinedTc,),7a GFS 1= 3.63 inch/hr Peak Flowrate, Qp = ~ D15-100YR. Tcand peakV100 ::: /.25(,("S) 1.7(.3.3) :::. 2. DG if5 10/23/2012,10:52AM Calculations: IV. Peak Runoff Prediction Rainfall Intensityat Computed Tc, 1= .. ·:' ·'3.S1.inch/hr Rainfall Intensityat Regional Tc, I = ··.. · · 3:68 inch/hr Rainfall Intensityat User-Defined Tc, 1= ' ····3,68 inch/hr Peak Flowrate, Qp = Peak Flowrate,Qp = Peak Flowrate,Qp = 0:39 cfs 0:41 cfs 0:41 cfs Q IO-:: e3B(3%b). Z.7;: ()~ LF5 D35-D36-lOYR,T"" P"kQ Q26PM 10/23/2012,4: lro OC , ,ZS(.3s)7'!J(l7) z:0 '13 cP; 5 Sum - -'15 User-Entered Tc = (~o,SO ItD - -41 ~ IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = 5....;..9~2~inch/hr Peak Flowrate, Qp = Rainfall Intensityat RegionalTc,I = 3.70 inch/hr Peak Flowrate, Qp = Rainfall Intensity at User-Defined Tc, 1= 4.12 inch/hr Peak Flowrate, Qp = Flow Time Tf minutes output 0.40 0,00 0.00 60 N/A ... '0:50 50 20.00 2.00 7.00 .0.99 0.84 .< 110 Computed Tc = 1.34 Regional Tc = 10.61 7.99 ~ 7JH'9Cfs kfCfs 10/29/2012,4:41 PM 3 '." I» > .:'».>'. . ... '. 4 .:.'. > 5 Sum 60 00 - ~ - - (7 IV. Peak Runoff Prediction Rainfall IntensityatComputedTc, I = 4=-'">.'=0."..1 inch/hr Rainfall Intensityat RegionalTc, I = 3:74 inch/hr Rainfall Intensity at User-Defined Tc, 1= 4:01 inch/hr 5-yr Runoff Coeff C-5 output O.3~.·.>. NlA.:·. OA2 8.61 . .. ' . ... . I .:•••.•••• .' . :.> .', Computed Tc 8.61 Regional Tc = 10.33 User-Entered Tc = 8.61 Peak Flowrate, Qp = ~. Peak Flowrate, Qp = ' JU;G--cfs Peak Flowrate, Qp = _---:;p_O-~=- D10-10YR, Tc and PeakQ 10/23/2012,5:06PM F10IvDiredio ~ Catclunent Bounclary Calculations: IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I =_--,.;;.,-4...;,.4~8~inch/hr Peak Flowrate, Qp = Rainfall Intensity at Regional Tc, 1= 3;74 inch/hr Peak Flowrate, Qp = Rainfall Intensity at User-Defined Tc, 1= 4.48 inch/hr Peak Flowrate, Qp = 0.10 ~ •35 (f./ ~ )(.67) "" 0 !lc.rS D3-10YR, TcandPeakQ Q -=-l,Z5(.35)1 ~(.07) =-O~ CF5 10/23/2012,5:13 PM /bO ' Sum ~O~3- th --- IV. PeakRunoff Prediction Length L It input .:145 " ':. :" : <::.:. ....: : . '.:. .' . 145 ~ ~ 5-yr NRCS Runoff Convey- Cooff ance C-5 output input :';- .: ,()'29:' :.;N/A '··: 20.00 >'( 7;00 : :>: '.: ComputedTc= RegionalTc =.::' 10:8:1 ·::: User-Entered Tc= Flow Velocity V fps output 0.18 .. .:.:' ..:: Flow Time Tf minutes output 13.17 .: . .... ': .:"43.17.: .. 10.81 Rainfall Intensityat ComputedTc, I = 3.37 inchlhr Peak Flowrate,Qp = :..~ RainfallIntensityatRegionalTc, I = -..;.;....-,3::'.'='57=-:inch/hr Peak Flowrate,Qp = . ~ Rainfall Intensityat User-Defined Tc, I = :.:::. 3.57 inch/hr Peak Flowrate, Qp e '.d;' . :~ OlD ~oL7(3t4-),32 ~ (j3Z c.rs 1012312012,5:17 PM 014-lOYR, Tc and Peakq Q IDe> '"1,2.5(2.7)71iJ(. "5l) ::-()~ CF5 0.76 cfs "' 0;81.cfs 0.81 cfs OID:- .25(30).~I::' 0 55 crS D8-10YR, Tc and PeakQ OlOO =/,2.5(;2.5) 74.J(. Io V;:, /~ CPS 10/23/2012,5:18 PM 4 .. 5 Sum 44 Computed Tc - Time V Tf fps minutes output output I: 7.45 . ......:. . ...... .. 7.45 2--2- - v: - - 8 b( User-RegionalTc EnteredTc = = 10.7.45 24 IV. Peak Runoff Prediction Rainfall Intensity at Computed Tc, I = Rainfall Intensity at RegionalTc, I = 4_._22_inch/hr 3.75 inch/hr Peak Flowrate,Qp = Peak Flowrate,Qp = ~~fs Rainfall Intensity at User-DefinedTc, I = 4.22 inch/hr Peak Flowrate, Qp = Jr.tSCrs 10/29/2012, 4:38 PM Qrt)-z: "Z5(4~) ,08:; 0°<3 LrS D4-10YR , Tc and PeakQ 0,PM00; (.25(.2'5)2!i0D&) ~ O?2CPS 10/23/2012, 5:00 .. .. 2·. ..... 3. .' -. .. 4 5 95 Computed Tc = ~.91 -- - RegionalTc = 10.53 Sum /7 User-EnteredTc = 8.61 1-100 - ~ IV. Peak Runoff Prediction Rainfall Intensityat Computed Tc, t = 4.-,;.~0..,....1 ineh/hr Peak Flowrate, Qp = ~ Rainfall IntensityatRegionalTe,I = 3.71 ineh/hr Peak Flowrate, Qp = ~s Rainfall IntensityatUser-DefinedTc, I = 4.01 inch/hr Peak Flowrate,Qp =__""",~=.-,- 0\0 :::. "Z.5(L/), CD" O,lO GFS qCJL);;: I.Z5(25 )<8110 20) ::::0.5/ CFS UD-Rationalv1.02a, Te and PeakQ 10/23/2012,10:47 AM *See sheet "Design Info" for inperviousness-based runoff coefficient values. UD-Rational v1.02a, Weighted C 10/23/2012,10:45 AM / ( 2 "::::;:,:'1/ "":" :.: .: ) . ,\ ·' :'.:: 3/ :'. '::: 1' ",· ,. •.... :' ..... >1::/ .... ":i!.,i, !.,. ..i ··..·' ..: ' S .,.,•.... Sum 950 Computed Tc = .12.64 .··· Lf3 ...-:- Regional Tc = 15:28 · 0 - .- User-Entered Tc = 12.64 Q,O::: e78 (3tf) )/~· =- 2-3 ;1 tF5 D39-40-10YR, Tcand PeakQ Q ICb ~ I 0c: "5( 0 -'1.tBI / \70/- (100) - : ..- 10/25/2012,8 :54 PM 170i 10200: 1.4801 4.23,43174.56 r----- 1751 10500: 1.450! 4.151 43543.5 180[ 10800( 1.420! 4.06 43860.96 185: 11100j 1.4001 4.001 44444.4 190: 11400: 1.380i 3.95144993.52 30504.0 11254.9 31488.0 10794.2 0.2885 0.2760 0.2678 0.2584 0.2478 32472.0 10282.11 0.2360 33456.0 9718.61 0.2231 34440.0 9103.51 0.2090 35424.0 8437.01 0.1937 36408.0 8036.41 0.1845 37392.0 7601.51 0.1745 195; 11700 1.360' 3.891 45508.32i 38376.0 7132.3: 0.1637 1--- f----. 200, 205: 12000 12300 1.340 1.320' 3.831 45988.8' 3.78 46434.96: 39360.0 40344.0 6091.0 1 6628.8: 0.1522 0.1398 210 12600 1.300 3.72 46846.8 41328.0' 5518.8: 0.1267 1---.--21-5--1-2900 1.280 3.66.47224.32 42312.0: 4912.3i 0.1128 220 13200 1.260 3.60: 47567.52, 43296.0! 4271.5 0.0981 225 13500 1.240 3.55 47876.4 44280.0: 3596.4 0.0826 ._n. ---~--~--~---.;....----~------l 1-- 23_0--'--__13800 1.220 3.49 48150.96 45264.0! 2887.0: 0.0663 235 14100 1.210 3.46' 48794.46 46248.0 2546.5 0.0585 ---- 240: 14400 1.200: 3.43' 49420.8: -4-72,..,.3-=-2---=-.0-,-i---"-2188.-,,...---8 -.,-; --=--0.-::-0502 --:-::-1 Page 1