Loading...
HomeMy WebLinkAboutCOUNCIL - AGENDA ITEM - 07/12/2011 - MODERNIZING WATER AND ELECTRIC INFRASTRUCTUREDATE: July 12, 2011 STAFF: Brian Janonis, Steve Catanach, Kraig Bader Pre-taped staff presentation: available at fcgov.com/clerk/agendas.php WORK SESSION ITEM FORT COLLINS CITY COUNCIL SUBJECT FOR DISCUSSION Modernizing Water and Electric Infrastructure. EXECUTIVE SUMMARY The objective of this work session item is to provide City Council with an update on the Advanced Meter Fort Collins project. The project involves the upgrade of all of the electrical and water meters within the City utilities service territories. The project will improve current operations within Utilities, help meet the goals established in the Energy Policy, enhance our ability to serve customers, and ensure that Utilities is well positioned to support the current evolution of the traditional electric utility. The opportunities available to customers surrounding involve their energy choices are growing. Looking towards the future, industry predictions suggest that the life-cycle cost of installing solar panels will be the same as, or less than, electrical prices from the utility within the decade. In addition, consumers have expressed a strong interest in the adoption of electric vehicles. In response, manufacturers are investing heavily in the development of electric vehicles; there are currently 34 all-electric vehicle manufacturers in the United States. A recent report from the Department of Energy addressing the progress toward the President’s goal of “One Million Electric Vehicles By 2015” indicates that the manufacturing capability already exists and the next necessary step is educating and supporting the consumer. The installation of advanced metering technology provides a foundation that will enable Fort Collins Light & Power to support, inform and empower our community by providing energy choices while maintaining the same level of quality service and high reliability provided to customers today. The key benefits defined include: • use information and technology to maintain high system reliability • make utility operations even more cost-effective • provide more timely customer service • prepare the utility and the community for emerging technologies. GENERAL DIRECTION SOUGHT AND SPECIFIC QUESTIONS TO BE ANSWERED Utilities is providing several options for customers. • Option 1: Standard mode with full functionality • Option 2: Limited mode collects data only once per day • Option 3: Manual mode: meter read manually once per month (added monthly cost) July 12, 2011 Page 2 The table below summarizes the features. 1. Is Council comfortable with the options? 2. The technology that has been selected for the AMI communication system is expandable. It will provide an opportunity to support current, future and new applications within Utilities, the City and the community. Should staff pursue opportunities within the City and community and bring back to Council? BACKGROUND / DISCUSSION In 2008, the City adopted the Climate Action Plan. One of the strategies identified in the Plan included the installation of Advanced Meters to provide customers with information on their energy usage. Starting in January 2009, Utilities staff worked in cooperation with R.W. Beck to develop a business case for the installation of an Advanced Metering Infrastructure (AMI) system for both the water and electrical systems. The business case analysis supported the decision to move forward with installation of the system. As Utilities moved the budget offer through the Budgeting For Outcomes (BFO) process, the availability of American Recovery and Reinvestment Act (ARRA) funding for grid modernization projects was announced. In addition to the AMI system, Utilities reviewed the Utilities Long Range Information Technology Plan for projects that would be applicable to the ARRA grants funded by the Department of Energy (DOE). The grant application requested funding for the electrical AMI system infrastructure improvements to support the system such as installation of additional fiber optics, cyber security improvements, grid modernization equipment and, in support of the Climate Action Plan goals, a greatly enhanced demand response program. The total program proposed for funding the Smart Grid Investment Grant program for the electrical system was approximately $32 million. In October 2009, Utilities was notified it had been awarded a matching grant of $15.7 million. Considerations Option 1 Standard Option 2 Limited Option 3 Manual Functionality and ability to take advantage of new technology; allows full customer benefits High Limited Minimal Data collected in 15-minute to one-hour intervals 9 Data collected once per day 9 Data collected once per month via manual read 9 Data transmitted 4 to 6 times per day via a 1.5 second signal 9 9 Additional customer cost 9 9 Additional system cost 9 Requires monthly service call 9 Ability to support Energy Policy High Limited Minimal Optional July 12, 2011 Page 3 In April and May of 2010, Council approved both the appropriation and the sale of bonds in order to providing matching funds for the Smart Grid Investment Grant (SGIG) awarded to the City from the Department of Energy and for the installation of the AMI system. In July 2010, Council approved the appropriation of funds for water meters. The Advanced Meter Fort Collins program (AMFC) includes citywide deployment of advanced metering infrastructure (AMI), which will provide two-way communication between the Utility and the electrical and water meters and from the meters to customers. The information collected can then be shared with the customers by a web portal or other device, allowing them to make more informed decisions on how they use energy and water. As noted, the AMFC program also includes: • The installation of approximately 5 remotely operated high voltage switches. This gives Light & Power the opportunity to gain experience in developing the appropriate safety regulations, standards, process and procedures related to the automation of the distribution system. • Installation of additional fiber optic cable in order to connect the new Portner and Timberline Substations. • The development of Cyber Security guidelines consistent with the National Institute of Standards (NIST), standard 800-53. The NIST standards provide a roadmap for the development of policies and procedures that are best practices in the management of computer systems. • The expansion of the existing demand response and energy efficiency programs. The City’s current Energy Policy and the Climate Action Plan establish goals that are directly served by the AMFC project – high reliability and reduction of carbon footprint, as detailed below. Goal #1: Provide highly reliable electric service. The bullets below are a truncated list of the Objective and Metrics defined in the Energy Policy for Goal #1 that are supported by the AMFC program. • Demonstrate and communicate the high reliability of the Fort Collins electric system by maintaining annual reliability metrics of: N Average System Availability Index (ASAI) greater than 99.9886%; N Customer Average Interruption Index (CAIDI) less than 60 minutes; and N System Average Interruption Frequency Index (SAIFI) less than 1.0. • Manage peak loads to reduce demands on the distribution system, optimize infrastructure investment and reduce purchased power costs. N Maintain energy efficiency and demand side management programs targeting peak loads. N Increase the power managed by load management, smart grid and distributed generation to at least 5% of 2005 system peak demand by 2015 and at least 10% by July 12, 2011 Page 4 2020. Develop a methodology for tracking load management as a percentage of peak demand, considering utility programs, customer response and weather normalization. N Support customer efforts to reduce electric costs through managing peak loads. Goal #2: Support the community’s carbon emissions goal of reducing the City’s carbon footprint 20% below 2005 levels by 2020 and 80% by 2050. The bullets below are a truncated list of the Objective and Metrics defined in the policy for Goal #2 that are supported by the AMFC program. • Continuously reduce energy use through verifiable energy efficiency programs, independent of population growth and economic trends. N Achieve annual energy efficiency and conservation program savings of at least 1.5% of annual energy use (based on a three year average history). • For renewable energy resource investments, balance the interrelated factors of carbon reduction, cost-effectiveness, impact on power plant operations, and local economic benefits. N Maintain a minimum fraction of renewable energy in compliance with State of Colorado requirements. In coordination with Platte River Power Authority, develop generation resources and the delivery of renewable energy to meet minimum requirements. N Offer voluntary renewable energy programs whereby customers can support renewable energy and local renewable energy projects through opt-in premium pricing. N Increase the contribution of renewable energy to reach the 20% by 2020 carbon reduction goal, after accounting for the contributions of resource mix, energy efficiency, conservation, minimum renewable energy requirements and voluntary renewable energy programs. N Include renewable energy sources that can be scheduled to maintain system stability and reliability. The AMFC program provides support for the cited goals in several ways as described below. Background on the AMI System and Operation The AMI system that will be installed is fundamentally similar to the network communication systems that are installed in homes and businesses across the community. The network provides and exchanges information through local area networks (LAN) which are analogous to the wireless networks in most of our homes. The LAN then connects to a service provider through a Wide Area Network (WAN), which is the high capacity, high-speed collector. The WAN is typically a high- speed broadband connection provided to homes through the cable, phone or other providers. In the case of the AMI system, the LAN is a Neighborhood Local Area Network (NLAN), providing communications with the meter. The WAN is a Distribution Wide Area Network (DWAN) that carries the information to the Utilities’ “back-office” systems, such as the Meter Data Management System (MDMS), Customer Information System (CIS), Billing System, Outage Management System (OMS), etc. July 12, 2011 Page 5 How does this relate to achieving the City’s energy policy goals and how it currently operates? Today, the information we have relative to the operation of our electrical system is mathematically modeled. We have very detailed information about electrical demand at our electrical substations. Unfortunately, with today’s technology, that is where it stops. Both the design and operation of our electric distribution system are based on a worse-case scenario. The integration of the communications and metering system provides detailed information about the operation of the utility. Looking forward towards the evolution of the electrical system, the installation of large amounts of solar panels on homes and businesses, the purchases of more and more electric vehicles, and the information and communication desires of our customers, the information provided by the AMI meters becomes critical in the service to our customers and the operation of the electrical system. As with the electrical system, the information provided to both the Utilities and customer relative to water usage will be valuable. The system will provide an opportunity to better model the water system operations by providing a clearer picture related to system losses through leaks. Today there is no clear data that supports how much water might be lost on the system. The measurement of water delivered takes approximately 30 days for all the meters to be read. This does not provide a way to balance production with delivery. AMI will provide an opportunity to compare the output of the plant to the water being consumed at a relative window in time. In other words, the amount of water leaving the plant at midnight can be compared to the amount of water being delivered at midnight. The additional data can then be used to model the system better and identify losses. The customer benefit is more timely information on water use over the course of the billing period which allows them to make informed decisions on their use. Meeting the Reliability Goal The electric delivery system has been designed as a one-way delivery system. Historically, power is generated at a central plant, such as Platte River Power Authority’s Rawhide Plant. That energy is then transmitted over high voltage power lines to local distribution utilities. Voltage can be thought of as pressure in a water line. In order to move the energy greater distances the pressure, or voltage, is increased. The distribution utility transforms the high voltage power to a medium voltage more suitable for delivery through a community. The distribution utility then reduces the voltage again for delivery into the home. Using the pressure analogy, the pressure is again reduced to a more suitable level for the home or business. Note, the generation and transmission systems across the western U.S. are interconnected, which supports highly reliable delivery from the transmission system. In similar fashion to the transmission system, circuits in our electric distribution system are designed to be interconnected to reduce the impact of outages on our customers. This interconnected system is typically referred to as the grid. Today, when there is a problem on the distribution system the utility relies on customers to call in to report that they have no power. The integration of a communications system on top of the delivery system will provide immediate information that an outage has occurred and will give us information on where the problem may be. The new electric meters have a function called a “last- gasp”. This “last-gasp” is sent as a high priority message to the utility indicating power is out. Rather than waiting on a phone call, the utility will immediately know there is a problem. July 12, 2011 Page 6 In addition to the automated notification system, Light & Power will be installing devices called fault indicators. Using the water analogy, a fault is like “a break in the line”. A fault indicator is a device which provides a visual or remote indication that a fault has passed a particular point in the electric power system. Fault indicators help reduce the outage duration because they help to “narrow down” the possible locations of a fault. By using fault indicators, the line crews no longer have to “guess” where the fault may be. Today we have fault indicators throughout the system, but they do not communicate back to the utility. Line crews must drive to strategically selected points along the circuit and open vaults containing fault indicators to see if the fault has passed through that vault. The fault indicators proposed for this project will communicate via the enhanced communications network to report to the utility. The AMFC project will strategically place additional devices on the system allowing communications from the fault indicators to our System Control and Operations (SCO) center helping them dispatch crews to the suspected problem site more quickly. The network communications system being installed as part of the AMI system provides a foundation technology that will help achieve the goals of the energy policy. The enhanced communication system will help us maintain the high level of reliability and lower the length of outage time. Managing Peak Loads to Reduce System Peak A significant component of the AMFC program is the adoption of technologies to help reduce system peak demands. Electric power demand is measured in watts and is more commonly discussed using the terms kilowatt (1000 watts = 1 kilowatt, or 1kW) or megawatt (1,000,000 watts = 1 megawatt, or 1 MW). A peak demand is the maximum level of power required over a given period. An analogy for electrical demand and its relationship to the electric distribution system is the maximum speed a driver achieves while driving across town. Although the car is traveling below the peak speed the majority of the time, it must be capable of reaching that maximum speed for driver safety and satisfaction. Similarly, an electrical system must be designed to meet the peak demand, although the majority of the time the system operates well below the peak demand. The Fort Collins electrical system typically operates at about 60% of the maximum peak on an annual basis. There are daily peaks, monthly peaks and annual peaks. Customers and the City are billed monthly for peak demand. The graph below is a typical peak day curve for both summer and winter for the Platte River system. The summer peak is the higher of the two. The peak value may change but the load shape over the course of the day is very typical for each season. July 12, 2011 Page 7 Peak Load Winter and Summer Graph The Energy Policy goal of reducing the peak demand, translates to a reduction of approximately 15,000 kilowatts (kW). Fort Collins’ maximum peak demand has been 292,000 kW. In relative terms, a house typically uses between 3 – 6 kilowatts, a small business such as a retail shop has a peak demand of 15 – 25 kW, a retail space such as a grocery store is between 500 and 750 kW. Since 1982, the Light and Power utility has offered demand reduction programs which include customer incentives. Customers volunteer to have a device installed on their electric water heater unit and then, during peak periods, Light and Power will cycle the unit off and on for 15 minutes at a time throughout the peak period, thereby reducing the overall system peak. In return, the utility applies a customer credit of $4.00 per month to their account. In 2005, the program was expanded to include air-conditioning units. During the four-month period surrounding summer, the customer is paid an incentive of $4.00 per month for their participation in the program. It is currently estimated the program reduces peak by approximately 1,800 kW. The AMFC program will provide an upgrade of the existing demand response programs. This upgrade, along with the communication system and the advanced meters, will allow customers to utilize in-home displays, smart thermostats, and other emerging technologies, such as Home Energy Management Systems. Customers are not required to participate in these programs. The programs will be voluntary as they have always been. One of the identified risks in the project is associated with the implementation of the demand reduction and efficiency related technologies. The standards by which these technologies integrate with AMI systems are still under development and are more in the domain of the consumer electronics arena. Historically, utilities have invested in equipment with an expectation that it will last for decades. In the consumer electronics arena, the equipment becomes obsolete every three to five years. Additional risks exist due to lack of a clear perspective on what the types of programs and equipment the consumer wants. As part of AMFC program, the Utility is working with the Department of Energy (DOE) on a Customer Behavior Study (CBS), which includes up-front work to determine what technologies and July 12, 2011 Page 8 information customers desire and will be most responsive to. This study may include focus groups, surveys, interviews, and pilot programs of the technologies that are currently evolving in the demand response and energy management area. Programs will then be developed to support the customer’s needs and to help the Utilities achieve the maximum level of demand reduction, energy efficiency, and conservation. As part of AMFC program, the communications system will provide valuable information allowing us to integrate higher levels of distributed generation onto the distribution system, allowing the system to be designed and operated more efficiently. The system knowledge gained will help us maintain the high reliability our customers expect. Goal #2: Support the community’s carbon emissions goal of reducing the City’s carbon footprint 20% below 2005 levels by 2020 and 80% by 2050. AMFC program will achieve some direct carbon reduction. It is estimated that the AMI system will eliminate approximately 198,000 vehicle miles per year with a net carbon reduction of, 147,559 lbs of CO2, 241.6 lbs of Nitrogen Oxide (NOx), 11.5 lbs of Particulate Matter (PM-10), and 2.6 lbs of Sulfur Oxide (Sox) per year because of reduced meter reads, special reads and service calls. The Energy Policy set a goal of achieving a 1.5% reduction in annual energy use (based on a three- year average history). The AMFC program will allow customers who are interested to view their usage data on-line or via an in-home display. It is anticipated that this feature will be available to customers late in phase 2, approximately the 3rd quarter of 2012. Today, residential customers receive their energy usage for the previous month about nine days after the end of their billing cycle. It is difficult for customers to be actively engaged and informed about their energy and water usage, their cost, and what choices they may make differently, when the information they receive is 9 days or further in the past. The information that the AMFC system will provide via the internet will be about one day old. Once, the meter information is transmitted through the mesh network, it goes through a Validation, Estimation and Editing (VEE) process, and is then posted to a web portal. Those customers who choose to use an in-home display, smart thermostat, or a home energy management system will have data that is much closer to instantaneous. The information will be updated as often as the meter records data, which currently is planned for fifteen minutes or one-hour. The provision of more timely data, along with customer education and outreach on how this information can be used by customers to help them save, is part of the program. One example, of how a customer might benefit from the information might be that they receive a notification, via an email, text, page, or however they wish, when they have used 4000 gallons of water in a given billing cycle, and that they will soon enter the higher cost second-tier water rate at 5000 gallons. This is an example of a system that can provide the customer with information that allows them to make an informed decision about their water use. The same is true for electrical usage, whether it is a tiered demand rate, inclining block rate or Time-of-Use (TOU) rate. Customers can be informed as they reach higher-priced periods. The desired outcome is that the information provided through the AMI systems can be leveraged by customers to control their usage and costs and, in turn, help the Utilities reach their conservation and efficiency goals. July 12, 2011 Page 9 Goal #2 - Objectives and metrics speak to the need to meet the State Renewable Energy Standards, provide voluntary programs to help customers meet their renewable energy goals, increase the contribution of renewable energy to help meet our carbon reduction goals and include renewable energy sources that can be scheduled to maintain system stability and reliability. Utilities are working towards meeting all the goals summarized above. As we anticipate the many changes that the future will bring, we know the installation of solar panels (PV) will continue to come down in cost; within the decade, the cost of PV energy is expected to be the same or lower than utility prices; new technology and applications for existing distributed generation are becoming more attractive and affordable. Information about how the electrical system is operating becomes critical. As noted above, the current electrical grid is designed as a one-way delivery system. In order to manage multiple sources of energy on the complex mesh of electrical circuits, and to ensure the safe, reliable and efficient operation of the system, the information provided by the AMI system becomes critical. Council recently received a letter recommending that we establish new standards for the electrical system's construction, in anticipation and support of future distributed generation. The challenge is that the distribution system is designed and operated using mathematical models that view the design requirements from a 50,000-foot perspective. This methodology has worked well in the development of a robust and reliable system that serves customers today. However, when we start to consider changing construction practices, we cannot clearly define how the system should be designed and operated without detailed information in the portions of the distribution system where the greatest changes will be occurring. The implementation of the AMFC technology will provide us with the system operational information that will help us understand the time-of-day cyclic nature of the different elements of the system. AMFC helps us prepare for the future that our customers are already building. Project Update - Technology Selected The Advanced Metering Infrastructure (AMI) and the Meter Data Management System (MDMS) vendor have both been selected. Contract negotiations with both vendors are currently underway. The AMI system has several specific components. Specifically, the system includes the meters, the communication systems, the Information Technology (IT) components and the collection software, which is referred to as the Head End System (HES). The AMI system vendor that we have selected is Elster Inc. Elster is a well-established and experienced vendor in both the metering and AMI space. Elster has been providing metering to utilities for over 170 years. They currently have approximately 5 million AMI meters deployed and operating in the field and have completed over 90 installation projects. The AMI meters are a solid-state meter with a two way radio communication card, a remote connect / disconnect device, and a Home Area Network (HAN) communication card within the meter. The Home Area Network device is what communicates with in-home displays, smart thermostats or other consumer devices. All communications with the in-home device will be initiated by the customer and will be the customer’s choice. Figure 1, (Attachment 3), shows both residential and commercial Elster meters. July 12, 2011 Page 10 In order to bring information back to the utility, the meters communicate with a device called a Gatekeeper. The Gatekeeper serves as the conductor for the Neighborhood Local Area Network (NLAN) by controlling the network interconnection efficiency and collecting the metering data from the individual meters. A Gatekeeper can communicate with over 2000 meters. Typically, the Gatekeepers will be mounted on existing street light poles. A typical Gatekeeper is shown in attached Figure 2 (Attachment 3). The Gatekeeper communicates with the Distribution Wide Area Network (DWAN) router. The DWAN router will then pass the information to centralized routers that will send the information back to the utility via our existing fiber optic network. The DWAN routers will be mounted on the arms of existing streetlight and intersection light poles. Pictures of a DWAN router on a street light and being mounted are shown in Figure 3 (see Attachment 3). Attached Figure 4 (see Attachment 3) provides a graphic illustration of the communication system. The Utility has selected Siemens to supply of the Meter Data Management System (MDMS). Siemens has collaborated with E-meter to supply and configure the system. With the installation of the AMI system, the volume of data that the utility will be receiving will increase significantly. Currently, we receive one data point, once a month from each of our residential customer accounts and our small commercial General Service Accounts. In contrast, we currently receive 15-minute data from approximately 500 of our largest customers. With the installation of AMI meters, we expect to have the capability to get this level of resolution from all customers in the future. The MDMS is designed to help manage the information the AMI meters will provide. The system will: • Effectively manage the AMI provisioning/commissioning process • Reduce revenue loss through use of real-time validation algorithms and reporting that: N Detect unauthorized consumption N Detect leaks/tamper events N Identify failed meters and registers N Detect dead or dying meters • Track key infrastructure assets: meters, communication modules, pumps, valves, including compound meters • Systematically monitor events and issue work orders i.e. on pressure when maximum limits are exceeded/potential revenue protection issue, etc. • Support a systematic repair and replace program that extends infrastructure life and optimizes leak control programs through precise tracking • VEE (Validation – Error checking – and Editing) real-time the 15 minute, hourly and/or daily usage allowing for variable pricing options (TOU, CPP, CPR) • Manage events generated by the AMI system July 12, 2011 Page 11 A general outline of the current project schedule is provided below. Project timeline Completed • Nov. 22, 2010 – Jan 11, 2011: Prepare and Release Request for Proposal (RFP) for AMI and MDMS • January 2011 Through March 23, 2011: Evaluate Vendor RFP Responses, Conduct Vendor Interviews, Recommend Vendor Selection To Be Completed • March through June 2011: Contract negotiations with AMI & MDMS vendors • July 2011 through September 2011: Develop deployment contractor (RFP), release RFP select vendor • July 2011 through September 2011: Define requirements with AMI and MDMS vendors • September 2011 through December 2011: IT infrastructure installation, MDMS system installation and testing • September 2011 through November 2011: Contract negotiations with installation vendor • November 2011 through January 31, 2012: Deployment Planning and staging • February 1, 2012 through April 2012: Phase 1 - Installation of 4000 Electric meters, 2000 Water meters (end-to-end, or meter-to-bill test) • April through May 2012: System Functional test (prior to release to move to Phase 2) • May 24 through November 8, 2012: Phase 2 - Installation; (‘Interval’ Billing Tests, Mass Deployment) • November. 9, 2012 through June 7, 2013: Phase 3 - Installation; (‘Advanced’ Rates , Continued Mass Deployment) There are currently three primary concerns that have been voiced nationally related to AMI or smart meters. There are over 18 million AMI meters installed in the US and approaching 100 million worldwide. The upgrade of existing utility meters has raised concerns for some customers about the costs, health effects and privacy and security of the information broadcast by the meters. July 12, 2011 Page 12 Health effects • National concerns related to health effects have included: N The meters cause cancer N People suffering from electromagnetic sensitivity are being adversely affected by the meters. The meters selected operate in a frequency range between 902 megahertz (MHZ) and 928 MHZ. Other devices that operate in this spectrum are cell phones, cordless phones, wireless routers, TV and radio broadcasts, and other common devices. Figure 5 (Attachment 3) is a graphical representation of the electromagnetic spectrum. Health effects from Radio Frequency electromagnetic fields are a topic that has been raised across the country. A recent report released by the World Health Organization (WHO) International Agency for Research on Cancer (IARC) recently classified Cell phones as a Group 2B carcinogen. Group 2B elements are classified as possibly carcinogenic to humans. As noted above, the Elster AMI meters operate in the same frequency range as cell phones and other devices. Other studies specifically related to AMI technology such as a meta-study performed by the California Council on Science and Technology found the following: July 12, 2011 Page 13 The table below is from the Electric Power Research Institute (EPRI). EPRI is an independent, non-profit company that performs research, development and demonstrations in the electricity sector for the benefit of the public. The table represents the relative strengths associated with different devices that operate within the microwave frequency range. The EPRI information is also attached in graphical form as Figure 6 (Attachment 3). As shown the meters exposure levels are significantly less than those of a cell phone or other common devices. In order to support our community, Utilities is working with Dr. Bruce Cooper, Executive Director of the Health District of Northern Colorado, to provide an independent and informed risk analysis to the community. Dr. Cooper will be in attendance at the upcoming work session. Additionally, Dr. Cooper has provided the following statement: “I was asked by Patty Bigner, Customer and Employee Relations Manager of the City of Fort Collins, to help the City interpret information on the potential adverse health effects of the radio-frequency electromagnetic fields emitted by “smart meters” after some concerns were expressed by several residents. I have focused my review on recent assessments of radiofrequency radiation and health effects conducted by major public health authorities and other government July 12, 2011 Page 14 agencies—the World Health Organization, the U.S. Food and Drug Administration (FDA), Federal Communications Commission (FCC) and National Toxicology Program, the University of Ottawa McLaughlin Center for Population Health Risk Assessment in Canada, the Health Protection Agency of the United Kingdom, and the comprehensive 2009 review by the International Commission on Non-Ionizing Radiation. I have also examined technical documents on smart meters published by the Electrical Power Research Institute, and very recent reviews on smart meter health effects produced by the California Council on Science and Technology, April 2011, and State of Maine Center for Disease Control, November, 2010. Brief Summary of my Findings: Smart meters are a new technology but they use the same radio frequency (RF) fields as cell phones, cordless phones, WiFi equipment, and other communication devices used around the home. Emissions of RF from these sources are regulated by the Federal Communications Commission (FCC), with advisory support from the Food and Drug Administration (FDA) and Environmental Protection Agency. The RF exposure limits adopted by the FCC were established by the Institute of Electrical and Electronics Engineers (IEEE) with a wide margin of safety, and according to the FDA, are based on detailed and continuously updated assessments of the available scientific evidence. Published research indicates that exposure to RFs from smart meters is very low—1000 times or more below the exposure guidelines established by the FCC. There is a large body of evidence that has accumulated over the past 20 years examining the potential adverse health effects of exposure to low level RF emissions below the established exposure guidelines, much of it focused on RF from mobile phones. Mobile phone RF exposures are qualitatively similar to smart meters and wireless local area networks, but because typical use of cell phones results in exposures much closer to the body, the resulting exposures are of much higher intensity. Many public health authorities, agencies and expert panels in the US and other countries are periodically reviewing this research and from the documents I have reviewed, they have all concluded that the weight of evidence indicates that there are no adverse health effects from RF emissions below current guidelines. However, all have noted that the published research has limitations, particularly in addressing long-term exposures to low-level RF. Just a few weeks ago, the World Health Organization’s International Agency for Research on Cancer (IARC) announced that they were classifying the electromagnetic fields produced by mobile phones as “possibly carcinogenic”. Although this could be seen as a departure from previous assessments, it is important to interpret it in perspective. The classification is consistent with previous reviews that have found no clear scientific evidence of cancer risk, but it acknowledges that the possibility exists based on “limited evidence” of a small increase in risk of a rare form of brain cancer among heavy users of cell phones. According to IARC, the classification indicates that “there could be some risk” and therefore “it is important that additional research be conducted into the long-term, heavy use of mobile phones.” (IARC press release, May 31, 2011). July 12, 2011 Page 15 The Federal Drug Administration is the U.S. agency charged with monitoring the research on health effects of EMF. The FDA web site (accessed 7/1/2011) calls attention to the fact that other agents that are currently classified as “possibly carcinogenic to humans” by IARC include coffee, talcum powder and electromagnetic fields around power lines and states, “According to current data, the FDA believes that the weight of scientific evidence does not show an association between radiofrequency from cell phones and adverse health outcomes”. Likewise, the World Health Organization’s updated fact sheet on mobile phones acknowledges the recent IARC determination, but states, “To date, no adverse health effects have been established as being caused by mobile phone use”. While no adverse health effects have been established from exposure to low-level RF, these authorities have echoed those of previous reviews and called for more research to reduce the uncertainty about the impacts of long-term exposure to RF on health, and this research is on-going. Conclusion Based on the City of Fort Collins Utilities smart grid implementation plan it appears that residential smart meters and the connecting network to the utility in Fort Collins will contribute a relatively small amount to the total RF emissions from broadcast sources, cell phone base stations, WiFi routers and other devices now in common usage in households and much less than typical use of cell phones. Because of the very low exposure to RFs associated with the planned use of smart meters in Fort Collins, it is not likely to lead to health effects in residents of homes with these devises. There appears to be no health reason to avoid the use of smart meters. Nevertheless, given the uncertainty that still exists regarding the potential long-term health effects of cumulative exposure to RF fields, residents who remain concerned about potential risks may appreciate alternatives to installing smart meters with wireless transmitters. Limitations My assessment of the potential health effects of smart meters has several limitations: First, I am not an expert in non-ionizing radiation health effects. I am trained and board certified in public health/general preventive medicine and family medicine. Preventive medicine specialists have core competencies in biostatistics, epidemiology, environmental medicine, and research into causes of disease and injury in population groups. Second, I have not examined the extensive body of literature on this topic, but instead relied on recent summaries of reviews produced by expert panels, agencies and public health authorities we normally rely on to sort out complicated science.” Privacy and Security • National concerns related to privacy have included: N Placing customer information at risk N “The Utility will know what I’m doing when” N The meters can be hacked July 12, 2011 Page 16 The City of Fort Collins Utilities takes customer privacy very seriously and has for many years. We recognize that emerging technologies open new avenues of risk. We are undertaking an extensive program to make sure that customer data is secure, confidential, and accurate in accordance with our existing policy that details how customer’s information is managed. Other than through a formal request from law enforcement customer information is not shared with anyone, unless formally released by the customer. The Utilities complies with all local, state and federal regulations to protect personal data and information. All customer information – including personal information, bill payment type or status, utility use - are strictly protected. Specifically: • Fort Collins Utilities is subject to the Colorado Open Records Act & Fort Collins Municipal Code 26-26, which govern the accessibility of public records • Fort Collins Utilities is subject to the FACT Act (Fair and Accurate Credit Transactions Act of 2003), which requires federal agencies, including the Federal Trade Commission (FTC), to establish guidelines for use by creditors to prevent identity theft. In 2007, the FTC published the “Red Flags Rules” requiring that creditors create and implement a program to address the detection, prevention and mitigation of identity theft. As a creditor, Fort Collins Utilities implemented an identity theft prevention program under the Red Flag Rules, effective December 31, 2011. The City has already met generally accepted best practices for cyber security. Through this project, the City is taking additional measures to secure its network and data by fully implementing the Cyber Security Plan submitted to, and approved by, the federal government. The City is also enforcing the same stringent standards on all project/utility vendors. Additionally, the City will be audited by the federal government to ensure all necessary precautions have been implemented. Utilities have conducted a risk assessment related to the AMFC communications system. The system was deemed as a low risk, low value cyber system. The data that will be communicated by the meters will be encrypted by the meter and then again, with a different encryption key at the gatekeeper and then again, as it moves thought the wide area network back to Utilities. The information that will be broadcasted will not have any customer information in it. The data will have to do with the operational health of the meter, energy and demand information, and a premise identifier. Even if intercepted, and decrypted there is little value to the data. Although Utilities is implementing best practices in relation to protecting privacy, we will also offer those concerned with privacy the option of having their meter information measured and recorded only once per day. As shown in Figure 7 (Attachment 3), the data received via the advanced meters does not provide information at a level of detail that would provide insight into specific activities. In addition, the data received is representing activity that occurred in the past. It does confirm what utilities across the country have known for years; that is, at certain times of the day households use more utility services than other times. The benefit of the higher resolution data is that it offers customers precisely the kind of information that will allow them to make choices that impact their energy consumption. July 12, 2011 Page 17 Lastly, Utilities is offering options to customers that would receive daily usage data transmitted from the meter or to have a meter manually read once per month; this would address the needs of those customers who still have continued privacy concerns. Note there is a cost associated with manually reading a meter once per month. Utilities estimate that it will cost approximately an additional $10 per month to read the meter. There may also be a one time up-front cost of $60 if the meter is replaced after initial deployment. Business Case and Project Cost • National concerns related to cost have included: N The meters are just another added expense to customers N The meters are inaccurate and bills will increase. The Utilities started researching the business case for an advanced metering project approximately three years ago to explore its viability from an economic, environmental and social standpoint. At that time, R.W. Beck a nationally recognized utility consulting firm worked closely with Utility staff to understand the benefits, risks and return on investment. Using best practices in business case analysis, that results showed a payback period of approximately 10-11 years. Although several project aspects have changed since this early analysis, it showed a positive return and a viable project on its own merits. Then, the federal government announced American Recovery and Reinvestment Act (ARRA) funding to upgrade the electric grid throughout the nation. Due to the early work that Fort Collins Utilities had done, we successfully competed for a matching grant. Black & Veatch / Enspiria, another nationally recognized firm, recently vetted the original business case at a high level and validated the conclusions. Although the scope of the project has increased and the grant money is part of the equation and other factors have changed in the years since the initial business case was developed, the payback period was modified only slightly to an 11-12 year payback. As noted above, the cost of the electric portion of the AMFC project is $31.4 million. A three-year, $15.7 million matching grant through the 2009 American Recovery and Reinvestment Act (ARRA) is helping to finance the project. The balance of the electric project expense is being covered by project savings. Bonds were issued to spread the costs over a longer time period. The water meter project is budgeted for $4 million. Grant funds are not available for the water portion of the project, but including them in the project is critical to the return on investment identified in the business case analysis. The financial savings realized through advanced meter systems are derived primarily from four sources, as follows: • Meter reading labor and expenses • Detection of service diversion July 12, 2011 Page 18 • Engineering and system benefits • Meter accuracy and registration It is worth commenting on the savings derived from the labor and operational expense of manual meter reading. Initially, investing in advanced meters will save the labor and operational expenses of reading meters. Fort Collins Utilities is working with meter readers to provide training and skill development for other jobs; several have already found new positions. In addition, there is information from national sources that speak to the business merits of advanced metering. For example, the Department of Energy finds that although the electricity system is 99.97 percent reliable, it still allows for power outages and interruptions that cost Americans at least $150 billion each year – about $500 for every man, woman and child in the country. This fact underscores the broader need to maintain the high level of reliability our system enjoys. System efficiency is very important to maximize the most efficient use of resources. The Department of Energy estimates that 25% of distribution infrastructure and 10% of all generation assets are required less than 400 hours per year or roughly 5% of the time. Platte River’s peaking units typically run less than this average. While advanced metering projects cannot eliminate the need for all new infrastructure, such systems will help defer or avoid some of it. After the development of a thorough business case, we are confident that this clearly shows a positive economic return and represents a solid investment for the community’s future. As such, it is a sound financial decision that will continue to support the needs of Fort Collins Utilities customers for many years beyond the payback horizon. ATTACHMENTS 1. “One Million Electric Vehicles By 2015” Report 2. Health Impacts of Radio Frequency from Smart Meters by the California Council on Science and Technology 3. Figures 1 thru 7. Pictures and color graphics 4. Powerpoint presentation 1 One Million Electric Vehicles By 2015 February 2011 Status Report ATTACHMENT 1 2 Introduction In his 2011 State of the Union address, President Obama called for putting one million electric vehicles on the road by 2015 – affirming and highlighting a goal aimed at building U.S. leadership in technologies that reduce our dependence on oil.1 Electric vehicles (“EVs”) – a term that includes plug-in hybrids, extended range electric vehicles and all- electric vehicles -- represent a key pathway for reducing petroleum dependence, enhancing environmental stewardship and promoting transportation sustainability, while creating high quality jobs and economic growth. To achieve these benefits and reach the goal, President Obama has proposed a new effort that supports advanced technology vehicle adoption through improvements to tax credits in current law, investments in R&D and competitive programs to encourage communities to invest in infrastructure supporting these vehicles. While several high profile vehicle market introductions such as the Chevrolet Volt and the Nissan Leaf have been initiated, questions “With more research and incentives, we can break our dependence on oil with biofuels, and become the first country to have a million electric vehicles on the road by 2015” - President Barack Obama, 2011 State of the Union Executive Summary President Obama’s goal of putting one million electric vehicles on the road by 2015 represents a key milestone toward dramatically reducing dependence on oil and ensuring that America leads in the growing electric vehicle manufacturing industry. Although the goal is ambitious, key steps already taken and further steps proposed indicate the goal is achievable. Indeed, leading vehicle manufacturers already have plans for cumulative U.S. production capacity of more than 1.2 million electric vehicles by 2015, according to public announcements and news reports. While it appears that the goal is within reach in terms of production capacity, initial costs and lack of familiarity with the technology could be barriers. For that reason, President Obama has proposed steps to accelerate America’s leadership in electric vehicle deployment, including improvements to existing consumer tax credits, programs to help cities prepare for growing demand for electric vehicles and strong support for research and development. 3 remain regarding the potential to reach the 2015 goal. Production capacity must be established, and technology, vehicle cost and infrastructure barriers must be addressed to achieve large-scale market introduction. This report provides a progress update toward achieving the goal: • The status of vehicle sales and future production volume estimates • Current federal government policies, investments, research and development, and demonstration efforts supporting the deployment of EVs • EV consumer demand This is an exceedingly dynamic and competitive field. Major announcements by companies and governments worldwide are made on a frequent basis. The plans of global companies and the policy initiatives of governments will surely change and shape the development of technology and markets during the next five years. Where We Are Today In 2010, the U.S. economy continued recovery from recession. As part of that recovery, sales of U.S. light-duty vehicles rebounded to approximately 12 million in 2010 from less than 10 million in 2009. Historically, U.S. sales of new light duty passenger vehicles ranged from 15-16 million per year from 2005-2008.2 Conventional hybrid electric vehicles (HEVs) have been on sale in the U.S. for over ten years, and today sales have grown to almost three percent of total light-duty vehicles. Over 1.6 million HEVs have been sold over the past six years.3 To reach the one million vehicle goal, EVs will need to average just under 1.7 percent of sales through 2015 (assuming sales of 12 million light- duty vehicles per year). With increases in the Corporate Average Fuel Economy (CAFE) standards, vehicle manufacturers are required to increase fuel economy through 2016, with further increases beyond 2016 under consideration. On March 30, 2009, the National Highway Traffic Safety Administration (NHTSA) published the final rule raising CAFE standards for both cars and light trucks. These new standards will encourage the expanded market entry of electric drive technologies. Market for Electric Drive Vehicles Expected to Increase Over the past few years, interest in EVs in the U.S. auto industry has surged, with manufacturers beginning to introduce new generations of EVs. For example, in 2010 General Motors introduced the Chevrolet Volt extended range electric vehicle into the U.S. market. The Volt can travel up to 40 miles using power from its lithium-ion battery pack. After that, the Volt can travel up to 375 miles in extended range using its internal combustion engine electric generator. GM has announced plans to build 15,000 Chevy Volts in 2011 and 45,000 in 2012. Based on news reports, the company is working on plans to increase its production target for 2012 to 120,000. (See Table references.) In late 2010, Nissan introduced the Leaf, a 100-mile range all-electric vehicle that incorporates an advanced lithium-ion battery as its sole power source. 4 The production capacity of EV models announced to enter the U.S. market through 2015 should be sufficient to achieve the goal of one million EVs by 2015. The table below shows EVs expected to enter the U.S. commercial market over the next few years, including the production capacity by year, based on manufacturer announcements and media reports. Major auto manufacturers such as Chrysler, BYD, Coda, Honda, Mitsubishi, Hyundai, Toyota, Volkswagen and Volvo are not included in this table, but have announced or are expected to introduce EVs in this time period. Because the U.S. is a major market for these automakers, it is likely that additional production capacity of several hundred thousand EVs is not accounted for in this table. Estimated U.S. Supply of Electric Vehicles from 2011 through 2015 Manufacturer and Model 2011 2012 2013 2014 2015 Total Fisker Karma PHEV 1,000 5,000 10,000 10,000 10,000 36,000 Fisker Nina PHEV 5,000 40,000 75,000 75,000 195,000 Ford Focus EV 10,000 20,000 20,000 20,000 70,000 Ford Transit Connect EV 400 800 1,000 1,000 1,000 4,200 GM Chevrolet Volt 15,000 120,000 120,000 120,000 120,000 505,000 Navistar eStar EV (truck) 200 800 1,000 1,000 1,000 4,000 Nissan LEAF EV 25,000 25,000 50,000 100,000 100,000 300,000 Smith Electric Vehicles Newton EV (truck) 1,000 1,000 1,000 1,000 1,000 5,000 Tesla Motors Model S EV 5,000 10,000 20,000 20,000 55,000 Tesla Motors Roadster EV 1,000 1,000 Think City EV 2,000 5,000 10,000 20,000 20,000 57,000 Cumulative Total 1,222,200 Note: The above numbers have been taken from announced production figures and media reports. In some cases more conservative estimates have been used due to: delays that have occurred since announced The 2011 Chevrolet Volt The 2011 Nissan Leaf 5 production levels, ramp rates to reach full production, consideration of the size of the market segment for that vehicle, and possible exportation of vehicles manufactured in the U.S. See the reference table for citations. Policy In recent years there have been a number of federal and state policy initiatives to encourage the introduction and sales of EVs. Industry can achieve its planned production with the support of policies that encourage investment in manufacturing facilities, enable technology demonstration and deployment and provide incentives to promote adoption and drive consumer demand. Manufacturing Investments Through the Recovery Act, the United States made an unprecedented investment to build our domestic manufacturing capacity and secure our position as a global leader in advanced lithium-ion battery technology. This investment includes: • $2.4 billion in loans to three of the world’s first electric vehicle factories in Tennessee, Delaware, and California. • $2 billion in grants to support 30 factories that produce batteries, motors, and other EV components. Companies are matching the funding dollar for dollar, doubling the impact of taxpayer investments. These grants are enabling companies to build the capacity to produce 50,000 EV batteries annually by the end of 2011 and 500,000 EV batteries annually by December 2014. Deployment, Demonstration, and Outreach Recovery Act funds are also supporting the largest-ever coordinated demonstration of EVs, including nearly 13,000 vehicles and more than 22,000 electric charging points in more than 20 cities across the country. Companies are matching this $400 million public investment dollar for dollar. This effort will provide important and detailed real-world operational data on vehicle usage, time-of-use and charging patterns, and potential impacts on our nation’s electrical grid. The demonstrations will document lessons learned that help streamline infrastructure permitting processes and make data available that can alleviate consumer uncertainty and help transition EVs from clusters of early adopters to national, mainstream use. Coordinated with this large-scale demonstration are programs to educate code officials, first responders, technicians, and engineers, who are critical components of the human infrastructure needed for a successful transition to electric-drive transportation, both in terms of consumer acceptance and public safety. The Department of Energy is also working with local leaders in their efforts to encourage EV adoption and drive consumer demand. Through a new competitive program, seed funding will help communities across the country with regulatory streamlining, infrastructure investments, vehicle fleet conversions, deployment of EV incentives, partnerships with major employers/retailers, and workforce training. The FY12 budget request seeks to expand this initiative so that up to 30 communities could receive grants of up to $10 million to help catalyze EV deployment (see text box on page 6).4 6 Incentives Tax incentives and other measures have been proven effective in providing the additional boost needed for mainstream consumers to choose EVs. The Recovery Act established tax credits for purchasing electric vehicles ($2,500 - $7,500 per vehicle, depending on the battery capacity) and conversion kits to retrofit conventionally powered vehicles with electric vehicle capability ($4,000 per vehicle, maximum). The President has also proposed transforming the existing $7,500 EV tax credit into a more accessible and even more attractive rebate at the dealership.5 In addition, nearly 40 U.S. states and the District of Columbia have adopted other measures promoting electric-drive vehicle usage, including high occupancy vehicle (HOV) privileges and waived emissions inspections, as well as tax credits/rebates and preferred purchase programs.6 Advancing Technologies through R&D The President has announced that the FY 2012 Budget will include enhanced R&D investments in battery and other electric drive technologies.7 Investments will support R&D initiatives through DOE’s Vehicle Technologies Program, as well as a new Energy Innovation Hub devoted to developing better batteries and energy storage capacity to support electric vehicles and other technologies. This focus on continued innovation complements ongoing R&D to support the development of critical technologies needed for New Initiatives to Support Advanced Technology Vehicles President Obama is proposing three steps to address consumer demand and position the United States as a global leader in manufacturing and deploying next- generation vehicle technologies: • Make electric vehicles more affordable with a rebate up to $7,500: The President is proposing to transform the existing $7,500 tax credit for electric vehicles into a rebate that will be available to all consumers immediately at the point of sale. • Advance innovative technologies through new R&D investments: Building on Recovery Act investments, the President’s Budget proposes enhanced R&D investments in electric drive, batteries, and energy storage technologies. • Reward communities that invest in electric vehicle infrastructure through competitive grants: To provide an incentive for communities to invest in EV infrastructure and remove regulatory barriers, the President is proposing a new initiative that will provide grants to up to 30 communities that are prioritizing advanced technology vehicle deployment. Source: http://www.whitehouse.gov/the-press-office/2011/01/26/vice-president- biden-announces-plan-put-one-million-advanced-technology- 7 the widespread introduction of electric drive vehicles. These efforts include battery development, power electronics and electric motors, and electric drive vehicle systems. Battery technology today is greatly different from that of the 1990s. The General Motors EV-1 had a range of 80 to 140 miles, but initially used lead-acid batteries having limited energy density, which resulted in a two-passenger vehicle, relatively short battery life, and a long recharging time. By contrast, today’s lithium-ion battery technology allows the Leaf, Volt, and other EVs to be 4- or 5-passenger vehicles, with an extended warranty on battery life, and much faster charging times. The Volt's lithium- ion battery technology is over 70 percent lighter than the EV-1's original lead-acid battery technology. Vehicle manufacturers currently employ lithium-ion batteries with excess capacity to ensure the batteries meet a ten-year battery life target. As greater confidence in battery life under real-world driving conditions develops, the amount of excess capacity installed is expected to decrease, and thus cost should decrease as well. GM recently announced that the Chevrolet Volt battery will now be operated using more than 65 percent of total capacity, instead of 50 percent, demonstrating continued improvement in today’s lithium- ion batteries.8 Next-generation lithium-ion batteries are likely to employ advanced electrodes such as silicon-based nanostructured anodes (instead of graphite), and high- capacity manganese-based cathodes, resulting in a significant increase in energy density and reduction in cost. New technologies continue to move from DOE laboratories to market– most recently Argonne National Laboratory has licensed advanced cathode technology to General Motors and battery suppliers LG Chem and Envia. These companies will now have the opportunity to build on DOE’s technology innovation with further improvements and specific market applications. Recovery Act investments will help cut battery costs. DOE and U.S. industry have invested over $3 billion in battery manufacturing facilities using Recovery Act and matching funds. Increasing the production output of a battery plant from 10,000 units/year to 100,000 units/year can directly reduce battery costs by 30-40 percent.9 DOE’s established cost target of $300/kWh by 2015 is an aggressive but achievable goal for lithium-ion batteries. Electric vehicle battery prices are expected to drop due to increased manufacturing know-how and economies-of-scale, learning curve improvements, lower-cost battery materials, and technical advancements in battery design. DOE supports a broad portfolio of electric drive vehicle battery R&D that spans basic research to applied development. The Office of Science supports fundamental basic energy research on enabling materials through the Energy Frontiers Research Centers. The Applied Research Projects Agency - Energy (ARPA-E) conducts transformational research on revolutionary, “game-changing” energy storage technology. And the Office of Energy Efficiency and Renewable Energy (EERE) battery R&D is focused on applied A123 Systems Battery Module 8 development and demonstration of advanced batteries to enable a large market penetration of electric drive vehicles. Consumer Demand While leading manufacturers already have plans for cumulative U.S. production capacity of more than one million electric vehicles by 2015, according to public announcements and news reports, production will only reach levels supported by consumer demand. What issues will influence purchasing decisions? Fleet buyers tend to make vehicle purchasing decisions based on the total cost of vehicle ownership; retail vehicle consumers tend to focus on initial price. The Boston Consulting Group report on “Batteries for Electric Vehicles” concluded that with current incentives and oil prices in the United States, EV purchasers will reach lower total ownership costs within 3 to 5 years of operation.10 These increasingly favorable economics for EVs aren’t going unnoticed by fleet buyers. General Electric announced that they will purchase 25,000 EV by 201511 – a strong indication that as EV total cost of ownership falls below that of conventional vehicles, fleet purchasers will respond positively. With the exception of a small segment of the new car buyer population, automobile consumers tend to be risk-averse, preferring well-proven technology. With automotive purchases generally the second largest financial purchase most families make, behind only housing, cost is considered carefully. And while automobile consumers do consider fuel consumption, they tend to discount future fuel savings. Studies have shown that consumers tend to assume that current fuel prices are good estimates of future prices.12 Thus purchasers during periods of high fuel prices value fuel efficiency more than purchasers during periods of low fuel prices. While availability of the current $7,500 tax credit is attractive to consumers, the President’s proposal to convert this credit to benefit the consumer at the point-of-sale will likely make the incentive even more attractive since consumers will not have to wait until the end of the year to receive the credit.13 Although consumers have proven to be highly sensitive to initial price, they are also willing to pay premiums for vehicle options or attributes that resonate with them. EVs have unique attributes which may appeal to consumers. Exceptionally quiet operation, high torque (good acceleration), and low lifetime operating costs are examples of attributes that will attract consumers. Other features may also prove attractive to consumers, such as avoiding the gasoline refueling experience. In addition, car purchasing decisions are influenced by style and statements of personal identity; the powertrain configurations of EVs will provide styling options not available to conventionally powered vehicles. Fuel price matters when consumers make automobile purchasing decisions. If oil prices increase, or expectation of further oil price increases becomes prevalent,14 interest in EVs will likely increase as well. 9 There is clearly substantial consumer interest in electric vehicles, as demonstrated by the larger-than-anticipated pre-orders for the Nissan Leaf and the Chevrolet Volt. Whether this interest translates into sales beyond the initial “early adopter” market will depend on initial consumer experience with these early vehicles, and on how that experience is communicated and perceived by the rest of the car buying public. Uncertainties about EVs – including their resale value, range and availability of convenient charging facilities -- may impose sales barriers. As noted earlier, there is considerable work underway to develop data on performance and reliability of EVs, and to communicate that information to the public. The performance and cost effectiveness of the early EVs in the market will be a major but unknowable factor in how many EVs are on the road by 2015. The cumulative impacts of the various policy initiatives, the experience of the early purchasers of electric-drive vehicles and future oil prices will all play a role in determining future consumer demand. Summary In his 2011 State of the Union address, President Obama called for putting one million electric vehicles on the road by 2015 – affirming and highlighting a goal aimed at building U.S. leadership in technologies that reduce our dependence on oil. This goal represents a key milestone in transforming our national vehicle fleet, a transformation that will deliver significant benefits for the American people, including: • Dramatically reducing petroleum dependence and improving transportation sustainability; • Improved environmental stewardship; • Job creation and economic growth. Government policies are critical enablers which influence the rate that advanced vehicles are adopted on a large scale. In addition to existing policies, the Administration’s new three-part plan supports electric vehicle manufacturing and adoption through improvements to tax credits in current law, investments in R&D, and a new competitive program to encourage communities to invest in electric vehicle infrastructure. These policies will help attain the 2015 goal. Reaching the goal is not likely to be constrained by production capacity. Major vehicle manufacturers have announced (or been the subject of media reports) that indicate a cumulative electric drive vehicle manufacturing capacity of over 1.2 million vehicles through 2015. Strong incentives, research and development, and assistance in establishing manufacturing and infrastructure is underway or planned. These activities directly support consumer demand of these technologies, and mitigate some of the uncertainty associated with the large-scale adoption of electric drive vehicles. 10 References Notes and References for Estimated U.S. Supply of Electric Vehicles from 2011 through 2015 Manufacturer and Model References Fisker Karma PHEV http://media.fiskerautomotive.com/about_fisker/in_the_new s/and_the_strangest_paint_award_goes_to_fisker/, October 1, 2010 Fisker Nina PHEV http://media.fiskerautomotive.com/about_fisker/in_the_new s/and_the_strangest_paint_award_goes_to_fisker/, October 1, 2010 Ford Focus EV The estimates are pushed back one year from the reference initial year of production of 2011. Reference: http://green.autoblog.com/2010/10/22/ford-sets- 2011-electric-focus-2011-production-target-at-10-000-2/, October 22, 2010 Ford Transit Connect EV http://www.motortrend.com/roadtests/alternative/1009_ford _transit_connect_electric/specs.html, October 4, 2010 GM Chevrolet Volt http://www.bloomberg.com/news/2011-01-21/gm-said-to- plan-doubling-2012-production-capacity-of-chevrolet-volt- hybrid.html, January 21, 2011 Navistar eStar EV (truck) The 2011 total of 200 trucks includes the 78 trucks already built during 2010. The 2012 number is a conservative extrapolation from the goal of selling 700 eStars by mid- 2012. http://www.businessweek.com/technology/content/jan2011/ tc20110120_063762.htm, January 20, 2011 Nissan Leaf EV http://www.allcarselectric.com/blog/1054255_nissan-2011- leaf-will-reach-full-production-by-march, January 25, 2011; http://www.forbes.com/2010/10/25/japan-autos-electric- technology-nissan-leaf.html, October 25, 2010 Smith Electric Vehicles Newton EV (truck) http://www.businessweek.com/technology/content/jan2011/ tc20110120_063762.htm, January 20, 2011 Tesla Motors Model S EV http://www.greentechmedia.com/articles/read/tesla-files- for-ipo-it-wants-100-million/, January 10, 2010 Tesla Motors Roadster EV http://www.plugincars.com/tesla-roadster/review, March 9, 2010; http://www.wired.com/autopia/2010/01/teslas- roadster-to-exit-in-2011/#, January 29, 2010 Think City EV http://gigaom.com/cleantech/the-think-citys-u-s-price- launch-plans/, November 16, 2010; http://evworld.com/news.cfm?newsid=24433, November 25, 2010 11 1 The President first announced this goal as a candidate in a speech in Lansing, Michigan on August 4, 2008. http://my.barackobama.com/page/community/post/stateupdates/gG5zCW. He first reiterated the goal as President at a speech in Pomona, California on March 19, 2009. http://www.energy.gov/7067.htm. 2 Transportation Energy Data Book, 29th Edition, Stacy C. Davis, et.al. 3 IEA Hybrid and Electric Vehicle Implementing Agreement, “Hybrid and Electric Vehicles: the Electric Drive Advances,” March 2010 4 White House Press Release “Vice President Biden Announces Plan to Put One Million Advanced Technology Vehicles on the Road by 2015,” January 26, 2010, http://www.whitehouse.gov/the-press-office/2011/01/26/vice-president-biden-announces-plan-put-one- million-advanced-technology- 5 White House Press Release “Vice President Biden Announces Plan to Put One Million Advanced Technology Vehicles on the Road by 2015,” January 26, 2010, http://www.whitehouse.gov/the-press-office/2011/01/26/vice-president-biden-announces-plan-put-one- million-advanced-technology- 6 IEA Hybrid and Electric Vehicle Implementing Agreement, “Hybrid and Electric Vehicles: the Electric Drive Advances,” March 2010 7 White House Press Release “Vice President Biden Announces Plan to Put One Million Advanced Technology Vehicles on the Road by 2015,” January 26, 2010, http://www.whitehouse.gov/the-press-office/2011/01/26/vice-president-biden-announces-plan-put-one- million-advanced-technology- 8 http://gm-volt.com/2010/10/26/chevrolet-volt-will-utilize-10-4-kwh-of-battery-to-achieve-ev-range/ 9 Santini, et.al., “Modeling of Manufacturing Costs of Lithium-Ion Batteries for HEVs, PHEVs and EVs,” Proceedings of the 25th Electric Vehicle Symposium, November 2010. 10 The Boston Consulting Group, “Batteries for Electric Vehicles: Challenges, Opportunities, and the Outlook to 2020”, January, 2010 11 http://www.gereports.com/in-largest-single-commitment-ge-to-buy-25000-electric-vehicles/ 12 See EPA-420-R-10-008, “How Consumers Value Fuel Economy: A Literature Review,” March 2010 13 Kelly Sims Gallagher and Erich Muehlegger “Giving green to get green? Incentives and consumer adoption of hybrid vehicle technology” in Journal of Environmental Economics and Management 61 (2011) p. 1-15 14 http://www.eia.doe.gov/oiaf/ieo/world.html JANUARY 2011 HEALTH IMPACTS OF RADIO FREQUENCY FROM SMART METERS ATTACHMENT 2 1 ACKNOWLEDGMENTS We  would  like  to  thank  the  many  people  who  provided  input  and  feedback  towards  the completion  of  this  report.  Without  the  insightful  feedback  that  these  individuals  generously provided,  this  report  could  not  have  been  completed.  We  would  like  to  give  special  thanks  to the  California  Smart  Grid  Center,  College  of  Engineering  and  Computer  Science  at  the  California State 2 Table  of  Contents Letter  from  CCST  ............................................................................................................................  3 Key  report  findings  .........................................................................................................................  4 Other  considerations  ......................................................................................................................  4 Legislative  request  .........................................................................................................................  6 Approach  ........................................................................................................................................  6 Two  types  of  radio  frequency  effects:  Thermal  and  Non-­‐thermal  .................................................  7 Findings  ..........................................................................................................................................  7 What  are  smart  meters?  ................................................................................................................  9 Why  are  smart  meters  being  installed  throughout  California?  ....................................................  11 What  health  concerns  are  associated 3 Letter  from  CCST With  rapidly  emerging  and  evolving  technologies,  lawmakers  at  times  find  themselves  pressed to  make  policy  decisions  on  complex  technologies.  Smart  meters  are  one  such  technology. Smart  meters  are  being  deployed  in  many  places  in  the  world  in  an  effort  to  create  a  new generation  of  utility  service  based  on  the  concepts  of  a  smart  grid,  one 4 Health  Impacts  of  Radio  Frequency  from  Smart  Meters Response  to  Assembly  Members  Huffman  and  Monning California  Council  on  Science  and  Technology January  2011 KEY  REPORT  FINDINGS 1. Wireless  smart  meters,  when  installed  and  properly  maintained,  result  in  much  smaller levels  of  radio  frequency  (RF)  exposure  than  many  existing  common  household electronic  devices,  particularly  cell  phones  and  microwave  ovens. 2. The  current 5 Figure  1.  Comparison  of  Radio-­‐Frequency  Levels  from  Various  Sources  in  μW  /cm2 Note:  Exposure  levels  in  µW/cm2  obtained  from  Table  2  and  converted  from  mW/cm2.  Smart meter  figures  represent  100%  duty  cycle  (i.e.,  always  on)  as  hypothetical  maximum  use  case. Minimum Maximum 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 50 40 4 0.2 0.005 5000 200 6 Legislative  Request On  July  30,  2010,  California  Assembly  Member  Jared  Huffman  wrote  to  the  California  Council  on Science  and  Technology  (CCST)  to  request  that  the  Council  perform  an  “independent,  science-­‐ based  study…[that]  would  help  policy  makers  and  the  general  public  resolve  the  debate  over whether  smart  meters  present  a  significant  risk  of  adverse  health  effects.”  California  Assembly Member  Bill 7 Two  Types  of  Radio  Frequency  Effects:  Thermal  and  Non-­‐thermal Household  electronic  devices,  such  as  cellular  and  cordless  telephones,  microwave  ovens, wireless  routers,  and  wireless  smart  meters  produce  RF  emissions.  Exposure  to  RF  emissions may  lead  to  thermal  and  non-­‐thermal  effects.  Thermal  effects  on  humans  have  been extensively  studied  and  appear  to  be  well  understood.  The  Federal  Communications Commission  (FCC) 8 2. At  this  time  there  is  no  clear  evidence  that  additional  standards  are  needed  to  protect the  public  from  smart  meters  or  other  common  household  electronic  devices. No  clear  causal  relationship  between  RF  emissions  and  non-­‐thermal  human  health impacts  has  been  scientifically  established,  nor  have  the  mechanisms  that  might  lead  to such  a  biological  impact  been  clearly  identified.  Additional  research 9 What  are  Smart  Meters? Smart  meters  measure  attributes  of  electricity,  natural  gas,  or  water  as  delivered  to  consumers and  transmit  that  information  (e.g.,  usage)  digitally  to  utility  companies.  Some  smart  meters are  also  designed  to  transmit  real-­‐time  information  to  the  consumer.  These  smart  meters replace  traditional,  analog  meters  and  meter  readers  with  an  automated  process  that  is expected  to 10 Figure  3.  Simplified  depiction  of  Smart  Meter  system  network.  Arrows  show  the  use  of  radiofrequency  (RF) signals  for  automated  meter  reading,  communications  among  electric  power  meters,  relays,  access  points,  the company’s  enterprise  management  systems.  The  future  home  access  network  will  operate  within  the  house. Smart  meters  have  evolved  from  automatic  meter  reading  (AMR;  i.e.,  replacing  meter  readers) to  a 11 cycle.  For  purposes  of  this  report  we  include  a  hypothetical  scenario  where  the  smart  meter  is continually  transmitting.  Even  in  this  100%  duty  cycle  situation  the  power  output  would  be  well below  the  FCC  limits. Smart  meters  are  designed  to  transmit  data  to  a  utility  access  point  that  is  usually  25  feet  above ground,  on  utility  or  light  poles. 12 Figure  4.  Illustration  of  components  of  the  PG&E  Smart  Meter  Program  Upgrade  showing  the  use  of radiofrequency  (RF)  signals  for  communications  among  electric  power  meters,  relays,  access  points  and, ultimately,  the  company’s  enterprise  management  systems.  (Source  Silver  Spring  Network4) Smart  meters  will  also  allow  utilities  to  communicate  grid  conditions  to  customers  through price  signals,  so  that  consumers,  via  their 13 grid  networks,  including  the  use  of  smart  meters.5  After  review  and  authorization  from  the California  Public  Utilities  Commission,6  utilities  in  California  have  begun  to  install  smart  meters throughout  the  state.  Some  California  utilities  (such  as  Sacramento  Municipal  Utility  District) have  received  significant  federal  funding  for  smart  meter  deployment  from  the  American Recovery  and  Reinvestment  Act  (federal  stimulus  package).  Many 14 meters  are  unlikely  to  produce  thermal  effects;  however  it  is  not  scientifically  confirmed whether  or  what  the  non-­‐thermal  effects  on  living  organisms,  and  potentially,  human  health might  be.  These  same  concerns  over  potential  impacts  should  apply  to  all  other  electronic devices  that  operate  with  similar  frequency  and  power  levels,  including  cell  phones,  computers, cordless  phones,  televisions,  and  wireless  routers. 15 the  cumulative  impact  from  all  RF  emitting  devices  including  that  of  a  network  of  smart  meters operating  throughout  a  community.12 There  currently  is  no  conclusive  scientific  evidence  pointing  to  a  non-­‐thermal  cause-­‐and-­‐effect between  human  exposure  to  RF  emissions  and  negative  health  impacts.  For  this  reason, regulators  and  policy  makers  may  be  prudent  to  call  for  more  research  while  continuing 16 The  FCC  guidelines  measure  exposure  to  RF  emissions  in  two  ways.  Specific  absorption  rate (SAR)  measures  the  rate  of  energy  absorption  and  is  measured  in  units  of  watts-­‐per-­‐kilogram  of body  weight  (W/kg).  It  accounts  for  the  thermal  effects  on  human  health  associated  with heating  body  tissue  and  is  used  as  a  limiting  measurement  for  wireless  devices,  such  as  mobile 17 the  human  body  absorbs  even  less  energy,  and  the  threshold  for  the  2.4  GHz  transmitter  for home  area  network  communications  is  consequently  higher,  1000  μW/cm2. PG&E  commissioned  a  2008  study  by  Richard  Tell  Associates,  “Supplemental  Report  on  An Analysis  of  Radiofrequency  Fields  Associated  with  Operation  of  the  PG&E  Smart  Meter  Program Upgrade  System.”  In  this  study  of  PG&E’s  proposed 18 Figure  5.  FCC  maximum  permissible  exposure  limits  on  power  density  rise  with  frequency  because  the  human body  can  safely  absorb  more  energy  at  higher  frequencies.  The  estimated  maximum  exposure  from  a  1-­‐Watt AMR  transmitter  at  5%  duty  cycle  (i.e.,  72  minutes/day)  and  one-­‐foot  distance  is  18  μW/cm2,  or  3%  of  the  FCC limit.  Even  if  a  meter  malfunctioned  and 19 Figure  6.  Power  density  from  a  sample  smart  meter  versus  distance;29  1-­‐Watt  emitter  at  50%  duty  cycle.  Typical smart  meter  AMR  transmitter  power  density  declines  rapidly  with  distance.  The  rapid  drop  of  power  density with  distance  (inverse-­‐square  law)  is  similar  for  various  duty  cycles  and  different  sets  of  source  data. Comparison  of  Electromagnetic  Frequencies  from  Smart  Meters  and  Other 20 fields  of  about  0.2  –  1.0  μW  /cm2.31,  32,33  People  in  metropolitan  areas  are  exposed  to radiofrequency  from  radio  and  television  antennas,  as  well,  although  for  most  of  the population,  exposure  is  quite  low,  around  0.005  μW  /cm2.34 Figure  7.  Comparison  of  Radio-­‐Frequency  Levels  from  Various  Sources  in  μW  /cm2 Note:  Exposure  levels  in  µW/cm2  obtained  from  Table  2 21 Table  2:  Radio-­‐Frequency  Levels  from  Various  Sources Source Frequency Exposure  Level (mW/cm2) Distance Time Spatial Characteristic Mobile  phone 900  MHz,  1800  MHz 1—5 At  ear During  call Highly  localized Mobile  phone  base station 900  MHz,  1800  MHz 0.000005—0.002 10s  to  a  few thousand  feet Constant Relatively  uniform Microwave  oven 2450  MHz ~50.05-­‐0.2 2  inches2  feet During  use Localized,  non-­‐ uniform Local  area  networks 2.4—5  GHz 0.0002—0.001 0.000005—0.0002 3  feet Constant  when nearby Localized,  non-­‐ uniform Radio/TV  broadcast Wide  spectrum 0.001  (highest 22 What  is  Duty  Cycle  and  How  Does  it  Affect  Human  Health? Duty  cycle  refers  to  the  fraction  of  time  a  device  is  transmitting.  For  instance,  a  duty  cycle  of  1%  means  the  device transmits  RF  energy  1%  of  a  given  time  period.  One  percent  of  the  time  in  a  day  is  equivalent  to  14.4  minutes  per day.  The  duty 23 What  About  Exposure  Levels  from  a  Bank  of  Meters  and  from  Just  Behind  the  Wall  of  a  Single Meter? In  a  November  2010  study  Electric  Power  Research  Institute  (EPRI)35  field  tested  exposure  levels from  a  bank  of  10  meters  of  250  mW  power  level  at  one  foot  distance  in  order  to  simulate  a bank  of  smart  meters  located  at 24 Public  Information  and  Education It  is  important  that  consumers  have  clear  and  easily  understood  information  about  smart  meter emissions  as  well  as  readily  available  access  to  clear,  factual  information  and  education  on known  effects  of  RF  emissions  at  various  field  strengths  and  distances  from  an  array  of  devices commonly  found  in  our  world. Equipped  with  this  information,  people  can 25 meters  would  not  address  the  significantly  greater  challenge  presented  by  the  billions  of  mobile phones  in  use  globally. Key  Factors  to  Consider  When  Evaluating  Exposure  to  Radiofrequency  from  Smart  Meters 1.  Signal  Frequency Compare  to  devices  in  the 900  MHz  band  and  2.4  GHz  band Frequency  similar  to  mobile phones,  Wi-­‐Fi,  laptop  computers, walkie-­‐talkies,  baby  monitors, microwave  ovens 2.  Signal 26 Conclusion The  CCST  Project  Team,  after  carefully  reviewing  the  available  literature  on  the  current  state  of science  on  health  impacts  of  radiofrequency  from  smart  meters  and  input  from  a  wide  array  of subject  matter  experts,  concludes  that: 1. The  FCC  standard  provides  a  currently  accepted  factor  of  safety  against  known thermally  induced  health  impacts  of  smart  meters  and  other  electronic 27 Appendix  A  –  Letters  Requesting  CCST 28 29 30 31 32 Appendix  B  –  Project  Process CCST  Smart  Meter  Project  Approach Assembly  Member  Huffman  (Marin)  (July  30,  2010  letter)  and  Assembly  Member Monning  (Santa  Cruz)  (September  17,  2010  letter)  requested  CCST’s  assistance  in determining  if  there  are  health  safety  issues  regarding  the  new  SMART  meters  being installed  by  the  utilities.  In  addition,  the  City  of  Mill  Valley  sent  a  letter 33 Peer  Review:  After  the  draft  report  was  vetted  in  great  detail  by  the  Smart  Meter  Project Team,  it  was  forwarded  to  the  CCST  Board  and  Council  for  peer  review. Public  Comment:  The  report  is  being  posted  to  the  CCST  website  that  will  allow  the general  public  to  comment. 34 Appendix  C  –  Project  Team The  California  Council  on  Science  and  Technology  adheres  to  the  highest  standards  to provide  independent,  objective,  and  respected  work.  Board  and  Council  Members  review all  work  that  bears  CCST’s  name.  In  addition,  CCST  seeks  peer  review  from  external technical  experts.  The  request  for  rigorous  peer  review  results  in  a  protocol  that  ensures the  specific 35 Patrick  Mantey Director,  UC  Center  for  Information  Technology  Research  in  the  Interest  of  Society  (CITRIS) @  Santa  Cruz,  University  of  California,  Santa  Cruz Mantey  holds  the  Jack  Baskin  Chair  in  Computer  Engineering  and  was  the founding  Dean  of  the  Jack  Baskin  School  of  Engineering.  He  is  now  the  director  of CITRIS  at  UC  Santa  Cruz  and  of  ITI,  the 36 Vice  President  at  Southern  California  Edison.  Papay  received  a  B.S.  in  Physics from  Fordham  University,  a  M.S.  in  Nuclear  Engineering  from  MIT,  and  a  Sc.D.  in Nuclear  Engineering  from  MIT.  He  is  a  member  of  the  National  Academy  of Engineering  and  served  on  its  Board  of  Councilors  from  2004-­‐2010.  He  served  as CCST  Council  Chair  from  2005  through  2008, 37 Appendix  D  –  Written  Submission  Authors Written  Input  Received  from: Physical  Sciences/Engineers Kenneth  Foster,  Professor,  Department  of  Bioengineering,  University  of  Pennsylvania Rob  Kavet,  Physiologist/Engineer,  Electric  Power  Research  Institute  (EPRI) Biologists/medical De-­‐Kun  Li,  MD,  Ph.D.,  Senior  Reproductive  and  Perinatal  Epidemiologist,  Division  of Research,  Kaiser  Foundation  Research  Institute,  Kaiser  Permanente Asher  Sheppard,  Ph.D.,  Asher  Sheppard  Consulting,  trained  in  physics,  environmental medicine, 38 Appendix  E  –  Additional  Materials  Consulted All  sources  can  be  accessed  through  the  CCST  website  at  http://ccst.us American  Academy  of  Pediatrics • The  Sensitivity  of  Children  to  Electromagnetic  Fields  American  Academy  of Pediatrics  (August  3,  2005) Australian  Radiation  Protection  and  Nuclear  Safety  Agency  (ARPANSA) • www.arpansa.gov.au  Australian  Radiation  Protection  and  Nuclear  Safety  Agency (ARPANSA) • Radiation  Protection  -­‐  Committee  on  Electromagnetic  Energy 39 Radiofrequency  and  Microwave  Energy IEEE  Engineering  in  Medicine  and  Biology  Magazine  (April  2005) Commonwealth  Club  of  California • Commonwealth  Club  of  California  -­‐  The  Health  Effects  of  Electromagnetic  Fields (Video)  (November  18,  2010) Electric  Power  Research  Institute  (EPRI) • emf.epri.com  EMF/RF  Program  at  EPRI • Radio-­‐Frequency  Exposure  Levels  from  SmartMeters Electric  Power  Research  Institute  (November  2010)  -­‐  accessed  via  the  Internet December 40 • Radio  Frequency  Safety  FAQ's • RF  Safety  Page • Federal  Communications  Commission  Response  to  Cindy  Sage (August  6,  2010) • FCC  Certifications o FCC  Certification  for  the  Silver  Spring  Networks  Devices  -­‐  September  28, 2009 o FCC  Certification  for  the  Silver  Spring  Networks  Devices  -­‐  September  28, 2009 o FCC  Certification  for  the  Silver  Spring  Networks  Devices  -­‐  September  4, 2007 o FCC  Certification  for  the 41 International  Commission  on  Non-­‐Ionizing  Radiation  Protection  (2009) National  Academies  Press • Identification  of  Research  Needs  Relating  to  Potential  Biological  or  Adverse  Health Effects  of  Wireless  Communication National  Academies  Press  (2008) • An  Assessment  of  Potential  Health  Effects  from  Exposure  to  PAVE  PAWS  Low-­‐ Level  Phased-­‐Array  Radiofrequency  Energy  (9.9MB  PDF) National  Academies  Press  (2005) National  Cancer  Institute • Cell  Phones  and  Cancer  Risk 42 Swedish  State  Radiation  Protection  Authority  (SSI) • The  Nordic  Radiation  Safety  Authorities  See  no  Need  to  Reduce  Public  Exposure Generated  by  Mobile  Bas  Stations  and  Wireless  Networks Swedish  State  Radiation  Protection  Authority  (SSI)  (2009) University  of  Ottawa • Wireless  Communication  and  Health  -­‐  Electromagnetic  Energy  and Radiofrequency  Radiation  FAQ's University  of  Ottawa,  RFcom World  Health  Organization • Database  of  Worldwide  EMF  Standards 43 o Bioinitiative  Report:  The  Interphone  Brain  Tumor  Study  (1.6MB  PDF) Cindy  Sage,  Editorial  Perspective o Bioinitiative  Report:  Steps  to  the  Clinic  with  ELF  EMF  (1.0MB  PDF) o Mobile  Phone  Base  Stations  -­‐  Effects  on  Wellbeing  and  Health Pathophysiology  (August  2009) o Increased  Blood-­‐Brain  Barrier  Permeability  in  Mammalian  Brain  7  Days after  Exposure  to  the  Radiation  from  a  GSM-­‐900  Mobile  Phone Pathophysiology  (August  2009) 44 • NIOSH  Program  Portfolio  Centers  for  Disease  Control  and  Prevention  (CDC) • Radio  Frequency  RF  Safety  and  Antenna  FAQs • Smart  Grid  Information  Clearinghouse  (SGIC) • stopsmartmeters.org 45 Appendix  F  –  Glossary Access  point  -­‐  A  term  typically  used  to  describe  an  electronic  device  that  provides  for wireless  connectivity  via  a  WAN  to  the  Internet  or  a  particular  computer  facility. Duty  cycle  –  A  measure  of  the  percentage  or  fraction  of  time  that  an  RF  device  is  in operation.  A  duty  cycle  of  100%  corresponds  to  continuous 46 Microwatt  per  square  centimeter  (µW/cm2)  -­‐  A  measure  of  the  power  density  flowing through  an  area  of  space,  one  millionth  (10-­‐6)  of  a  watt  passing  through  a  square centimeter. Radiofrequency  (RF)  -­‐  The  RF  spectrum  is  formally  defined  in  terms  of  frequency  as extending  from  0  to  3000  GHz,  the  frequency  range  of  interest  is  3  kHz  to  300 47 Appendix  G  –  CCST  2011  BOARD  MEMBERS Karl  S.  Pister,  Board  Chair;  Chancellor  Emeritus,  UC  Santa  Cruz;  and  Dean  and  Roy  W. Carlson  Professor  of  Engineering  Emeritus,  UC  Berkeley Bruce  M.  Alberts,  Professor,  Department  of  Biochemistry  &  Biophysics,  UC  San  Francisco Ann  Arvin,  Vice  Provost  and  Dean  of  Research,  Lucile  Salter  Packard  Professor  of Pediatrics  and  Professor  of  Microbiology 48 Appendix  H  –  CCST  2011  COUNCIL  MEMBERS Miriam  E.  John,  Council  Chair  and  Emeritus  Vice  President,  Sandia  National  Laboratories, California Peter  Cowhey,  Council  Vice  Chair  and  Dean,  School  of  International  Relations  and  Pacific  Studies, UC  San  Diego Wanda  Austin,  President  and  CEO,  The  Aerospace  Corporation Julian  Betts,  Professor  of  Economics,  UC  San  Diego George  Blumenthal,  Chancellor,  UC  Santa  Cruz 49 Appendix  I  –  Report  Credits CCST  Smart  Meters  Project  Team: Rollin  Richmond  (Chair),  President  Humboldt  State  University,  CSU Jane  Long,  Associate  Director  at  Large,  Global  Security  Directorate  Fellow,  Center  for Global  Security  Research  Lawrence  Livermore  National  Laboratory Emir  Macari,  Dean  of  Engineering  and  Computer  Science,  California  State  University, Sacramento  and  Director  of  the  California  Smart  Grid  Center Patrick  Mantey, ATTACHMENT 3 Figure 1: Elster residential and commercial meters Figure 2: Elster Gatekeeper Figure 3: Distribution wide area network (DWAN) Tropos router. ATTACHMENT 3 Figure 4 – System Solution diagram Figure 5 Electromagnetic Spectrum ATTACHMENT 3 Figure 6 ATTACHMENT 3 15 minute data over 1 day 1 hour data over 1 day daily data over 1 day Monthly data over 1 day Typical Residential Load Profile April 2011- Day 4 - 1.0 2.0 3.0 4.0 5.0 6.0 0:001:002:003:004:005:006:007:008:009:0100:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 0:00 kW kW 15 minute Typical Residential Load Profile April 2011- Day 4 - 1.0 2.0 3.0 4.0 5.0 6.0 0:001:002:003:004:005:006:007:008:009:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 0:00 kW kW hour Typical Residential Load Profile April 2011- Day 4 - 1.0 2.0 3.0 4.0 5.0 6.0 0:001:002:003:004:005:006:007:008:009:0100:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 0:00 kW kW Day Typical Residential Load Profile April 2011- Day 4 - 1.0 2.0 3.0 4.0 5.0 6.0 0:001:002:003:004:005:006:007:008:009:0100:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 0:00 kW kW month Figure 7: Sample Data for 15 minute, hourly, daily and monthly over 1 day 1 1 Modernizing Electric & Water Infrastructure July 12, 2011 Work Session 2 Objectives ‰ Background info ‰ Detail how Advanced Meter Fort Collins supports Policies and Goals ‰ Show the three faces of Advanced Meter Fort Collins ‰ Provide a project update ‰ Discuss the issues resolution and communication around national hot topics: ƒ Price/Cost ƒ Privacy ƒ Health ‰ Discuss Customer Options ‰ Detail Broadband Communications Network Opportunities ATTACHMENT 4 2 3 Background • 2008 City Council Adopts the Climate Action Plan - Advanced Metering Infrastructure (AMI) identified as one of the strategies for achieving goals. • 1/2009 – Utilities Staff works with R.W. Beck to develop a business case for an AMI system. • 3/2009 – Business case for AMI is positive. AMI proposed as part of Budgeting For Outcomes (BFO) process. • 6/2009 – American Recovery and Reinvestment Act (ARRA) Smart Grid Investment Grants (SGIG) announced.. 4 Background • 7/2009 – Utilities bundles Long Range IT Strategic Plan elements with AMI project and submits grant application • 10/2009 – Department of Energy notifies City of matching grant award for $15.7 million ($31.4 M total project) • 11/2009 – Utilities pulls BFO offer for AMI and returns with financing options to match the grant funding in April of 2010. • 4/2010 – 5/2010 Council approves appropriation for AMI and sale of bonds to finance Light and Powers match to DOE grant. • 6/2010 – 7/2010 Council approves $4 million appropriation for Water meter portion of AMI. 3 5 Background • 6/2010 – City signs Agreement with DOE – three year deadline to spend grant funds begins • 8/2010 – Utilities contracts with Enspiria Inc. to act as the City’s technical advisor through Smart Grid Investment Grant program. • 9/2010 – 11/2010 – Utilities works with Enspiria to develop and release AMI and Meter Data Management System Request for Proposal’s (RFP). • 1/2011 – 3/2011 Evaluate RFP’s, conduct interviews and select vendor • 3/2011 – Present – Contract negotiations with selected vendors – Elster for AMI – Siemens / Emeter for Meter Data Management System 6 Council Established Goals • 2008 Climate Action Plan – 20% Greenhouse gas reduction below 2005 levels by 2020, 80% by 2050 • Advanced Metering Infrastructure first proposed in Climate Action Plan 4 7 Council Established Goals • Energy Policy – 1.5% energy savings – Reduce system peak by 5% by 2015 10% by 2020 – Provide Highly reliable electric service • Average System Availability Index greater than 99.9886% (2010 – 99.9967%) • Customer Average Interruption Index less than 60 minutes (2010 • System Average Interruption Frequency Index less than 1.0 ( 2010 - – Develop renewable resources to meet the Colorado Renewable Energy Standard 8 Achieving the Goals • How does the AMI system help achieve the Climate Action Plan and Energy Policy Goals? • The communication system installed as part of the AMI system provides a foundation for future technologies and programs plus it provides efficiencies today. 5 9 The 3 Faces of Advanced Meter Fort Collins Ongoing Utility Modernization (e.g. Advanced Meter Fort Collins) Local Green Energy (e.g. FortZED, Solar Incentives) New Customer Options (e.g. Smart Energy Pioneer Program) 10 Ongoing Utility Modernization 6 11 Fort Collins ongoing Modernization ‰ 1968 Under-ground Distribution System ‰ 1979 Remote System Monitoring (SCADA) ‰ 1982 Demand Side Management ‰ 1985 Underground Conversion ‰ 1990 Remote Commercial Meter Reading ‰ 1999 Substation Automation ‰ 2012 Small Commercial & Residential Remote Meter Reading, Advanced Meters Fort Collins (Advanced Metering Infrastructure – AMI) 12 Advanced Meter Fort Collins •• New electronic meters (electric and water) •• $32M total cost, $16M from a Department of Energy Grant •• 10-10 -year payback from operational savings (i.e. meter reading) •• Most meters installed from mid-mid -2012 through mid-mid -2013 •• Smart Meters enable many options for customers 7 13 Typical Home Wireless Network The AMI system is much like the wireless computer network in our homes. The Local Area Network (LAN) is made up of computers, game machines, video, television and other wireless devices. The LAN connects to the rest of the world through a Wide Area Network (WAN). LAN WAN Elster EnergyAxis Backbone control A field proven (Tried & True) end-to-end Network offering providing required Smart Grid characteristics; • Authentication • Confidentiality • Data Integrity • Reliability • Security firewall Gatekeeper meters meter/repeater router EAMS DDWWAANN NNLLAANN Utility Network HAN Enterprise Network DA Devices Standalone Gatekeeper 8 15 Remote Meter Reading iissnn’’t t New to Us 16 But it might be new to you 9 17 Ongoing Utility Modernization Results: Higher Reliability & Lower Operating Costs Our customers have some of the lowest bills in the state Our 99.9967% reliability attracts and keeps tech business Remote monitoring speeds repair and reduces truck- rolls Remote meter reading reduces operational costs A smart grid is an integral part of our past and future 18 Local Green Energy lowering the cost of adding renewables More of this... Less of this... 10 19 Local Green Energy Clouds with a Solar Lining Solar energy (photovoltaic) is getting cheaper, and cheaper. But, when a cloud passes between the sun and a solar panel, output can drop in just seconds. Balancing the grid traditionally means adding backup generators (e.g. peakers). With a smarter grid, we can balance the grid with existing load and generation – saving money! 20 Today (without smart grid) 11 21 Today (without smart grid) 22 Today (without smart grid) 12 23 With Smart Grid Tomorrow 24 Tomorrow With Smart Grid 13 25 Tomorrow With Smart Grid 26 New Customer Options & Choices 14 27 New Customer Options & Choices Consumers – know what your bill is before you get it Rate Options: Recharge your electric vehicle when it is cheapest Sell your solar energy to the grid when it is more valuable Smart Home – emerging smart appliances will automatically run to save you money 28 New Electronic Meters Can Provide a Wealth of Info – or Not Can be programmed to communicate... Daily total usage Every 15 minutes – detailed usage Can integrate with a Home Area Network Or can be completely silent – just like today 15 29 “Smart Energy Pioneer” Pilot Program A simple Time-of-Use Rate Don’t need EV or PV to do this – but it helps! Integrate with Home Area Networks Limited enrollment (first 50?) Conceptual Pioneer Smart Rate 30 Lower Cost Electric Vehicle Charging Charge at night – and save! We have enough generation and distribution for lots of EVs, but not if they charge at the same time. So this helps all of us. 16 31 Lower Cost Electric Vehicle Charging Charge at night – and save! We have enough generation and distribution for lots of EVs, but not if they charge at the same time. So this helps all of us. Charge at Night! 32 Photovoltaics More Valuable 17 33 Smarter Homes – can automatically use electricity when it is cheaper if it works with your schedule. 34 New Customer Options: Results Saving your petunias from the meter reader Manage Energy Use – gives engaged consumers access to more information about their usage. Lower Cost Electric Vehicle charging Higher Value Solar PV Enabling new Smart Appliances and Home Devices to automatically save money New Pricing Options like the “Smart Energy Pioneer Rate” 18 35 Update on Project Status ‰ Technology & System Update ‰ Project Schedule ‰ Stakeholder Engagement ƒ Internal: Organizational Change Management ƒ External: Public Involvement & Communications A3 ALPHA Meter/Gatekeeper EnergyAxis: Plug & Play, Auto-Optimizing (Controlled Mesh), Redundant Level 1 Level 1 Level 4 Level 3 Level 2 Level 5 Level 2 Level 3 Level 4 Level 4 Level 4 Level 1 Level 3 DWANs Controlled Mesh vs. Uncontrolled = Preserves Bandwidth 19 Elster EnergyAxis Backbone A field proven (Tried & True) end-to-end Network offering providing required Smart Grid characteristics; • Authentication • Confidentiality • Data Integrity • Reliability • Security firewall Gatekeeper meters meter/repeater control router EAMS DDWWAANN NNLLAANN Utility Network HAN Enterprise Network Meters w/DWAN Direct connection DA Devices Standalone Gatekeeper 38 Status: Project Schedule 20 39 Status: Organizational Change Management (OCM) ‰ Plan Developed ƒ Process & leads identified ‰ Impacted Functions Identified ‰ Implementation Started 40 PICP: Customer Segmentation Status: Public Involvement 21 41 Public Involvement & Communications ‰Methods: Electronic & Traditional Media ƒ Internet ƒ Website ƒ Research ƒ FAQ’s ƒ Flyer ƒ Presentations ƒ Advisory Panel ƒ Others under development per plan ‰Graphic Identity/Sub-branding Issues Resolution & Communications ‰ Communications Underway with “Home Base” Messaging ƒ General information ƒ Price/cost ƒ Privacy ƒ Health 45 22 43 Issues: Price/Cost ‰ Cost issues ƒ Utilities has presented a positive business case that was prepared using nationally recognized standards to Council and the community. ƒ The original business case was prepared by staff and R.W. Beck; ƒ reviewed and validated at a high level by Enspiria. ƒ Headline cases such as those in CA and TX claiming the meters are inaccurate have proved unwarranted by independent laboratories. ƒ The meters open the door for new rate forms that reflect cost of energy at time of use along with other new opportunities, such as increased energy efficiencies. 44 Issues: Privacy & Security ‰ Privacy issues related to customer information ƒ Utilities adheres to strict policies regarding the protection of customer information; ƒ Federal Regulation “Red Flags; FACT Act” ƒ Colorado open records ƒ Internal policies ƒ How the data is handled ƒ How it is released ƒ Security 23 45 Issues: Health ‰Health effects from Radio Frequency electromagnetic fields. ƒ Levels are much less than those from cell phones, microwaves, wireless routers, cordless phones etc.. ƒ Utilities is working with Dr. Bruce Cooper from the Health District to provide an independent and informed risk communication to the community. 46 24 47 Options for Advanced Meter Fort Collins What is the default meter setup? How often will the meters record data? Options How often are the meters read? Pilot programs Manual reading 48 Customer Options 25 49 Customer Option 1 ‰ Standard Mode with Full Functionality ‰ Data Collection & Transmission ƒ Collects data in 15-minute or one-hour intervals ƒ Transmits 4 to 6 times per day via a 1.5-second signal ‰ Costs ƒ Installation and operating costs included in project budget ‰ Considerations ƒ Allows full benefits of new technology (for both the customers and the system) ƒ Creates optimal performance 50 Customer Option 2 ‰ Limited Mode with Lower Functionality ‰ Data Collection & Transmission ƒ Collects data only once per day ƒ Transmits 4 to 6 times per day via a 1.5-second signal ‰ Costs ƒ May include customer cost to program meter ƒ Specific costs under development ‰ Considerations ‰ Collects data less frequently and on a less detailed basis ‰ Limits customer benefits and adds cost ‰ Diminished ability to support Energy Policy 26 51 Customer Option 3 ‰ Manual Mode with Minimal Functionality ‰ Data Collection & Transmission ƒ Meter read manually once per month ‰ Costs ƒ Will include customer cost for manual read ƒ Specific system and customer costs under development ‰ Considerations ‰ Automatic data transmission is disabled ‰ Requires monthly service call (technician and vehicle trip) ‰ Limits customer benefits and adds cost ‰ Diminished ability to support Energy Policy 52 Customer Options Summary Considerations Option 1 Standard Option 2 Limited Option 3 Manual Functionality and ability to take advantage of new technology; allows full customer benefits High Limited Minimal Data collected in 15-minute to one-hour intervals 9 Data collected once per day 9 Data collected once per month via manual read 9 Data transmitted 4 to 6 times per day via a 1.5 second signal 9 9 Additional customer cost 9 9 Additional system cost 9 Requires monthly service call 9 Ability to support Energy Policy High Limited Minimal Optional 27 Tropos Network Opportunities Distribution Automation HAN Meter LAN Distribution Wide Area Network Core Network Mobile Applications Power Quality Sensors Outage Management AMI Network Demand Response PHEV Charging Station Utility Core Systems Distributed Generation DWAN 54 Other Local AMI Projects • Poudre Valley REA – Fort Collins/Loveland - 2009 – 36,000 Landis & Gyr Automated Meters • Fort Collins Loveland Water District / South Fort Collins Sanitation District - 2010 – Sensus & FlexNet14,000 Automated Meters • Cheyenne Light, Fuel & Power - 2010 – 38,000 Elster Meters • Black Hills Energy – Pueblo - 2008 – 56,500 Elster Meters – 750,000 utility customers in CO, Iowa, Kansas, Montana, SD, WY • Xcel Energy – 2008 – 50,000 Meters • City of Fountain - 2011 – Cooper Meters • Colorado Springs - 2009 – 530,000 Landis & Gyr Meters 28 55 Other City Projects • Oklahoma City, OK –Public Safety (Policy & Fire), Building Inspectors, Mobile Workforce and Traffic Control • Corpus Christi, TX – AMI Metering, Mobile Workforce, Building Inspectors, Public Safety, Public Works, Schools • Glendale Water and Power-AMI Metering, Mobile workforce • Burbank Water & Power-AMI Metering, Mobile Workforce, Demand Response, other city services • Rock Hill, SC- AMR, AMI, Mobile Public Safety, Video Security, Public Access Hot Zones • Phoenix, AZ - Traffic Controller Management, signal management, adaptive traffic profiles, predefined event profile, Future signal communications • Tucson, AZ - Mobile Telemedicine, Traffic Controllers, Police Services, Future Intersection Video Surveillance • Ponca City, OK - City workforce, Public Safety, mobile water, energy, SCADA use for work orders, Transportation, Ponca City Free Wi-Fi Service 56 Other City Projects • Savannah, GA- Public Safety, Video Surveillance, Future AMR, ITS, mobile city operations, asset tracking • Lompoc, CA- AMI, Public Internet Access Service, Police, Future Fire, building inspectors • Baton Rouge, LA- Gunshot Location System, Video Surveillance, Future Public Safety Applications • ADWEA – Abu Dhabi, U.A.E-AMR, AMI, Street Lighting Control, Mobile broadband for field workers, Remote SCADA control & monitoring • Avista – Spokane, WA – Distribution Automation, Future AMI, mobile workforce • Vancouver, BC - Public Transit Signal Prioritization • Redwood City, CA - Automated Parking Meters • Mountain View, CA - Free Community Access, AMR • Laguna Beach, CA - Video Fire Watch, Video Lifeguard, Free Public Internet Access Service 29 57 Conclusions ‰ Advanced Meter Fort Collins is currently behind schedule by approximately 2 weeks due to contract negotiations with Elster. ‰ Providing a timely, truthful and transparent dialogue related to the issues of Cost, Health and Privacy with Council on July 12. ‰ Need direction on pursuing opportunities related to the Tropos Broadband Distribution Wide Area Network 58 …Thank you! For more information go to: fcgov.com/advancedmeter  Director,  CITRIS  @  Santa  Cruz Ryan  McCarthy,  2009  CCST  Science  and  Technology  Policy  Fellow Larry  Papay,  CEO,  PQR,  LLC,  mgmt  consulting  firm David  Winickoff,  Assistant  Professor  of  Bioethics  and  Society,  Department  of Environmental  Science,  Policy  and  Management,  UC  Berkeley Paul  Wright,  Director,  UC  Center  for  Information  Technology  Research  in  the  Interest  of Society  (CITRIS) With  Additional  Assistance  From: JD  Stack,  Administrator,  California  Smart  Grid  Center,  College  of  Engineering  and Computer  Science,  California  State  University,  Sacramento CCST  Executive  Director: Susan  Hackwood Project  Manager: Lora  Lee  Martin,  Director,  S&T  Policy  Fellows CCST  Staff: Donna  King,  Executive  Assistant  and  Accountant Sandra  Vargas-­‐De  La  Torre,  Project  Coordinator,  Layout Susan  Bryant,  Former  Vice  Chancellor  for  Research,  UC  Irvine Charles  Elachi,  Director,  Jet  Propulsion  Laboratory David  Gollaher,  President  and  CEO,  California  Healthcare  Institute Corey  Goodman,  Former  President,  Biotherapeutics  and  Bioinnovation  Center,  Pfizer M.R.C.  Greenwood,  President,  The  University  of  Hawai’i  System Susan  Hackwood,  Executive  Director,  California  Council  on  Science  and  Technology Bryan  Hannegan,  Vice  President  of  Environment  and  Renewables,  Electric  Power  Research Institute Sung-­‐Mo  “Steve”  Kang,  Chancellor,  University  of  California,  Merced Charles  Kennedy,  Vice  President  for  Health  Information  Technology,  WellPoint,  Inc. Jude  Laspa,  Deputy  Chief  Operating  Officer,  Bechtel  Group,  Inc. William  Madia,  Former  Senior  Executive  Vice  President  of  Laboratory  Operations,  Battelle David  W.  Martin,  Jr.,  M.D.,  Chairman  &  CEO,  AvidBiotics  Corporation Fariborz  Maseeh,  Founder  and  Managing  Principal,  Picoco  LLC George  H.  Miller,  Director,  Lawrence  Livermore  National  Laboratory Michael  Nacht,  Dean,  Goldman  School  of  Public  Policy,  UC  Berkeley Stephen  D.  Rockwood,  Executive  Vice  President,  Science  Applications  International  Corporation Jeffrey  Rudolph,  President  and  CEO,  California  Science  Center Shankar  Sastry,  Dean,  College  of  Engineering,  University  of  California,  Berkeley Soroosh  Sorooshian,  Distinguished  Professor  and  Director,  Center  for  Hydrometeorology  & Remote  Sensing  (CHRS),  UC  Irvine James  L.  Sweeney,  Director,  Precourt  Institute  for  Energy  Efficiency,  and  Professor  of Management  Science  and  Engineering,  Stanford  University S.  Pete  Worden,  Director,  NASA  Ames  Research  Center Julie  Meier  Wright,  President  and  CEO,  San  Diego  Economic  Development  Corporation Kathy  Yelick,  Director,  National  Energy  Research  Scientific  Computing  Center  (NERSC),  Lawrence Berkeley  National  Laboratory  and  Immunology,  Stanford  University Warren  J.  Baker,  Emeritus,  President,  California  Polytechnic  State  University,  San  Luis Obispo Peter  Cowhey,  Council  Vice-­‐Chair  and  Dean,  School  of  International  Relations  and  Pacific Studies,  UC  San  Diego Bruce  B.  Darling,  Executive  Vice  President,  University  of  California Susan  Hackwood,  Executive  Director,  California  Council  on  Science  and  Technology Randolph  Hall,  Vice  Provost  for  Research  Advancement,  University  of  Southern  California Charles  E.  Harper,  Executive  Chairman,  Sierra  Monolithics,  Inc. Miriam  E.  John,  Council  Chair  and  Emeritus  Vice  President,  Sandia  National  Laboratories, California Mory  Gharib,  Vice  Provost,  California  Institute  of  Technology Bruce  Margon,  Vice  Chancellor  of  Research,  University  of  California,  Santa  Cruz Tina  Nova,  President,  CEO,  and  Director,  Genoptix,  Inc. Lawrence  T.  Papay,  CEO  and  Principal,  PQR,  LLC Patrick  Perry,  Vice  Chancellor  of  Technology,  Research  and  Information  Systems, California  Community  Colleges Rollin  Richmond,  President,  Humboldt  State  University Sam  Traina,  Vice  Chancellor  of  Research,  University  of  California,  Merced  GHz. Repeater  unit  -­‐  A  device  that  can  simultaneously  receive  a  radio  signal  and  retransmit the  signal.  Repeater  units  are  used  to  extend  the  range  of  low  power  transmitters  in  a geographical  area. Router  -­‐  An  electronic  computer  device  that  is  used  to  route  and  forward  information, typically  between  various  computers  within  a  local  area  network  or  between  different local  area  networks. Smart  meter  -­‐  A  digital  device  for  measuring  consumption,  such  as  for  electricity  and natural  gas,  and  sending  the  measurement  to  a  utility  company.  Automated  meter reading  (AMR)  meters  send  information  one-­‐way  only.  Automated  meter  infrastructure (AMI)  meters  are  capable  of  two-­‐way  communications. Specific  absorption  rate  (SAR)  -­‐  The  incremental  energy  absorbed  by  a  mass  of  a  given density.  SAR  is  expressed  in  units  of  watts  per  kilogram  (or  milliwatts  per  gram,  mW/g). Transmitter  -­‐  An  electronic  device  that  produces  RF  energy  that  can  be  transmitted  by  an antenna.  The  transmitted  energy  is  typically  referred  to  a  radio  signal  or  RF  field. Wide  area  network  (WAN)  -­‐  A  computer  network  that  covers  a  broad  area  such  as  a whole  community,  town,  or  city.  Commonly,  WANs  are  implemented  via  a  wireless connection  using  radio  signals.  High-­‐speed  Internet  connections  can  be  provided  to customers  by  wireless  WANs. Wi-­‐Fi  -­‐  An  name  given  to  the  wireless  technology  used  in  home  networks,  mobile phones,  and  other  wireless  electronic  devices  that  employ  the  IEEE  802.11  technologies (a  standard  that  defines  specific  characteristics  of  wireless  local  area  networks).  operation  (e.g.,  24 hours/day).  A  duty  cycle  of  1%  corresponds  to  a  transmitter  operating  on  average  1%  of the  time  (e.g.,  14.4  minutes/day). Electromagnetic  field  (EMF)  -­‐  A  composition  of  both  an  electric  field  and  a  magnetic  field that  are  related  in  a  fixed  way  that  can  convey  electromagnetic  energy.  Antennas produce  electromagnetic  fields  when  they  are  used  to  transmit  signals. Federal  Communications  Commission  (FCC)  -­‐  The  Federal  Communications  Commission (FCC)  is  an  independent  agency  of  the  US  Federal  Government  and  is  directly  responsible to  Congress.  The  FCC  was  established  by  the  Communications  Act  of  1934  and  is  charged with  regulating  interstate  and  international  communications  by  radio,  television,  wire, satellite,  and  cable.  The  FCC  also  allocates  bands  of  frequencies  for  non-­‐government communications  services  (the  NTIA  allocates  government  frequencies).  The  guidelines  for human  exposure  to  radio  frequency  electromagnetic  fields  as  set  by  the  FCC  are contained  in  the  Office  of  Engineering  and  Technology  (OET)  Bulletin  65,  Edition  97-­‐01 (August  1997).  Additional  information  is  contained  in  OET  Bulletin  65  Supplement  A (radio  and  television  broadcast  stations),  Supplement  B  (amateur  radio  stations),  and Supplement  C  (mobile  and  portable  devices). Gigahertz  (GHz)  -­‐  One  billion  Hertz,  or  one  billion  cycles  per  second,  a  measure  of frequency. Hertz  -­‐  The  unit  for  expressing  frequency,  one  Hertz  (Hz)  equals  one  cycle  per  second. Megahertz  (MHz)  -­‐  One  million  Hertz,  or  one  million  cycles  per  second,  a  unit  for expressing  frequency. Mesh  network  -­‐  A  network  providing  a  means  for  routing  data,  voice  and  instructions between  nodes.  A  mesh  network  allows  for  continuous  connections  and  reconfiguration around  broken  or  blocked  data  paths  by  “hopping”  from  node  to  node  until  the destination  is  reached. Milliwatt  per  square  centimeter  (mW/cm2)  -­‐  A  measure  of  the  power  density  flowing through  an  area  of  space,  one  thousandth  (10-­‐3)  of  a  watt  passing  through  a  square centimeter. o Public  Health  Implications  of  Wireless  Technologies Pathophysiology  (August  2009) o Genotoxic  Effects  of  Radiofrequency  Electromagnetic  Fields Pathophysiology  (August  2009) o Epidemiological  Evidence  for  an  Association  Between  Use  of  Wireless Phones  and  Tumor  Diseases Pathophysiology  (August  2009) o Public  Health  Risks  from  Wireless  Technologies:  The  Critical  Need  for Biologically-­‐based  Public  Exposure  Standards  for  Electromagnetic  Fields (2.9MB  PDF) BioInitiative  Briefing  for  President-­‐Elect  Obama  Transition  Team o The  BioInitiative  Report:  A  Rationale  for  A  Biologically-­‐based  Public Exposure  Standard  for  Electromagnetic  Fields  (ELF  and  RF)  (3.6MB  PDF) Cindy  Sage  PowerPoint  Presentation  (November  2007) Wilner  &  Associates o SmartMeters  and  Existing  Electromagnetic  Pollution Wilner  &  Associates  (January  2011)  -­‐  This  report  was  not  commissioned by  CCST o Application  for  Modification  Before  the  California  Public  Utilities Commission  (3.5MB  PDF) Other  Documents • Health  Canada  Safety  Code  6  and  City  of  Toronto's  Proposed  Prudent  Avoidance Policy (2010) • Transmitting  Smart  Meters  Pose  A  Serious  Threat  To  Public  Health (2010) • RF  Safety  and  WiMax  FAQ's:  Addressing  Concerns  About  Perceived  Health  Effects (April  2008) Relevant  Websites • EMF  -­‐  Portal • emfacts.com • emfsafetynetwork.org • lbagroup.com • WHO  -­‐  Electromagnetic  Fields • Electromagnetic  Fields  and  Public  Health  -­‐  Base  Stations  and  Wireless  Networks (Fact  Sheet  N°304) World  Health  Organization  (May  2006) • Electromagnetic  Fields  and  Public  Health  -­‐  Electromagnetic  Hypersensitivity  (Fact Sheet  N°296) World  Health  Organization  (December  2005) • Electromagnetic  Fields  and  Public  Health  -­‐  Mobile  phones  (Fact  Sheet  N°193) World  Health  Organization  (May  2010) Unsolicited  Submissions Documents  Provided  by  Alexander  Blink,  Executive  Director  of  the  DE-­‐Toxics Institute,  Fairfax  CA o Points  and  Sources  Submitted  for  Consideration  by  Alexander  Blink  2 o Points  and  Sources  Submitted  for  Consideration  by  Alexander  Blink  1 o Public  Health  Implications  of  Wireless  Technologies,  Cindy  Sage o Memory  and  Behavior,  By  Henry  Lai,  Bioelectromagnetics  Research Laboratory,  University  of  Washington Sage  Consulting o Assessment  of  Radiofrequency  Microwave  Radiation  Emissions  from Smart  Meters Sage  Associates  (January  2011) o Cindy  Sage  Letter  to  Julius  Knapp  (FCC) (September  22,  2010) o Response  Letter  to  Cindy  Sage  from  Julius  Knapp  (FCC) (August  6,  2010) o Cindy  Sage  Letter  to  Edwin  D.  Mantiply  (FCC) (March  15,  2010) o Bioinitiative  Report:  A  Rational  for  a  Biologically-­‐based  Public  Exposure Standard  for  Electromagnetic  Fields  (ELF  and  RF)  (3.1MB  PDF) o Bioinitiative  Report:  What  is  the  BioInitiative  Report? o Bioinitiative  Report:  Myocardial  Function  Improved  by  Electromagnetic Field  Induction  of  Stress  Protein  hsp70  (1.1MB  PDF)  (Fact  Sheet) National  Cancer  Institute • Cell  Phones  and  Brain  Cancer:  What  We  Know  (and  Don't  Know) National  Cancer  Institute  (September  23,  2008) National  Institute  of  Environmental  Health  Sciences • Electric  and  Magnetic  Fields National  Institute  of  Environmental  Health  Sciences PG&E • Understanding  Radio  Frequency  (RF) PG&E • Supplemental  Report  on  An  Analysis  of  Radiofrequency  Fields  Associated  with Operation  of  PG&E  SmartMeter  Program  Upgrade  System Richard  A.  Tell,  Richard  Tell  Associates,  Inc.  (October  27,  2008) • Smart  Grid:  Utility  Challenges  in  the  21st  Century  (7.4MB  PDF) Andrew  Tang,  Smart  Energy  Web,  Pacific  Gas  and  Electric  Company  (September 18,  2009) • Summary  Discussion  of  RF  Fields  and  the  PG&E  SmartMeter  System Richard  A.  Tell,  Richard  Tell  Associates,  Inc.  (2005  Report  and  2008  Supplemental Report) • Analysis  of  RF  Fields  Associated  with  Operation  of  PG&E  Automatic  Meter Reading  Systems Richard  A.  Tell,  Richard  Tell  Associates,  Inc.  and  J.  Michael  Silva,  P.E.  Enertech Consultants  (April  5,  2005) Provided  by  Raymond  Neutra • www.ehib.org/emf  The  California  Electric  and  Magnetic  Fields  (EMF)  Program • Should  the  World  Health  Organization  (WHO)  Apply  the  Precautionary  Principal  to Low  and  High  Frequency  Electromagnetic  Fields? Raymond  Richard  Neutra Society  for  Risk  Analysis • Risk  Governance  for  Mobile  Phones,  Power  Lines  and  Other  EMF  Technologies Society  for  Risk  Analysis  (2010)  Silver  Spring  Networks  Devices  -­‐  July  6,  2007 • Questions  and  Answers  about  Biological  Effects  and  Potential  Hazards  of Radiofrequency  Electromagnetic  Fields Federal  Communications  Commission  Office  of  Engineering  &  Technology  (August 1999) • Evaluating  Compliance  with  FCC  Guidelines  for  Human  Exposure  to Radiofrequency  Electromagnetic  Fields Federal  Communications  Commission  Office  of  Engineering  &  Technology  (August 1997) Food  and  Drug  Administration • No  Evidence  Linking  Cell  Phone  Use  to  Risk  of  Brain  Tumors U.S.  Food  and  Drug  Administration  (May  2010) Health  Protection  Agency • Wi-­‐Fi Health  Protection  Agency  (Last  reviewed:  October  26,  2009) • Cordless  Telephones  -­‐  Digital  Enhanced  Cordless  Telecommunications  (DECT)  and other  Cordless  Phones Health  Protection  Agency  (Last  reviewed:  September  4,  2008) International  Commission  on  Non-­‐Ionizing  Radiation  Protection  (ICNIRP) • www.icnirp.de  International  Commission  on  Non-­‐Ionizing  Radiation  Protection (ICNIRP) • International  Commission  on  Non-­‐Ionizing  Radiation  Protection  (ICNIRP)  on  the Interphone  Publication International  Commission  on  Non-­‐Ionizing  Radiation  Protection  (May  18,  2010) • ICNIRP  Statement  on  the  "Guidelines  for  Limiting  Exposure  to  Time-­‐Varying Electric,  Magnetic,  and  Electromagnetic  Fields  (up  to  300  GHz)" International  Commission  on  Non-­‐Ionizing  Radiation  Protection  (September  2009) • Epidemiologic  Evidence  on  Mobile  Phones  and  Tumor  Risk International  Commission  on  Non-­‐Ionizing  Radiation  Protection  (September  2009) • Exposure  to  High  Frequency  Electromagnetic  Fields,  Biological  Effects  and  Health Consequences  (100  kHz  -­‐  300  GHz)  2010 • Perspective  on  Radio-­‐Frequency  Exposure  Associated  With  Residential  Automatic Meter  Reading  Technology Electric  Power  Research  Institute  (EPRI)  (February  22,  2010) • Testing  and  Performance  Assessment  for  Field  Applications  of  Advanced  Meters Electric  Power  Research  Institute  (EPRI)  (December  4,  2009) • Overview  of  Personal  Radio  Frequency  Communication  Technologies Electric  Power  Research  Institute  (EPRI)  (September  9,  2008) • Characterizing  and  Quantifying  the  Societal  Benefits  Attributable  to  Smart Metering  Investments Electric  Power  Research  Institute  (EPRI)  (July  2008) • Metering  Technology Electric  Power  Research  Institute  (June  20,  2008) • The  BioInitiative  Working  Group  Report Electric  Power  Research  Institute  (EPRI)  (November  23,  2007) • An  Overview  of  Common  Sources  of  Environmental  Levels  of  Radio  Frequency Fields Electric  Power  Research  Institute  (EPRI)  (September  2002) Environmental  Protection  Agency • United  States  Environmental  Protection  Agency's  Response  to  Janet  Newton (March  8,  2002) • United  States  Environmental  Protection  Agency's  Response  to  Jo-­‐Anne  Basile (September  16,  2002) Epidemiology • Prenatal  and  Postnatal  Exposure  to  Cell  Phone  Use  and  Behavioral  Problems  in Children Epidemiology  July  2008  -­‐  Volume  19  -­‐  Issue  4  -­‐  pp  523-­‐529 European  Journal  of  Oncology  -­‐  Ramazzini  Institute • Non-­‐Thermal  Effects  and  Mechanisms  of  Interaction  between  Electromagnetic Fields  and  Living  Matter (2010) Federal  Communications  Commission  Public  Health  Issues (Fact  Sheet) Australian  Radiation  Protection  and  Nuclear  Safety  Agency  (ARPANSA)  (May 2010) • Radiation  Protection  -­‐  Mobile  Telephones  and  Health  Effects Australian  Radiation  Protection  and  Nuclear  Safety  Agency  (ARPANSA)  (June  25, 2010) Documents  From  the  California  Department  of  Public  Health  (CDPH) • Mixed  Signals  About  Cellphones'  Health  Risks  Hang  Up  Research The  Chronicle  (September  26,  2010) • Summary  of  the  Literature:  What  do  we  Know  About  Cell  Phones  and  Health? (July  20,  2010) • Brain  Tumor  Risk  in  Relation  to  Mobile  Telephone  Use:  Results  of  the INTERPHONE  International  Case  -­‐  Control  Study Oxford  University  Press  (March  8,  2010) • Mobile  Phones  and  Health U.K.  Department  of  Health • Late  Lessons  from  Early  Warnings:  Towards  Realism  and  Precaution  with  EMF? David  Gee,  European  Environment  Agency,  (January  30,  2009) • Statement  of  Finnish  Radiation  and  Nuclear  Safety  Authority  (STUK)  Concerning Mobile  Phones  and  Health Radiation  and  Nuclear  Safety  Authority  -­‐  STUK  (January  7,  2009) • Fact  Sheet:  Children  and  Safe  Cell  Phone  Use Toronto  Public  Health  (July  2008) • Children  and  Mobile  phones:  The  Health  of  the  Following  Generations  in  Danger Russian  National  Committee  on  Non-­‐Ionizing  Radiation  Protection  (April  14,  2008) • AFSSE  Statement  on  Mobile  Phones  and  Health French  Environmental  Health  and  Safety  Agency  -­‐  AFSSE  (April  16,  2003) Committee  on  Man  and  Radiation  (COMAR) • IEEE  Engineering  in  Medicine  and  Biology  Society  Committee  on  Man  and Radiation  (COMAR) • COMAR  Technical  Information  Statement  the  IEEE  Exposure  Limits  for  and  neuroscience Magda  Havas,  B.Sc.,  Ph.D.,  Environmental  &  Resource  Studies,  Trent  University, Peterborough,  Canada Cindy  Sage,  MA,  Department  of  Oncology,  University  Hospital,  Orebro,  Sweden  and  Co-­‐ Editor,  BioInitiative  Report Ray  Neutra,  MD,  Ph.D.,  Epidemiologist,  retired  Chief  of  the  Division  of  Environmental  and Occupational  Disease  Control,  California  Department  of  Public  Health  (CDPH)  after  which  he  was  appointed  to  the Board. David  E  Winickoff Associate  Professor  of  Bioethics  and  Society,  Department  of  Environmental  Science,  Policy and  Management,  UC  Berkeley David  Winickoff  (JD,  MA)  is  Associate  Professor  of  Bioethics  and  Society  at  UC Berkeley,  where  he  co-­‐directs  the  UC  Berkeley  Science,  Technology  and  Society Center.  Trained  at  Yale,  Harvard  Law  School,  and  Cambridge  University,  he  has published  over  30  articles  in  leading  bioethics,  biomedical,  legal  and  science studies  journals  such  as  The  New  England  Journal  of  Medicine,  the  Yale  Journal  of International  Law,  and  Science,  Technology  &  Human  Values.  His  academic  and policy  work  spans  topics  of  biotechnology,  intellectual  property,  geo-­‐engineering, risk-­‐based  regulation,  and  human  subjects  research. Paul  Wright Director,  UC  Center  for  Information  Technology  Research  in  the  Interest  of  Society  (CITRIS) As  Director  of  CITRIS  Wright  oversees  projects  on  large  societal  problems  such  as energy  and  the  environment;  IT  for  healthcare;  and  intelligent  infrastructures such  as:  public  safety,  water  management  and  sustainability.  Wright  is  a  professor in  the  mechanical  engineering  department,  and  holds  the  A.  Martin  Berlin  Chair. He  is  also  a  co-­‐director  of  the  Berkeley  Manufacturing  Institute  (BMI)  and  co-­‐ director  of  the  Berkeley  Wireless  Research  Center  (BWRC).  Born  in  London,  he obtained  his  degrees  from  the  University  of  Birmingham,  England  and  came  to the  United  States  in  1979  following  appointments  at  the  University  of  Auckland, New  Zealand  and  Cambridge  University  England.  He  is  also  a  member  of  the National  Academy  of  Engineering. Ryan  McCarthy Science  and  Technology  Policy  Fellow,  California  Council  on  Science  and  Technology McCarthy  recently  completed  the  CCST  Science  and  Technology  Policy  Fellowship in  the  office  of  California  Assembly  Member  Wilmer  Amina  Carter,  where  he advised  on  issues  associated  with  energy,  utilities,  and  the  environment,  among others.  McCarthy  holds  a  master  and  doctorate  degree  in  civil  and  environmental engineering  from  UC  Davis,  and  a  bachelor’s  degree  in  structural  engineering  from UC  San  Diego.  His  expertise  lies  in  transportation  and  energy  systems  analysis, specifically  regarding  the  electricity  grid  in  California  and  impacts  of  electric vehicles  on  energy  use  and  emissions  in  the  state.  Information  Technologies  Institute  in  the Baskin  School  of  Engineering.  In  1984,  he  joined  the  UCSC  faculty  to  start  the engineering  programs,  coming  from  IBM  where  he  was  a  senior  manager  at  IBM Almaden  Research.  His  research  interests  include  system  architecture,  design, and  performance,  simulation  and  modeling  of  complex  systems,  computer networks  and  multimedia,  real-­‐time  data  acquisition,  and  control  systems. Mantey  is  a  Fellow  of  the  Institute  of  Electrical  and  Electronics  Engineers.  His current  projects  at  CITRIS  include  the  Residential  Load  Monitoring  Project  and work  on  power  distribution  system  monitoring  and  reliability.  Mantey  received his  B.S.  (magna  cum  laude)  from  the  University  of  Notre  Dame,  his  M.S.  from  the University  of  Wisconsin-­‐Madison,  and  his  Ph.D.  from  Stanford  University,  all  in electrical  engineering.  He  is  a  Fellow  of  the  Institute  of  Electrical  and  Electronics Engineers  (IEEE). Emir  José  Macari Dean  of  Engineering  and  Computer  Science,  California  State  University,  Sacramento  and Director  of  the  California  Smart  Grid  Center Prior  to  his  appointment  as  dean  at  CSU  Sacramento,  Macari  was  dean  of  the College  of  Science,  Mathematics  and  Technology  at  the  University  of  Texas  at Brownsville.  Prior  to  that,  he  served  as  the  program  director  for  the  Centers  of Research  Excellence  in  Science  and  Technology  at  the  National  Science Foundation.  He  spent  five  years  as  the  Chair  and  Bingham  C.  Stewart Distinguished  Professor  in  the  Department  of  Civil  and  Environmental  Engineering at  Louisiana  State  University.  At  the  Georgia  Institute  of  Technology  he  taught both  engineering  and  public  policy  and  at  the  University  of  Puerto  Rico  he  was  a professor  and  director  of  Civil  Infrastructure  Research  Center.  He  has  also  worked as  a  civil  engineer  in  private  industry  and  has  been  a  fellow  at  NASA.  Macari  holds both  a  doctorate  and  a  master’s  degree  in  civil  engineering  geomechanics  from the  University  of  Colorado.  He  has  a  bachelor’s  degree  in  civil  engineering geomechanics  from  Virginia  Tech  University. Larry  Papay  CCST  Board  Member CEO,  PQR,  LLC,  mgmt  consulting  firm Papay  is  currently  CEO  and  Principal  of  PQR,  LLC,  a  management  consulting  firm specializing  in  managerial,  financial,  and  technical  strategies  for  a  variety  of clients  in  electric  power  and  other  energy  areas.  His  previous  positions  include Sector  Vice  President  for  the  Integrated  Solutions  Sector,  SAIC;  Senior  Vice President  and  General  Manager  of  Bechtel  Technology  &  Consulting;  and  Senior  issue  being  addressed  is  done  so  in  a  targeted  way  with  results  that  are  clear and  sound. In  all,  this  report  reflects  the  input  and  expertise  of  nearly  30  people  in  addition  to  the project  team.  Reviewers  include  experts  from  academia,  industry,  national  laboratories, and  non-­‐profit  organizations. We  wish  to  extend  our  sincere  appreciation  to  the  project  team  members  who  have helped  produce  this  report.  Their  expertise  and  diligence  has  been  invaluable,  both  in rigorously  honing  the  accuracy  and  focus  of  the  work  and  in  ensuring  that  the perspectives  of  their  respective  areas  of  expertise  and  institutions  were  taken  into account.  Without  the  insightful  feedback  that  these  experts  generously  provided,  this report  could  not  have  been  completed. Rollin  Richmond,  Smart  Meter  Project  Chair,  CCST  Board  Member President  Humboldt  State  University,  CSU Prior  to  Richmond’s  appointment  at  Humboldt  State  University  in  2002,  he  had  a distinguished  career  as  a  faculty  member,  researcher  in  evolutionary  biology  and academic  administrator.  Richmond  received  a  Ph.D.  in  genetics  from  the Rockefeller  University  and  a  bachelor’s  degree  in  zoology  from  San  Diego  State University.  Dr.  Richmond’s  career  has  included:  Chairperson  of  biology  at  Indiana University,  founding  Dean  of  the  College  of  Arts  and  Sciences  at  the  University  of South  Florida,  Provost  at  the  State  University  of  New  York  at  Stony  Brook,  and Provost  and  Professor  of  Zoology  and  Genetics  at  Iowa  State  University.  He  was named  the  sixth  President  of  Humboldt  State  University  in  July  of  2002.  Dr. Richmond  is  a  fellow  of  the  American  Association  for  the  Advancement  of  Science and  a  member  of  Phi  Beta  Kappa.  His  research  interests  are  in  evolutionary genetics. Jane  Long,  CCST’s  California’s  Energy  Future  Project  Co-­‐Chair  and  CCST  Sr.  Fellow Associate  Director  at  Large,  Global  Security  Directorate  Fellow,  Center  for  Global  Security Research  Lawrence  Livermore  National  Laboratory Dr.  Long  is  the  Principal  Associate  Director  at  Large  for  Lawrence  Livermore National  Laboratory  working  on  energy  and  climate.  She  is  also  a  Fellow  in  the LLNL  Center  for  Global  Strategic  Research.  Her  current  interests  are  in  reinvention of  the  energy  system  in  light  of  climate  change,  national  security  issues,  economic stress,  and  ecological  breakdown.  She  holds  a  bachelor's  degree  in  engineering from  Brown  University  and  Masters  and  Ph.D.  from  UC  Berkeley.  to  CCST (September,  2010)  in  support  of  Mr.  Huffman’s  request.  (Appendix  A  -­‐  letters) The  CCST  Executive  Committee  appointed  a  Smart  Meter  Project  Team  that  oversaw  the development  of  a  response  on  the  issue  (Appendix  C): • Rollin  Richmond  (Chair),  President  Humboldt  State  University,  CSU • Jane  Long,  Associate  Director  at  Large,  Global  Security  Directorate  Fellow,  Center for  Global  Security  Research  Lawrence  Livermore  National  Laboratory • Emir Macari, Dean of Engineering and Computer Science, California State University,  Sacramento  and  Director  of  the  California  Smart  Grid  Center • Patrick  Mantey,  Director,  CITRIS  @  Santa  Cruz • Ryan  McCarthy,  2009  CCST  Science  and  Technology  Policy  Fellow • Larry  Papay,  CEO,  PQR,  LLC,  mgmt  consulting  firm • David Winickoff, Assistant Professor of Bioethics and Society, Department of Environmental  Science,  Policy  and  Management,  UC  Berkeley • Paul Wright, Director, UC Center for Information Technology Research in the Interest  of  Society  (CITRIS) In  addition  to  those  on  the  project  team,  CCST  approached  over  two  dozen  technical experts  to  contribute  their  opinion  to  inform  CCST’s  response.  The  experts  were  referred from  a  variety  of  sources  and  were  vetted  by  the  Smart  Meter  Project  Team.  Efforts were  made  to  include  both  biological  and  physical  scientists  and  engineers  to  help provide  broad  context  and  perspective  to  the  response.  Many  of  the  experts  approached indicated  they  did  not  time  to  provide  a  written  response  however  they  provided references  to  additional  experts  and/or  literature  for  review.  A  few  experts  identified were  not  asked  to  contribute  due  to  affiliations  that  were  felt  to  be  a  conflict  of  interest. Experts  were  asked  to  provide  written  comment  on  two  issues,  to  provide  referral  to other  experts,  and  to  suggest  literature  that  should  be  reviewed.  Appendix  D  provides  a list  of  those  experts  who  provided  written  comment. Smart  Meter  Project  Team  members  and  the  experts  providing  written  technical  input completed  a  conflict  of  interest  disclosure  form  to  reveal  any  activities  that  could  create the  potential  perception  of  a  conflict. In  addition  to  written  and  oral  input  from  technical  experts,  CCST  identified  relevant reports  and  other  sources  of  information  to  inform  the  final  report.  This  material  can  be found  listed  in  Appendix  E  and  on  a  CCST  website:  http://ccst.us/projects/smart/.  devices  in  the same  range  of  RF  emissions.  Exposure  levels  from  smart  meters  are  well  below  the thresholds  for  such  effects. 2. There  is  no  evidence  that  additional  standards  are  needed  to  protect  the  public  from smart  meters. The  topic  of  potential  health  impacts  from  RF  exposure  in  general,  including  the  small  RF exposure  levels  of  smart  meters,  continues  to  be  of  concern.  This  report  has  been  developed  to provide  readers  and  consumers  with  factual,  relevant  information  about  the: • Scientific  basis  underpinning  current  RF  limits • Need  for  further  research  into  RF  effects • Relative  nature  of  RF  emissions  from  a  wide  array  of  devices  commonly  used  throughout world  (e.g.,  cellular  and  cordless  phones,  Wi-­‐Fi  devices,  laptop  computers,  baby monitors,  microwave  ovens). CCST  encourages  the  ongoing  development  of  unbiased  sources  of  readily  available  and  clear facts  for  public  information  and  education.  A  web-­‐based  repository  of  written  reports, frequently  asked  questions  and  answers,  graphics,  and  video  demonstrations  would  provide consumers  with  factual,  relevant  information  with  which  to  better  understand  RF  effects  in  our environment.  Strength (or  Power  Density) Microwatts/square  centimeter (µW/cm2) Meter  signal  strength  very  small compared  to  other  devices  listed above 3.  Distance  from  Signal Signal  strength  drops  rapidly (doubling  distance  cuts  power density  by  four) Example: 1  ft.  –  8.8  µW/cm2 3  ft.  –  1.0  µW/cm2 10  ft.  –  0.1  µW/cm2 4.  Signal  Duration -­‐  Extremely  short  amount  of  time (2.0-­‐5.0%,  max.) -­‐  No  RF  signal  95-­‐98%  of  the  time (over  23  hours/day) -­‐  Often  overlooked  factor  when comparing  devices. -­‐  Short  duration  combined  with weak  signal  strength  yields  tiny exposures 5.  Thermal  Effects -­‐  Scientific  consensus  on  proven effects  from  heat  at  high  RF  levels -­‐  FCC  “margin-­‐of-­‐safety”  limits  50 times  lower  than  hazardous exposure  level -­‐  Typical  meter  operates  at  70 times  less  than  FCC  limit  and 3,500  times  less  than  the demonstrated  hazard  level 6.  Non-­‐thermal  Effects -­‐  Inconclusive  research  to  date -­‐  No  established  cause-­‐and-­‐effect pointing  to  negative  health impacts Continuing  research  needed  make  knowledgeable  judgments  about  how  to prudently  minimize  possible  risks  to  themselves  and  their  families  by  utilizing  standards-­‐ compliant  devices  at  known  safe  distances.  Also,  people  will  be  better  able  to  gauge  relative field  strengths  of  various  RF  sources  in  our  everyday  environment  (e.g.,  mobile  phones,  electric blankets,  clock  radios,  TV  and  radio,  computers,  smart  meters,  power  lines,  microwave  ovens, etc.).  An  ongoing  regularly  updated  source  of  unbiased  information  on  the  state  of  scientific research,  both  proven  and  as-­‐yet-­‐unproven  causal  effects  being  studied,  if  presented  by  an independent  entity,  would  provide  consumers  a  credible  and  transparent  source  from  which  to obtain  facts  about  RF  in  our  environment. CCST  is  not  currently  aware  of  a  single  website  with  up-­‐to-­‐date  consumer  information  which  we are  able  to  endorse  as  impartial. Alternatives  to  Wireless? Assembly  Member  Huffman  has  inquired  about  potential  alternatives  to  wireless communication  with  smart  meters.  There  are  currently  several  other  methods  of  transmitting data  from  some  smart  meters  to  the  utility  company.  These  methods  include  transmitting  over a  power  line  or  wired  through  phone  lines,  fiber-­‐optic  or  coaxial  cable.  Each  method  has tradeoffs  among  cost  and  performance  (e.g.,  how  much  data  can  be  carried,  how  far,  how  fast). The  ability  to  have  a  transmission  protocol  alternative  to  wireless  depends  upon  the  type  and configuration  of  the  meter  used.  Some  existing  smart  meters  can  be  hard-­‐wired,  while  others would  have  to  be  modified  or  replaced.  The  communications  board  plugs  into  a  digital  meter. The  current  PG&E  meters  use  a  SilverSpring  communications  board  that  only  supports  wireless protocol.  SilverSpring  or  another  vendor  could  provide  an  alternative  communications  means  if such  were  warranted  and  cost  effective.  The  related  costs  of  an  alternative  approach  would need  to  be  factored  into  the  decision  making  process  related  to  different  options. If  future  research  were  to  establish  a  causal  relationship  between  RF  emissions  and  negative human  health  impacts,  industries  and  governments  worldwide  may  be  faced  with  difficult choices  about  practical  alternatives  to  avoid  and  mitigate  such  effects.  This  would  greatly affect  the  widespread  use  of  mobile  phones,  cordless  phones,  Wi-­‐Fi  devices,  smart  meters, walkie-­‐talkies,  microwave  ovens,  and  many  other  everyday  appliances  and  devices  emitting  RF. If  such  a  hypothetical  scenario  were  to  occur,  smart  meters  could  conceivably  be  adapted  to non-­‐wireless  transmission  of  data.  However,  retrofitting  millions  of  smart  meters  with  hard-­‐ wired  technology  could  be  difficult  and  costly.  Perhaps  more  importantly,  retrofitting  smart  a  multifamily  building,  such  as  an  apartment  house.  The exposure  level  was  equivalent  to  8%  of  the  FCC  standard. In  the  same  study  EPRI  measured  exposure  of  one  meter  from  eight  inches  behind  the  meter panel  box  in  order  to  simulate  proximity  on  the  opposite  site  of  the  meter  wall.  At  5%  duty cycle  it  yielded  an  exposure  of  only  0.03%  of  the  FCC  standard.  Even  at  100%  duty  cycle  (i.e., always  transmitting),  exposure  at  eight  inches  behind  the  meter  was  0.6%  of  the  FCC  limit. Is  the  FCC  Standard  Sufficient  to  Protect  Public  Health? The  FCC  guidelines  do  provide  a  significant  factor  of  safety  against  thermal  impacts  the  only currently  understood  human  health  impact  that  occurs  at  the  power  level  and  within  the frequency  band  that  smart  meters  use.  In  addition  to  the  factor  of  safety  built  into  the guidelines,  at  worst,  human  exposure  to  RF  from  smart  meter  infrastructure  operating  at  even 50%  duty  cycle  will  be  significantly  lower  than  the  guidelines.  While  additional  study  is  needed to  understand  potential  non-­‐thermal  effects  of  exposure  to  RF  and  effects  of  cumulative  and prolonged  exposure  to  several  devices  emitting  RF,  given  current  scientific  knowledge  the  FCC guideline  provides  an  adequate  margin  of  safety  against  known  thermal  effects. Are  Additional  Technology-­‐specific  Standards  Needed? The  FCC  guidelines  protect  against  thermal  effects  of  RF  exposure.  Many  non-­‐thermal  effects have  been  suggested,  and  additional  research  is  needed  to  better  understand  and  scientifically validate  them. Given  the  scientific  uncertainty  around  non-­‐thermal  effects  of  all  RF  emitting  equipment,  at  this time  there  is  no  clear  indication  of  what,  if  any,  additional  standards  might  be  needed.  Neither is  there  a  basis  from  which  to  understand  what  types  of  standards  could  be  helpful  or appropriate.  Without  a  clear  understanding  of  the  biological  mechanisms  at  play,  the  costs  and benefits  of  additional  standards  for  RF  emitting  devices  including  smart  meters,  cannot  be determined  at  this  time. 35  EPRI  (2010)  “A  perspective  on  radio-­‐frequency  exposure  associated  with  residential  automatic  meter  reading technology,”  Electric  Power  Research  Institute,  February.  cycle,  or  signal  duration  is  an  often-­‐overlooked  factor  when  comparing  exposures  from  different kinds  of  devices  (e.g.,  mobile  phones,  Wi-­‐Fi  routers,  smart  meters,  microwave  ovens,  FM  radio/TV  broadcast signals). Duty  cycles  of  various  devices  vary  considerably.  The  duty  cycle  of  AM/FM  radio/TV  broadcasts,  are  100%;  in  other words,  they  are  transmitting  continuously.  Mobile  phones  usage  varies  widely  from  user  to  user,  of  course. However,  the  national  average  use  is  about  450  minutes  per  month.  This  usage  equates  to  a  1%  duty  cycle  for  the “average”  user. From  information  that  CCST  was  able  to  obtain  we  understand  that  the  smart  meter  transmitter  being  used  by PG&E  operates  with  a  maximum  power  output  of  1  W  (watt)  and  within  the  902-­‐928  MHz  (mega-­‐hertz)  frequency band.  Each  smart  meter  is  part  of  a  broader  “mesh”  network  and  may  act  as  a  relay  between  other  smart  meters and  utility  access  points.  The  transmitter  at  each  smart  meter  will  be  idle  some  of  the  time,  with  the  percent  of time  idle  (not  transmitting)  depending  on  the  amount  and  schedule  of  data  transmissions  made  from  each  meter, the  relaying  of  data  from  other  meters  that  an  individual  meter  does,  and  the  networking  protocol  (algorithm)  that manages  control  and  use  of  the  communications  paths  in  the  mesh  network. Theoretically  the  transmit  time  could  increase  substantially  beyond  today’s  actual  operation  level  if  new applications  and  functionality  are  added  to  the  meter’s  communication  module  in  the  future.  For  a  hypothetical “worst  case”  illustration  (i.e.,  if  the  meter  malfunctioned  and  was  stuck  in  the  transmit  mode),  an  absolute  upper end  duty  cycle  would  be  100%,  where  the  transmitter  is  always  on.  The  table  below  compares  the  effect  of different  duty  cycles  against  the  FCC  guidelines  for  human  exposure  limits. Typical  Smart  Meter  Operation With  Repeater  Activity Scaled  Hypothetical  Maximum  Use  Case (i.e.,  always  on) 5%  Duty  Cycle 100%  Duty  Cycle 72  minutes/day 24  hours/day 3%  of  FCC  limit 60%  of  FCC  limit Source  data  on  operating  duty  cycles  (i.e.,  first  column)  from  Electric  Power  Research  Institute  (EPRI)  actual  field  testing  of  smart  meters,  as reported  in  Radio  Frequency  Exposure  Levels  from  Smart  Meters,  November  2010.  Second  column  hypothetical  maximum  case  derived  through extrapolation  of  first  column  data.  Both  exposure  levels  at  1  foot  distance. In  summary,  the  duty  cycles  of  smart  meters  in  typical  meter-­‐read  operation  and  added  maximum-­‐case  repeater operation  result  in  exposures  that  are  3%  of  the  FCC  exposure  guidelines.  Even  in  a  hypothetical  always-­‐on scenario  the  maximum  exposure  would  be  about  60%  of  the  FCC  limit,  which  provides  a  wide  safety  margin  from known  thermal  effects  of  RF  emissions.  1%  of population) 0.000005  (50%  of population) Far  from  source  (in most  cases) Constant Relatively  uniform Smart  meter 900  MHz,  2400  MHz 0.0001  (250  mW,  1% duty  cycle) 0.002  (1  W,  5%  duty cycle) 0.000009  (250  mW, 1%  duty  cycle) 0.0002  (1  W,  5% duty  cycle) 3  feet 10  feet When  in  proximity during  transmission Localized,  non-­‐ uniform Source:  Electric  Power  Research  Institute  (EPRI),  Radio  Frequency  Exposure  Levels  from  Smart  Meters  (November  2010)  and  converted  from  mW/cm2.  Smart meter  figures  represent  100%  duty  cycle  (i.e.,  always  on)  as  hypothetical  maximum  use  case. 31  “Radio-­‐Frequency  Exposure  Levels  from  Smart  Meters”,  white  paper  by  Rob  Kavet  and  Gabor  Mezei  of  the Electric  Power  Research  Institute  (EPRI).  November  2010. 32  Foster,  K.R.  (2007)  Radiofrequency  exposure  from  wireless  LANS  utilizing  WI-­‐FFI  technology.  Health Physics,  Vol.  92,  No.  3,  March,  pp.  280-­‐282. 33  Schmidt,  G.  et  al.  (2007)  Exposure  of  the  general  public  due  to  wireless  LAN  applications  in  public Places,  Radiation  Protection  Dosimetry,  Vol.  123,  No.  1,  Epub  June  11,  pp.  48-­‐52. 34  EPA  (1986)  The  Radiofrequency  Radiation  Environment:  Environmental  Exposure  Levels  and  RF  Radiation Emitting  Sources,  EPA  520/1-­‐85-­‐014,  U.S.  Environmental  Protection  Agency,  July. 0 Minimum Maximum 1000 500 2000 1500 3000 2500 4000 3500 5000 4500 1000 50 40 4 0.2 0.005 5000 200 40 4 1 1  Devices Health  concerns  surrounding  RF  from  smart  meters  are  similar  to  those  from  many  other devices  that  we  use  in  our  daily  lives,  including  cordless  and  mobile  telephones,  microwave ovens,  wireless  routers,  hair  dryers,  and  wireless-­‐enabled  laptop  computers. In  addition  to  slight  differences  in  frequency  and  power  levels,  which  affect  human  absorption of  RF  from  these  devices,  the  primary  difference  among  them  is  how  they  are  used.  Cell phones,  for  example,  are  often  used  for  many  minutes  at  a  time,  several  times  over  the  course of  a  day,  and  held  directly  next  to  one’s  head. For  perspective,  microwave  ovens  operate  at  a  similar  frequency  as  the  HAN  transmitter  of smart  meters  (2.45  GHz),  and  the  U.S.  Food  and  Drug  Administration  has  set  limits  on  leakage levels  that  are  five  times  higher  (5,000  μW  /cm2)  than  the  FCC  limit  for  smart  meters  and  other devices 29  EPRI  (2010)  operating  “Radio  Frequency  at  2.4  GHz.  Exposure 30  Wireless  Levels  routers  from  Smart  and  Meters,  Wi-­‐Fi ”  equipment  Electric  Power  produce  Research  radiofrequency  Institute,  November 2010. 30  FDA,  “Summary  of  the  Electronic  Product  Radiation  Control  Provisions  of  the  Federal  Food,  Drug,  and  Cosmetic Act,”  U.S.  Food  and  Drug  Administration.  (http://www.fda.gov/Radiation-­‐ EmittingProducts/ElectronicProductRadiationControlProgram/LawsandRegulations/ucm118156.htm) 180 20 1.8 0.2 0.018 0 20 40 60 80 100 120 140 160 180 1 3 10 30 100 μW/cm2 Distance  in  Feet  was  stuck  in  the  always-­‐on  transmit  mode  (i.e.,  100%  duty  cycle), exposure  levels  would  be  60%  of  the  FCC  limit  for  an  AMR  transmitter.  For  a  250mW  HAN  transmitter  at  a  5% duty  cycle,  the  level  would  be  .45%  of  the  FCC  limit  and  9%  of  the  FCC  limit  if  the  transmitter  were  on  100%. Exposure  figures  derived  from  November  2010  Electric  Power  Research  Institute  (EPRI)  field  measurement  study entitled  “Radio  Frequency  Exposure  Levels  from  Smart  Meters”.28 Power  Density  (and  Exposure  Level)  Declines  Rapidly  with  Distance The  power  density  from  smart  meters,  or  other  devices  that  emit  RF,  falls  off  dramatically  with distance.  Figure  6  illustrates  this  affect  for  an  example  smart  meter.  While  the  estimated maximum  exposure  level  at  1  foot  from  the  meter  with  a  duty  cycle  of  50%  is  180  μW/cm2  (far below  the  FCC  guidelines),  at  a  distance  of  about  10  feet,  the  power-­‐density  exposure approaches  zero. 28  EPRI  (2010)  “Radio  Frequency  Exposure  Levels  from  Smart  Meters,”  Electric  Power  Research  Institute,  November 2010. 0 200 400 600 800 1000 1200 0 500 1000 1500 2000 2500 Max.  permissible  exposure  (MPE)  (μW/cm2 ) Frequency  (MHz) FCC  Limit If  on  50% Max  exposure  from  smart  meter  HAN transmi�er  at  5%,  50%  and  100%  duty  cycle FCC  Limit 100%  if  always  on Max  exposure  from  smart  meter  AMR transmi�er  at  5%  duty  cycle  smart  meter  network  it  is  noted  that  the FCC  limits  on  MPE  include  a  factor  of  safety,  and  the  perceived  hazardous  exposure  level  is  50 times  higher  than  the  FCC  limits.26  The  study  estimates  that  the  highest  exposure  from  smart meters,  if  an  individual  were  standing  directly  in  front  of  and  next  to  the  meter,  would  be  8.8 μW/cm2  transmitting  at  2  to  4%  of  the  time.  The  study  notes  that  this  is  almost  70  times  less than  the  FCC  limit  and  3,500  times  less  than  the  demonstrated  hazard  level.  In  all  likelihood, individuals  will  be  much  farther  away  from  smart  meters  and  likely  behind  them,  (within  a structure)  where  power  density  will  be  much  lower.  The  highest  exposure  from  the  entire smart  meter  system  would  occur  immediately  adjacent  to  an  access  point.  It  is  very  unlikely that  an  individual  would  be  immediately  adjacent  to  an  access  point,  as  they  are  normally located  25  feet  above  the  ground  on  a  telephone  or  electrical  pole  or  other  structure.  The  peak power  density  from  an  access  point  is  estimated  to  be  24.4  μW/cm2,  or  about  25  times  less than  the  FCC  limit.  From  the  ground,  exposure  to  power  density  from  access  points  is estimated  to  be  15,000  times  less  than  the  FCC  limit  in  great  part  due  to  the  distance  from  the device. The  PG&E  commissioned  report  by  Richard  Tell  Associates  is  based  only  on  an  AMR  duty  cycle of  transmitting  data  once  every  four  hours  which  results  in  this  very  low  estimated  peak  power. However,  we  are  not  aware  of  the  justification  for  using  averaging  over  a  four-­‐hour  period.  We do  know  the  FCC27  allows  averaging  of  exposure  over  a  designated  period  (30  minutes).  To truly  be  a  smart  grid  the  data  will  be  transmitted  at  a  much  more  frequent  rate  than  this.  In this  report  we  look  at  the  worst-­‐case  scenario,  a  meter  that  is  stuck  in  the  “on”  position, constantly  relaying,  at  a  100%  duty  cycle.  Even  in  this  100%  scenario  the  RF  emissions  would  be measurably  below  the  FCC  limits  for  thermal  effects. 26  Tell,  R.  (2008)  “Supplemental  Report  on  An  Analysis  of  Radiofrequency  Fields  Associated  with  Operation  of  the PG&E  Smart  Meter  Program  Upgrade  System,”  Prepared  for  Pacific  Gas  &  Electric  Company,  Richard  Tell Associates,  Inc.,  October  27. (http://www.pge.com/includes/docs/pdfs/shared/edusafety/systemworks/rfsafety/rf_fields_supplemental_report _2008.pdf) 27  http://www.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet56/oet56e4.pdf phones,  that  are  used  in  close  proximity  to  human  tissue.19  The  FCC  limits,  as  well  as  the underlying  ANSI  and  NCRP  limits,  are  based  on  a  SAR  threshold  of  4  W/kg.  At  the  time  of  the FCC  rulemaking,  and  still  today,  behavioral  disruption  in  laboratory  animals  (including  non-­‐ human  primates)  at  this  absorption  rate  is  the  only  adverse  health  impact  that  has  been  clearly linked  to  RF  at  levels  similar  to  those  emitted  by  smart  meters.  This  finding  is  supported  in scientific  literature20,  21  and  by  the  World  Health  Organization  and  many  health  agencies  in Europe.22,  23  The  FCC  limit  of  1.6  W/kg  provides  a  significant  factor  of  safety  against  this threshold. Limits  on  SAR  provide  the  basis  for  another  measurement  of  exposure,  maximum  permissible exposure  (MPE).  MPE  limits  average  exposure  over  a  given  time  period  (usually  30  minutes  for general  exposure)  from  a  device  and  is  often  used  for  exposure  to  stationary  devices  and  where human  exposure  is  likely  to  occur  at  a  distance  of  more  than  20  cm.  It  is  measured  in  micro (106)  watts-­‐per-­‐square-­‐centimeter  (μW/cm2),  and  accounts  for  the  fact  that  the  human  body absorbs  energy  more  efficiently  at  some  radiofrequencies  than  others.  The  human  body absorbs  energy  most  efficiently  in  the  range  of  30-­‐300  MHz,  and  the  corresponding  MPE  limits for  RF  emissions  in  this  range  are  consequently  the  most  stringent.  In  the  frequency  bands where  smart  meters  operate,  including  PG&E’s,  namely  the  902-­‐928  MHz  band  and  2.4  GHz range,  the  human  body  absorbs  energy  less  efficiently,  and  the  MPE  limits  are  less  restrictive. The  FCC  limits  on  MPE  are  summarized  in  Figure  5.24,  25  At  902  MHz,  appropriate  for  operation of 19  FCC  the  (  AMR 2001)  “Additional  transmitter  Information  of  the  smart  for  Evaluating  meter,  Compliance  the  FCC  limit  of  Mobile  is  601  and  μW/  Portable cm2.  Devices  At  higher  with  frequencies,  FCC  Limits  for Human  Exposure  to  Radiofrequency  Emissions,”  Supplement  C  (Edition  01-­‐01)  to  OET  Bulletin  65  (Edition  97-­‐01), Federal  Communications  Commission,  June. (http://www.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet65/oet65c.pdf) 20  D'Andrea,  J.A.,  Adair,  E.R.,  and  J.O.  de  Lorge  (2003)  Behavioral  and  cognitive  effects  of  microwave  exposure, Bioelectromagnetics  Suppl  6,  S39-­‐62  (2003). 21  Sheppard,  A.R,  Swicord,  M.  L.,  and  Q.  Balzano  (2008)  Quantitative  evaluations  of  mechanisms  of  radiofrequency interactions  with  biological  molecules  and  processes,  Health  Phys  95,  365-­‐96  (2008). 22  The  World  Health  Organization  has  reviewed  international  guidelines  for  limiting  radiofrequency  exposure  and scientific  studies  related  to  human  health  impacts  and  concludes  that  exposure  below  guideline  limits  don’t  appear to  have  health  consequences.  (http://www.who.int/peh-­‐emf/standards/en/) 23  Committee  on  Man  and  Radiation  (COMAR)  (2009)  “Technical  Information  Statement:  Expert  reviews  on potential  health  effects  of  radiofrequency  electromagnetic  fields  and  comments  on  The  Bioinitiative  Report,” Health  Physics  97(4):348-­‐356  (2009). 24  FCC  (1997)  “Evaluating  Compliance  with  FCC  Guidelines  for  Human  Exposure  to  Radiofrequency  Electromagnetic Fields,”  OET  Bulletin  65  (Edition  97-­‐01),  Federal  Communications  Commission,  August. (http://www.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet65/oet65.pdf) 25  FCC  (1999)  “Questions  and  Answers  about  Biological  Effects  and  Potential  Hazards  of  Radiofrequency Electromagnetic  Fields,"  OET  Bulletin  56  (Fourth  Edition),  Federal  Communications  Commission,  August. (http://www.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet56/oet56e4.pdf)  to  base acceptable  human  RF  exposure  limits  on  currently  proven  scientific  and  engineering  findings  on known  thermal  effects,  rather  than  on  general  concerns  or  speculation  about  possible  unknown and  as  yet  unproven  non-­‐thermal  effects.  Such  questions  will  likely  take  considerable  time  to resolve.  The  data  that  are  available  strongly  suggest  that  if  there  are  non-­‐thermal  effects  of  RF absorption  on  human  health,  such  effects  are  not  so  profound  as  to  be  easily  discernable. FCC  Guidelines  Address  Known  Thermal  Effects  Only,  not  Non-­‐thermal  Effects In  1985,  the  FCC  first  established  guidelines  to  limit  human  exposure  and  protect  against thermal  effects  of  absorbed  RF  emissions.  The  guidelines  were  based  on  those  from  the American  National  Standards  Institute  (ANSI)  that  were  issued  in  1982.13  In  1996,  the  FCC modified  its  guidelines,14  based  on  a  rulemaking  process  that  began  in  1993  in  response  to  a 1992  revision  of  the  ANSI  guidelines15,  16  and  findings  by  the  National  Council  on  Radiation Protection  and  Measurements  (NCRP).17  The  1996  guidelines  are  still  in  place  today. In  its  rulemaking  process  to  set  SAR  and  MPE  limits,  the  FCC  relied  on  many  federal  health  and safety  agencies,  including  the  U.S.  Environmental  Protection  Agency  and  the  Food  and  Drug Administration.  While  the  FCC  guidelines  appear  to  provide  a  large  factor  of  safety  against known  thermal  effects  of  exposure  to  radiofrequency,  they  do  not  necessarily  protect  against potential  non-­‐thermal  effects,  nor  do  they  claim  to.18  Without  additional  understanding  of these  effects,  there  is  inadequate  basis  to  develop  additional  guidelines  at  this  time. 12  National  Research  Council  (2008)  Identification  of  Research  Needs  Relating  to  Potential  Biological  or  Adverse Health  Effects  of  Wireless  Communication,  The  National  Academies  Press,  Washington,  D.C. (http://www.nap.edu/catalog/12036.html) 13  American  National  Standards  Institute  (1982)  “American  National  Standard  Radio  Frequency  Radiation  Hazard Warning  Symbol,”  ANSI  C95.2-­‐1982,  Institute  of  Electrical  and  Electronics  Engineers,  Inc. 14  FCC  (1997)  “Evaluating  Compliance  with  FCC  Guidelines  for  Human  Exposure  to  Radiofrequency  Electromagnetic Fields,”  OET  Bulletin  65  (Edition  97-­‐01),  Federal  Communications  Commission,  August. (http://www.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet65/oet65.pdf) 15  American  National  Standards  Institute  (1992)  “Safety  Levels  with  Respect  to  Human  Exposure  to  Radio Frequency  Electromagnetic  Fields,  3  kHz  to  300  GHz,”  ANSI/IEEE  C95.1-­‐1992  (previously  issued  as  IEEE  C95.1-­‐1991), Institute  of  Electrical  and  Electronics  Engineers,  Inc. 16  American  National  Standards  Institute  (1992)  “Recommended  Practice  for  the  Measurement  of  Potentially Hazardous  Electromagnetic  Fields  –  RF  and  Microwave,”  ANSI/IEEE  C95.3-­‐1992,  Institute  of  Electrical  and Electronics  Engineers,  Inc. 17  NCRP  (1986)  “Biological  Effects  and  Exposure  Criteria  for  Radiofrequency  Electromagnetic  Fields,”  NCRP  Report No.  86  (1986),  National  Council  on  Radiation  Protection  Measurements. 18  The  U.S.  EPA  confirmed  this  in  a  letter  to  The  Electromagnetic  Radiation  Policy  Institute,  dated  March  8,  2002. (http://www.emrpolicy.org/litigation/case_law/docs/noi_epa_response.pdf)  Any  difference  in  health  impacts  from  these devices  is  likely  to  be  a  result  of  differences  in  usage  patterns  among  them. Thermal  Effects Electromagnetic  waves  carry  energy,  and  EMF  absorbed  by  the  body  can  increase  the temperature  of  human  tissue.  The  scientific  consensus  is  that  body  temperatures  must increase  at  least  1oC  to  lead  to  potential  biological  impacts  from  the  heat.  The  only  scientifically verified  effect  that  has  been  shown  to  occur  in  the  power  and  frequency  range  that  smart meters  are  designed  to  occupy  is  a  disruption  in  animal  feeding  behavior  at  energy  exposure levels  of  4  W/kg  and  with  an  accompanying  increase  in  body  temperature  of  1oC  or  more.7  The exposure  levels  from  smart  meters  even  at  close  range  are  far  below  this  threshold.  The  FCC has  set  limits  on  power  densities  from  electronic  devices  that  are  well  below  the  level  where demonstrated  biological  impacts  occur,  and  the  limits  are  tens  or  hundreds  of  times  higher  than likely  exposure  from  smart  meters.8 Non-­‐thermal  Effects There  are  emerging  questions  in  the  medical  and  biological  fields  about  potential  harmful effects  caused  by  non-­‐thermal  mechanisms  of  absorbed  RF  emissions.  Complaints  of  health impacts  from  “electromagnetic  stress”  have  been  reported,  with  symptoms  including  fatigue, headache,  and  irritability.  Some  studies  have  suggested  that  RF  absorption  from  mobile phones  may  disrupt  communication  between  human  cells,  which  may  lead  to  other  negatives impacts  on  human  biology.9,10  While  concerns  of  brain  cancer  associated  with  mobile  phone usage  persist,  there  is  currently  no  definitive  evidence  linking  cell  phone  usage  with  increased incidence  of  cancer.11  But  due  to  the  recent  nature  of  the  technology,  impacts  of  long-­‐term exposure  are  not  known.  Ongoing  scientific  study  is  being  conducted  to  understand  non-­‐ thermal 7  D'Andrea,  effects  J.A.,  Adair,  from  E.R.  long-­‐,  and term  J.O.  de  exposure  Lorge  (2003)  to  Behavioral  mobile  phones  and  cognitive  and  smart  effects  meters,  of  microwave  etc.,  exposure,  especially Bioelectromagnetics  Suppl  6,  S39-­‐62  (2003). 8  Tell,  R.  (2008)  “Supplemental  Report  on  An  Analysis  of  Radiofrequency  Fields  Associated  with  Operation  of  the PG&E  Smart  Meter  Program  Upgrade  System,”  Prepared  for  Pacific  Gas  &  Electric  Company,  Richard  Tell Associates,  Inc.,  October  27. (http://www.pge.com/includes/docs/pdfs/shared/edusafety/systemworks/rfsafety/rf_fields_supplemental_report _2008.pdf) 9  Markova,  E.,  Malmgren,  L.,  and  I.Y.  Belyaev  (2009)  Microwaves  from  mobile  phones  inhibit  53PB1  focus formation  in  human  stem  cells  stronger  than  in  differentiated  cells:  Possible  mechanistic  link  to  cancer  risk. Environmental  Health  Perspectives,  doi:10.1289/ehp.0900781. 10  Nittby,  H.,  Grafstrom,  G.,  Eberhardt,  J.L.,  Malmgren,  L.,  Brun,  A.,  Persson  B.R.R.,  and  L.G.  Salford  (2008) Radiofrequency  and  Extremely  Low-­‐Frequency  Electromagnetic  Field  Effects  on  the  Blood-­‐Brain  Barrier Electromagnetic  Biology  and  Medicine,  27:  103–126,  2008. 11  Ahlbom,  A.,  Feychting,  M.,  Green,  A.,  Kheifets,  L.,  Savitz,  D.  A.,  and  A.  J.  Swerdlow  (2009)  Epidemiologic  evidence on  mobile  phones  and  tumor  risk:  a  review.  Epidemiology  20,  639-­‐52  (2009).  countries  around  the  world are  actively  deploying  smart  meters  as  well.  Digital  smart  meters  are  generally  considered  to  be the  fundamental  technology  required  to  enable  widespread  integration  of  information technology  (IT)  into  the  power  grid  (i.e.,  the  smart  grid).  The  following  table  (table  1) summarizes  some  potential  societal  benefits  expected  to  result  from  the  smart  grid. Table  1:  Smart  Grid  Benefits Consumers 1.  Cost  Savings  Resulting  from  Energy  Efficiency 2.  Increased  Consumer  Choice  and  Convenience 3.  More  Transparent,  Real-­‐Time  Information  and Control  for  Consumers Environment 1.  Widespread  Deployment  of  Renewable  Energy (Solar,  Wind,  Biofuels)  and  Electric  Vehicles (EVs) 2.  Reduced  Need  to  Build  More  Fossil  Fueled  Power plants 3.  Reduced  Carbon  Footprint  and  Other  Pollutants (via  Renewables,  Energy  Efficiency,  Electric Vehicles) Utilities 1.  Reduced  Cost  Due  to  Increased  Efficiencies  in Delivering  Electricity  and  Reduction  in Manpower  to  Read  Meters. 2.  Improved  Reliability  and  More  Timely  Outage Response 3.  Increased  Customer  Satisfaction  Due  to  Cost Savings  and  Self-­‐Control Source:  California  Smart  Grid  Center Economy 1.  Creates  New  Market  for  Goods  and  Services  (i.e., New  Companies,  New  Jobs) 2.  Up-­‐skilling  Workforce  to  be  Prepared  for  New Jobs 3.  Reduced  Dependence  on  Foreign  Oil,  Keeps Dollars  at  Home What  Health  Concerns  are  Associated  with  Smart  Meters? Human  health  impacts  from  exposure  to  electromagnetic  frequency  (EMF)  emissions  vary depending  on  the  frequency  and  power  of  the  fields.  Smart  meters  operate  at  low  power  and in 5  The  the  federal  RF  portion  Energy  of  Independence  the  electromagnetic  and  Security  Act  spectrum.  of  2007  directs  At  these  states  levels,  to  encourage  RF  emissions  utilities  to  from  initiate  smart  smart grid  programs,  allows  recovery  of  smart  grid  investments  through  utility  rates,  and  reimburses  20%  of  qualifying smart  grid  investments.  The  American  Recovery  and  Reinvestment  Act  of  2009  provided  $4.5  billion  to  develop smart  grid  infrastructure  in  the  U.S.  For  more  information,  see:  Congressional  Research  Service  (2007)  “Energy Independence  and  Security  Act  of  2007:  A  Summary  of  Major  Provisions,”  CRS  Report  for  Congress,  Order  Code RL34l294,  December  21.  (http://energy.senate.gov/public/_files/RL342941.pdf) 6  California  Public  Utilities  Commission  decision  on  Application  07-­‐12-­‐009  (March  12,  2009).  Decision  on  Pacific  Gas and  Electric  Company’s  Proposed  Upgrade  to  the  Smartmeter  Program.  HAN,  can  delay  non-­‐time  sensitive  demands  (such  as clothes  drying)  to  a  time  when  electricity  is  cheapest  or  has  the  most  benefit  to  the  reliability  of the  system.  In  some  cases  wireless  signals  interior  to  the  structure  will  also  be  able  to automatically  adjust  the  heating  and  ventilation  systems  and  to  adjust  heat  or  air  conditioning units.  This  adaptation  to  price  or  reliability  signals  could  reduce  overall  electricity  costs  for customers,  improve  the  utilization  of  renewable  and  non-­‐renewable  power  plants,  and  cut costs  associated  with  adding  intermittent  wind  and  solar  resources  to  the  grid. While  such  long-­‐term  value  of  smart  meters  will  take  years  to  fully  realize,  they  are  sufficiently promising  that  the  federal  government  has  required  utilities  to  take  steps  to  implement  smart 4  See  http://www.silverspringnet.com/products/index.html  for  component  descriptions.  Network infrastructure  includes  the  Silver  Spring  Access  Points  (APs)  and  Relays  that  forward  data  from  endpoints  across the  utility’s  backhaul  or  WAN  infrastructure  into  the  back  office. The  UtilityIQ  application  suite  incorporates  both  utility  applications  such  as  Advanced  Metering  and  Outage Detection  as  well  as  administrative  programs  for  managing  and  upgrading  the  network.  GridScape  provides management  for  DA  communications  networks. The  CustomerIQ  web  portal  enables  utilities  to  directly  communicate  usage,  pricing,  and  recommendations  to consumers.  Silver  Spring  works  with  each  utility  to  customize  the  information  portrayed  and  to  import  utility-­‐ specific  information  such  as  rate  schedules.  These  access  points  are  designed  to  transmit  data  from  up  to 5,000  smart  meters  to  the  utility  company.  Access  points  have  a  similar  AMR  transmitter  as smart  meters,  as  well  as  an  additional  AirCard,  which  communicates  with  utilities  and  is  similar to  wireless  cards  used  in  laptop  computers.  AirCards  typically  operate  at  0.25-­‐1  W,  in  the  800-­‐ 900  MHz  or  1.9  GHz  range. In  some  cases,  data  is  moved  through  the  mesh  network,  relaying  the  data  through  other meters  to  the  utility  access  point.  This  may  occur  when  the  topography  or  built  environment interferes  with  the  transmission  of  data  from  a  smart  meter  to  the  access  point.  In  these  cases, the  relaying  of  data  may  occur  between  one  smart  meter  and  another  before  the  signal  is  sent to  the  utility  access  point  (e.g.,  hops  along  a  set  of  meters).  Additionally,  some  non-­‐meter  data relays  will  also  exist  in  the  system  to  connect  some  smart  meters  to  utility  access  points. Many  smart  meters,  including  those  from  PG&E,  also  have  a  second  transmitter  that,  at  some future  point  in  time,  will  allow  customers  to  enable  a  home  access  network  (HAN).  The  HAN  will allow  increased  consumer  monitoring  of  electricity  use  and  communication  among  appliances and  the  future  smart  grid.  This  functionality  is  important  to  achieve  the  full  potential  of  the smart  grid.  This  second  internal  transmitter,  for  delivery  of  smart  meter  data  to  the  consumer, reportedly  will  operate  at  a  rated  power  of  0.223W,  at  frequency  of  about  2.4  GHz  (again, similar  to  that  of  cell  phones  and  wireless  phones).  The  actual  duty  cycle  of  this  transmitter  will depend  on  the  design  and  operation  of  the  home  area  network. Why  are  Smart  Meters  Being  Installed  Throughout  California? It  is  anticipated,  when  fully  operational,  that  smart  electricity  meters  are  a  key  enabling technology  for  a  “smart  grid”  that  is  expected  to  become  increasingly  clean,  efficient,  reliable, and  safe  (see  Figure  3)  at  a  potential  lower  cost  to  the  consumer.  (Digital  meters  are  also  being used  for  reading  of  natural  gas  and  water  consumption).  Smart  electrical  meters  allow  direct two-­‐way  communication  between  utilities  and  customers,  which  is  expected  to  help  end  users adjust  their  demand  to  price  changes  that  reflect  the  condition  of  the  electricity  grid.  These  end user  adjustments  can  help  to  protect  the  overall  reliability  of  the  electricity  grid,  cut  costs  for utility  customers,  and  improve  the  operation  and  efficiency  of  the  electricity  grid.  The  smart grid  will  enable  grid  operators  to  better  balance  electricity  supply  and  demand  in  real-­‐time, which  becomes  increasingly  important  as  more  intermittent  wind  and  solar  generation resources  are  added  to  the  grid. Figure  4  depicts  the  potential  operation  of  a  smart  grid.  real  time  monitoring  of  power  as  delivered  to  the  consumer  by  the  utility  company.  CCST obtained  from  PG&E  the  Richard  Tell  Associates  report,  which  describes  the  operation  of  the smart  meter  from  the  2008  perspective  of  AMR,  not  a  fully  deployed  real  time  smart  grid. The  Richard  Tell  Associates  reports  describe  the  use  of  the  smart  meter  radios  being  deployed by  PG&E  as  licensed  by  the  FCC  for  a  maximum  power  output  of  1  W  (watt)  and  within  the  902-­‐ 928  MHz  (mega-­‐hertz)  frequency  band.  In  its  initial  deployment,  PG&E  reports  that  it  will configure  the  radios  to  transmit  data  from  the  meter  to  the  access  point  once  every  four  hours, for  about  50  milliseconds  at  a  time.3  Accounting  for  this,  the  current  duty  cycles  of  the  smart meter  transmitter  (that  is,  the  percent  of  time  that  the  meter  operates)  would  then  typically  be 1  percent,  or  in  some  cases  where  the  meter  is  frequently  used  as  a  relay,  as  much  as  2-­‐4 percent.  This  means  that  the  typical  smart  meter  in  this  initial  (AMR)  use  would  not  transmit any  RF  signal  at  least  96-­‐98  percent  of  the  time. It  is  important  to  note  that  any  one  smart  meter  is  part  of  a  broader  “mesh”  network  and  may act  as  a  relay  among  other  smart  meters  and  utility  access  points.  In  addition,  when  the  smart grid  is  fully  functional  the  smart  meters  would  be  expected  to  be  transmitting  much  more  than once 3  Tell,  R.  every  (2008)  four  “Supplemental  hours,  providing  Report  on  data  An  Analysis  in  near  of  real-­‐  Radiofrequency time,  which  Fields  will  Associated  result  in  with  a  much  Operation  higher  of  duty  the PG&E  Smart  Meter  Program  Upgrade  System,”  Prepared  for  Pacific  Gas  &  Electric  Company,  Richard  Tell Associates,  Inc.,  October  27. http://www.pge.com/includes/docs/pdfs/shared/edusafety/systemworks/rfsafety/rf_fields_supplemental_report _2008.pdf)  reduce  operating  costs  for  utilities,  and  potentially,  costs  for  customers  (see  Figure 2). a.  Analog  Meter  b.  Digital  Meter Figure  2.  a)  An  analog,  conventional  meter  and  a  (b)  digital  smart  meter  (Source:  PG&E) Each  of  California’s  major  electricity  utilities  has  begun  deploying  smart  meter  infrastructure. There  are  many  kinds  of  smart  meters  manufactured  by  a  variety  of  companies.  The  meter, including  sensors  and  the  housing  or  casing,  may  be  manufactured  by  one  company  while  the communications  device  (installed  within  the  meter)  is  manufactured  by  another.  Depending upon  the  internal  communications  device  employed,  meters  are  configured  to  operate  in  a wired  or  in  wireless  environment.  The  smart  meters  used  by  PG&E  are  made  by  General  Electric and  Landis  +  Gyr  and  use  a  wireless  communications  technology  from  Silver  Spring  Networks. Each  of  these  PG&E  meters  has  two  transmitters  to  provide  two  different  communications  of data  from  these  meters.2  The  first  provides  for  the  “automatic  meter  reading”  (AMR)  function of  the  meter  (and  for  more  detailed  and  real  time  monitoring  of  the  characteristics  of  the electrical  energy  delivered  to  the  consumer)  and  sends  this  data  to  an  access  point,  where  it  is collected  along  with  data  from  many  other  customers  and  transmitted  to  PG&E  using  a  wireless area  network  (WAN)  (similar  to  the  way  cell  phone  communication  works). 2  Tell,  R.  (2008)  “Supplemental  Report  on  An  Analysis  of  Radiofrequency  Fields  Associated  with  Operation  of  the PG&E  Smart  Meter  Program  Upgrade  System,”  Prepared  for  Pacific  Gas  &  Electric  Company,  Richard  Tell Associates,  Inc.,  October  27.  is  needed  to  better understand  and  verify  these  potential  mechanisms. Given  the  existing  significant  scientific  uncertainty  around  non-­‐thermal  effects,  there  is currently  no  generally  accepted  definitive,  evidence-­‐based  indication  that  additional standards  are  needed.  Because  of  the  lack  of  generally  accepted  evidence,  there  is  also not  an  existing  basis  from  which  to  understand  what  types  of  standards  could  be  helpful or  appropriate.  Without  a  clearer  understanding  of  the  biological  mechanisms  involved identifying  additional  standards  or  evaluating  the  relative  costs  and  benefits  of  those standards  cannot  be  determined  at  this  time. CCST  notes  that  in  some  of  the  studies  reviewed,  contributors  have  raised  emerging questions  from  some  in  the  medical  and  biological  fields  about  the  potential  for biological  impacts  other  than  the  thermal  impact  that  the  FCC  guidelines  address.  A report  of  the  National  Academies  identifies  research  needs  and  gaps  and  recommended areas  of  research  to  be  undertaken  to  further  understanding  of  long-­‐term  exposure  to RF  emissions  from  communication  devices,  particularly  from  non-­‐thermal  mechanisms that  are  not  currently  addressed  by  the  FCC  guidelines.1  In  our  increasingly  wireless society,  smart  meters  account  for  a  very  small  portion  of  RF  emissions  to  which  we  are exposed.  Concerns  about  human  health  impacts  of  RF  emissions  from  smart  meters should  be  considered  in  this  broader  context. “Scientifically  established”,  “generally  accepted  scientific  knowledge”  and  other  such  references throughout  this  document  are  referencing  information  obtained  through  the  scientific  method.  A scientific  method  consists  of  the  collection  of  data  through  observation  and  experimentation,  and  the formulation  and  testing  of  hypotheses.  These  steps  must  be  repeatable  in  order  to  predict  future  results. Scientific  inquiry  is  generally  intended  to  be  as  objective  as  possible,  to  reduce  biased  interpretations  of results.  Another  basic  expectation  is  to  document,  archive  and  share  all  data  and  methodology  so  they  are available  for  careful  scrutiny  by  other  scientists,  giving  them  the  opportunity  to  verify  results  by attempting  to  reproduce  them.  This  practice,  called  full  disclosure,  also  allows  statistical  measures  of H  ealth  concerns the  reliability  surrounding  of  these  data  RF  to  from  be  established.  smart  meters  are  similar  to  those  from  many  other devices  that  we  use  in  our  daily  lives,  including  cordless  and  cellular  telephones,  microwave ovens,  wireless  routers,  hair  dryers,  and  wireless-­‐enabled  laptop  computers.  As  detailed  in  the report,  a  comparison  of  electromagnetic  frequencies  from  smart  meters  and  other  devices shows  that  the  exposure  level  is  very  low. 1  National  Research  Council  (2008)  Identification  of  Research  Needs  Relating  to  Potential  Biological  or  Adverse Health  Effects  of  Wireless  Communication,  The  National  Academies  Press,  Washington,  D.C.  has  established  guidelines  to  protect  public  health  from  known  hazards associated  with  the  thermal  impacts  of  RF:  tissue  heating  from  absorbing  energy  associated with  radiofrequency  emissions.  Non-­‐thermal  effects,  however,  including  cumulative  or prolonged  exposure  to  lower  levels  of  RF  emissions,  are  not  well  understood.  Some  studies have  suggested  non-­‐thermal  effects  may  include  fatigue,  headache,  irritability,  or  even  cancer. But  these  findings  have  not  been  scientifically  established,  and  the  mechanisms  that  might  lead to  non-­‐thermal  effects  remain  uncertain.  Additional  research  and  monitoring  is  needed  to better  identify  and  understand  potential  non-­‐thermal  effects. Findings Given  the  body  of  existing,  generally  accepted  scientific  knowledge  regarding  smart  meters  and similar  electronic  devices,  CCST  finds  that: 1. The  FCC  standard  provides  an  adequate  factor  of  safety  against  known  thermally induced  health  impacts  of  smart  meters  and  other  electronic  devices  in  the  same range  of  RF  emissions. The  potential  for  behavioral  disruption  from  increased  body  tissue  temperatures  is  the only  biological  health  impact  that  has  been  consistently  demonstrated  and  scientifically proven  to  result  from  absorbing  RF  within  the  band  of  the  electromagnetic  spectrum (EMF)  that  smart  meters  use.  The  Federal  Communications  Commission  (FCC)  has  set  a limit  on  the  Standard  Absorption  Rate  (SAR)  from  electronic  devices,  which  is  well  below the  level  that  has  been  demonstrated  to  affect  behavior  in  laboratory  animals.  Smart meters,  including  those  being  installed  by  Pacific  Gas  and  Electric  Company  (PG&E)  in the  Assembly  Members’  districts,  if  installed  according  to  the  manufacturers instructions  and  consistent  with  the  FCC  certification,  emit  RF  that  is  a  very  small fraction  of  the  exposure  level  established  as  safe  by  the  FCC  guidelines. The  FCC  guidelines  provide  a  significant  factor  of  safety  against  thermal  impacts  that occur  at  the  power  levels  and  within  the  RF  band  used  by  smart  meters.  Given  current scientific  knowledge,  the  FCC  guideline  provides  a  more  than  adequate  margin  of  safety against  the  known  thermal  effects.  Monning  signed  onto  the  request  with  his  own  letter  to  CCST  on  September  15, 2010.  The  City  of  Mill  Valley  also  sent  a  letter  on  September  20th  supporting  Assembly  Member Huffman’s  request  for  the  study. Approach Reflecting  the  requests  of  the  Assembly  Members,  CCST  agreed  to  compile  and  assess  the evidence  available  to  address: 1.  Whether  Federal  Communications  Commission  (FCC)  standards  for  smart  meters  are sufficiently  protective  of  public  health,  taking  into  account  current  exposure  levels  to radiofrequency  and  electromagnetic  fields. 2.  Whether  additional  technology-­‐specific  standards  are  needed  for  smart  meters  and other  devices  that  are  commonly  found  in  and  around  homes,  to  ensure  adequate protection  from  adverse  health  effects. CCST  convened  a  Smart  Meter  Project  Team  composed  of  CCST  Council  and  Board  members supplemented  with  additional  experts  in  relevant  fields  (see  Appendix  A  for  Project  Team members).  The  Project  Team  identified  and  reviewed  over  100  publications  and  postings  about smart  meters  and  other  devices  in  the  same  range  of  emissions,  including  research  related  to cell  phone  RF  emissions,  and  contacted  over  two  dozen  experts  in  radio  and  electromagnetic emissions  and  related  fields  to  seek  their  opinion  on  the  two  identified  issues. It  is  important  to  note  that  CCST  has  not  undertaken  primary  research  of  its  own  to  address these  issues.  This  response  is  limited  to  soliciting  input  from  technical  experts  and  to  reviewing and  evaluating  available  information  from  past  and  current  research  about  health  impacts  of  RF emitted  from  electric  appliances  generally,  and  smart  meters  specifically.  A  subset  of  those contacted  provided  written  input  on  the  issues  to  CCST.  This  report  has  been  extensively reviewed  by  the  Project  Team,  experts  in  related  fields,  and  has  been  subject  to  the  CCST  peer review  process  (see  Appendix  B).  It  has  also  been  made  available  to  the  public  for  comment. 40 4 1 1  FCC  standard  provides  an  adequate  factor  of  safety  against  known  thermally induced  health  impacts  of  existing  common  household  electronic  devices  and  smart meters. 3. To  date,  scientific  studies  have  not  identified  or  confirmed  negative  health  effects  from potential  non-­‐thermal  impacts  of  RF  emissions  such  as  those  produced  by  existing common  household  electronic  devices  and  smart  meters. 4. Not  enough  is  currently  known  about  potential  non-­‐thermal  impacts  of  radio  frequency emissions  to  identify  or  recommend  additional  standards  for  such  impacts OTHER  CONSIDERATIONS Smart  electricity  meters  are  a  key  enabling  technology  for  a  “smart  grid”  that  is  expected  to become  increasingly  clean,  efficient,  reliable,  and  safe  at  a  potentially  lower  cost  to  the consumer.  The  CCST  Smart  Meter  Project  Team  offers  the  following  for  further consideration  by  policy  makers,  regulators  and  the  utilities.  We  appreciate  that  each  of these  considerations  would  likely  require  a  cost/benefit  analysis.  However,  we  feel  they should  be  considered  as  the  overall  cumulative  exposure  to  RF  emissions  in  our environment  continues  to  expand. 1. As  wireless  technologies  of  all  types  increase  in  usage,  it  will  be  important  to:  (a) continue  to  quantitatively  assess  the  levels  of  RF  emissions  from  common  household devices  and  smart  meters  to  which  the  public  may  be  exposed;  and  (b)  continue  to investigate  potential  thermal  and  non-­‐thermal  impacts  of  such  RF  emissions  on  human health. 2. Consumers  should  be  provided  with  clearly  understood  information  about  the radiofrequency  emissions  of  all  devices  that  emit  RF  including  smart  meters.  Such information  should  include  intensity  of  output,  duration  and  frequency  of  output,  and, in  the  cases  of  the  smart  meter,  pattern  of  sending  and  receiving  transmissions  to  and from  all  sources. 3. The  California  Public  Utilities  Commission  should  consider  doing  an  independent  review of  the  deployment  of  smart  meters  to  determine  if  they  are  installed  and  operating consistent  with  the  information  provided  to  the  consumer. 4. Consideration  could  be  given  to  alternative  smart  meter  configurations  (such  as  wired) in  those  cases  where  wireless  meters  continue  to  be  concern  to  consumers.  that  is  agile,  efficient and  cost  effective. The  electricity  crisis  of  2000  and  2001  helped  force  the  issue  here  in  California,  lending significant  urgency  to  the  need  for  better  management  of  power  generation  and  distribution. In  2006,  the  California  Public  Utilities  Commission  authorized  the  Pacific  Gas  and  Electric Company  to  implement  a  relatively  new  technology,  smart  meters,  to  gather  much  more precise  information  about  power  usage  throughout  the  state.  The  process  of  installing  the meters  throughout  the  state  is  still  underway. As  with  any  new  technology,  there  are  unknowns  involved.  Smart  meters  generally  work  by transmitting  information  wirelessly.  Some  people  have  expressed  concerns  about  the  health effects  of  wireless  signals,  particularly  as  they  become  virtually  ubiquitous.  These  concerns have  recently  been  brought  to  the  attention  of  state  legislators,  with  some  local  municipalities opting  to  ban  further  installation  of  the  meters  in  their  communities. We  are  pleased  that  Assembly  Members  Huffman  and  Monning  have  turned  to  CCST  for  input on  this  issue.  It  is  CCST’s  charge  to  offer  independent  expert  advice  to  the  state  government and  to  recommend  solutions  to  science  and  technology-­‐related  policy  issues.  In  this  case,  we have  assembled  a  succinct  but  comprehensive  overview  of  what  is  known  about  human exposure  to  wireless  signals  and  the  efficacy  of  the  FCC  safety  standards  for  these  signals.  To do  so,  we  assembled  a  project  team  that  consulted  with  over  two  dozen  experts  and  sifted through  over  a  hundred  articles  and  reports,  providing  a  thorough,  unbiased  overview  in  a relatively  rapid  manner. In  situations  where  public  sentiment  urges  policy  makers  to  make  policy  decisions  with potentially  long-­‐term  consequences,  access  to  the  best  information  possible  is  critical.  This  is the  role  that  CCST  was  created  to  fulfill. Susan  Hackwood Rollin  Richmond Executive  Director,  CCST Project  Team  Chair,  CCST  with  smart  meters?  ..........................................................  13 FCC  guidelines  address  known  thermal  effects  only,  not  non-­‐thermal  effects  ...........................  15 Power  density  (and  exposure  level)  declines  rapidly  with  distance  ............................................  18 Comparison  of  electromagnetic  frequencies  from  smart  meters  and  other  devices  ..................  19 What  is  duty  cycle  and  how  does  it  affect  human  health?  ..........................................................  22 What  about  exposure  levels  from  a  bank  of  meters  and  from  just  behind the  wall  of  a  single  meter?  ...........................................................................................................  23 Is  the  FCC  standard  sufficient  to  protect  public  health?  ..............................................................  23 Are  additional  technology-­‐specific  standards  needed?  ...............................................................  23 Public  information  and  education  ................................................................................................  24 Alternatives  to  wireless?  ..............................................................................................................  24 Key  factors  to  consider  when  evaluating  exposure  to  radiofrequency  from  smart  meters?  .......  25 Conclusion  ....................................................................................................................................  26 Appendix  A  –  Letters  requesting  CCST  assistance  ........................................................................  27 • Assembly  Member  Huffman’s  Letter  ...............................................................................  27 • Assembly  Member  Monning’s  Letter  ...............................................................................  29 • City  of  Mill  Valley  Letter  ...................................................................................................  30 Appendix  B  –  Project  Process  .......................................................................................................  32 Appendix  C  –  Project  Team  ..........................................................................................................  34 Appendix  D  –  Written  Submission  Authors  ..................................................................................  37 Appendix  E  –  Materials  Consulted  ...............................................................................................  38 Appendix  F  –  Glossary  ..................................................................................................................  45 Appendix  G  –  CCST  2010  Board  Members  ...................................................................................  47 Appendix  H  –  CCST  2010  Council  Members  .................................................................................  48 Appendix  I  –  Report  Credits  .........................................................................................................  49  University,  Sacramento  and  to  the  University  of  California’s  Center  for  Information Technology  Research  in  the  Interest  of  Society  (CITRIS). This  report  was  conducted  with  the  oversight  of  a  CCST  Smart  Meter  Project  Team,  whose members  include:  Rollin  Richmond  (Chair),  Emir  Macari,  Patrick  Mantey,  Paul  Wright,  Ryan McCarthy,  Jane  Long,  David  Winickoff,  and  Larry  Papay.  We  also  thank  J.D.  Stack  for  his technical  contributions  and  Lora  Lee  Martin  for  the  overall  coordination  of  this  report  response. We  express  gratitude  to  CCST’s  members  and  colleagues  for  their  many  contributions  to  the report. COPYRIGHT Copyright  2010  by  the  California  Council  on  Science  and  Technology.  Library  of  Congress Cataloging  Number  in  Publications  Data  Main  Entry  Under  Title: Health  Impacts  of  Radio  Frequency  From  Smart  Meters January  2011 ISBN-­‐13:  978-­‐1-­‐930117-­‐42-­‐6 CCST  is  a  non-­‐profit  organization  established  in  1988  at  the  request  of  the  California  State Government  and  sponsored  by  the  major  public  and  private  postsecondary  institutions  of California  and  affiliate  federal  laboratories  in  conjunction  with  leading  private-­‐sector  firms. CCST's  mission  is  to  improve  science  and  technology  policy  and  application  in  California  by proposing  programs,  conducting  analyses,  and  recommending  public  policies  and  initiatives that  will  maintain  California's  technological  leadership  and  a  vigorous  economy. Note:  The  California  Council  on  Science  and  Technology  (CCST)  has  made  every  reasonable effort  to  assure  the  accuracy  of  the  information  in  this  publication.  However,  the  contents  of this  publication  are  subject  to  changes,  omissions,  and  errors,  and  CCST  does  not  accept responsibility  for  any  inaccuracies  that  may  occur. For  questions  or  comments  on  this  publication  contact: California  Council  on  Science  and  Technology 1130  K  Street,  Suite  280 Sacramento,  California  95814 (916)  492-­‐0996 ccst@ccst.us